1
|
Georgaki G, Koutroumpa NM, Lagarias P, Afantitis A, Papakyriakou A, Stratikos E. Discovery of Novel Allosteric Inhibitor Hits for Insulin-Regulated Aminopeptidase Provides Insights on Enzymatic Mechanism. ACS OMEGA 2025; 10:17960-17972. [PMID: 40352506 PMCID: PMC12059914 DOI: 10.1021/acsomega.5c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Insulin-regulated aminopeptidase (IRAP) is a transmembrane zinc metalloprotease with various important biological roles, including fibrosis, septic thrombosis, cognitive functions, and immune system regulation. As a result, IRAP is an emerging pharmacological target for several diseases. However, the development of selective inhibitors that specifically regulate its activity remains challenging due to its high sequence and functional homology with many other enzymes that have highly conserved active sites. To circumvent this limitation, we targeted the malate allosteric site, a site that has yielded highly selective inhibitors of the homologous enzyme ERAP1. We performed virtual screening to discover drug-like compounds that bind with high affinity to this allosteric site in IRAP. A database of 38 million diverse, drug-like compounds from ENAMINE was employed for screening at three conformations of the targeted site. A subset of the top-ranked compounds was subsequently evaluated using molecular dynamics simulations and comparative MM/GBSA free energy calculation, from which 17 were selected for further in vitro evaluation of their inhibitory activity for IRAP by two orthogonal assays. Three hits, one for each enzyme conformation and substrate class, were selected for further mechanistic evaluation revealing substrate-dependent uncompetitive or noncompetitive mechanisms of action, consistent with the conformationally sensitive nature of the allosteric site. Our results support the tractability of the malate site for the discovery of novel selective IRAP inhibitors, establish novel hits for further development, and suggest that it may be possible to target specific biological functions of IRAP by targeting distinct conformations of the enzyme by allosteric inhibitors.
Collapse
Affiliation(s)
- Galateia Georgaki
- Laboratory
of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15784, Greece
- National
Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Nikoletta-Maria Koutroumpa
- NovaMechanics
Ltd., Nicosia 1070, Cyprus
- School
of
Chemical Engineering, National Technical
University of Athens, Athens 15780, Greece
| | | | | | | | - Efstratios Stratikos
- Laboratory
of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15784, Greece
- National
Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| |
Collapse
|
2
|
Mauvais FX, Hamel Y, Silvin A, Mulder K, Hildner K, Akyol R, Dalod M, Koumantou D, Saveanu L, Garfa M, Cagnard N, Bertocci B, Ginhoux F, van Endert P. Metallophilic marginal zone macrophages cross-prime CD8 + T cell-mediated protective immunity against blood-borne tumors. Immunity 2025; 58:843-860.e20. [PMID: 40139188 DOI: 10.1016/j.immuni.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/27/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Splenic metallophilic marginal zone macrophages (MMMs) are positioned to control the dissemination of blood-borne threats. We developed a purification protocol to enable characterization of MMMs phenotypically and transcriptionally. MMM gene expression profile was enriched for pathways associated with CD8+ T cell activation and major histocompatibility complex class I (MHC class I) cross-presentation. In vitro, purified MMMs equaled conventional dendritic cells type 1 (cDC1s) in cross-priming CD8+ T cells to soluble and particulate antigens, yet MMMs employed a distinct vacuolar processing pathway. In vivo biphoton and ex vivo light-sheet imaging showed long-standing contacts with cognate T cells differentiating to effectors. MMMs cross-primed protective CD8+ T cell antitumor responses both by capturing blood-borne tumor antigens and by internalizing tumor cells seeding the spleen. This cross-priming required expression of the transcription factor Batf3 by MMMs but was independent of cDC1-mediated capture of tumor material for cross-presentation or MHC class I-dressing. Thus, MMMs combine control of the dissemination of blood-borne pathogens and tumor materials with the initiation of innate and adaptive responses.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, 75019 Paris, France.
| | - Yamina Hamel
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kai Hildner
- University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Medical Department 1, Deutsches Zentrum Immuntherapie, 91054 Erlangen, Germany
| | - Ramazan Akyol
- Aix Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Despoina Koumantou
- Université Paris Cité, Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018 Paris, France; Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018 Paris, France
| | - Loredana Saveanu
- Université Paris Cité, Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018 Paris, France; Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018 Paris, France
| | - Meriem Garfa
- Cell Imaging, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UMS3633, 75015 Paris, France
| | - Nicolas Cagnard
- Bioinformatics Core Facilities, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UMS3633, 75015 Paris, France
| | - Barbara Bertocci
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, (A∗STAR), Singapore, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
3
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025; 25:249-273. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
4
|
Xu B, Ye X, Sun K, Chen L, Wen Z, Lan Q, Chen J, Chen M, Shen M, Wang S, Xu Y, Zhang X, Zhao J, Wang J, Chen S. IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411914. [PMID: 39853919 PMCID: PMC11967848 DOI: 10.1002/advs.202411914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis. Through interaction with certain endosome membrane proteins, IRAP can not only promote granule release, but also facilitate lysosomal degradation of theoretically discarded ribosomes in an mTORC1- and S-acylation-dependent manner in activated platelets. Plentiful amino acids obtained from IRAP-mediated ribophagy are recruited to aerobic glycolysis and then promote energy metabolism reprogramming, thereby producing abundant energy for platelet life extension and prolonged activation. Consequently, targeted blocking IRAP can dramatically alleviate platelet hyperactivation and septic thrombosis.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Kangfu Sun
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Liang Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Qigang Lan
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xi Zhang
- Medical Center of HematologyXinqiao HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jinghong Zhao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| |
Collapse
|
5
|
Stam F, Bjurling S, Nylander E, Håkansson EO, Barlow N, Gising J, Larhed M, Odell LR, Grönbladh A, Hallberg M. Inhibition of IRAP Enhances the Expression of Pro-Cognitive Markers Drebrin and MAP2 in Rat Primary Neuronal Cells. Int J Mol Sci 2024; 25:12016. [PMID: 39596085 PMCID: PMC11594062 DOI: 10.3390/ijms252212016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models. The macrocyclic compound 9 (C9) is a potent synthetic IRAP inhibitor developed from the previously reported inhibitor HA08. In this study, we have examined compound C9 and its effects on cognitive markers drebrin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP) in primary hippocampal and cortical cultures. Cells from Sprague Dawley rats were cultured for 14 days before treatment with C9 for 4 consecutive days. The cells were analysed for protein expression of drebrin, MAP2, GFAP, glucose transporter type 4 (GLUT4), vesicular glutamate transporter 1 (vGluT1), and synapsin I using immunocytochemistry. The gene expression of related proteins was determined using qPCR, and viability assays were performed to evaluate toxicity. The results showed that protein expression of drebrin and MAP2 was increased, and the corresponding mRNA levels were decreased after treatment with C9 in the hippocampal cultures. The ratio of MAP2-positive neurons and GFAP-positive astrocytes was altered and there were no toxic effects observed. In conclusion, the IRAP inhibitor compound C9 enhances the expression of the pro-cognitive markers drebrin and MAP2, which further confirms IRAP as a relevant pharmaceutical target and C9 as a promising candidate for further investigation.
Collapse
Affiliation(s)
- Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Sara Bjurling
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Esther Olaniran Håkansson
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (E.O.H.); (L.R.O.)
| | - Nicholas Barlow
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (N.B.); (M.L.)
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (N.B.); (M.L.)
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (N.B.); (M.L.)
| | - Luke R. Odell
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (E.O.H.); (L.R.O.)
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| |
Collapse
|
6
|
Koumantou D, Adiko AC, Bourdely P, Nugue M, Boedec E, El‐Benna J, Monteiro R, Saveanu C, Laffargue M, Wymann MP, Dalod M, Guermonprez P, Saveanu L. Specific Requirement of the p84/p110γ Complex of PI3Kγ for Antibody-Activated, Inducible Cross-Presentation in Murine Type 2 DCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401179. [PMID: 39382167 PMCID: PMC11600261 DOI: 10.1002/advs.202401179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Cross-presentation by MHCI is optimally efficient in type 1 dendritic cells (DC) due to their high capacity for antigen processing. However, through specific pathways, other DCs, such as type 2 DCs and inflammatory DCs (iDCs) can also cross-present antigens. FcγR-mediated uptake by type 2 DC and iDC subsets mediates antibody-dependent cross-presentation and activation of CD8+ T cell responses. Here, an important role for the p84 regulatory subunit of PI3Kγ in mediating efficient cross-presentation of exogenous antigens in otherwise inefficient cross-presenting cells, such as type 2 DCs and GM-CSF-derived iDCs is identified. FcγR-mediated cross-presentation is shown in type 2 and iDCs depend on the enzymatic activity of the p84/p110γ complex of PI3Kγ, which controls the activity of the NADPH oxidase NOX2 and ROS production in murine spleen type 2 DCs and GM-CSF-derived iDCs. In contrast, p84/p110γ is largely dispensable for cross-presentation by type 1 DCs. These findings suggest that PI3Kγ-targeted therapies, currently considered for oncological practice, may interfere with the ability of type 2 DCs and iDCs to cross-present antigens contained in immune complexes.
Collapse
Affiliation(s)
- Despoina Koumantou
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Aimé Cézaire Adiko
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Pierre Bourdely
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- CNRSINSERMInstitut CochinParis75014France
| | - Mathilde Nugue
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Erwan Boedec
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Jamel El‐Benna
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Renato Monteiro
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Cosmin Saveanu
- Institut PasteurRNA Biology of Fungal PathogensUniversité Paris CitéParis75015France
| | | | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 28BaselCH‐4058Switzerland
| | - Marc Dalod
- CNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsAix‐Marseille UniversityMarseille13007France
| | - Pierre Guermonprez
- “Dendritic cells and adaptive immunity”Immunology departmentPasteur InstituteParis75015France
- CNRS UMR3738, Département Biologie du Développement et Cellules SouchesInstitut Pasteur, Université Paris Cité25‐28 rue du Docteur RouxParis75015France
| | - Loredana Saveanu
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| |
Collapse
|
7
|
Bhatia U, Tadman S, Rocha A, Rudraboina R, Contreras-Ruiz L, Guinan EC. Allostimulation leads to emergence of a human B cell population with increased expression of HLA class I antigen presentation-associated molecules and the immunoglobulin receptor FcRL5. Am J Transplant 2024; 24:1968-1978. [PMID: 38992496 DOI: 10.1016/j.ajt.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
In the extensive literature characterizing lymphocyte contributions to transplant-related pathologies including allograft rejection and graft-versus-host disease, T cell-focused investigation has outpaced investigation of B cells. Most B cell-related reports describe regulatory and antibody-producing functions, with less focus on the potential role of antigen-presenting capacity. Using in vitro human mixed lymphocyte reactions (MLRs) to model allostimulation, we analyzed responder B cells using transcriptional analysis, flow cytometry, and microscopy. We observed emergence of an activated responder B cell subpopulation phenotypically similar to that described in individuals with graft-versus-host disease or allograft rejection. This population had markedly increased expression of FcRL5 (Fc receptor like 5) and molecules associated with human leukocyte antigen class I antigen presentation. Consistent with this phenotype, these cells demonstrated increased internalization of irradiated cell debris and dextran macromolecules. The proportion of this subpopulation within MLR responders also correlated with emergence of activated, cytotoxic CD8+ T cells. B cells of similar profile were quite infrequent in unstimulated blood from healthy individuals but readily identifiable in disaggregated human splenocytes and increased in both cases upon allostimulation. Further characterization of the emergence and function of this subpopulation could potentially contribute to identification of novel biomarkers and targeted therapeutics relevant to curbing transplant-related pathology.
Collapse
Affiliation(s)
- Urvashi Bhatia
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Tadman
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alyssa Rocha
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rakesh Rudraboina
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Laura Contreras-Ruiz
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Vear A, Chakraborty A, Fahimi F, Ferens D, Widdop R, Samuel CS, Gaspari T, van Endert PM, Chai SY. Sex- and time-dependent role of insulin regulated aminopeptidase in lipopolysaccharide-induced inflammation. Front Immunol 2024; 15:1466692. [PMID: 39430768 PMCID: PMC11486674 DOI: 10.3389/fimmu.2024.1466692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The enzyme, insulin regulated aminopeptidase (IRAP), is expressed in multiple immune cells such as macrophages, dendritic cells and T cells, where it plays a role in regulating the innate and adaptive immune response. There is a genetic association between IRAP and survival outcomes in patients with septic shock where a variant of its gene was found to be associated with increased 28-day mortality. This study investigated the role for IRAP in a lipopolysaccharide (LPS)-induced inflammatory response which is thought to model facets of the systemic inflammation observed in the early stages of human gram-negative sepsis. The frequencies and activation of splenic immune cell populations were investigated in the IRAP knockout (KO) mice compared to the wildtype controls over a period of 4-, 24-, or 48-hours following LPS stimulation. Dendritic cells isolated from the spleen of female IRAP KO mice, displayed significant increases in the activation markers CD40, CD86 and MHCII at 24 hours after LPS induction. A modest heightened pro-inflammatory response to LPS was observed with increased expression of activation marker CD40 in M1 macrophages from male IRAP knockout mice. Observations in vitro in bone marrow-derived macrophages (BMDM) revealed a heightened pro-inflammatory response to LPS with significant increases in the expression of CD40 in IRAP deficient cells compared with BMDM from WT mice. The heightened LPS-induced response was associated with increased pro-inflammatory cytokine secretion in these BMDM cells. A genotype difference was also detected in the BMDM from female mice displaying suppression of the LPS-induced increases in the activation markers CD40, CD86, CD80 and MHCII in IRAP deficient cells. Thus, this study suggests that IRAP plays specific time- and sex-dependent roles in the LPS-induced inflammatory response in dendritic cells and macrophages.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Amlan Chakraborty
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dorota Ferens
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Robert Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S. Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter M. van Endert
- Institut Necker Enfants Malades, Université Paris Cité, INSERM, CNRS, Paris, France
- Service Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Mpakali A, Georgaki G, Buson A, Findlay AD, Foot JS, Mauvais F, van Endert P, Giastas P, Hamprecht DW, Stratikos E. Stabilization of the open conformation οf insulin-regulated aminopeptidase by a novel substrate-selective small-molecule inhibitor. Protein Sci 2024; 33:e5151. [PMID: 39167040 PMCID: PMC11337929 DOI: 10.1002/pro.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Insulin-regulated aminopeptidase (IRAP) is an enzyme with important biological functions and the target of drug-discovery efforts. We combined in silico screening with a medicinal chemistry optimization campaign to discover a nanomolar inhibitor of IRAP based on a pyrazolylpyrimidine scaffold. This compound displays an excellent selectivity profile versus homologous aminopeptidases, and kinetic analysis suggests it utilizes an uncompetitive mechanism of action when inhibiting the cleavage of a typical dipeptidic substrate. Surprisingly, the compound is a poor inhibitor of the processing of the physiological cyclic peptide substrate oxytocin and a 10mer antigenic epitope precursor but displays a biphasic inhibition profile for the trimming of a 9mer antigenic peptide. While the compound reduces IRAP-dependent cross-presentation of an 8mer epitope in a cellular assay, it fails to block in vitro trimming of select epitope precursors. To gain insight into the mechanism and basis of this unusual selectivity for this inhibitor, we solved the crystal structure of its complex with IRAP. The structure indicated direct zinc(II) engagement by the pyrazolylpyrimidine scaffold and revealed that the compound binds to an open conformation of the enzyme in a pose that should block the conformational transition to the enzymatically active closed conformation previously observed for other low-molecular-weight inhibitors. This compound constitutes the first IRAP inhibitor targeting the active site that utilizes a conformation-specific mechanism of action, provides insight into the intricacies of the IRAP catalytic cycle, and highlights a novel approach to regulating IRAP activity by blocking its conformational rearrangements.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| | - Galateia Georgaki
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| | | | | | | | | | - Peter van Endert
- INSERM, CNRS, Institut Necker Enfants MaladesUniversité Paris CitéParisFrance
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & BiotechnologyAgricultural University of AthensAthensGreece
| | | | - Efstratios Stratikos
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
11
|
Al-Okaily A, Abu Khashabeh R, Alsmadi O, Ahmad Y, Sultan I, Tbakhi A, Srivastava PK. ERAMER: A novel in silico tool for prediction of ERAP1 enzyme trimming. J Immunol Methods 2024; 531:113713. [PMID: 38925438 DOI: 10.1016/j.jim.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
MHC class I pathway consists of four main steps: proteasomal cleavage in the cytosol in which precursor proteins are cleaved into smaller peptides, which are then transported into the endoplasmic reticulum by the transporter associated with antigen processing, TAP, for further processing (trimming) from the N-terminal region by an ER resident aminopeptidases 1 (ERAP1) enzyme, to generate optimal peptides (8-10 amino acids in length) to produce a stable MHCI-peptide complex, that get transited via the Golgi apparatus to the cell surface for presentation to the cellular immune system. Several studies reported specificities related to the ERAP1 trimming process, yet there is no in silico tool for the prediction of the trimming process of the ERAP1 enzyme. In this paper, we provide and implement a prediction model for the trimming process of the ERAP1 enzyme.
Collapse
Affiliation(s)
- Anas Al-Okaily
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan.
| | - Razan Abu Khashabeh
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Osama Alsmadi
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Yazan Ahmad
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Iyad Sultan
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Abdelghani Tbakhi
- Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
12
|
Gising J, Honarnejad S, Bras M, Baillie GL, McElroy SP, Jones PS, Morrison A, Beveridge J, Hallberg M, Larhed M. The Discovery of New Inhibitors of Insulin-Regulated Aminopeptidase by a High-Throughput Screening of 400,000 Drug-like Compounds. Int J Mol Sci 2024; 25:4084. [PMID: 38612894 PMCID: PMC11012289 DOI: 10.3390/ijms25074084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.
Collapse
Affiliation(s)
- Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (J.B.); (M.L.)
| | - Saman Honarnejad
- Pivot Park Screening Centre, Kloosterstraat 9, 5349 AB Oss, The Netherlands; (S.H.); (M.B.)
| | - Maaike Bras
- Pivot Park Screening Centre, Kloosterstraat 9, 5349 AB Oss, The Netherlands; (S.H.); (M.B.)
| | - Gemma L. Baillie
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Stuart P. McElroy
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Philip S. Jones
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Angus Morrison
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Julia Beveridge
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (J.B.); (M.L.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (J.B.); (M.L.)
| |
Collapse
|
13
|
Mpakali A, Barla I, Lu L, Ramesh KM, Thomaidis N, Stern LJ, Giastas P, Stratikos E. Mechanisms of Allosteric Inhibition of Insulin-Regulated Aminopeptidase. J Mol Biol 2024; 436:168449. [PMID: 38244767 DOI: 10.1016/j.jmb.2024.168449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Inhibition of Insulin-Regulated Aminopeptidase is being actively explored for the treatment of several human diseases and several classes of inhibitors have been developed although no clinical applications have been reported yet. Here, we combine enzymological analysis with x-ray crystallography to investigate the mechanism employed by two of the most studied inhibitors of IRAP, an aryl sulfonamide and a 2-amino-4H-benzopyran named HFI-419. Although both compounds have been hypothesized to target the enzyme's active site by competitive mechanisms, we discovered that they instead target previously unidentified proximal allosteric sites and utilize non-competitive inhibition mechanisms. X-ray crystallographic analysis demonstrated that the aryl sulfonamide stabilizes the closed, more active, conformation of the enzyme whereas HFI-419 locks the enzyme in a semi-open, and likely less active, conformation. HFI-419 potency is substrate-dependent and fails to effectively block the degradation of the physiological substrate cyclic peptide oxytocin. Our findings demonstrate alternative mechanisms for inhibiting IRAP through allosteric sites and conformational restricting and suggest that the pharmacology of HFI-419 may be more complicated than initially considered. Such conformation-specific interactions between IRAP and small molecules can be exploited for the design of more effective second-generation allosteric inhibitors.
Collapse
Affiliation(s)
- Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece
| | - Ioanna Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Karthik M Ramesh
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece.
| |
Collapse
|
14
|
Sharma P, Zhang X, Ly K, Kim JH, Wan Q, Kim J, Lou M, Kain L, Teyton L, Winau F. Hyperglycosylation of prosaposin in tumor dendritic cells drives immune escape. Science 2024; 383:190-200. [PMID: 38207022 PMCID: PMC11398950 DOI: 10.1126/science.adg1955] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Tumors develop strategies to evade immunity by suppressing antigen presentation. In this work, we show that prosaposin (pSAP) drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor dendritic cells (DCs) leads to cancer immune escape. We found that lysosomal pSAP and its single-saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, transforming growth factor-β (TGF-β) induced hyperglycosylation of pSAP and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. pSAP hyperglycosylation was also observed in tumor-associated DCs from melanoma patients, and reconstitution with pSAP rescued activation of tumor-infiltrating T cells. Targeting DCs with recombinant pSAP triggered tumor protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of pSAP in tumor immunity and may support its role in immunotherapy.
Collapse
Affiliation(s)
- Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Ly
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ji Hyung Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Wan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Vear A, Thalmann C, Youngs K, Hannan N, Gaspari T, Chai SY. Development of a sandwich ELISA to detect circulating, soluble IRAP as a potential disease biomarker. Sci Rep 2023; 13:17565. [PMID: 38001104 PMCID: PMC10673851 DOI: 10.1038/s41598-023-44038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing interest in the use of the enzyme, insulin regulated aminopeptidase (IRAP), as a biomarker for conditions such as cardio-metabolic diseases and ischemic stroke, with upregulation in its tissue expression in these conditions. However, quantification of circulating IRAP has been hampered by difficulties in detecting release of the truncated, soluble form of this enzyme into the blood stream. The current study aimed to develop a sandwich ELISA using novel antibodies directed towards the soluble portion of IRAP (sIRAP), to improve accuracy in detection and quantification of low levels of sIRAP in plasma. A series of novel anti-IRAP antibodies were developed and found to be highly specific for sIRAP in Western blots. A sandwich ELISA was then optimised using two distinct antibody combinations to detect sIRAP in the low nanogram range (16-500 ng/ml) with a sensitivity of 9 ng/ml and intra-assay variability < 10%. Importantly, the clinical validity of the ELISA was verified by the detection of significant increases in the levels of sIRAP throughout gestation in plasma samples from pregnant women. The specific and sensitive sandwich ELISA described in this study has the potential to advance the development of IRAP as a biomarker for certain diseases.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Claudia Thalmann
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kristina Youngs
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Natalie Hannan
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
17
|
Ossendorp F, Ho NI, Van Montfoort N. How B cells drive T-cell responses: A key role for cross-presentation of antibody-targeted antigens. Adv Immunol 2023; 160:37-57. [PMID: 38042585 DOI: 10.1016/bs.ai.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
In this review we discuss an underexposed mechanism in the adaptive immune system where B cell and T cell immunity collaborate. The main function of B cell immunity is the generation of antibodies which are well known for their high affinity and antigen-specificity. Antibodies can bind antigens in soluble form making so-called immune complexes (ICs) or can opsonize antigen-exposing cells or particles for degradation. This leads to well-known effector mechanisms complement activation, antibody-dependent cytotoxicity and phagocytosis. What is less realized is that antibodies can play an important role in the targeting of antigen to dendritic cells (DCs) and thereby can drive T cell immunity. Here we summarize the studies that described this highly efficient process of antibody-mediated antigen uptake in DCs in vitro and in vivo. Only very low doses of antigen can be captured by circulating antibodies and subsequently trapped by DCs in vivo. We studied the handling of these ICs by DCs in subcellular detail. Upon immune complex engulfment DCs can sustain MHC class I and II antigen presentation for many days. Cell biological analysis showed that this function is causally related to intracellular antigen-storage compartments which are functional endolysosomal organelles present in DCs. We speculate that this function is immunologically very important as DCs require time to migrate from the site of infection to the draining lymph nodes to activate T cells. The implications of these findings and the consequences for the immune system, immunotherapy with tumor-specific antibodies and novel vaccination strategies are discussed.
Collapse
Affiliation(s)
- Ferry Ossendorp
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands.
| | - Nataschja I Ho
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands
| | - Nadine Van Montfoort
- Leiden University Medical Center, department of Gastroenterology and Hepatology, Leiden, The Netherlands.
| |
Collapse
|
18
|
Telianidis J, Hunter A, Widdop R, Kemp-Harper B, Pham V, McCarthy C, Chai SY. Inhibition of insulin-regulated aminopeptidase confers neuroprotection in a conscious model of ischemic stroke. Sci Rep 2023; 13:19722. [PMID: 37957163 PMCID: PMC10643421 DOI: 10.1038/s41598-023-46072-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Hunter
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert Widdop
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Barbara Kemp-Harper
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Claudia McCarthy
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
19
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
20
|
de Lavergne M, Maisonneuve L, Podsypanina K, Manoury B. The role of the antigen processing machinery in the regulation and trafficking of intracellular -Toll-like receptor molecules. Curr Opin Immunol 2023; 84:102375. [PMID: 37562076 DOI: 10.1016/j.coi.2023.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Intracellular Toll-like receptors (TLRs) are key components of the innate immune system. Their expression in antigen-presenting cells (APCs), and in particular dendritic cells (DCs), makes them critical in the induction of the adaptive immune response. In DCs, they interact with the chaperone UNC93B1 that mediates their trafficking from the endoplasmic reticulum (ER) to endosomes where they are cleaved by proteases and activated. All these different steps are also shared by major histocompatibility complex class-II (MHCII) molecules. Here, we will discuss the tight relationship intracellular TLRs have with the antigen processing machinery in APCs for their trafficking and activation.
Collapse
Affiliation(s)
- Moïse de Lavergne
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Lucie Maisonneuve
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France.
| |
Collapse
|
21
|
Benadda S, Nugue M, Koumantou D, Bens M, De Luca M, Pellé O, Monteiro RC, Evnouchidou I, Saveanu L. Activating FcγR function depends on endosomal-signaling platforms. iScience 2023; 26:107055. [PMID: 37360697 PMCID: PMC10285637 DOI: 10.1016/j.isci.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Cell surface receptor internalization can either terminate signaling or activate alternative endosomal signaling pathways. We investigated here whether endosomal signaling is involved in the function of the human receptors for Fc immunoglobulin fragments (FcRs): FcαRI, FcγRIIA, and FcγRI. All these receptors were internalized after their cross-linking with receptor-specific antibodies, but their intracellular trafficking was different. FcαRI was targeted directly to lysosomes, while FcγRIIA and FcγRI were internalized in particular endosomal compartments described by the insulin esponsive minoeptidase (IRAP), where they recruited signaling molecules, such as the active form of the kinase Syk, PLCγ and the adaptor LAT. Destabilization of FcγR endosomal signaling in the absence of IRAP compromised cytokine secretion downstream FcγR activation and macrophage ability to kill tumor cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Our results indicate that FcγR endosomal signaling is required for the FcγR-driven inflammatory reaction and possibly for the therapeutic action of monoclonal antibodies.
Collapse
Affiliation(s)
- Samira Benadda
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Despoina Koumantou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Marcelle Bens
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Mariacristina De Luca
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Olivier Pellé
- INSERM UMR 1163, Cell Sorting Facility, Paris, France
- INSERM UMR 1163, Laboratoire of Immunogenetics of Pediatric Autoimmunity, Paris, France
| | - Renato C. Monteiro
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Irini Evnouchidou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
- Inovarion, Paris, France
| | - Loredana Saveanu
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université de Paris, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| |
Collapse
|
22
|
Sharma P, Zhang X, Ly K, Kim JH, Wan Q, Kim J, Lou M, Kain L, Teyton L, Winau F. Hyperglycosylation of prosaposin in tumor DCs promotes immune escape in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545005. [PMID: 37398287 PMCID: PMC10312684 DOI: 10.1101/2023.06.14.545005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tumors develop strategies to evade immunity by suppressing antigen presentation. Here, we show that prosaposin drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor DCs leads to cancer immune escape. We found that lysosomal prosaposin and its single saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, TGF-β induced hyperglycosylation of prosaposin and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. In melanoma patients, we found similar prosaposin hyperglycosylation in tumor-associated DCs, and reconstitution with prosaposin rescued activation of tumor-infiltrating T cells. Targeting tumor DCs with recombinant prosaposin triggered cancer protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of prosaposin in tumor immunity and escape and introduce a novel principle of prosaposin-based cancer immunotherapy. One Sentence Summary Prosaposin facilitates antigen cross-presentation and tumor immunity and its hyperglycosylation leads to immune evasion.
Collapse
|
23
|
Evnouchidou I, Koumantou D, Nugue M, Saveanu L. M1-aminopeptidase family - beyond antigen-trimming activities. Curr Opin Immunol 2023; 83:102337. [PMID: 37216842 DOI: 10.1016/j.coi.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Antigen (Ag)-trimming aminopeptidases belong to the oxytocinase subfamily of M1 metallopeptidases. In humans, this subfamily contains the endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and 2) and the insulin-responsive aminopeptidase (IRAP, synonym oxytocinase), an endosomal enzyme. The ability of these enzymes to trim antigenic precursors and to generate major histocompatibility class-I ligands has been demonstrated extensively for ERAP1, less for ERAP2, which is absent in rodents, and exclusively in the context of cross-presentation for IRAP. During 20 years of research on these aminopeptidases, their enzymatic function has been very well characterized and their genetic association with autoimmune diseases, cancers, and infections is well established. The mechanisms by which these proteins are associated to human diseases are not always clear. This review discusses the Ag-trimming-independent functions of the oxytocinase subfamily of M1 aminopeptidases and the new questions raised by recent publications on IRAP and ERAP2.
Collapse
Affiliation(s)
- Irini Evnouchidou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Loredana Saveanu
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France.
| |
Collapse
|
24
|
Mott D, Yang J, Baer C, Papavinasasundaram K, Sassetti CM, Behar SM. High Bacillary Burden and the ESX-1 Type VII Secretion System Promote MHC Class I Presentation by Mycobacterium tuberculosis-Infected Macrophages to CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1531-1542. [PMID: 37000471 PMCID: PMC10159937 DOI: 10.4049/jimmunol.2300001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
Abstract
We used a mouse model to study how Mycobacterium tuberculosis subverts host defenses to persist in macrophages despite immune pressure. CD4 T cells can recognize macrophages infected with a single bacillus in vitro. Under identical conditions, CD8 T cells inefficiently recognize infected macrophages and fail to restrict M. tuberculosis growth, although they can inhibit M. tuberculosis growth during high-burden intracellular infection. We show that high intracellular M. tuberculosis numbers cause macrophage death, leading other macrophages to scavenge cellular debris and cross-present the TB10.4 Ag to CD8 T cells. Presentation by infected macrophages requires M. tuberculosis to have a functional ESX-1 type VII secretion system. These data indicate that phagosomal membrane damage and cell death promote MHC class I presentation of the immunodominant Ag TB10.4 by macrophages. Although this mode of Ag presentation stimulates cytokine production that we presume would be host beneficial, killing of uninfected cells could worsen immunopathology. We suggest that shifting the focus of CD8 T cell recognition to uninfected macrophages would limit the interaction of CD8 T cells with infected macrophages and impair CD8 T cell-mediated resolution of tuberculosis.
Collapse
Affiliation(s)
- Daniel Mott
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason Yang
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher M. Sassetti
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
27
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Lopes AP, Hillen MR, Hinrichs AC, Blokland SLM, Bekker CPJ, Pandit A, Kruize AA, Radstake TRDJ, van Roon JA. Deciphering the role of cDC2s in Sjögren's syndrome: transcriptomic profile links altered antigen processes with IFN signature and autoimmunity. Ann Rheum Dis 2023; 82:374-383. [PMID: 36171070 PMCID: PMC9933176 DOI: 10.1136/ard-2022-222728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Type 2 conventional dendritic cells (cDC2s) are key orchestrators of inflammatory responses, linking innate and adaptative immunity. Here we explored the regulation of immunological pathways in cDC2s from patients with primary Sjögren's syndrome (pSS). METHODS RNA sequencing of circulating cDC2s from patients with pSS, patients with non-Sjögren's sicca and healthy controls (HCs) was exploited to establish transcriptional signatures. Phenotypical and functional validation was performed in independent cohorts. RESULTS Transcriptome of cDC2s from patients with pSS revealed alterations in type I interferon (IFN), toll-like receptor (TLR), antigen processing and presentation pathways. Phenotypical validation showed increased CX3CR1 expression and decreased integrin beta-2 and plexin-B2 on pSS cDC2s. Functional validation confirmed impaired capacity of pSS cDC2s to degrade antigens and increased antigen uptake, including self-antigens derived from salivary gland epithelial cells. These changes in antigen uptake and degradation were linked to anti-SSA/Ro (SSA) autoantibodies and the presence of type I IFNs. In line with this, in vitro IFN-α priming enhanced the uptake of antigens by HC cDC2s, reflecting the pSS cDC2 profile. Finally, pSS cDC2s compared with HC cDC2s increased the proliferation and the expression of CXCR3 and CXCR5 on proliferating CD4+ T cells. CONCLUSIONS pSS cDC2s are transcriptionally altered, and the aberrant antigen uptake and processing, including (auto-)antigens, together with increased proliferation of tissue-homing CD4+ T cells, suggest altered antigen presentation by pSS cDC2s. These functional alterations were strongly linked to anti-SSA positivity and the presence of type I IFNs. Thus, we demonstrate novel molecular and functional pieces of evidence for the role of cDC2s in orchestrating immune response in pSS, which may yield novel avenues for treatment.
Collapse
Affiliation(s)
- Ana P Lopes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maarten R Hillen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anneline C Hinrichs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sofie LM Blokland
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis PJ Bekker
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy RDJ Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joel A van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands .,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Weimershaus M, Carvalho C, Rignault R, Waeckel-Enee E, Dussiot M, van Endert P, Maciel TT, Hermine O. Mast cell-mediated inflammation relies on insulin-regulated aminopeptidase controlling cytokine export from the Golgi. J Allergy Clin Immunol 2023:S0091-6749(23)00090-8. [PMID: 36708814 DOI: 10.1016/j.jaci.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined. OBJECTIVE We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages. METHODS Murine knockout (KO) mouse models (IRAP-KO and kit-Wsh/sh) were used to study inflammatory disease models and to measure and mechanistically investigate cytokine secretion and degranulation in bone marrow-derived mast cells in vitro. RESULTS IRAP-KO mice are protected from TNF-α-dependent kidney injury and inflammatory arthritis. In the absence of IRAP, TNF-α and IL-6 but not IL-10 fail to be efficiently secreted. Moreover, chemical targeting of IRAP endosomes reduced proinflammatory cytokine secretion. Mechanistically, impaired TNF-α export from the Golgi and reduced colocalization of vesicle-associated membrane protein (VAMP) 3-positive TNF-α transport vesicles with syntaxin 4 (aka Stx4) was observed in IRAP-KO mast cells, while VAMP8-dependent exocytosis of secretory granules was facilitated. CONCLUSION IRAP plays a novel role in mast cell-mediated inflammation through the regulation of exocytic trafficking of cytokines.
Collapse
Affiliation(s)
- Mirjana Weimershaus
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France.
| | - Caroline Carvalho
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France
| | - Rachel Rignault
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France
| | | | - Michael Dussiot
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Peter van Endert
- INSERM UMR 1151, CNRS UMR 8253, Paris, France; Université de Paris Cité, Paris, France
| | - Thiago Trovati Maciel
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France; Hôpital Necker Enfants Malades, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
30
|
Hu X, Li F, Zeng J, Zhou Z, Wang Z, Chen J, Cao D, Hong Y, Huang L, Chen Y, Xu J, Dong F, Yu R, Zheng H. Noninvasive Low-Frequency Pulsed Focused Ultrasound Therapy for Rheumatoid Arthritis in Mice. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0013. [PMID: 39290964 PMCID: PMC11407525 DOI: 10.34133/research.0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/31/2022] [Indexed: 10/16/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic and progressive inflammation of the synovium. Focused ultrasound therapy is an increasingly attractive alternative for treating RA owing to its noninvasiveness; however, it remains unclear which immune subsets respond to ultrasound stimulation. In this study, we showed that spleen-targeted low-frequency pulsed focused ultrasound (LFPFU) effectively improved the severity of arthritis in an arthritis mouse model established in DBA/1J mice. Additionally, we performed in-depth immune profiling of spleen samples from RA mice, RA mice that underwent ultrasound therapy, and healthy controls using mass cytometry along with extensive antibody panels and identified the immune composition of 14 cell populations, including CD4+/CD8+ T cells, B cells, natural killer cells, and dendritic cells. Moreover, multidimensional analysis according to cell-surface markers and phenotypes helped in identifying 4 and 5 cell subpopulations among T and myeloid cells, respectively, with 6 T cell subsets and 3 myeloid cell subsets responsive to ultrasound therapy among the 3 groups. Of these cell subsets, CD8+ T cell subsets showed a unique response to ultrasound stimulation in RA mice. Specifically, CD8+ T cells show a noticeable correlation with the degree of arthritis progression and could serve as an indicator for spleen-focused ultrasound-based therapy. Furthermore, single-cell RNA sequencing of spleen cells revealed the importance of T, B, and myeloid cell populations in the anti-inflammatory pathway. These results elucidated the unique cell subsets and transcriptome of splenic cells responsive to LFPFU and demonstrated the potential of spleen-focused ultrasound stimulation in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xuqiao Hu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Jieying Zeng
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Zhenru Zhou
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Zhaoyang Wang
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Jing Chen
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Dongyan Cao
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yifan Hong
- Institute of Molecular Physiology, Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Laixin Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Yongsheng Chen
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Jinfeng Xu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Fajin Dong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Rongmin Yu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| |
Collapse
|
31
|
Bratti M, Vibhushan S, Longé C, Koumantou D, Ménasché G, Benhamou M, Varin-Blank N, Blank U, Saveanu L, Ben Mkaddem S. Insulin-regulated aminopeptidase contributes to setting the intensity of FcR-mediated inflammation. Front Immunol 2022; 13:1029759. [PMID: 36389775 PMCID: PMC9647545 DOI: 10.3389/fimmu.2022.1029759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
The function of intracellular trafficking in immune-complex triggered inflammation remains poorly understood. Here, we investigated the role of Insulin-Regulated Amino Peptidase (IRAP)-positive endosomal compartments in Fc receptor (FcR)-induced inflammation. Less severe FcγR-triggered arthritis, active systemic anaphylaxis and FcεRI-triggered passive systemic anaphylaxis were observed in IRAP-deficient versus wild-type mice. In mast cells FcεRI stimulation induced rapid plasma membrane recruitment of IRAP-positive endosomes. IRAP-deficient cells exhibited reduced secretory responses, calcium signaling and activating SykY519/520 phosphorylation albeit receptor tyrosine phosphorylation on β and γ subunits was not different. By contrast, in the absence of IRAP, SHP1-inactivating phosphorylation on Ser591 that controls Syk activity was decreased. Ex-vivo cell profiling after FcγR-triggered anaphylaxis confirmed decreased phosphorylation of both SykY519/520 and SHP-1S591 in IRAP-deficient neutrophils and monocytes. Thus, IRAP-positive endosomal compartments, in promoting inhibition of SHP-1 during FcR signaling, control the extent of phosphorylation events at the plasma membrane and contribute to setting the intensity of immune-complex triggered inflammatory diseases.
Collapse
Affiliation(s)
- Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Despoina Koumantou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- *Correspondence: Ulrich Blank,
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Sanae Ben Mkaddem
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
- Institute of biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
32
|
Hydrogen Peroxide Induced Toxicity Is Reversed by the Macrocyclic IRAP-Inhibitor HA08 in Primary Hippocampal Cell Cultures. Curr Issues Mol Biol 2022; 44:5000-5012. [PMID: 36286055 PMCID: PMC9601255 DOI: 10.3390/cimb44100340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.
Collapse
|
33
|
Mattorre B, Tedeschi V, Paldino G, Fiorillo MT, Paladini F, Sorrentino R. The emerging multifunctional roles of ERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation. Front Immunol 2022; 13:1002375. [PMID: 36203608 PMCID: PMC9531115 DOI: 10.3389/fimmu.2022.1002375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Endoplasmic Reticulum Aminopeptidase 1 and 2 (ERAP1 and ERAP2) and Insulin Regulated Aminopeptidase (IRAP) are three M1 zinc metalloproteases whose role in antigen processing is the refining of peptidome either in the Endoplasmic reticulum (ERAP1 and ERAP2), or in the endosomes (IRAP). However, other novel and distinct functions are emerging. Here, we focus specifically on ERAP2. This gene has a peculiar evolutionary history, being absent in rodents and undergoing in humans to a balanced selection of two haplotypes, one of which not expressing the full length ERAP2. These observations suggest that its role in antigen presentation is not essential. An additional, less investigated role is in the regulation of the Renin Angiotensin System (RAS). ERAP1 and ERAP2 cleave Angiotensin II (Ang II) into Ang III and IV, which counteract the action of Ang II whereas IRAP is itself the receptor for Ang IV. We have recently reported that macrophages, independently from the haplotype, express and release a N-terminus ERAP2 “short” form which directly binds IRAP and the two molecules are co-expressed in the endosomes and on the cell membrane. This new evidence suggests that the maintenance of the ERAP2 gene in humans could be due to its activity in the regulation of the RAS system, possibly as an Ang IV agonist. Its role in the immune-mediated diseases as well as in disorders more specifically related to an imbalance of the RAS system, including hypertension, pre-eclampsia but also viral infections such as COVID-19, is discussed here.
Collapse
|
34
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
35
|
Vourloumis D, Mavridis I, Athanasoulis A, Temponeras I, Koumantou D, Giastas P, Mpakali A, Magrioti V, Leib J, van Endert P, Stratikos E, Papakyriakou A. Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin. J Med Chem 2022; 65:10098-10117. [PMID: 35833347 DOI: 10.1021/acs.jmedchem.2c00904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-β-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-β-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.
Collapse
Affiliation(s)
- Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Alexandros Athanasoulis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Petros Giastas
- Department of Biotechnology, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Jacqueline Leib
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.,Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| |
Collapse
|
36
|
Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14123005. [PMID: 35740670 PMCID: PMC9221220 DOI: 10.3390/cancers14123005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Research into the immunotherapeutic potential of T cells has predominantly focused on conventional alpha beta (αβ) T cells, which recognize peptide antigens presented by polymorphic major histocompatibility complex (MHC) class I and class II molecules. However, innate-like T cells, such as gamma delta (γδ) T cells, also play important roles in antitumor immunity. Here, we review the current understanding of γδ T cells in antitumor immunity and discuss strategies that could potentially maximize their potential in cancer immunotherapy. Abstract Gamma delta (γδ) T cells are a minor population of T cells that share adaptive and innate immune properties. In contrast to MHC-restricted alpha beta (αβ) T cells, γδ T cells are activated in an MHC-independent manner, making them ideal candidates for developing allogeneic, off-the-shelf cell-based immunotherapies. As the field of cancer immunotherapy progresses rapidly, different subsets of γδ T cells have been explored. In addition, γδ T cells can be engineered using different gene editing technologies that augment their tumor recognition abilities and antitumor functions. In this review, we outline the unique features of different subsets of human γδ T cells and their antitumor properties. We also summarize the past and the ongoing pre-clinical studies and clinical trials utilizing γδ T cell-based cancer immunotherapy.
Collapse
|
37
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
38
|
Antigen Cross-Presentation by Murine Proximal Tubular Epithelial Cells Induces Cytotoxic and Inflammatory CD8+ T Cells. Cells 2022; 11:cells11091510. [PMID: 35563816 PMCID: PMC9104549 DOI: 10.3390/cells11091510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated glomerular diseases are characterized by infiltration of T cells, which accumulate in the periglomerular space and tubulointerstitium in close contact to proximal and distal tubuli. Recent studies described proximal tubular epithelial cells (PTECs) as renal non-professional antigen-presenting cells that stimulate CD4+ T-cell activation. Whether PTECs have the potential to induce activation of CD8+ T cells is less clear. In this study, we aimed to investigate the capacity of PTECs for antigen cross-presentation thereby modulating CD8+ T-cell responses. We showed that PTECs expressed proteins associated with cross-presentation, internalized soluble antigen via mannose receptor-mediated endocytosis, and generated antigenic peptides by proteasomal degradation. PTECs induced an antigen-dependent CD8+ T-cell activation in the presence of soluble antigen in vitro. PTEC-activated CD8+ T cells expressed granzyme B, and exerted a cytotoxic function by killing target cells. In murine lupus nephritis, CD8+ T cells localized in close contact to proximal tubuli. We determined enhanced apoptosis in tubular cells and particularly PTECs up-regulated expression of cleaved caspase-3. Interestingly, induction of apoptosis in the inflamed kidney was reduced in the absence of CD8+ T cells. Thus, PTECs have the capacity for antigen cross-presentation thereby inducing cytotoxic CD8+ T cells in vitro, which may contribute to the pathology of immune-mediated glomerulonephritis.
Collapse
|
39
|
Mattorre B, Caristi S, Donato S, Volpe E, Faiella M, Paiardini A, Sorrentino R, Paladini F. A Short ERAP2 That Binds IRAP Is Expressed in Macrophages Independently of Gene Variation. Int J Mol Sci 2022; 23:ijms23094961. [PMID: 35563348 PMCID: PMC9101739 DOI: 10.3390/ijms23094961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 01/19/2023] Open
Abstract
The M1 zinc metalloproteases ERAP1, ERAP2, and IRAP play a role in HLA-I antigen presentation by refining the peptidome either in the ER (ERAP1 and ERAP2) or in the endosomes (IRAP). They have also been entrusted with other, although less defined, functions such as the regulation of the angiotensin system and blood pressure. In humans, ERAP1 and IRAP are commonly expressed. ERAP2 instead has evolved under balancing selection that maintains two haplotypes, one of which undergoing RNA splicing leading to nonsense-mediated decay and loss of protein. Hence, likewise in rodents, wherein the ERAP2 gene is missing, about a quarter of the human population does not express ERAP2. We report here that macrophages, but not monocytes or other mononuclear blood cells, express and secrete an ERAP2 shorter form independent of the haplotype. The generation of this "short" ERAP2 is due to an autocatalytic cleavage within a distinctive structural motif and requires an acidic micro-environment. Remarkably, ERAP2 "short" binds IRAP and the two molecules are co-expressed in the endosomes as well as in the cell membrane. Of note, the same phenomenon could be observed in some cancer cells. These data prompt us to reconsider the role of ERAP2, which might have been maintained in humans due to fulfilling a relevant function in its "short" form.
Collapse
Affiliation(s)
- Benedetta Mattorre
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Silvana Caristi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Simona Donato
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Emilia Volpe
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Marika Faiella
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Rosa Sorrentino
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
- Correspondence: (R.S.); (F.P.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (B.M.); (S.C.); (S.D.); (E.V.); (M.F.)
- Correspondence: (R.S.); (F.P.)
| |
Collapse
|
40
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|
41
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
42
|
Lecoultre M, Dutoit V, Walker PR. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: a review. J Immunother Cancer 2021; 8:jitc-2020-001408. [PMID: 33335026 PMCID: PMC7747550 DOI: 10.1136/jitc-2020-001408] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophage (TAM) phagocytic activity is emerging as a new mechanism to harness for cancer treatment. Currently, many approaches are investigated at the preclinical level and some modalities have now reached clinical trials, including the targeting of the phagocytosis inhibitor CD47. The rationale for increasing TAM phagocytic activity is to improve innate anticancer immunity, and to promote T-cell mediated adaptive immune responses. In this context, a clear understanding of the impact of TAM phagocytosis on both innate and adaptive immunity is critical. Indeed, uncertainties persist regarding the capacity of TAM to present tumor antigens to CD8 T cells by cross-presentation. This process is critical for an optimal cytotoxic T-cell immune response and can be mediated by dendritic cells but also potentially by macrophages. In addition, the engulfment of cancer cells affects TAM functionality, as apoptotic cell uptake (a process termed efferocytosis) promotes macrophage anti-inflammatory functions. Because of the abundance of TAM in most solid tumors and the common use of apoptosis inducers such as radiotherapy to treat patients with cancer, efferocytosis potentially affects the overall immune balance within the tumor microenvironment (TME). In this review, we will discuss how cancer cell phagocytosis by TAM impacts antitumor immunity. First, we will focus on the potential of the phagocytic activity of TAM per se to control tumor progression. Second, we will examine the potential of TAM to act as antigen presenting cells for tumor specific CD8 T cells, considering the different characteristics of this process in the tumor tissue and at the molecular level. Finally, we will see how phagocytosis and efferocytosis affect TAM functionality and how these mechanisms impact on antitumor immunity. A better understanding of these aspects will enable us to better predict and interpret the consequences of cancer therapies on the immune status of the TME. Future cancer treatment regimens can thereby be designed to not only impact directly on cancer cells, but also to favorably modulate TAM phagocytic activity to benefit from the potential of this central immune player to achieve more potent therapeutic efficacy.
Collapse
Affiliation(s)
- Marc Lecoultre
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland .,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Tsujimoto M, Aoki K, Goto Y, Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases. J Biochem 2021; 169:409-420. [PMID: 33481005 DOI: 10.1093/jb/mvab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023] Open
Abstract
The placental leucine aminopeptidase/insulin-regulated aminopeptidase, endoplasmic reticulum aminopeptidase 1 and endoplasmic reticulum aminopeptidase 2 are part of a distinct subfamily of M1 aminopeptidases termed the 'oxytocinase subfamily'. The subfamily members show molecular diversity due to differential usage of translation initiation sites, alternative splicing and multiple single nucleotide polymorphisms. It is becoming evident that, depending on their intracellular or extracellular location, members of the oxytocinase subfamily play important roles in the maintenance of homeostasis, including the regulation of blood pressure, maintenance of normal pregnancy, retention of memory and trimming of antigenic peptides presented to major histocompatibility complex class I molecules, by acting as either aminopeptidases or binding partners of specific functional proteins in the cells. Based on their molecular diversity and moonlighting protein-like properties, it is conceivable that the subfamily members exert pleiotropic effects during evolution, to become important players in the regulation of homeostasis.
Collapse
Affiliation(s)
- Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Kazuma Aoki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Atsushi Ohnishi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| |
Collapse
|
44
|
Discovery of Selective Inhibitor Leads by Targeting an Allosteric Site in Insulin-Regulated Aminopeptidase. Pharmaceuticals (Basel) 2021; 14:ph14060584. [PMID: 34207179 PMCID: PMC8233869 DOI: 10.3390/ph14060584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin-Regulated aminopeptidase (IRAP) is a zinc-dependent aminopeptidase with several important biological functions and is an emerging pharmaceutical target for cognitive enhancement and immune system regulation. Aiming to discover lead-like IRAP inhibitors with enhanced selectivity versus homologous enzymes, we targeted an allosteric site at the C-terminal domain pocket of IRAP. We compiled a library of 2.5 million commercially available compounds from the ZINC database, and performed molecular docking at the target pocket of IRAP and the corresponding pocket of the homologous endoplasmic reticulum aminopeptidase 1 (ERAP1). Of the top compounds that showed high selectivity, 305 were further analyzed by molecular dynamics simulations and free energy calculations, leading to the selection of 33 compounds for in vitro evaluation. Two orthogonal functional assays were employed: one using a small fluorogenic substrate and one following the degradation of oxytocin, a natural peptidic substrate of IRAP. In vitro evaluation suggested that several of the compounds tested can inhibit IRAP, but the inhibition profile was dependent on substrate size, consistent with the allosteric nature of the targeted site. Overall, our results describe several novel leads as IRAP inhibitors and suggest that the C-terminal domain pocket of IRAP is a promising target for developing highly selective IRAP inhibitors.
Collapse
|
45
|
Ho NI, Camps MG, Garcia-Vallejo JJ, Bos E, Koster AJ, Verdoes M, van Kooyk Y, Ossendorp F. Distinct antigen uptake receptors route to the same storage compartments for cross-presentation in dendritic cells. Immunology 2021; 164:494-506. [PMID: 34110622 PMCID: PMC8517591 DOI: 10.1111/imm.13382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022] Open
Abstract
An exclusive feature of dendritic cells (DCs) is their capacity to present exogenous antigens by MHC class I molecules, called cross‐presentation. Here, we show that protein antigen can be conserved in mature murine DCs for several days in a lysosome‐like storage compartment, distinct from MHC class II and early endosomal compartments, as an internal source for the supply of MHC class I ligands. Using two different uptake routes via Fcγ receptors and C‐type lectin receptors, we could show that antigens were routed towards the same endolysosomal compartments after 48 h. The antigen‐containing compartments lacked co‐expression of molecules involved in MHC class I processing and presentation including TAP and proteasome subunits as shown by single‐cell imaging flow cytometry. Moreover, we observed the absence of cathepsin S but selective co‐localization of active cathepsin X with protein antigen in the storage compartments. This indicates cathepsin S‐independent antigen degradation and a novel but yet undefined role for cathepsin X in antigen processing and cross‐presentation by DCs. In summary, our data suggest that these antigen‐containing compartments in DCs can conserve protein antigens from different uptake routes and contribute to long‐lasting antigen cross‐presentation.
Collapse
Affiliation(s)
- Nataschja I Ho
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel G Camps
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik Bos
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Chai SY, Gutiérrez-de-Terán H, Stratikos E. Editorial: Physiological, Pathological Roles and Pharmacology of Insulin Regulated Aminopeptidase. Front Mol Biosci 2021; 8:685101. [PMID: 33968999 PMCID: PMC8102722 DOI: 10.3389/fmolb.2021.685101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Efstratios Stratikos
- Biochemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
47
|
Vanga SR, Åqvist J, Hallberg A, Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Benzopyran-Based Inhibitors. Front Mol Biosci 2021; 8:625274. [PMID: 33869280 PMCID: PMC8047434 DOI: 10.3389/fmolb.2021.625274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/10/2021] [Indexed: 12/01/2022] Open
Abstract
Inhibition of the insulin-regulated aminopeptidase (IRAP) improves memory and cognition in animal models. The enzyme has recently been crystallized and several series of inhibitors reported. We herein focused on one series of benzopyran-based inhibitors of IRAP known as the HFI series, with unresolved binding mode to IRAP, and developed a robust computational model to explain the structure-activity relationship (SAR) and potentially guide their further optimization. The binding model here proposed places the benzopyran ring in the catalytic binding site, coordinating the Zn2+ ion through the oxygen in position 3, in contrast to previous hypothesis. The whole series of HFI compounds was then systematically simulated, starting from this binding mode, using molecular dynamics and binding affinity estimated with the linear interaction energy (LIE) method. The agreement with experimental affinities supports the binding mode proposed, which was further challenged by rigorous free energy perturbation (FEP) calculations. Here, we found excellent correlation between experimental and calculated binding affinity differences, both between selected compound pairs and also for recently reported experimental data concerning the site directed mutagenesis of residue Phe544. The computationally derived structure-activity relationship of the HFI series and the understanding of the involvement of Phe544 in the binding of this scaffold provide valuable information for further lead optimization of novel IRAP inhibitors.
Collapse
Affiliation(s)
| | - Johan Åqvist
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Anders Hallberg
- Department of Pharmaceutical Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Genetic association of ERAP1 and ERAP2 with eclampsia and preeclampsia in northeastern Brazilian women. Sci Rep 2021; 11:6764. [PMID: 33762660 PMCID: PMC7990956 DOI: 10.1038/s41598-021-86240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 01/28/2023] Open
Abstract
The clinical spectrum of hypertensive disorders of pregnancy (HDP) is determined by the interplay between environmental and genetic factors, most of which remains unknown. ERAP1, ERAP2 and LNPEP genes code for multifunctional aminopeptidases involved with antigen processing and degradation of small peptides such as angiotensin II (Ang II), vasopressin and oxytocin. We aimed to test for associations between genetic variants in aminopeptidases and HDP. A total of 1282 pregnant women (normotensive controls, n = 693; preeclampsia, n = 342; chronic hypertension with superimposed preeclampsia, n = 61; eclampsia, n = 74; and HELLP syndrome, n = 112) were genotyped for variants in LNPEP (rs27300, rs38034, rs2303138), ERAP1 (rs27044, rs30187) and ERAP2 (rs2549796 rs2927609 rs11135484). We also evaluated the effect of ERAP1 rs30187 on plasma Ang II levels in an additional cohort of 65 pregnant women. The genotype C/C, in ERAP1 rs30187 variant (c.1583 T > C, p.Lys528Arg), was associated with increased risk of eclampsia (OR = 1.85, p = 0.019) whereas ERAP2 haplotype rs2549796(C)–rs2927609(C)–rs11135484(G) was associated with preeclampsia (OR = 1.96, corrected p-value = 0.01). Ang II plasma levels did not differ across rs30187 genotypic groups (p = 0.895). In conclusion, ERAP1 gene is associated with eclampsia whereas ERAP2 is associated with preeclampsia, although the mechanism by which genetic variants in ERAPs influence the risk of preeclampsia and eclampsia remain to be elucidated.
Collapse
|
49
|
Raaijmakers TK, van den Bijgaart RJE, den Brok MH, Wassink M, de Graaf A, Wagenaars JA, Nierkens S, Ansems M, Scheffer GJ, Adema GJ. Tumor ablation plus co-administration of CpG and saponin adjuvants affects IL-1 production and multifunctional T cell numbers in tumor draining lymph nodes. J Immunother Cancer 2021; 8:jitc-2020-000649. [PMID: 32461350 PMCID: PMC7254152 DOI: 10.1136/jitc-2020-000649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8+ T cells. We have previously shown that co-administration of adjuvants is essential to evoke strong in vivo antitumor immunity and the induction of long-term memory. However, which adjuvants most effectively combine with in situ tumor ablation remains unclear. Methods and results Here, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1β by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8+ T cells showing enhanced IFNγ production as compared with single adjuvant treatments. Conclusions Collectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy.
Collapse
Affiliation(s)
- Tonke K Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Renske J E van den Bijgaart
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn H den Brok
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Wassink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemarie de Graaf
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jori A Wagenaars
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Nierkens
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Translational Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|