1
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Piel AK. Sex differences in positional behavior of chimpanzees (Pan troglodytes schweinfurthii) living in the dry and open habitat of Issa Valley, Tanzania. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25007. [PMID: 39056239 DOI: 10.1002/ajpa.25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Many early fossil hominins are associated with savanna-mosaic paleohabitats, and high sexual dimorphism that may reflect differences in positional behavior between sexes. However, reconstructions of hominin behavior and the selective pressures they faced in an open habitat are limited by a lack of studies of extant apes living in contemporary, analogous habitats. Here, we describe adult chimpanzee positional behavior in the savanna-mosaic habitat of the Issa Valley, Tanzania, to test whether Issa chimpanzees show larger sex-differences in positional behavior than their forest-dwelling counterparts. MATERIALS AND METHODS We quantified and compared adult locomotor and postural behavior across sexes (6 females, 7 males) in the riparian forest (closed) and miombo woodland (open) vegetation types at Issa Valley (13,743 focal observations). We then compared our results to published data of chimpanzee communities living in more forested habitats. RESULTS Issa females and males both spent less time arboreally in open vegetation and showed similar locomotor and postural behavior on the same substrates, notably using a high level of suspensory locomotion when arboreal. Females were, however, more arboreal than males during locomotor behavior, as well as compared with females from other communities. Issa males behaved similarly to males from other communities. CONCLUSION Results suggest that open habitats do not elicit less arboreal behaviors in either sex, and may even select for suspensory locomotion to effectively navigate an open canopy. An open habitat may, however, increase sex differences in positional behavior by driving female arboreality. We suggest this is because of higher energetic demands and predator pressures associated with open vegetation, which are likely exaggerated for reproducing females. These results have implications for the interpretation of how sexual dimorphism may influence reconstructions of hominin positional behavior.
Collapse
Affiliation(s)
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Fiona A Stewart
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Alex K Piel
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
2
|
Barr WA, Wood B. Spatial sampling bias influences our understanding of early hominin evolution in eastern Africa. Nat Ecol Evol 2024; 8:2113-2120. [PMID: 39164591 DOI: 10.1038/s41559-024-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
The eastern branch of the Eastern African Rift System (EARS) is the source of a large proportion of the early hominin fossil record, but it covers a tiny fraction (ca. 1%) of the continent. Here we investigate how this mismatch between where fossils are preserved and where hominins probably lived may influence our ability to understand early hominin evolution, using extant mammals as analogues. We show that the eastern branch of the EARS is not an environmentally representative sample of the full species range for nearly all extant rift-dwelling mammals. Likewise, when we investigate published morphometric datasets for extant cercopithecine primates, evidence from the eastern branch alone fails to capture major portions of continental-scale cercopithecine cranial morphospace. We suggest that extant rift-dwelling species should be used as analogues to place confidence intervals on hominin habitat reconstructions. Furthermore, given the north-south orientation of the eastern branch of the EARS, morphoclines that are not aligned along this major north-south axis are likely to be poorly sampled by sites in the eastern branch. There is a pressing need for research on the geography of early hominin morphoclines to estimate how morphologically representative the hominin fossil sample from the eastern branch may be.
Collapse
Affiliation(s)
- W Andrew Barr
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA.
| | - Bernard Wood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| |
Collapse
|
3
|
Schuurman T, Bruner E. A comparative anatomical network analysis of the human and chimpanzee brains. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24988. [PMID: 38877829 DOI: 10.1002/ajpa.24988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Spatial interactions among anatomical elements help to identify topological factors behind morphological variation and can be investigated through network analysis. Here, a whole-brain network model of the chimpanzee (Pan troglodytes, Blumenbach 1776) is presented, based on macroanatomical divisions, and compared with a previous equivalent model of the human brain. The goal was to contrast which regions are essential in the geometric balance of the brains of the two species, to compare underlying phenotypic patterns of spatial variation, and to understand how these patterns might have influenced the evolution of human brain morphology. The human and chimpanzee brains share morphologically complex inferior-medial regions and a topological organization that matches the spatial constraints exerted by the surrounding braincase. These shared topological features are interesting because they can be traced back to the Chimpanzee-Human Last Common Ancestor, 7-10 million years ago. Nevertheless, some key differences are found in the human and chimpanzee brains. In humans, the temporal lobe, particularly its deep and medial limbic aspect (the parahippocampal gyrus), is a crucial node for topological complexity. Meanwhile, in chimpanzees, the cerebellum is, in this sense, more embedded in an intricate spatial position. This information helps to interpret brain macroanatomical change in fossil hominids.
Collapse
Affiliation(s)
- Tim Schuurman
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Emiliano Bruner
- Museo Nacional de Ciencias Naturales - CSIC, Madrid, Spain
- Alzheimer's Centre Reina Sofía-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Villmoare B, Kimbel W. On the scientific credibility of paleoanthropology. Evol Anthropol 2024; 33:e22037. [PMID: 38859704 DOI: 10.1002/evan.22037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Smith and Smith and Wood proposed that the human fossil record offers special challenges for causal hypotheses because "unique" adaptations resist the comparative method. We challenge their notions of "uniqueness" and offer a refutation of the idea that there is something epistemologically special about human prehistoric data. Although paleontological data may be sparse, there is nothing inherent about this information that prevents its use in the inductive or deductive process, nor in the generation and testing of scientific hypotheses. The imprecision of the fossil record is well-understood, and such imprecision is often factored into hypotheses and methods. While we acknowledge some oversteps within the discipline, we also note that the history of paleoanthropology is clearly one of progress, with ideas tested and resolution added as data (fossils) are uncovered and new technologies applied, much like in sciences as diverse as astronomy, molecular genetics, and geology.
Collapse
Affiliation(s)
- Brian Villmoare
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - William Kimbel
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Institute of Human Origins, Tempe, Arizona, USA
| |
Collapse
|
5
|
Neves W, Rocha G, Senger MH, Hubbe M. The taxonomy of Sahelanthropus tchadensis from a craniometric perspective. AN ACAD BRAS CIENC 2024; 96:e20230680. [PMID: 38985030 DOI: 10.1590/0001-3765202420230680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/20/2024] [Indexed: 07/11/2024] Open
Abstract
Sahelanthropus tchadensis has raised much debate since its initial discovery in Chad in 2001, given its controversial classification as the earliest representative of the hominin lineage. This debate extends beyond the phylogenetic position of the species, and includes several aspects of its habitual behavior, especially in what regards its locomotion. The combination of ancestral and derived traits observed in the fossils associated with the species has been used to defend different hypotheses related to its relationship to hominins. Here, the cranial morphology of Sahelanthropus tchadensis was assessed through 16 linear craniometric measurements, and compared to great apes and hominins through Principal Component Analysis based on size and shape and shape information alone. The results show that S. tchadensis share stronger morphological affinities with hominins than with apes for both the analysis that include size information and the one that evaluates shape alone. Since TM 266-01-060-1 shows a strong morphological affinity with the remaining hominins represented in the analysis, our results support the initial interpretations that S. tchadensis represents an early specimen of our lineage or a stem basal lineage more closely related to hominins than to Panini.
Collapse
Affiliation(s)
- Walter Neves
- Universidade de São Paulo, Instituto de Estudos Avançados, Rua da Praça do Relógio, 109, 05508-050 São Paulo, SP, Brazil
| | - Gabriel Rocha
- Universidade de São Paulo, Instituto de Estudos Avançados, Rua da Praça do Relógio, 109, 05508-050 São Paulo, SP, Brazil
| | - Maria H Senger
- Universidade de São Paulo, Instituto de Estudos Avançados, Rua da Praça do Relógio, 109, 05508-050 São Paulo, SP, Brazil
| | - Mark Hubbe
- Ohio State University, Department of Anthropology, 174W 18th Ave., 43210 Columbus, Ohio, USA
| |
Collapse
|
6
|
Rowan J, Wood B. Dart and the Taung juvenile: making sense of a century-old record of hominin evolution in Africa. Biol Lett 2024; 20:20240185. [PMID: 39045658 PMCID: PMC11267397 DOI: 10.1098/rsbl.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The announcement in 1925 by Raymond Dart of the discovery of the Taung juvenile's skull in a quarry in sub-Saharan Africa is deservedly a classic publication in the history of palaeoanthropology. Dart's paper-which designated Taung as the type specimen of the early hominin species Australopithecus africanus-provided the first fossil evidence supporting Charles Darwin's 1871 prediction that Africa was where the human lineage originated. The Taung juvenile's combination of ape and human characteristics eventually led to a paradigm shift in our understanding of human evolution. This contribution focuses on the milieu in which Dart's paper appeared (i.e. what was understood in 1925 about human evolution), the fossil evidence as set out by Dart, his interpretation of how a species represented by a fossilized juvenile's skull fitted within prevailing narratives about human evolution and the significance of the fossil being found in an environment inferred to be very different from that occupied by living apes. We also briefly review subsequent fossil finds that have corroborated the argument Dart made for having discovered evidence of a hitherto unknown close relative of humans, and summarize our current understanding of the earliest stages of human evolution and its environmental context.
Collapse
Affiliation(s)
- John Rowan
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, UK
| | - Bernard Wood
- CASHP, Department of Anthropology, George Washington University, Washington, DC20052, USA
| |
Collapse
|
7
|
Reda HG, Frost SR, Simons EA, Quade J, Simpson SW. Description and taxonomic assessment of fossil Cercopithecidae from the Pliocene Galili Formation (Ethiopia). J Hum Evol 2024; 190:103508. [PMID: 38599140 DOI: 10.1016/j.jhevol.2024.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 04/12/2024]
Abstract
The Mount Galili Formation in the Afar region, Ethiopia, samples a critical time in hominin evolution, 4.4 to 3.8 Ma, documenting the last appearance of Ardipithecus and the origin of Australopithecus. This period is also important in the evolution of cercopithecids, especially the origin of Theropithecus in general and Theropithecus oswaldi lineage in particular. Galili has provided a total of 655 cercopithecid specimens that include crania, mandibles, isolated teeth and postcrania. All the fossils were recovered from the Lasdanan (5.3-4.43 Ma), Dhidinley (4.43-3.9 Ma) and Shabeley Laag (∼3.92-3.8 Ma) Members. Here, we described and analyzed 362 fossils employing both qualitative and quantitative methods. Descriptions of the material were supplemented with dental metrics and cranial shape analysis using three-dimensional geometric morphometrics. Results indicate the presence of at least six cercopithecid taxa: Theropithecus oswaldi serengetensis (n = 28), Theropithecus sp. (n = 2), three non-Theropithecus papionin groups (n = 134) and one colobine-size group (n = 58). The T. o. serengetensis represents the earliest form of the lineage, documented from ∼3.9 Ma Galili sediments. The three Galili papionins include a smaller taxon, a medium-sized taxon comparable to Pliopapio alemui and a large papionin overlapping in size with Soromandrillus, Gorgopithecus and Dinopithecus. The majority of Galili colobines have closest affinities to Kuseracolobus aramisi and some overlap with other taxa. Papionins dominate the Galili cercopithecid collection, although colobines are still fairly common (approximately 25% of the sample). Thus, Galili sample is like Kanapoi (4.2-4.1 Ma) and Gona (5.2-3.9 Ma) localities but distinct from Aramis, suggesting paleoecological similarity to the former sites. On the other hand, Theropithecus is less abundant at Galili than geologically younger Hadar (3.4-3.2 Ma) and Woranso-Mille (3.8-3.6 Ma) sites. Whether this difference is due to sampling, time or landscape variation requires further investigation.
Collapse
Affiliation(s)
- Hailay G Reda
- Department of Anthropology, University of Oregon, Eugene, OR, 97403-1218, USA.
| | - Stephen R Frost
- Department of Anthropology, University of Oregon, Eugene, OR, 97403-1218, USA
| | - Evan A Simons
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L470, Portland, OR, 97239, USA
| | - Jay Quade
- Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ, 85721, USA
| | - Scott W Simpson
- Department of Anatomy, Case Western Reserve University, Cleveland, OH, 44106-4930, USA; Laboratory of Physical Anthropology, Cleveland Museum of Natural History, Cleveland, OH, 44106, USA
| |
Collapse
|
8
|
Powell VCR, Barr WA, Hammond AS, Wood BA. Behavioral and phylogenetic correlates of limb length proportions in extant apes and monkeys: Implications for interpreting hominin fossils. J Hum Evol 2024; 190:103494. [PMID: 38564844 DOI: 10.1016/j.jhevol.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 04/04/2024]
Abstract
The body proportions of extant animals help inform inferences about the behaviors of their extinct relatives, but relationships between body proportions, behavior, and phylogeny in extant primates remain unclear. Advances in behavioral data, molecular phylogenies, and multivariate analytical tools make it an opportune time to perform comprehensive comparative analyses of primate traditional limb length proportions (e.g., intermembral, humerofemoral, brachial, and crural indices), body size-adjusted long bone proportions, and principal components. In this study we used a mix of newly-collected and published data to investigate whether and how the limb length proportions of a diverse sample of primates, including monkeys, apes, and modern humans, are influenced by behavior and phylogeny. We reconfirm that the intermembral index, followed by the first principal component of traditional limb length proportions, is the single most effective variable distinguishing hominoids and other anthropoids. Combined limb length proportions and positional behaviors are strongly correlated in extant anthropoid groups, but phylogeny is a better predictor of limb length proportion variation than of behavior. We confirm convergences between members of the Atelidae and extant apes (especially Pan), members of the Hylobatidae and Pongo, and a potential divergence of Presbytis limb proportions from some other cercopithecoids, which correlate with adaptations for forelimb-dominated behaviors in some colobines. Collectively, these results substantiate hypotheses indicating that extinct hominins and other hominoid taxa can be distinguished by analyzing combinations of their limb length proportions at different taxonomic levels. From these results, we hypothesize that fossil skeletons characterized by notably disparate limb length proportions are unlikely to have exhibited similar behavioral patterns.
Collapse
Affiliation(s)
- Vance C R Powell
- Department of Anatomy, Howard University College of Medicine, 520 W St. N.W., Washington, D.C., 20059, USA; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, D.C., 20052, USA.
| | - W Andrew Barr
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, D.C., 20052, USA
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History (AMNH), New York, N.Y., 10024, USA; New York Consortium in Evolutionary Primatology at AMNH, New York, N.Y., 10024, USA
| | - Bernard A Wood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, D.C., 20052, USA
| |
Collapse
|
9
|
Zhang Y, Ni X, Li Q, Stidham T, Lu D, Gao F, Zhang C, Harrison T. Lufengpithecus inner ear provides evidence of a common locomotor repertoire ancestral to human bipedalism. Innovation (N Y) 2024; 5:100580. [PMID: 38476202 PMCID: PMC10928440 DOI: 10.1016/j.xinn.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/13/2024] [Indexed: 03/14/2024] Open
Abstract
Various lines of evidence have been used to infer the origin of human bipedalism, but the paucity of hominoid postcranial fossils and the diversity of inferred locomotor modes have tended to confound the reconstruction of ancestral morphotypes. Examination of the bony labyrinth morphology of the inner ear of extinct and living hominoids provides independent evidence for inferring the evolution of hominoid locomotor patterns. New computed tomography data and morphometric analyses of the Late Miocene ape Lufengpithecus indicate that it and other stem great apes possess labyrinths similar to one another and show that hominoids initially evolved from a positional repertoire that included orthogrady, below-branch forelimb suspension and progression, above-branch bipedalism, climbing, clambering, and leaping (hylobatid-like) to one that comprised above-branch quadrupedalism, below-branch forelimb suspension, vertical climbing, limited leaping, terrestrial quadrupedal running and walking, possibly with knuckle walking, and short bouts of bipedalism (chimpanzee-like). The bony labyrinth morphology of Lufengpithecus indicates that it probably conforms more closely to the last common ancestors of crown hominoids and hominids in its locomotor behavior than do other Miocene hominoids. Human bipedalism evolved from this common archetypal Lufengpithecus-like locomotor repertoire. The low evolutionary rate of semicircular canal morphology suggests that Lufengpithecus experienced a relative stasis in locomotor behavior, probably due to the uplift of the Tibetan Plateau, which created a stable environment in the Miocene of southwestern China.
Collapse
Affiliation(s)
- Yinan Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xijun Ni
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Gao
- Yunnan Institute of Cultural Relics and Archeology, Kunming 650118, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Terry Harrison
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
| |
Collapse
|
10
|
Kumar AAW, Huangfu G, Figtree GA, Dwivedi G. Atherosclerosis as the Damocles' sword of human evolution: insights from nonhuman ape-like primates, ancient human remains, and isolated modern human populations. Am J Physiol Heart Circ Physiol 2024; 326:H821-H831. [PMID: 38305751 DOI: 10.1152/ajpheart.00744.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Atherosclerosis is the leading cause of death worldwide, and the predominant risk factors are advanced age and high-circulating low-density lipoprotein cholesterol (LDL-C). However, the findings of atherosclerosis in relatively young mummified remains and a lack of atherosclerosis in chimpanzees despite high LDL-C call into question the role of traditional cardiovascular risk factors. The inflammatory theory of atherosclerosis may explain the discrepancies between traditional risk factors and observed phenomena in current literature. Following the divergence from chimpanzees several millennia ago, loss of function mutations in immune regulatory genes and changes in gene expression have resulted in an overactive human immune system. The ubiquity of atherosclerosis in the modern era may reflect a selective pressure that enhanced the innate immune response at the cost of atherogenesis and other chronic disease states. Evidence provided from the fields of genetics, evolutionary biology, and paleoanthropology demonstrates a sort of circular dependency between inflammation, immune system functioning, and evolution at both a species and cellular level. More recently, the role of proinflammatory stimuli, somatic mutations, and the gene-environment effect appear to be underappreciated elements in the development and progression of atherosclerosis. Neurobiological stress, metabolic syndrome, and traditional cardiovascular risk factors may instead function as intermediary links between inflammation and atherosclerosis. Therefore, considering evolution as a mechanistic process and atherosclerosis as part of the inertia of evolution, greater insight into future preventative and therapeutic interventions for atherosclerosis can be gained by examining the past.
Collapse
Affiliation(s)
- Annora Ai-Wei Kumar
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gavin Huangfu
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Gemma A Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, St. Leonards, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Girish Dwivedi
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| |
Collapse
|
11
|
Prang TC. The relative size of the calcaneal tuber reflects heel strike plantigrady in African apes and humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24865. [PMID: 38058279 DOI: 10.1002/ajpa.24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES The positional repertoire of the human-chimpanzee last common ancestor is critical for reconstructing the evolution of bipedalism. African apes and humans share a heel strike plantigrade foot posture associated with terrestriality. Previous research has established that modern humans have a relatively large and intrinsically robust calcaneal tuber equipped to withstand heel strike forces associated with bipedal walking and running. However, it is unclear whether African apes have a relatively larger calcaneal tuber than non-heel-striking primates, and how this trait might have evolved among anthropoids. Here, I test the hypothesis that heel-striking primates have a relatively larger calcaneal tuber than non-heel-striking primates. METHODS The comparative sample includes 331 individuals and 53 taxa representing hominoids, cercopithecoids, and platyrrhines. Evolutionary modeling was used to test for the effect of foot posture on the relative size of the calcaneal tuber in a phylogenetic framework that accounts for adaptation and inertia. Bayesian evolutionary modeling was used to identify selective regime shifts in the relative size of the calcaneal tuber among anthropoids. RESULTS The best fitting evolutionary model was a Brownian motion model with regime-dependent trends characterized by relatively large calcaneal tubers among African apes and humans. Evolutionary modeling provided support for an evolutionary shift toward a larger calcaneal tuber at the base of the African ape and human clade. CONCLUSIONS The results of this study support the view that African apes and humans share derived traits related to heel strike plantigrady, which implies that humans evolved from a semi-terrestrial quadrupedal ancestor.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Achorn A, Lindshield S, Ndiaye PI, Winking J, Pruetz JD. Reciprocity and beyond: Explaining meat transfers in savanna-dwelling chimpanzees at Fongoli, Senegal. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:224-236. [PMID: 37452552 DOI: 10.1002/ajpa.24815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To understand the function of food sharing among our early hominin ancestors, we can turn to our nonhuman primate relatives for insight. Here, we examined the function of meat sharing by Fongoli chimpanzees, a community of western chimpanzees (Pan troglodytes verus) in southeastern Sénégal. MATERIALS AND METHODS We tested three non-mutually exclusive hypotheses that have been used to explain patterns of food sharing: kin selection, generalized reciprocity, and meat-for-mating opportunities. We analyzed meat sharing events (n = 484) resulting from hunts, along with data on copulations, age-sex class, and kinship to determine which variables predict the likelihood of meat sharing during this study period (2006-2019). RESULTS We found full or partial support for kin selection, direct reciprocity, and meat-for-mating-opportunities. However, the analyses reveal that reciprocity and a mother/offspring relationship were the strongest predictors of whether or not an individual shared meat. CONCLUSIONS The results of this study emphasize the complexity of chimpanzee meat sharing behaviors, especially at a site where social tolerance offers increased opportunities for meat sharing by individuals other than dominant males. These findings can be placed in a referential model to inform hypotheses about the sensitivity of food sharing to environmental pressures, such as resource scarcity in savanna landscapes.
Collapse
Affiliation(s)
- Angela Achorn
- Department of Anthropology, Texas A&M University, College Station, Texas, USA
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Stacy Lindshield
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Papa Ibnou Ndiaye
- Département de Biologie Animale, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Jeffrey Winking
- Department of Anthropology, Texas A&M University, College Station, Texas, USA
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
13
|
Raghanti MA, Miller EN, Jones DN, Smith HN, Munger EL, Edler MK, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO. Hedonic eating, obesity, and addiction result from increased neuropeptide Y in the nucleus accumbens during human brain evolution. Proc Natl Acad Sci U S A 2023; 120:e2311118120. [PMID: 37695892 PMCID: PMC10515152 DOI: 10.1073/pnas.2311118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Elaine N. Miller
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - Danielle N. Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Heather N. Smith
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio, TX78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX78245
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX78602
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| |
Collapse
|
14
|
Sevim-Erol A, Begun DR, Yavuz A, Tarhan E, Sözer ÇS, Mayda S, van den Hoek Ostende LW, Martin RMG, Alçiçek MC. A new ape from Türkiye and the radiation of late Miocene hominines. Commun Biol 2023; 6:842. [PMID: 37612372 PMCID: PMC10447513 DOI: 10.1038/s42003-023-05210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Fossil apes from the eastern Mediterranean are central to the debate on African ape and human (hominine) origins. Current research places them either as hominines, as hominins (humans and our fossil relatives) or as stem hominids, no more closely related to hominines than to pongines (orangutans and their fossil relatives). Here we show, based on our analysis of a newly identified genus, Anadoluvius, from the 8.7 Ma site of Çorakyerler in central Anatolia, that Mediterranean fossil apes are diverse, and are part of the first known radiation of early members of the hominines. The members of this radiation are currently only identified in Europe and Anatolia; generally accepted hominins are only found in Africa from the late Miocene until the Pleistocene. Hominines may have originated in Eurasia during the late Miocene, or they may have dispersed into Eurasia from an unknown African ancestor. The diversity of hominines in Eurasia suggests an in situ origin but does not exclude a dispersal hypothesis.
Collapse
Affiliation(s)
- Ayla Sevim-Erol
- Ankara University, Faculty of Languages History and Geography, Department of Anthropology, Ankara, Türkiye.
| | - David R Begun
- Department of Anthropology, University of Toronto, Toronto, ON, Canada.
| | - Alper Yavuz
- Mehmet Akif Ersoy University of Science and Letters, Department of Anthropology, Burdur, Türkiye
| | - Erhan Tarhan
- Hitit University Faculty of Science and Letters, Department of Anthropology, Çorum, Türkiye
| | - Çilem Sönmez Sözer
- Ankara University, Faculty of Languages History and Geography, Department of Anthropology, Ankara, Türkiye
| | - Serdar Mayda
- Ege University Fakulty of Science, Department of Biology, İzmir, Türkiye
| | | | - Robert M G Martin
- Department of Anthropology, University of Toronto, Toronto, ON, Canada
| | - M Cihat Alçiçek
- Pamukkale University, Department of Geology, 20070, Denizli, Türkiye
| |
Collapse
|
15
|
Ekström AG, Edlund J. Evolution of the human tongue and emergence of speech biomechanics. Front Psychol 2023; 14:1150778. [PMID: 37325743 PMCID: PMC10266234 DOI: 10.3389/fpsyg.2023.1150778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The tongue is one of the organs most central to human speech. Here, the evolution and species-unique properties of the human tongue is traced, via reference to the apparent articulatory behavior of extant non-human great apes, and fossil findings from early hominids - from a point of view of articulatory phonetics, the science of human speech production. Increased lingual flexibility provided the possibility of mapping of articulatory targets, possibly via exaptation of manual-gestural mapping capacities evident in extant great apes. The emergence of the human-specific tongue, its properties, and morphology were crucial to the evolution of human articulate speech.
Collapse
|
16
|
Tattersall I. Endocranial volumes and human evolution. F1000Res 2023; 12:565. [PMID: 37744765 PMCID: PMC10517302 DOI: 10.12688/f1000research.131636.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 09/26/2023] Open
Abstract
Enlarging brains have been held up as the classic (if not the only) example of a consistent long-term trend in human evolution. And hominin endocranial volumes certainly expanded four-fold over the subfamily's seven-million-year history, while on a very coarse scale later hominids showed a strong tendency to have larger brains than earlier ones. However, closer scrutiny of this apparent trend reveals that it was extremely episodic and irregular, a fact that argues against the notion that it was driven by social interactions internal to the hominin clade. In addition, an overall tendency to brain volume increase was expressed independently and concurrently within at least three separate lineages of the genus Homo - suggesting that, whatever the exact influences were that promoted this global trend, they need to be sought among stimuli that acted comprehensively over the entire vast range of periods, geographies and environments that members of our subfamily occupied. Significantly, though, the dramatic recent shrinkage of the brain within the species Homo sapiens implies that the emergence of modern human cognition (via the adoption of the symbolic information processing mode, likely driven by the spontaneous invention of language in an exaptively enabled brain) was not the culmination of the overall hominin trend towards brain enlargement, but rather a departure from it.
Collapse
Affiliation(s)
- Ian Tattersall
- Anthropology, American Museum of Natural History, New York, NY, 10014, USA
| |
Collapse
|
17
|
Alemseged Z. Reappraising the palaeobiology of Australopithecus. Nature 2023; 617:45-54. [PMID: 37138108 DOI: 10.1038/s41586-023-05957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
The naming of Australopithecus africanus in 1925, based on the Taung Child, heralded a new era in human evolutionary studies and turned the attention of the then Eurasian-centric palaeoanthropologists to Africa, albeit with reluctance. Almost one hundred years later, Africa is recognized as the cradle of humanity, where the entire evolutionary history of our lineage prior to two million years ago took place-after the Homo-Pan split. This Review examines data from diverse sources and offers a revised depiction of the genus and characterizes its role in human evolution. For a long time, our knowledge of Australopithecus came from both A. africanus and Australopithecus afarensis, and the members of this genus were portrayed as bipedal creatures that did not use stone tools, with a largely chimpanzee-like cranium, a prognathic face and a brain slightly larger than that of chimpanzees. Subsequent field and laboratory discoveries, however, have altered this portrayal, showing that Australopithecus species were habitual bipeds but also practised arboreality; that they occasionally used stone tools to supplement their diet with animal resources; and that their infants probably depended on adults to a greater extent than what is seen in apes. The genus gave rise to several taxa, including Homo, but its direct ancestor remains elusive. In sum, Australopithecus had a pivotal bridging role in our evolutionary history owing to its morphological, behavioural and temporal placement between the earliest archaic putative hominins and later hominins-including the genus Homo.
Collapse
|
18
|
Negishi T, Ogihara N. Functional significance of vertical free moment for generation of human bipedal walking. Sci Rep 2023; 13:6894. [PMID: 37106093 PMCID: PMC10140179 DOI: 10.1038/s41598-023-34153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
In human bipedal walking, the plantar surface of the foot is in contact with the floor surface, so that a vertical free moment (VFM), a torque about a vertical axis acting at the centre-of-pressure due to friction between the foot and the ground, is generated and applied to the foot. The present study investigated the functional significance of the VFM in the mechanics and evolution of human bipedal walking by analysing kinematics and kinetics of human walking when the VFM is selectively eliminated using point-contact shoes. When the VFM was selectively eliminated during walking, the thorax and pelvis axially rotated in-phase, as opposed to normal out-of-phase rotation. The amplitudes of the axial rotation also significantly increased, indicating that the VFM greatly contributes to stable and efficient bipedal walking. However, such changes in the trunk movement occurred only when arm swing was restricted, suggesting that the VFM is critical only when arm swing is restrained. Therefore, the human plantigrade foot capable of generating large VFM is possibly adaptive for bipedal walking with carrying food, corroborating with the so-called provisioning hypothesis that food carrying in the early hominins is a selective pressure for the evolution of human bipedalism.
Collapse
Affiliation(s)
- Takuo Negishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naomichi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
20
|
MacLatchy LM, Cote SM, Deino AL, Kityo RM, Mugume AAT, Rossie JB, Sanders WJ, Cosman MN, Driese SG, Fox DL, Freeman AJ, Jansma RJW, Jenkins KEH, Kinyanjui RN, Lukens WE, McNulty KP, Novello A, Peppe DJ, Strömberg CAE, Uno KT, Winkler AJ, Kingston JD. The evolution of hominoid locomotor versatility: Evidence from Moroto, a 21 Ma site in Uganda. Science 2023; 380:eabq2835. [PMID: 37053310 DOI: 10.1126/science.abq2835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Living hominoids are distinguished by upright torsos and versatile locomotion. It is hypothesized that these features evolved for feeding on fruit from terminal branches in forests. To investigate the evolutionary context of hominoid adaptive origins, we analyzed multiple paleoenvironmental proxies in conjunction with hominoid fossils from the Moroto II site in Uganda. The data indicate seasonally dry woodlands with the earliest evidence of abundant C4 grasses in Africa based on a confirmed age of 21 million years ago (Ma). We demonstrate that the leaf-eating hominoid Morotopithecus consumed water-stressed vegetation, and postcrania from the site indicate ape-like locomotor adaptations. These findings suggest that the origin of hominoid locomotor versatility is associated with foraging on leaves in heterogeneous, open woodlands rather than forests.
Collapse
Affiliation(s)
- Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M Cote
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alan L Deino
- Berkeley Geochronology Center, Berkeley, CA 94709, USA
| | - Robert M Kityo
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Amon A T Mugume
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
- Uganda National Museum, Department of Museums and Monuments, Ministry of Tourism, Wildlife and Antiquities, Kampala, Uganda
| | - James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - William J Sanders
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miranda N Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven G Driese
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - David L Fox
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - April J Freeman
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Rutger J W Jansma
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Kirsten E H Jenkins
- Department of Social Sciences, Tacoma Community College, Tacoma, WA 98466, USA
| | - Rahab N Kinyanjui
- Earth Sciences Department, National Museums of Kenya, Nairobi, Kenya
- Max Planck Institute for Geoanthropology, Jena D-07743, Germany
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - William E Lukens
- Department of Geology & Environmental Science, James Madison University, Harrisonburg, VA 22807, USA
| | - Kieran P McNulty
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alice Novello
- CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, INRAE, Aix en Provence, France
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Caroline A E Strömberg
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Kevin T Uno
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Alisa J Winkler
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
- Section of Anatomy, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D Kingston
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Negash EW, Barr WA. Relative abundance of grazing and browsing herbivores is not a direct reflection of vegetation structure: Implications for hominin paleoenvironmental reconstruction. J Hum Evol 2023; 177:103328. [PMID: 36857987 DOI: 10.1016/j.jhevol.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The diet of fossil herbivores inferred from enamel stable carbon isotopes is often used to make paleoenvironmental reconstructions. While many studies have focused on using environmental indicator taxa to make paleoenvironmental reconstructions, community-based approaches are considered to provide a more complete picture of paleolandscapes. These studies assume that the diet and relative abundance of herbivores are related to the areal extent of different vegetation types on the landscape. Here, we quantitatively test this assumption in 16 modern ecosystems in eastern and southern Africa with a wide range of woody vegetation cover. We conducted a landscape-level spatial analysis of vegetation patterns using a published land cover data set and computed landscape metrics. We compiled data on relative abundance and diet of herbivores inferred from carbon isotope studies for all large herbivores in these ecosystems. We found that despite differences in the total areal extent of different vegetation types, numerous sizable patches of each vegetation type are available in most ecosystems. However, despite variation across the ecosystems examined, grazers are typically the most abundant herbivores even in sites that have a higher proportion of forest and shrub cover. This indicates that the diet and relative abundance of herbivores is not a simple reflection of the total areal extent of vegetation types available on the landscape. The higher proportion of grazers observed in these ecosystems is a result of multiple factors including habitat heterogeneity, differences in biomass turnover rate between grasses and woody vegetation, resource partitioning, and the advantages of group living in open environments. Comparison of diet and relative abundance of herbivores in modern ecosystems to fossil herbivore assemblages shows that very different vegetation regimes can support similar herbivore assemblages. This study has significant implications for paleolandscape reconstructions and cautions against a simplistic wooded vs. grassland paleoenvironmental interpretations based on fossil herbivore assemblages.
Collapse
Affiliation(s)
- Enquye W Negash
- Center for the Advanced Study of Human Paleobiology, George Washington University, 800 22nd Street, Northwest, Washington D.C. 20052, USA.
| | - W Andrew Barr
- Center for the Advanced Study of Human Paleobiology, George Washington University, 800 22nd Street, Northwest, Washington D.C. 20052, USA
| |
Collapse
|
22
|
Meyer MR, Jung JP, Spear JK, Araiza IF, Galway-Witham J, Williams SA. Knuckle-walking in Sahelanthropus? Locomotor inferences from the ulnae of fossil hominins and other hominoids. J Hum Evol 2023; 179:103355. [PMID: 37003245 DOI: 10.1016/j.jhevol.2023.103355] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Because the ulna supports and transmits forces during movement, its morphology can signal aspects of functional adaptation. To test whether, like extant apes, some hominins habitually recruit the forelimb in locomotion, we separate the ulna shaft and ulna proximal complex for independent shape analyses via elliptical Fourier methods to identify functional signals. We examine the relative influence of locomotion, taxonomy, and body mass on ulna contours in Homo sapiens (n = 22), five species of extant apes (n = 33), two Miocene apes (Hispanopithecus and Danuvius), and 17 fossil hominin specimens including Sahelanthropus, Ardipithecus, Australopithecus, Paranthropus, and early Homo. Ulna proximal complex contours correlate with body mass but not locomotor patterns, while ulna shafts significantly correlate with locomotion. African apes' ulna shafts are more robust and curved than Asian apes and are unlike other terrestrial mammals (including other primates), curving ventrally rather than dorsally. Because this distinctive curvature is absent in orangutans and hylobatids, it is likely a function of powerful flexors engaged in wrist and hand stabilization during knuckle-walking, and not an adaptation to climbing or suspensory behavior. The OH 36 (purported Paranthropus boisei) and TM 266 (assigned to Sahelanthropus tchadensis) fossils differ from other hominins by falling within the knuckle-walking morphospace, and thus appear to show forelimb morphology consistent with terrestrial locomotion. Discriminant function analysis classifies both OH 36 and TM 266 with Pan and Gorilla with high posterior probability. Along with its associated femur, the TM 266 ulna shaft contours and its deep, keeled trochlear notch comprise a suite of traits signaling African ape-like quadrupedalism. While implications for the phylogenetic position and hominin status of S. tchadensis remain equivocal, this study supports the growing body of evidence indicating that S. tchadensis was not an obligate biped, but instead represents a late Miocene hominid with knuckle-walking adaptations.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA 91737, USA.
| | - Jason P Jung
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Isabella Fx Araiza
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Julia Galway-Witham
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| |
Collapse
|
23
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
26
|
Gruwier BJ, Kovarovic K. Ecomorphology of the cervid intermediate phalanx and its implications for palaeoenvironmental reconstruction. J Morphol 2023; 284:e21528. [PMID: 36310423 DOI: 10.1002/jmor.21528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
This paper reports on newly developed ecomorphological models for the cervid intermediate phalanx. Using a geometric morphometric approach, we quantitatively assess the overall gracility of the bone, the depth and concavity of the proximal articulation and the roundness and symmetry of the distal articulation in the intermediate phalanx, to establish relationships between morphology, locomotor behavior and environment. The morphology of the phalanx was found to vary along a gradient from gracile phalanges with shallow proximal articulations in forms adapted to yielding substrate, to robust phalanges with deeper proximal articulations in taxa adapted to firm substrate. Phylogeny and allometry are accounted for using regressions and phylogenetic comparative methods. Although the results indicate phylogeny explains part of the morphological variation, overall the shape of the intermediate phalanx appears mainly driven by differences in function. Consequently, this element promises to be a useful palaeoenvironmental proxy that can be applied on fossil assemblages with cervid remains.
Collapse
Affiliation(s)
- Ben J Gruwier
- Department of Art Sciences and Archaeology, Maritime Cultures Research Institute, Vrije Universiteit Brussel, Brussels, Belgium.,Research Unit: Analytical, Environmental and Geo-Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Anthropology, Durham University, Durham, UK
| | - Kris Kovarovic
- Department of Anthropology, Durham University, Durham, UK
| |
Collapse
|
27
|
Drummond-Clarke RC. Bringing trees back into the human evolutionary story: recent evidence from extant great apes. Commun Integr Biol 2023; 16:2193001. [PMID: 36969387 PMCID: PMC10038020 DOI: 10.1080/19420889.2023.2193001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Hypotheses have historically linked the emergence and evolution of defining human characteristics such as bipedal walking to ground-dwelling, envisioning our earliest ancestors as living in treeless savannahs (i.e. the traditional savannah hypothesis). However, over the last two decades, evidence from the fossil record combined with comparative studies of extant apes have challenged this hypothesis, instead favoring the importance of arboreality during key phases of hominin evolutionary history. Here we review some of these studies, including a recent study of savannah chimpanzees that provides the first model of how bipedalism could have been adaptive as an arboreal locomotor behavior in early hominins, even after the forests receded during the early Miocene-Pliocene transition. We suggest that whilst a shift to exploiting open habitats catalyzed hominin divergence from great apes, adaptations to arboreal living have been key in shaping what defines humans today, in counter to the traditional savannah hypothesis. Future comparative studies within and between great ape species will be instrumental to understanding variation in arboreality in extant apes, and thus the processes shaping human evolution over the last 3-7 million years.
Collapse
Affiliation(s)
- Rhianna C. Drummond-Clarke
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institut für Zoologie und Evolutionsforschung, Friedrich Schiller Universität Jena, Jena, Germany
- CONTACT Rhianna C. Drummond-Clarke Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| |
Collapse
|
28
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Humle T, Piel AK. Wild chimpanzee behavior suggests that a savanna-mosaic habitat did not support the emergence of hominin terrestrial bipedalism. SCIENCE ADVANCES 2022; 8:eadd9752. [PMID: 36516260 PMCID: PMC9750136 DOI: 10.1126/sciadv.add9752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Bipedalism, a defining feature of the human lineage, is thought to have evolved as forests retreated in the late Miocene-Pliocene. Chimpanzees living in analogous habitats to early hominins offer a unique opportunity to investigate the ecological drivers of bipedalism that cannot be addressed via the fossil record alone. We investigated positional behavior and terrestriality in a savanna-mosaic community of chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania as the first test in a living ape of the hypothesis that wooded, savanna habitats were a catalyst for terrestrial bipedalism. Contrary to widely accepted hypotheses of increased terrestriality selecting for habitual bipedalism, results indicate that trees remained an essential component of the hominin adaptive niche, with bipedalism evolving in an arboreal context, likely driven by foraging strategy.
Collapse
Affiliation(s)
| | - Tracy L. Kivell
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Fiona A. Stewart
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tatyana Humle
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alex K. Piel
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
29
|
Grine FE, Mongle CS, Fleagle JG, Hammond AS. The taxonomic attribution of African hominin postcrania from the Miocene through the Pleistocene: Associations and assumptions. J Hum Evol 2022; 173:103255. [PMID: 36375243 DOI: 10.1016/j.jhevol.2022.103255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Postcranial bones may provide valuable information about fossil taxa relating to their locomotor habits, manipulative abilities and body sizes. Distinctive features of the postcranial skeleton are sometimes noted in species diagnoses. Although numerous isolated postcranial fossils have become accepted by many workers as belonging to a particular species, it is worthwhile revisiting the evidence for each attribution before including them in comparative samples in relation to the descriptions of new fossils, functional analyses in relation to particular taxa, or in evolutionary contexts. Although some workers eschew the taxonomic attribution of postcranial fossils as being less important (or interesting) than interpreting their functional morphology, it is impossible to consider the evolution of functional anatomy in a taxonomic and phylogenetic vacuum. There are 21 widely recognized hominin taxa that have been described from sites in Africa dated from the Late Miocene to the Middle Pleistocene; postcranial elements have been attributed to 17 of these. The bones that have been thus assigned range from many parts of a skeleton to isolated elements. However, the extent to which postcranial material can be reliably attributed to a specific taxon varies considerably from site to site and species to species, and is often the subject of considerable debate. Here, we review the postcranial remains attributed to African hominin taxa from the Late Miocene to the Middle and Late Pleistocene and place these assignations into categories of reliability. The catalog of attributions presented here may serve as a guide for making taxonomic decisions in the future.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - John G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
30
|
Comparative description and taxonomic affinity of 3.7-million-year-old hominin mandibles from Woranso-Mille (Ethiopia). J Hum Evol 2022; 173:103265. [PMID: 36306541 DOI: 10.1016/j.jhevol.2022.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Fossil discoveries of early Australopithecus species from Woranso-Mille have played a significant role in improving our understanding of mid-Pliocene hominin evolution and diversity. Here, we describe two mandibles with dentitions, recovered from sediments immediately above a tuff radiometrically dated to 3.76 ± 0.02 Ma, and assess their taxonomic affinity. The two mandibles (MSD-VP-5/16 and MSD-VP-5/50) show morphological similarities with both Australopithecus anamensis and Australopithecus afarensis. Some of the unique features that distinguish Au. anamensis from Au. afarensis are present in the mandibles, which also share a few derived features with Au. afarensis. Their retention of more Kanapoi Au. anamensis-like traits, compared to the fewer derived features they share with Au. afarensis, and the presence of Au. anamensis at Woranso-Mille in 3.8-million-year-old deposits, lends support to their assignment to Au. anamensis. However, it is equally arguable that the few derived dentognathic features they share with Au. afarensis could be taxonomically more significant, making it difficult to conclusively assign these specimens to either species. Regardless of which species they are assigned to, the mosaic nature of the dentognathic morphology and geological age of the two mandibles lends further support to the hypothesized ancestor-descendant relationship between Au. anamensis and Au. afarensis. However, there is now limited fossil evidence indicating that these two species may have overlapped in time. Hence, the last appearance of Au. anamensis and first appearance of Au. afarensis are currently unknown. Recovery of Australopithecus fossils from 4.1 to 3.8 Ma is critical to further address the timing of these events.
Collapse
|
31
|
Sarringhaus L, Lewton KL, Iqbal S, Carlson KJ. Ape femoral-humeral rigidities and arboreal locomotion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:624-639. [PMID: 36790629 PMCID: PMC9828227 DOI: 10.1002/ajpa.24632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study investigates patterns of bone functional adaptations in extant apes through comparing hindlimb to forelimb bone rigidity ratios in groups with varying levels of arboreality. MATERIALS AND METHODS Using CT scans, bone rigidity (J) was calculated at three regions of interest (ROI) along femoral and humeral diaphyses in Homo, Pongo, Pan, and Gorilla with further comparisons made between species and subspecies divisions within Pan and Gorilla. RESULTS Consistent with previous work on extant hominoids, species exhibited differences in midshaft femoral to humeral (F/H) rigidity ratios. Results of the present study confirm that these midshaft differences extend to 35% and 65% diaphyseal ROIs. Modern humans, exhibiting larger ratios, and orangutans, exhibiting smaller ratios, bracketed the intermediate African apes in comparisons. Within some African apes, limb rigidity ratios varied significantly between taxonomic groups. Eastern gorillas exhibited the highest mean ratios and chimpanzees the lowest at all three ROIs. In posthoc comparisons, chimpanzees and bonobos did not differ in relative limb rigidity ratios at any of the three ROIs. However, western gorillas were more similar to bonobos than eastern gorillas at 50% and 35% ROIs, but not at the 65% ROI. CONCLUSION Species, and to a lesser extent subspecies, can be distinguished by F/H limb rigidity ratios according to broad positional behavior patterns at multiple regions of interest along the diaphyses. Similarity of bonobos and western gorillas is in line with behavioral data of bonobos being the most terrestrial of Pan species, and western gorillas the most arboreal of the Gorilla groups.
Collapse
Affiliation(s)
- Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kristi L Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Safiyyah Iqbal
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Cáceres N, Cerezer FO, Bubadué J. Size reduction and skull shape parallelism following the evolutionary forest‐to‐savanna transition in Platyrrhini monkeys. Am J Primatol 2022; 84:e23447. [DOI: 10.1002/ajp.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nilton Cáceres
- Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | - Felipe O. Cerezer
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | - Jamile Bubadué
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
- Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro Campos dos Goytacazes Rio de Janeiro Brazil
| |
Collapse
|
33
|
Hammond P, Lewis‐Bevan L, Biro D, Carvalho S. Risk perception and terrestriality in primates: A quasi‐experiment through habituation of chacma baboons (
Papio ursinus
) in Gorongosa National Park, Mozambique. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9540627 DOI: 10.1002/ajpa.24567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Objectives Habituation is a common pre‐requisite for studying noncaptive primates. Details and quantitative reporting on this process are often overlooked but are useful for measuring human impact on animal behavior, especially when comparing studies across time or sites. During habituation, perceived risk of a stimulus—human observers—is assumed to decline with repeated exposure to that stimulus. We use habituation as a quasi‐experiment to study the landscape of fear, exploring relationships between actual risk, perceived risk, mediating environmental variables, and behavioral correlates. Materials and Methods We recorded vocalizations and observer‐directed vigilance as indicators of perceived risk during habituation of two troops of chacma baboons (Papio ursinus) in Gorongosa National Park, Mozambique. Here, we model changes in these variables as a function of habituation time, troop, time of day, and habitat features. We also model the relationship between each of the anti‐predator behaviors and ground‐use, exploring whether they predict greater terrestriality in the baboons. Results In both troops, vocalization rates and observer‐directed vigilance declined with cumulative exposure to observers, but were heightened later in the day and in denser habitat types. We found that terrestrial activity was negatively related to levels of both vocalizations and observer‐directed vigilance. Discussion This study provides a quantitative assessment of the impact of human observation on primate behavior and highlights environmental variables that influence anti‐predator behaviors, perhaps indicating heightened perception of risk. The relationship between perceived risk and terrestriality is significant for understanding the evolution of this rare trait in primates.
Collapse
Affiliation(s)
- Philippa Hammond
- Primate Models for Behavioural Evolution Lab, School of Anthropology and Museum Ethnography University of Oxford Oxford UK
| | | | - Dora Biro
- Department of Zoology University of Oxford Oxford UK
- Department of Brain and Cognitive Sciences University of Rochester Rochester New York USA
| | - Susana Carvalho
- Primate Models for Behavioural Evolution Lab, School of Anthropology and Museum Ethnography University of Oxford Oxford UK
- Paleo‐Primate Project Gorongosa National Park Gorongosa Sofala Mozambique
- Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB) Universidade do Algarve Faro Portugal
| |
Collapse
|
34
|
Young M, Richard D, Grabowski M, Auerbach BM, de Bakker BS, Hagoort J, Muthuirulan P, Kharkar V, Kurki HK, Betti L, Birkenstock L, Lewton KL, Capellini TD. The developmental impacts of natural selection on human pelvic morphology. SCIENCE ADVANCES 2022; 8:eabq4884. [PMID: 35977020 PMCID: PMC9385149 DOI: 10.1126/sciadv.abq4884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary responses to selection for bipedalism and childbirth have shaped the human pelvis, a structure that differs substantially from that in apes. Morphology related to these factors is present by birth, yet the developmental-genetic mechanisms governing pelvic shape remain largely unknown. Here, we pinpoint and characterize a key gestational window when human-specific pelvic morphology becomes recognizable, as the ilium and the entire pelvis acquire traits essential for human walking and birth. We next use functional genomics to molecularly characterize chondrocytes from different pelvic subelements during this window to reveal their developmental-genetic architectures. We then find notable evidence of ancient selection and genetic constraint on regulatory sequences involved in ilium expansion and growth, findings complemented by our phenotypic analyses showing that variation in iliac traits is reduced in humans compared to African apes. Our datasets provide important resources for musculoskeletal biology and begin to elucidate developmental mechanisms that shape human-specific morphology.
Collapse
Affiliation(s)
- Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool L3 3AF, UK
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Benjamin M. Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, USA
| | - Bernadette S. de Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Vismaya Kharkar
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Helen K. Kurki
- Department of Anthropology, University of Victoria, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Lia Betti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | | | - Kristi L. Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
35
|
van Holstein LA, Foley RA. A process-based approach to hominin taxonomy provides new perspectives on hominin speciation. Evol Anthropol 2022; 31:166-174. [PMID: 35758550 DOI: 10.1002/evan.21946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/02/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
A longstanding debate in hominin taxonomy is that between "lumpers" and "splitters." We argue that both approaches assume an unrealistically static model of speciation. Speciation is an extended process, of which fossils provide a record. Fossils should be interpreted in a more dynamic framework than is the norm. We introduce the process-based approach (PBA), in which we suggest that "splitters" recognize and name units at an earlier stage of speciation than "lumpers" do. The "determinants" of speciation can control the rate at which population isolates form, or the rate at which these complete the speciation process, or both. Embedded in the PBA, differences between existing lumped and split taxonomies are a heuristic tool to study these processes. We apply the PBA to show that not all hominin populations reached later stages of the speciation process and that populations have a disproportionate likelihood of doing so from ∼3.1 to ∼1.5 Ma. We outline and discuss resulting new research questions.
Collapse
Affiliation(s)
- Laura A van Holstein
- Department of Archaeology, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, UK
| | - Robert A Foley
- Department of Archaeology, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Scerri EML, Roberts P, Yoshi Maezumi S, Malhi Y. Tropical forests in the deep human past. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200500. [PMID: 35249383 PMCID: PMC8899628 DOI: 10.1098/rstb.2020.0500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since Darwin, studies of human evolution have tended to give primacy to open 'savannah' environments as the ecological cradle of our lineage, with dense tropical forests cast as hostile, unfavourable frontiers. These perceptions continue to shape both the geographical context of fieldwork as well as dominant narratives concerning hominin evolution. This paradigm persists despite new, ground-breaking research highlighting the role of tropical forests in the human story. For example, novel research in Africa's rainforests has uncovered archaeological sites dating back into the Pleistocene; genetic studies have revealed very deep human roots in Central and West Africa and in the tropics of Asia and the Pacific; an unprecedented number of coexistent hominin species have now been documented, including Homo erectus, the 'Hobbit' (Homo floresiensis), Homo luzonensis, Denisovans, and Homo sapiens. Some of the earliest members of our own species to reach South Asia, Southeast Asia, Oceania and the tropical Americas have shown an unexpected rapidity in their adaptation to even some of the more 'extreme' tropical settings. This includes the early human manipulation of species and even habitats. This volume builds on these currently disparate threads and, for the first time, draws together a group of interdisciplinary, agenda-setting papers that firmly places a broader spectrum of tropical environments at the heart of the deep human past. This article is part of the theme issue 'Tropical forests in the deep human past'.
Collapse
Affiliation(s)
- Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Department of Prehistoric Archaeology, University of Cologne, 50931 Cologne, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany.,School of Social Sciences, University of Queensland, Brisbane, Australia
| | - S Yoshi Maezumi
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
37
|
van Heteren AH, Friess M, Détroit F, Balzeau A. Covariation of proximal finger and toe phalanges in Homo sapiens: A novel approach to assess covariation of serially corresponding structures. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:471-488. [PMID: 36787692 DOI: 10.1002/ajpa.24439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES As hands and feet are serially repeated corresponding structures in tetrapods, the morphology of fingers and toes is expected to covary due to a shared developmental origin. The present study focuses on the covariation of the shape of proximal finger and toe phalanges of adult Homo sapiens to determine whether covariation is different in the first ray relative to the others, as its morphology is also different. MATERIAL AND METHODS Proximal phalanges of 76 individuals of unknown sex (Muséum national d'Histoire naturelle, Paris, and the Natural History Museum, London) were digitized using a surface scanner. Landmarks were positioned on 3D surface models of the phalanges. Generalized Procrustes analysis and two-block partial least squares (PLS) analyses were conducted. A novel landmark-based geometric morphometric approach focusing on covariation is based on a PCoA of the angles between PLS axes in morphospace. The results can be statistically evaluated. RESULTS The difference in PCo scores between the first and the other rays indicates that the integration between the thumb and the big toe is different from that between the lateral rays of the hand and foot. DISCUSSION We speculate that the results are possibly the evolutionary consequence of differential selection pressure on the big toe relative to the other toes related to the rise of bipedalism, which is proposed to have emerged very early in the hominin clade. In contrast, thumb morphology and its precision grip never ceased undergoing changes, suggesting less acute selection pressures related to the evolution of the precision grip.
Collapse
Affiliation(s)
- Anneke H van Heteren
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France
| | - Martin Friess
- Éco-Anthropologie, UMR 7206, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Université de Paris, Paris, 75016, France
| | - Florent Détroit
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France
| | - Antoine Balzeau
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France.,Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, 3080, Belgium
| |
Collapse
|
38
|
Canine sexual dimorphism in Ardipithecus ramidus was nearly human-like. Proc Natl Acad Sci U S A 2021; 118:2116630118. [PMID: 34853174 DOI: 10.1073/pnas.2116630118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Body and canine size dimorphism in fossils inform sociobehavioral hypotheses on human evolution and have been of interest since Darwin's famous reflections on the subject. Here, we assemble a large dataset of fossil canines of the human clade, including all available Ardipithecus ramidus fossils recovered from the Middle Awash and Gona research areas in Ethiopia, and systematically examine canine dimorphism through evolutionary time. In particular, we apply a Bayesian probabilistic method that reduces bias when estimating weak and moderate levels of dimorphism. Our results show that Ar. ramidus canine dimorphism was significantly weaker than in the bonobo, the least dimorphic and behaviorally least aggressive among extant great apes. Average male-to-female size ratios of the canine in Ar. ramidus are estimated as 1.06 and 1.13 in the upper and lower canines, respectively, within modern human population ranges of variation. The slightly greater magnitude of canine size dimorphism in the lower than in the upper canines of Ar. ramidus appears to be shared with early Australopithecus, suggesting that male canine reduction was initially more advanced in the behaviorally important upper canine. The available fossil evidence suggests a drastic size reduction of the male canine prior to Ar. ramidus and the earliest known members of the human clade, with little change in canine dimorphism levels thereafter. This evolutionary pattern indicates a profound behavioral shift associated with comparatively weak levels of male aggression early in human evolution, a pattern that was subsequently shared by Australopithecus and Homo.
Collapse
|
39
|
Haile-Selassie Y. From Trees to the Ground: The Significance of Australopithecus anamensis in Human Evolution. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2021. [DOI: 10.1086/716743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Bobe R, Wood B. Estimating origination times from the early hominin fossil record. Evol Anthropol 2021; 31:92-102. [PMID: 34662482 DOI: 10.1002/evan.21928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022]
Abstract
The age of the earliest recovered fossil evidence of a hominin taxon is all too often equated with that taxon's origination. However, the earliest known fossil record nearly always postdates, sometimes by a substantial period of time, the true origination of a taxon. Here we evaluate the first appearance records of the earliest potential hominins (Sahelanthropus, Ardipithecus, Orrorin), as well as of the genera Australopithecus, Homo, and Paranthropus, to illustrate the considerable uncertainty regarding the actual timing of origin of these taxa. By placing confidence intervals on the first appearance records of early hominin taxa, we can better evaluate patterns of hominin diversity, turnover, and potential correlations with climatic and environmental changes.
Collapse
Affiliation(s)
- René Bobe
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford, UK.,Gorongosa National Park, Sofala, Mozambique.,Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
41
|
Rodríguez Arce JM, Winkelman MJ. Psychedelics, Sociality, and Human Evolution. Front Psychol 2021; 12:729425. [PMID: 34659037 PMCID: PMC8514078 DOI: 10.3389/fpsyg.2021.729425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Our hominin ancestors inevitably encountered and likely ingested psychedelic mushrooms throughout their evolutionary history. This assertion is supported by current understanding of: early hominins' paleodiet and paleoecology; primate phylogeny of mycophagical and self-medicative behaviors; and the biogeography of psilocybin-containing fungi. These lines of evidence indicate mushrooms (including bioactive species) have been a relevant resource since the Pliocene, when hominins intensified exploitation of forest floor foods. Psilocybin and similar psychedelics that primarily target the serotonin 2A receptor subtype stimulate an active coping strategy response that may provide an enhanced capacity for adaptive changes through a flexible and associative mode of cognition. Such psychedelics also alter emotional processing, self-regulation, and social behavior, often having enduring effects on individual and group well-being and sociality. A homeostatic and drug instrumentalization perspective suggests that incidental inclusion of psychedelics in the diet of hominins, and their eventual addition to rituals and institutions of early humans could have conferred selective advantages. Hominin evolution occurred in an ever-changing, and at times quickly changing, environmental landscape and entailed advancement into a socio-cognitive niche, i.e., the development of a socially interdependent lifeway based on reasoning, cooperative communication, and social learning. In this context, psychedelics' effects in enhancing sociality, imagination, eloquence, and suggestibility may have increased adaptability and fitness. We present interdisciplinary evidence for a model of psychedelic instrumentalization focused on four interrelated instrumentalization goals: management of psychological distress and treatment of health problems; enhanced social interaction and interpersonal relations; facilitation of collective ritual and religious activities; and enhanced group decision-making. The socio-cognitive niche was simultaneously a selection pressure and an adaptive response, and was partially constructed by hominins through their activities and their choices. Therefore, the evolutionary scenario put forward suggests that integration of psilocybin into ancient diet, communal practice, and proto-religious activity may have enhanced hominin response to the socio-cognitive niche, while also aiding in its creation. In particular, the interpersonal and prosocial effects of psilocybin may have mediated the expansion of social bonding mechanisms such as laughter, music, storytelling, and religion, imposing a systematic bias on the selective environment that favored selection for prosociality in our lineage.
Collapse
Affiliation(s)
| | - Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
42
|
Lindshield S, Hernandez-Aguilar RA, Korstjens AH, Marchant LF, Narat V, Ndiaye PI, Ogawa H, Piel AK, Pruetz JD, Stewart FA, van Leeuwen KL, Wessling EG, Yoshikawa M. Chimpanzees (Pan troglodytes) in savanna landscapes. Evol Anthropol 2021; 30:399-420. [PMID: 34542218 DOI: 10.1002/evan.21924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/17/2020] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Chimpanzees (Pan troglodytes) are the only great apes that inhabit hot, dry, and open savannas. We review the environmental pressures of savannas on chimpanzees, such as food and water scarcity, and the evidence for chimpanzees' behavioral responses to these landscapes. In our analysis, savannas were generally associated with low chimpanzee population densities and large home ranges. In addition, thermoregulatory behaviors that likely reduce hyperthermia risk, such as cave use, were frequently observed in the hottest and driest savanna landscapes. We hypothesize that such responses are evidence of a "savanna landscape effect" in chimpanzees and offer pathways for future research to understand its evolutionary processes and mechanisms. We conclude by discussing the significance of research on savanna chimpanzees to modeling the evolution of early hominin traits and informing conservation programs for these endangered apes.
Collapse
Affiliation(s)
- Stacy Lindshield
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - R Adriana Hernandez-Aguilar
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Amanda H Korstjens
- Life and Environmental Sciences Department, Bournemouth University, Talbot Campus, Poole, UK
| | | | - Victor Narat
- CNRS/MNHN/Paris Diderot, UMR 7206 Eco-anthropology, Paris, France
| | - Papa Ibnou Ndiaye
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Hideshi Ogawa
- School of International Liberal Studies, Chukyo University, Toyota, Aichi, Japan
| | - Alex K Piel
- Department of Anthropology, University College London, London, UK
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas, USA
| | - Fiona A Stewart
- Department of Anthropology, University College London, London, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kelly L van Leeuwen
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Poole, UK
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Midori Yoshikawa
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Tokyo, Japan
| |
Collapse
|
43
|
A chimpanzee enamel-diet δ 13C enrichment factor and a refined enamel sampling strategy: Implications for dietary reconstructions. J Hum Evol 2021; 159:103062. [PMID: 34536662 DOI: 10.1016/j.jhevol.2021.103062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Reconstructing diets from stable carbon isotopic signals in enamel bioapatite requires the application of a δ13C enamel-diet enrichment factor, or the isotopic offset between diet and enamel, which has not been empirically determined for any primate. In this study, an enamel-diet enrichment factor (ε∗enamel-diet) of 11.8 ± 0.3‰ is calculated for chimpanzees (Pan troglodytes) at Ngogo in Kibale National Park, Uganda, based on a comprehensive isotopic assessment of previously analyzed dietary plant data and new isotopic analyses of enamel apatite. Different enamel sampling methods are evaluated to determine the potential influence of weaning on isotopic enamel values and dietary interpretations. The new chimpanzee enrichment factor and a sampling strategy that excludes teeth that formed before weaning completion are applied to all known chimpanzee δ13Cenamel data, either previously published or newly derived in this study, resulting in a dietary range of almost 6‰ across all chimpanzees sampled. This new chimpanzee enamel-diet enrichment factor is then used to reassess dietary reconstructions of 12 fossil hominin species whose isotopic enamel signatures have been determined. Results reveal hominin diets that are isotopically more positive than previously reconstructed, highlighting the widespread contribution of 13C-enriched C4/crassulacean acid metabolism (CAM) resources in fossil hominin diets and emphasizing the broad use of these resources during human evolution. These findings stress the importance of ascertaining and employing an appropriate enrichment factor for dietary reconstructions of specific taxa as well as standardizing the sampling protocol for tooth enamel in isotopic paleodietary reconstructions.
Collapse
|
44
|
Mizrahi GA, Shemesh E, Mizrachi A, Tchernov D. Comparative genetics of scyphozoan species reveals the geological history and contemporary processes of the Mediterranean Sea. Ecol Evol 2021; 11:10303-10319. [PMID: 34367576 PMCID: PMC8328420 DOI: 10.1002/ece3.7834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Jellyfish are useful genetic indicators for aquatic ecosystems as they have limited mobility and are highly exposed to the water column. By using comparative genomics and the molecular clock (timetree) of Rhizostoma pulmo, we revealed a divergence point between the East and West Mediterranean Sea (MS) populations that occurred 4.59 million years ago (mya). It is suggested that the two distinct ecological environments we know today were formed at this time. We propose that before this divergence, the highly mixed Atlantic and Mediterranean waters led to the wide dispersal of different species including R. pulmo. At 4.59 mya, the Western and Eastern MS were formed, indicating the possibility of a dramatic environmental event. For the first time, we find that for the jellyfish we examined, the division of the MS in east and west is not at the Straits of Sicily as generally thought, but significantly to the east. Using genomics of the Aurelia species, we examined contemporary anthropogenic impacts with a focus on migration of scyphozoa across the Suez Canal (Lessepsian migration). Aurelia sp. is among the few scyphozoa we find in both the MS and the Red Sea, but our DNA analysis revealed that the Red Sea Aurelia sp. did not migrate or mix with MS species. Phyllorhiza punctata results showed that this species was only recently introduced to the MS as a result of anthropogenic transportation activity, such as ballast water discharge, and revealed a migration vector from Australia to the MS. Our findings demonstrate that jellyfish genomes can be used as a phylogeographic molecular tool to trace past events across large temporal scales and reveal invasive species introduction due to human activity.
Collapse
Affiliation(s)
- Gur A. Mizrahi
- Department of Marine BiologyThe Leon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
- Morris Kahn Marine Research StationEnvironmental Geochemistry Lab.Leon H. Charney School of Marine SciencesHaifa UniversityHaifaIsrael
| | - Eli Shemesh
- Department of Marine BiologyThe Leon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
- Morris Kahn Marine Research StationEnvironmental Geochemistry Lab.Leon H. Charney School of Marine SciencesHaifa UniversityHaifaIsrael
| | - Avia Mizrachi
- Plant and Environmental Sciences DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Dan Tchernov
- Department of Marine BiologyThe Leon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
- Morris Kahn Marine Research StationEnvironmental Geochemistry Lab.Leon H. Charney School of Marine SciencesHaifa UniversityHaifaIsrael
| |
Collapse
|
45
|
Williams SA, Pilbeam D. Homeotic change in segment identity derives the human vertebral formula from a chimpanzee-like one. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:283-294. [PMID: 34227681 DOI: 10.1002/ajpa.24356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David Pilbeam
- Department of Human Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
46
|
Wood B. Reputations and legacies. J Hum Evol 2021; 157:103027. [PMID: 34237480 DOI: 10.1016/j.jhevol.2021.103027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Bernard Wood
- Center for the Advanced Study of Human Paleobiology (CASHP), The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
| |
Collapse
|
47
|
Richerson PJ, Gavrilets S, de Waal FBM. Modern theories of human evolution foreshadowed by Darwin's Descent of Man. Science 2021; 372:372/6544/eaba3776. [PMID: 34016754 DOI: 10.1126/science.aba3776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Charles Darwin's The Descent of Man, published 150 years ago, laid the grounds for scientific studies into human origins and evolution. Three of his insights have been reinforced by modern science. The first is that we share many characteristics (genetic, developmental, physiological, morphological, cognitive, and psychological) with our closest relatives, the anthropoid apes. The second is that humans have a talent for high-level cooperation reinforced by morality and social norms. The third is that we have greatly expanded the social learning capacity that we see already in other primates. Darwin's emphasis on the role of culture deserves special attention because during an increasingly unstable Pleistocene environment, cultural accumulation allowed changes in life history; increased cognition; and the appearance of language, social norms, and institutions.
Collapse
Affiliation(s)
- Peter J Richerson
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Sergey Gavrilets
- Department of Ecology and Evolutionary Biology, Department of Mathematics, National Institute for Mathematical and Biological Synthesis, Center for the Dynamics of Social Complexity, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
48
|
Faith JT, Du A, Behrensmeyer AK, Davies B, Patterson DB, Rowan J, Wood B. Rethinking the ecological drivers of hominin evolution. Trends Ecol Evol 2021; 36:797-807. [PMID: 34059368 DOI: 10.1016/j.tree.2021.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
A central goal of paleoanthropology is understanding the role of ecological change in hominin evolution. Over the past several decades researchers have expanded the hominin fossil record and assembled detailed late Cenozoic paleoclimatic, paleoenvironmental, and paleoecological archives. However, effective use of these data is precluded by the limitations of pattern-matching strategies for inferring causal relationships between ecological and evolutionary change. We examine several obstacles that have hindered progress, and highlight recent research that is addressing them by (i) confronting an incomplete fossil record, (ii) contending with datasets spanning varied spatiotemporal scales, and (iii) using theoretical frameworks to build stronger inferences. Expanding on this work promises to transform challenges into opportunities and set the stage for a new phase of paleoanthropological research.
Collapse
Affiliation(s)
- J Tyler Faith
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108, USA; Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology, National Museum of Natural History, Washington, DC 20013, USA
| | - Benjamin Davies
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - David B Patterson
- Department of Biology, University of North Georgia, Dahlonega, GA 30597, USA
| | - John Rowan
- Department of Anthropology, University at Albany, Albany, NY 12222, USA
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
49
|
Almécija S, Hammond AS, Thompson NE, Pugh KD, Moyà-Solà S, Alba DM. Fossil apes and human evolution. Science 2021; 372:372/6542/eabb4363. [DOI: 10.1126/science.abb4363] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans diverged from apes (chimpanzees, specifically) toward the end of the Miocene ~9.3 million to 6.5 million years ago. Understanding the origins of the human lineage (hominins) requires reconstructing the morphology, behavior, and environment of the chimpanzee-human last common ancestor. Modern hominoids (that is, humans and apes) share multiple features (for example, an orthograde body plan facilitating upright positional behaviors). However, the fossil record indicates that living hominoids constitute narrow representatives of an ancient radiation of more widely distributed, diverse species, none of which exhibit the entire suite of locomotor adaptations present in the extant relatives. Hence, some modern ape similarities might have evolved in parallel in response to similar selection pressures. Current evidence suggests that hominins originated in Africa from Miocene ape ancestors unlike any living species.
Collapse
Affiliation(s)
- Sergio Almécija
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ashley S. Hammond
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
| | - Nathan E. Thompson
- Department of Anatomy, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Kelsey D. Pugh
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M. Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
50
|
Talbot S, Gerdjikov T, De Lillo C. Two variations and one similarity in memory functions deployed by mice and humans to support foraging. Q J Exp Psychol (Hove) 2021; 75:245-259. [PMID: 33818203 DOI: 10.1177/17470218211010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice's foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting unbaited poles across trials (long-term memory) and revisits to poles within each trial (working memory). Humans tested with a virtual reality version of the task outperformed mice in foraging efficiency, working memory, and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures, interspecies differences were maintained throughout the 3 weeks of testing. By contrast, long-term memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying on archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates requires caution.
Collapse
Affiliation(s)
- Spencer Talbot
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Todor Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Carlo De Lillo
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|