1
|
Norton J, Seah N, Santiago F, Sindi SS, Serio TR. Multiple aspects of amyloid dynamics in vivo integrate to establish prion variant dominance in yeast. Front Mol Neurosci 2024; 17:1439442. [PMID: 39139213 PMCID: PMC11319303 DOI: 10.3389/fnmol.2024.1439442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Prion variants are self-perpetuating conformers of a single protein that assemble into amyloid fibers and confer unique phenotypic states. Multiple prion variants can arise, particularly in response to changing environments, and interact within an organism. These interactions are often competitive, with one variant establishing phenotypic dominance over the others. This dominance has been linked to the competition for non-prion state protein, which must be converted to the prion state via a nucleated polymerization mechanism. However, the intrinsic rates of conversion, determined by the conformation of the variant, cannot explain prion variant dominance, suggesting a more complex interaction. Using the yeast prion system [PSI+ ], we have determined the mechanism of dominance of the [PSI+ ]Strong variant over the [PSI+ ]Weak variant in vivo. When mixed by mating, phenotypic dominance is established in zygotes, but the two variants persist and co-exist in the lineage descended from this cell. [PSI+ ]Strong propagons, the heritable unit, are amplified at the expense of [PSI+ ]Weak propagons, through the efficient conversion of soluble Sup35 protein, as revealed by fluorescence photobleaching experiments employing variant-specific mutants of Sup35. This competition, however, is highly sensitive to the fragmentation of [PSI+ ]Strong amyloid fibers, with even transient inhibition of the fragmentation catalyst Hsp104 promoting amplification of [PSI+ ]Weak propagons. Reducing the number of [PSI+ ]Strong propagons prior to mating, similarly promotes [PSI+ ]Weak amplification and conversion of soluble Sup35, indicating that template number and conversion efficiency combine to determine dominance. Thus, prion variant dominance is not an absolute hierarchy but rather an outcome arising from the dynamic interplay between unique protein conformations and their interactions with distinct cellular proteostatic niches.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, United States
| | - Nicole Seah
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| | - Fabian Santiago
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Suzanne S. Sindi
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Tricia R. Serio
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Jager K, Orozco-Hidalgo MT, Springstein BL, Joly-Smith E, Papazotos F, McDonough E, Fleming E, McCallum G, Yuan AH, Hilfinger A, Hochschild A, Potvin-Trottier L. Measuring prion propagation in single bacteria elucidates a mechanism of loss. Proc Natl Acad Sci U S A 2023; 120:e2221539120. [PMID: 37738299 PMCID: PMC10523482 DOI: 10.1073/pnas.2221539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 09/24/2023] Open
Abstract
Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute nontoxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes. In a fraction of the population, cells had multiple small visible aggregates and lost the prion through random partitioning of aggregates to one of the two daughter cells at division. In the other subpopulation, cells had a stable large aggregate localized to the pole; upon division the mother cell retained this polar aggregate and a daughter cell was generated that contained small aggregates. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation.
Collapse
Affiliation(s)
- Krista Jager
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | | | | | - Euan Joly-Smith
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | | | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Giselle McCallum
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | - Andy H. Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
- Department of Mathematics, University of Toronto, Toronto, ONM5S 2E4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 3G5, Canada
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
- Department of Physics, Concordia University, Montréal, QCH4B 1R6, Canada
- Center for Applied Synthetic Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| |
Collapse
|
3
|
Jager K, Orozco-Hidalgo MT, Springstein BL, Joly-Smith E, Papazotos F, McDonough E, Fleming E, McCallum G, Hilfinger A, Hochschild A, Potvin-Trottier L. Measuring prion propagation in single bacteria elucidates mechanism of loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523042. [PMID: 36712035 PMCID: PMC9882039 DOI: 10.1101/2023.01.11.523042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute non-toxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes with distinct stability and inheritance characteristics. We find that the prion is lost through random partitioning of aggregates to one of the two daughter cells at division. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation across domains of life.
Collapse
Affiliation(s)
- Krista Jager
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | | | | | - Euan Joly-Smith
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - EmilyKate McDonough
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Giselle McCallum
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, Québec, Canada
- Department of Physics, Concordia University, Montréal, Québec, Canada
- Center for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
5
|
Dorweiler JE, Lyke DR, Lemoine NP, Guereca S, Buchholz HE, Legan ER, Radtke CM, Manogaran AL. Implications of the Actin Cytoskeleton on the Multi-Step Process of [PSI+] Prion Formation. Viruses 2022; 14:v14071581. [PMID: 35891561 PMCID: PMC9321047 DOI: 10.3390/v14071581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Yeast prions are self-perpetuating misfolded proteins that are infectious. In yeast, [PSI+] is the prion form of the Sup35 protein. While the study of [PSI+] has revealed important cellular mechanisms that contribute to prion propagation, the underlying cellular factors that influence prion formation are not well understood. Prion formation has been described as a multi-step process involving both the initial nucleation and growth of aggregates, followed by the subsequent transmission of prion particles to daughter cells. Prior evidence suggests that actin plays a role in this multi-step process, but actin’s precise role is unclear. Here, we investigate how actin influences the cell’s ability to manage newly formed visible aggregates and how actin influences the transmission of newly formed aggregates to future generations. At early steps, using 3D time-lapse microscopy, several actin mutants, and Markov modeling, we find that the movement of newly formed aggregates is random and actin independent. At later steps, our prion induction studies provide evidence that the transmission of newly formed prion particles to daughter cells is limited by the actin cytoskeletal network. We suspect that this limitation is because actin is used to possibly retain prion particles in the mother cell.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Douglas R. Lyke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Nathan P. Lemoine
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Samantha Guereca
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Hannah E. Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Emily R. Legan
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Claire M. Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
- Correspondence:
| |
Collapse
|
6
|
Santiago F, Sindi S. A structured model and likelihood approach to estimate yeast prion propagon replication rates and their asymmetric transmission. PLoS Comput Biol 2022; 18:e1010107. [PMID: 35776712 PMCID: PMC9249220 DOI: 10.1371/journal.pcbi.1010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Prion proteins cause a variety of fatal neurodegenerative diseases in mammals but are generally harmless to Baker’s yeast (Saccharomyces cerevisiae). This makes yeast an ideal model organism for investigating the protein dynamics associated with these diseases. The rate of disease onset is related to both the replication and transmission kinetics of propagons, the transmissible agents of prion diseases. Determining the kinetic parameters of propagon replication in yeast is complicated because the number of propagons in an individual cell depends on the intracellular replication dynamics and the asymmetric division of yeast cells within a growing yeast cell colony. We present a structured population model describing the distribution and replication of prion propagons in an actively dividing population of yeast cells. We then develop a likelihood approach for estimating the propagon replication rate and their transmission bias during cell division. We first demonstrate our ability to correctly recover known kinetic parameters from simulated data, then we apply our likelihood approach to estimate the kinetic parameters for six yeast prion variants using propagon recovery data. We find that, under our modeling framework, all variants are best described by a model with an asymmetric transmission bias. This demonstrates the strength of our framework over previous formulations assuming equal partitioning of intracellular constituents during cell division. In this work we investigate the transmissible [PSI+] phenotype in yeast. The agents responsible for this phenotype are propagons, misfolded protein aggregates of a naturally occurring protein. These propagons increase in number within a cell and are distributed between cells during division. We use mathematical modeling to infer the replication rate of propagons within cells and if propagons are transmitted equally or unequally during cell division. Prior models in this area assumed only symmetric transmission when fitting replication rates. We couple this model with a novel likelihood framework allowing us to exclude influential outliers from our datasets when inferring parameters. We find that for all six protein variants we study, propagons are transmitted asymmetrically with different biases. Our results can be reproduced with the code and data available at https://github.com/FS-CodeBase/propagon_replication_and_transmission/.
Collapse
Affiliation(s)
- Fabian Santiago
- Department of Mathematics, University of Arizona, Tucson, Arizona, United States of America
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dennis EM, Garcia DM. Biochemical Principles in Prion-Based Inheritance. EPIGENOMES 2022; 6:4. [PMID: 35225957 PMCID: PMC8883993 DOI: 10.3390/epigenomes6010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Prions are proteins that can stably fold into alternative structures that frequently alter their activities. They can self-template their alternate structures and are inherited across cell divisions and generations. While they have been studied for more than four decades, their enigmatic nature has limited their discovery. In the last decade, we have learned just how widespread they are in nature, the many beneficial phenotypes that they confer, while also learning more about their structures and modes of inheritance. Here, we provide a brief review of the biochemical principles of prion proteins, including their sequences, characteristics and structures, and what is known about how they self-template, citing examples from multiple organisms. Prion-based inheritance is the most understudied segment of epigenetics. Here, we lay a biochemical foundation and share a framework for how to define these molecules, as new examples are unearthed throughout nature.
Collapse
Affiliation(s)
- Emily M. Dennis
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
| | - David M. Garcia
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
8
|
Kabani M. Extracellular Vesicles and the Propagation of Yeast Prions. Curr Top Microbiol Immunol 2021; 432:57-66. [DOI: 10.1007/978-3-030-83391-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons. Int J Mol Sci 2020; 22:ijms22010090. [PMID: 33374854 PMCID: PMC7794690 DOI: 10.3390/ijms22010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud.
Collapse
|
10
|
Beal DM, Tournus M, Marchante R, Purton TJ, Smith DP, Tuite MF, Doumic M, Xue WF. The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments. iScience 2020; 23:101512. [PMID: 32920487 PMCID: PMC7492994 DOI: 10.1016/j.isci.2020.101512] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023] Open
Abstract
The division of amyloid protein fibrils is required for the propagation of the amyloid state and is an important contributor to their stability, pathogenicity, and normal function. Here, we combine kinetic nanoscale imaging experiments with analysis of a mathematical model to resolve and compare the division stability of amyloid fibrils. Our theoretical results show that the division of any type of filament results in self-similar length distributions distinct to each fibril type and the conditions applied. By applying these theoretical results to profile the dynamical stability toward breakage for four different amyloid types, we reveal particular differences in the division properties of disease-related amyloid formed from α-synuclein when compared with non-disease associated model amyloid, the former showing lowered intrinsic stability toward breakage and increased likelihood of shedding smaller particles. Our results enable the comparison of protein filaments' intrinsic dynamic stabilities, which are key to unraveling their toxic and infectious potentials.
Collapse
Affiliation(s)
- David M. Beal
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Magali Tournus
- Centrale Marseille, I2M, UMR 7373, CNRS, Aix-Marseille Univ., Marseille 13453, France
| | - Ricardo Marchante
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Tracey J. Purton
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - David P. Smith
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Marie Doumic
- INRIA Rocquencourt, équipe-projet BANG, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France
- Wolfgang Pauli Institute, University of Vienna, Vienna, Austria
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
- INRIA Rocquencourt, équipe-projet BANG, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France
| |
Collapse
|
11
|
Lemarre P, Pujo-Menjouet L, Sindi SS. A unifying model for the propagation of prion proteins in yeast brings insight into the [PSI+] prion. PLoS Comput Biol 2020; 16:e1007647. [PMID: 32453794 PMCID: PMC7274466 DOI: 10.1371/journal.pcbi.1007647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/05/2020] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
The use of yeast systems to study the propagation of prions and amyloids has emerged as a crucial aspect of the global endeavor to understand those mechanisms. Yeast prion systems are intrinsically multi-scale: the molecular chemical processes are indeed coupled to the cellular processes of cell growth and division to influence phenotypical traits, observable at the scale of colonies. We introduce a novel modeling framework to tackle this difficulty using impulsive differential equations. We apply this approach to the [PSI+] yeast prion, which is associated with the misconformation and aggregation of Sup35. We build a model that reproduces and unifies previously conflicting experimental observations on [PSI+] and thus sheds light onto characteristics of the intracellular molecular processes driving aggregate replication. In particular our model uncovers a kinetic barrier for aggregate replication at low densities, meaning the change between prion or prion-free phenotype is a bi-stable transition. This result is based on the study of prion curing experiments, as well as the phenomenon of colony sectoring, a phenotype which is often ignored in experimental assays and has never been modeled. Furthermore, our results provide further insight into the effect of guanidine hydrochloride (GdnHCl) on Sup35 aggregates. To qualitatively reproduce the GdnHCl curing experiment, aggregate replication must not be completely inhibited, which suggests the existence of a mechanism different than Hsp104-mediated fragmentation. Those results are promising for further development of the [PSI+] model, but also for extending the use of this novel framework to other yeast prion or amyloid systems.
Collapse
Affiliation(s)
- Paul Lemarre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- INRIA Rhônes-Alpes, INRIA, Villeurbanne, France
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
| | - Laurent Pujo-Menjouet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- INRIA Rhônes-Alpes, INRIA, Villeurbanne, France
| | - Suzanne S. Sindi
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Dorweiler JE, Oddo MJ, Lyke DR, Reilly JA, Wisniewski BT, Davis EE, Kuborn AM, Merrill SJ, Manogaran AL. The actin cytoskeletal network plays a role in yeast prion transmission and contributes to prion stability. Mol Microbiol 2020; 114:480-494. [PMID: 32426863 DOI: 10.1111/mmi.14528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Chaperone networks are required for the shearing and generation of transmissible propagons from pre-existing prion aggregates. However, other cellular networks needed for maintaining yeast prions are largely uncharacterized. Here, we establish a novel role for actin networks in prion maintenance. The [PIN+ ] prion, also known as [RNQ+ ], exists as stable variants dependent upon the chaperone machinery for the transmission of propagons to daughter cells during cell division and cytoplasmic transfer. Loss of the Hsp104 molecular chaperone leads to the growth of prion particles until they are too large to be transmitted. Here, we isolated a unique [PIN+ ] variant, which is unstable in actin mutants. This prion loss is observed over many generations, and coincides with the detection of both high molecular weight species of Rnq1 and large visible aggregates that are asymmetrically retained during cell division. Our data suggest that the irregular actin networks found in these mutants may influence propagon number by slowly permitting aggregate growth over time, resulting in the generation of nontransmissible large aggregates. Thus, we show the potential contribution of cytoskeletal networks in the transmission of prion propagons, which parallels models that have been proposed for cell-to-cell transmission of small amyloids in neurodegenerative protein aggregation diseases.
Collapse
Affiliation(s)
- Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Mitchell J Oddo
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Douglas R Lyke
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob A Reilly
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Brett T Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Emily E Davis
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Abigail M Kuborn
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Stephen J Merrill
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
13
|
Kabani M, Pilard M, Melki R. Glucose availability dictates the export of the soluble and prion forms of Sup35p via periplasmic or extracellular vesicles. Mol Microbiol 2020; 114:322-332. [PMID: 32339313 DOI: 10.1111/mmi.14515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022]
Abstract
The yeast [PSI+ ] prion originates from the self-perpetuating transmissible aggregates of the translation termination factor Sup35p. We previously showed that infectious Sup35p particles are exported outside the cells via extracellular vesicles (EV). This finding suggested a function for EV in the vertical and horizontal transmission of yeast prions. Here we report a significant export of Sup35p within periplasmic vesicles (PV) upon glucose starvation. We show that PV are up to three orders of magnitude more abundant than EV. However, PV and EV are different in terms of size and protein content, and their export is oppositely regulated by glucose availability in the growth medium. Overall, our work suggests that the export of prion particles to both the periplasm and the extracellular space needs to be considered to address the physiological consequences of vesicle-mediated yeast prions trafficking.
Collapse
Affiliation(s)
- Mehdi Kabani
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Marion Pilard
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Ronald Melki
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Villali J, Dark J, Brechtel TM, Pei F, Sindi SS, Serio TR. Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast. Nat Struct Mol Biol 2020; 27:540-549. [PMID: 32367069 PMCID: PMC7293557 DOI: 10.1038/s41594-020-0416-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Amyloid appearance is a rare event that is promoted in the presence of
other aggregated proteins. These aggregates were thought to act by templating
the formation of an assembly-competent nucleation seed, but we find an
unanticipated role for them in enhancing the persistence of amyloid after it
arises. Specifically, Saccharoymyces cerevisiae Rnq1 amyloid
reduces chaperone-mediated disassembly of Sup35 amyloid, promoting its
persistence in yeast. Mathematical modeling and corresponding in
vivo experiments link amyloid persistence to the conformationally
defined size of the Sup35 nucleation seed and suggest that amyloid is actively
cleared by disassembly below this threshold to suppress appearance of the
[PSI+] prion in vivo.
Remarkably, this framework resolves multiple known inconsistencies in the
appearance and curing of yeast prions. Thus, our observations establish the size
of the nucleation seed as a previously unappreciated characteristic of prion
variants that is key to understanding transitions between prion states.
Collapse
Affiliation(s)
- Janice Villali
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Relay Therapeutics, Cambridge, MA, USA
| | - Jason Dark
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA
| | - Teal M Brechtel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,BioLegend, San Diego, CA, USA
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA.
| | - Tricia R Serio
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
15
|
Banwarth-Kuhn M, Sindi S. How and why to build a mathematical model: A case study using prion aggregation. J Biol Chem 2020; 295:5022-5035. [PMID: 32005659 PMCID: PMC7152750 DOI: 10.1074/jbc.rev119.009851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biological systems are inherently complex, and the increasing level of detail with which we are able to experimentally probe such systems continually reveals new complexity. Fortunately, mathematical models are uniquely positioned to provide a tool suitable for rigorous analysis, hypothesis generation, and connecting results from isolated in vitro experiments with results from in vivo and whole-organism studies. However, developing useful mathematical models is challenging because of the often different domains of knowledge required in both math and biology. In this work, we endeavor to provide a useful guide for researchers interested in incorporating mathematical modeling into their scientific process. We advocate for the use of conceptual diagrams as a starting place to anchor researchers from both domains. These diagrams are useful for simplifying the biological process in question and distinguishing the essential components. Not only do they serve as the basis for developing a variety of mathematical models, but they ensure that any mathematical formulation of the biological system is led primarily by scientific questions. We provide a specific example of this process from our own work in studying prion aggregation to show the power of mathematical models to synergistically interact with experiments and push forward biological understanding. Choosing the most suitable model also depends on many different factors, and we consider how to make these choices based on different scales of biological organization and available data. We close by discussing the many opportunities that abound for both experimentalists and modelers to take advantage of collaborative work in this field.
Collapse
Affiliation(s)
- Mikahl Banwarth-Kuhn
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343
| | - Suzanne Sindi
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343
| |
Collapse
|
16
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
17
|
Howie RL, Jay-Garcia LM, Kiktev DA, Faber QL, Murphy M, Rees KA, Sachwani N, Chernoff YO. Role of the Cell Asymmetry Apparatus and Ribosome-Associated Chaperones in the Destabilization of a Saccharomyces cerevisiae Prion by Heat Shock. Genetics 2019; 212:757-771. [PMID: 31142614 PMCID: PMC6614889 DOI: 10.1534/genetics.119.302237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
Self-perpetuating transmissible protein aggregates, termed prions, are implicated in mammalian diseases and control phenotypically detectable traits in Saccharomyces cerevisiae Yeast stress-inducible chaperone proteins, including Hsp104 and Hsp70-Ssa that counteract cytotoxic protein aggregation, also control prion propagation. Stress-damaged proteins that are not disaggregated by chaperones are cleared from daughter cells via mother-specific asymmetric segregation in cell divisions following heat shock. Short-term mild heat stress destabilizes [PSI+ ], a prion isoform of the yeast translation termination factor Sup35 This destabilization is linked to the induction of the Hsp104 chaperone. Here, we show that the region of Hsp104 known to be required for curing by artificially overproduced Hsp104 is also required for heat-shock-mediated [PSI+ ] destabilization. Moreover, deletion of the SIR2 gene, coding for a deacetylase crucial for asymmetric segregation of heat-damaged proteins, also counteracts heat-shock-mediated destabilization of [PSI+ ], and Sup35 aggregates are colocalized with aggregates of heat-damaged proteins marked by Hsp104-GFP. These results support the role of asymmetric segregation in prion destabilization. Finally, we show that depletion of the heat-shock noninducible ribosome-associated chaperone Hsp70-Ssb decreases heat-shock-mediated destabilization of [PSI+ ], while disruption of a cochaperone complex mediating the binding of Hsp70-Ssb to the ribosome increases prion loss. Our data indicate that Hsp70-Ssb relocates from the ribosome to the cytosol during heat stress. Cytosolic Hsp70-Ssb has been shown to antagonize the function of Hsp70-Ssa in prion propagation, which explains the Hsp70-Ssb effect on prion destabilization by heat shock. This result uncovers the stress-related role of a stress noninducible chaperone.
Collapse
Affiliation(s)
- Rebecca L Howie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - Denis A Kiktev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia 199034
| | - Quincy L Faber
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Margaret Murphy
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Katherine A Rees
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Numera Sachwani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia 199034
| |
Collapse
|
18
|
Sanchez de Groot N, Torrent Burgas M, Ravarani CN, Trusina A, Ventura S, Babu MM. The fitness cost and benefit of phase-separated protein deposits. Mol Syst Biol 2019; 15:e8075. [PMID: 30962358 PMCID: PMC6452874 DOI: 10.15252/msb.20178075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phase separation of soluble proteins into insoluble deposits is associated with numerous diseases. However, protein deposits can also function as membrane-less compartments for many cellular processes. What are the fitness costs and benefits of forming such deposits in different conditions? Using a model protein that phase-separates into deposits, we distinguish and quantify the fitness contribution due to the loss or gain of protein function and deposit formation in yeast. The environmental condition and the cellular demand for the protein function emerge as key determinants of fitness. Protein deposit formation can influence cell-to-cell variation in free protein abundance between individuals of a cell population (i.e., gene expression noise). This results in variable manifestation of protein function and a continuous range of phenotypes in a cell population, favoring survival of some individuals in certain environments. Thus, protein deposit formation by phase separation might be a mechanism to sense protein concentration in cells and to generate phenotypic variability. The selectable phenotypic variability, previously described for prions, could be a general property of proteins that can form phase-separated assemblies and may influence cell fitness.
Collapse
Affiliation(s)
- Natalia Sanchez de Groot
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK .,Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Torrent Burgas
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
19
|
Serio TR. [PIN+]ing down the mechanism of prion appearance. FEMS Yeast Res 2019; 18:4923032. [PMID: 29718197 PMCID: PMC5889010 DOI: 10.1093/femsyr/foy026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/03/2018] [Indexed: 11/13/2022] Open
Abstract
Prions are conformationally flexible proteins capable of adopting a native state and a spectrum of alternative states associated with a change in the function of the protein. These alternative states are prone to assemble into amyloid aggregates, which provide a structure for self-replication and transmission of the underlying conformer and thereby the emergence of a new phenotype. Amyloid appearance is a rare event in vivo, regulated by both the aggregation propensity of prion proteins and their cellular environment. How these forces normally intersect to suppress amyloid appearance and the ways in which these restrictions can be bypassed to create protein-only phenotypes remain poorly understood. The most widely studied and perhaps most experimentally tractable system to explore the mechanisms regulating amyloid appearance is the [PIN+] prion of Saccharomyces cerevisiae. [PIN+] is required for the appearance of the amyloid state for both native yeast proteins and for human proteins expressed in yeast. These observations suggest that [PIN+] facilitates the bypass of amyloid regulatory mechanisms by other proteins in vivo. Several models of prion appearance are compatible with current observations, highlighting the complexity of the process and the questions that must be resolved to gain greater insight into the mechanisms regulating these events.
Collapse
Affiliation(s)
- Tricia R Serio
- The University of Massachusetts-Amherst, Department of Biochemistry and Molecular Biology, 240 Thatcher Rd, N360, Amherst, MA 01003, USA
| |
Collapse
|
20
|
Fernández C, Giraldo R. Modulation of the Aggregation of the Prion-like Protein RepA-WH1 by Chaperones in a Cell-Free Expression System and in Cytomimetic Lipid Vesicles. ACS Synth Biol 2018; 7:2087-2093. [PMID: 30125497 DOI: 10.1021/acssynbio.8b00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The accumulation of aggregated forms of proteins as toxic species is associated with fatal diseases such as amyloid proteinopathies. With the purpose of deconstructing the molecular mechanisms of these type of diseases through a Synthetic Biology approach, we are working with a model bacterial prion-like protein, RepA-WH1, expressed in a cell-free system. Our findings show that the Hsp70 chaperone from Escherichia coli, together with its Hsp40 and nucleotide exchange factor cochaperones, modulates the aggregation of the prion-like protein in the cell-free system. Moreover, we observe the same effect by reconstructing the aggregation process inside lipid vesicles. Chaperones reduce the number of aggregates formed, matching previous findings in vivo. We expect that the in vitro approach reported here will help to achieve better understanding and control of amyloid proteinopathies.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| |
Collapse
|
21
|
Lemarre P, Pujo-Menjouet L, Sindi SS. Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species. J Math Biol 2018; 78:465-495. [PMID: 30116882 PMCID: PMC6399074 DOI: 10.1007/s00285-018-1280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/20/2018] [Indexed: 11/29/2022]
Abstract
Prions are proteins capable of adopting misfolded conformations and transmitting these conformations to other normally folded proteins. Prions are most commonly known for causing fatal neurodegenerative diseases in mammals but are also associated with several harmless phenotypes in yeast. A distinct feature of prion propagation is the existence of different phenotypical variants, called strains. It is widely accepted that these strains correspond to different conformational states of the protein, but the mechanisms driving their interactions remain poorly understood. This study uses mathematical modeling to provide insight into this problem. We show that the classical model of prion dynamics allows at most one conformational strain to stably propagate. In order to conform to biological observations of strain coexistence and co-stability, we develop an extension of the classical model by introducing a novel prion species consistent with biological studies. Qualitative analysis of this model reveals a new variety of behavior. Indeed, it allows for stable coexistence of different strains in a wide parameter range, and it also introduces intricate initial condition dependency. These new behaviors are consistent with experimental observations of prions in both mammals and yeast. As such, our model provides a valuable tool for investigating the underlying mechanisms of prion propagation and the link between prion strains and strain specific phenotypes. The consideration of a novel prion species brings a change in perspective on prion biology and we use our model to generate hypotheses about prion infectivity.
Collapse
Affiliation(s)
- Paul Lemarre
- School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA
| | - Laurent Pujo-Menjouet
- Institut Camille Jordan, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, 43 blvd. du 11 novembre 1918, 69622, Villeurbanne cedex, France.,Team Dracula, INRIA, 69603, Villeurbanne cedex, France
| | - Suzanne S Sindi
- Applied Mathematics School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
22
|
Kundel F, Hong L, Falcon B, McEwan WA, Michaels TCT, Meisl G, Esteras N, Abramov AY, Knowles TJP, Goedert M, Klenerman D. Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading. ACS Chem Neurosci 2018; 9:1276-1282. [PMID: 29590529 PMCID: PMC6014609 DOI: 10.1021/acschemneuro.8b00094] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ordered assembly of amyloidogenic proteins causes a wide spectrum of common neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. These diseases share common features with prion diseases, in which misfolded proteins can self-replicate and transmit disease across different hosts. Deciphering the molecular mechanisms that underlie the amplification of aggregates is fundamental for understanding how pathological deposits can spread through the brain and drive disease. Here, we used single-molecule microscopy to study the assembly and replication of tau at the single aggregate level. We found that tau aggregates have an intrinsic ability to amplify by filament fragmentation, and determined the doubling times for this replication process by kinetic modeling. We then simulated the spreading time for aggregates through the brain and found this to be in good agreement with both the observed time frame for spreading of pathological tau deposits in Alzheimer's disease and in experimental models of tauopathies. With this work we begin to understand the physical parameters that govern the spreading rates of tau and other amyloids through the human brain.
Collapse
Affiliation(s)
- Franziska Kundel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Liu Hong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Benjamin Falcon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - William A. McEwan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Thomas C. T. Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Georg Meisl
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Noemi Esteras
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Andrey Y. Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Tuomas J. P. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - David Klenerman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
23
|
Zhao X, Lanz J, Steinberg D, Pease T, Ahearn JM, Bezsonov EE, Staguhn ED, Eisenberg E, Masison DC, Greene LE. Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. J Biol Chem 2018; 293:3104-3117. [PMID: 29330300 DOI: 10.1074/jbc.m117.809079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
The [URE3] yeast prion is the self-propagating amyloid form of the Ure2 protein. [URE3] is cured by overexpression of several yeast proteins, including Ydj1, Btn2, Cur1, Hsp42, and human DnaJB6. To better understand [URE3] curing, we used real-time imaging with a yeast strain expressing a GFP-labeled full-length Ure2 construct to monitor the curing of [URE3] over time. [URE3] yeast cells exhibited numerous fluorescent foci, and expression of the GFP-labeled Ure2 affected neither mitotic stability of [URE3] nor the rate of [URE3] curing by the curing proteins. Using guanidine to cure [URE3] via Hsp104 inactivation, we found that the fluorescent foci are progressively lost as the cells divide until they are cured; the fraction of cells that retained the foci was equivalent to the [URE3] cell fraction measured by a plating assay, indicating that the foci were the prion seeds. During the curing of [URE3] by Btn2, Cur1, Hsp42, or Ydj1 overexpression, the foci formed aggregates, many of which were 0.5 μm or greater in size, and [URE3] was cured by asymmetric segregation of the aggregated seeds. In contrast, DnaJB6 overexpression first caused a loss of detectable foci in cells that were still [URE3] before there was complete dissolution of the seeds, and the cells were cured. We conclude that GFP labeling of full-length Ure2 enables differentiation among the different [URE3]-curing mechanisms, including inhibition of severing followed by seed dilution, seed clumping followed by asymmetric segregation between mother and daughter cells, and seed dissolution.
Collapse
Affiliation(s)
| | - Jenna Lanz
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Tyler Pease
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Evgeny E Bezsonov
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | | | | - Daniel C Masison
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | |
Collapse
|
24
|
Wickner RB, Kryndushkin D, Shewmaker F, McGlinchey R, Edskes HK. Study of Amyloids Using Yeast. Methods Mol Biol 2018; 1779:313-339. [PMID: 29886541 PMCID: PMC7337124 DOI: 10.1007/978-1-4939-7816-8_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Dmitry Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830,Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Frank Shewmaker
- Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Ryan McGlinchey
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| |
Collapse
|
25
|
Pei F, DiSalvo S, Sindi SS, Serio TR. A dominant-negative mutant inhibits multiple prion variants through a common mechanism. PLoS Genet 2017; 13:e1007085. [PMID: 29084237 PMCID: PMC5679637 DOI: 10.1371/journal.pgen.1007085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/09/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022] Open
Abstract
Prions adopt alternative, self-replicating protein conformations and thereby determine novel phenotypes that are often irreversible. Nevertheless, dominant-negative prion mutants can revert phenotypes associated with some conformations. These observations suggest that, while intervention is possible, distinct inhibitors must be developed to overcome the conformational plasticity of prions. To understand the basis of this specificity, we determined the impact of the G58D mutant of the Sup35 prion on three of its conformational variants, which form amyloids in S. cerevisiae. G58D had been previously proposed to have unique effects on these variants, but our studies suggest a common mechanism. All variants, including those reported to be resistant, are inhibited by G58D but at distinct doses. G58D lowers the kinetic stability of the associated amyloid, enhancing its fragmentation by molecular chaperones, promoting Sup35 resolubilization, and leading to amyloid clearance particularly in daughter cells. Reducing the availability or activity of the chaperone Hsp104, even transiently, reverses curing. Thus, the specificity of inhibition is determined by the sensitivity of variants to the mutant dosage rather than mode of action, challenging the view that a unique inhibitor must be developed to combat each variant.
Collapse
Affiliation(s)
- Fen Pei
- The University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States of America
| | - Susanne DiSalvo
- Brown University, Department of Molecular and Cell Biology, Providence, Rhode Island, United States of America
| | - Suzanne S. Sindi
- University of California, Merced, Applied Mathematics, School of Natural Sciences, Merced, California, United States of America
- * E-mail: (SS); (TRS)
| | - Tricia R. Serio
- The University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States of America
- * E-mail: (SS); (TRS)
| |
Collapse
|
26
|
Marchante R, Beal DM, Koloteva-Levine N, Purton TJ, Tuite MF, Xue WF. The physical dimensions of amyloid aggregates control their infective potential as prion particles. eLife 2017; 6. [PMID: 28880146 PMCID: PMC5589414 DOI: 10.7554/elife.27109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/21/2017] [Indexed: 01/29/2023] Open
Abstract
Transmissible amyloid particles called prions are associated with infectious prion diseases in mammals and inherited phenotypes in yeast. All amyloid aggregates can give rise to potentially infectious seeds that accelerate their growth. Why some amyloid seeds are highly infectious prion particles while others are less infectious or even inert, is currently not understood. To address this question, we analyzed the suprastructure and dimensions of synthetic amyloid fibrils assembled from the yeast (Saccharomyces cerevisiae) prion protein Sup35NM. We then quantified the ability of these particles to induce the [PSI+] prion phenotype in cells. Our results show a striking relationship between the length distribution of the amyloid fibrils and their ability to induce the heritable [PSI+] prion phenotype. Using a simple particle size threshold model to describe transfection activity, we explain how dimensions of amyloid fibrils are able to modulate their infectious potential as prions.
Collapse
Affiliation(s)
- Ricardo Marchante
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - David M Beal
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Tracey J Purton
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
27
|
Saarikangas J, Caudron F, Prasad R, Moreno DF, Bolognesi A, Aldea M, Barral Y. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell. Curr Biol 2017; 27:773-783. [PMID: 28262489 DOI: 10.1016/j.cub.2017.01.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022]
Abstract
In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.
Collapse
Affiliation(s)
- Juha Saarikangas
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, 14193 Berlin, Germany
| | - Fabrice Caudron
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Rupali Prasad
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - David F Moreno
- Molecular Biology Institute of Barcelona, CSIC, Baldiri i Reixac 15, 08028 Barcelona, Spain
| | - Alessio Bolognesi
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Martí Aldea
- Molecular Biology Institute of Barcelona, CSIC, Baldiri i Reixac 15, 08028 Barcelona, Spain
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
28
|
Chernova TA, Wilkinson KD, Chernoff YO. Prions, Chaperones, and Proteostasis in Yeast. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023663. [PMID: 27815300 DOI: 10.1101/cshperspect.a023663] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are alternatively folded, self-perpetuating protein isoforms involved in a variety of biological and pathological processes. Yeast prions are protein-based heritable elements that serve as an excellent experimental system for studying prion biology. The propagation of yeast prions is controlled by the same Hsp104/70/40 chaperone machinery that is involved in the protection of yeast cells against proteotoxic stress. Ribosome-associated chaperones, proteolytic pathways, cellular quality-control compartments, and cytoskeletal networks influence prion formation, maintenance, and toxicity. Environmental stresses lead to asymmetric prion distribution in cell divisions. Chaperones and cytoskeletal proteins mediate this effect. Overall, this is an intimate relationship with the protein quality-control machinery of the cell, which enables prions to be maintained and reproduced. The presence of many of these same mechanisms in higher eukaryotes has implications for the diagnosis and treatment of mammalian amyloid diseases.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Keith D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-2000.,Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
29
|
Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genet 2016; 12:e1006417. [PMID: 27814358 PMCID: PMC5096688 DOI: 10.1371/journal.pgen.1006417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. Protein misfolding and assembly into ordered aggregates known as amyloid has emerged as a novel mechanism for regulation of protein function. In the case of prion proteins, the resulting amyloid is transmissible, creating protein-based elements of infectivity and inheritance. These unusual properties are linked to the amino acid composition and sequence of the protein, which confer both conformational flexibility and persistence in vivo, the latter of which occurs through mechanisms that are currently poorly understood. Here, we address this open question by studying a region of the yeast prion Sup35 that has been genetically linked to persistence. We find that this region is composed of two separable elements that are both required for efficient persistence of the amyloid. These elements do not contribute to amyloid stability. Rather, they promote distinct aspects of its functional interactions with molecular chaperones, which are required for efficient conformational self-replication and transmission.
Collapse
|
30
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
31
|
Abstract
Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.
Collapse
Affiliation(s)
- Raimon Sabate
- a Departament de Fisicoquímica ; Facultat de Farmàcia; and Institut de Nanociència i Nanotecnologia (IN2UB); Universitat de Barcelona ; Barcelona , Spain
| | | | | | | | | |
Collapse
|
32
|
Abstract
The yeast Saccharomyces cerevisiae has emerged as an ideal model system to study the dynamics of prion proteins which are responsible for a number of fatal neurodegenerative diseases in humans. Within an infected cell, prion proteins aggregate in complexes which may increase in size or be fragmented and are transmitted upon cell division. Recent work in yeast suggests that only aggregates below a critical size are transmitted efficiently. We formulate a continuous-time branching process model of a yeast colony under conditions of prion curing. We generalize previous approaches by providing an explicit formula approximating prion loss as influenced by both aggregate growth and size-dependent transmission.
Collapse
|
33
|
Abstract
The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t=0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.
Collapse
Affiliation(s)
- Jason K Davis
- University of California, Merced, 5200 N Lake Road, Merced, California 95343, USA
| | - Suzanne S Sindi
- University of California, Merced, 5200 N Lake Road, Merced, California 95343, USA
| |
Collapse
|
34
|
Saarikangas J, Barral Y. Protein aggregates are associated with replicative aging without compromising protein quality control. eLife 2015; 4. [PMID: 26544680 PMCID: PMC4635334 DOI: 10.7554/elife.06197] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Differentiation of cellular lineages is facilitated by asymmetric segregation of fate determinants between dividing cells. In budding yeast, various aging factors segregate to the aging (mother)-lineage, with poorly understood consequences. In this study, we show that yeast mother cells form a protein aggregate during early replicative aging that is maintained as a single, asymmetrically inherited deposit over the remaining lifespan. Surprisingly, deposit formation was not associated with stress or general decline in proteostasis. Rather, the deposit-containing cells displayed enhanced degradation of cytosolic proteasome substrates and unimpaired clearance of stress-induced protein aggregates. Deposit formation was dependent on Hsp42, which collected non-random client proteins of the Hsp104/Hsp70-refolding machinery, including the prion Sup35. Importantly, loss of Hsp42 resulted in symmetric inheritance of its constituents and prolonged the lifespan of the mother cell. Together, these data suggest that protein aggregation is an early aging-associated differentiation event in yeast, having a two-faceted role in organismal fitness. DOI:http://dx.doi.org/10.7554/eLife.06197.001 Aging is a complex process. Studies involving a single-celled organism called budding yeast are commonly used to investigate the factors that contribute to aging. When these yeast cells divide, a small daughter cell buds out from a large mother cell. A mother cell has a limited lifespan and produces a finite number of daughter cells and then dies (a phenomenon referred to ‘replicative aging’). However, when a daughter cell forms, the daughter's age is reset to zero, giving it the full potential to produce new offspring. Previous research on budding yeast has shown that damaged or aggregated proteins accumulate in the mother cells but not the daughter cells, and that this accumulation of proteins contributes to shortening the lifespan of the mother cell. Furthermore, protein aggregation has also been associated with a number of age-related diseases in humans, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. However, it remains unclear how cells respond to protein aggregation that occurs during aging. Many studies that have previously investigated this question have relied on exposing cells to stressful conditions, such as high temperatures, in order to trigger proteins to aggregate. But now, Saarikangas and Barral have studied how proteins aggregate under normal, unstressed conditions in budding yeast as they age. The experiments revealed that most unstressed yeast cells develop a single deposit of aggregated proteins already during early aging. This age-associated structure proved to be a different type of response than the protein aggregation that occurs during stress. Furthermore, the deposit did not form as a consequence of the cell having obvious problems with folding its proteins, nor did the deposit hinder cells from coping with stressful conditions that trigger protein misfolding. Rather, this deposit supported the ability of the cell to degrade defective proteins. This suggests that the deposit represents an early adaptive response to aging, which might consequently provide aged cells some advantage over their younger counterparts. Saarikangas and Barral also found that this protein deposit was always retained in the mother cell and not passed onto the daughters at cell division. Further experiments showed that an enzyme called heat shock protein 42 was responsible for collecting target proteins and bring them together to form the single deposit. Reducing the levels of this enzyme prevented the deposit from forming and extended the lifespan of the mother cells. Thus, these findings suggest that mother cells collect harmful protein aggregates into a single deposit and prevent them from entering the daughter cells. Further work is needed to understand how the deposit is preferentially retained within the mother cell. DOI:http://dx.doi.org/10.7554/eLife.06197.002
Collapse
Affiliation(s)
- Juha Saarikangas
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1]. Mol Microbiol 2015; 97:926-41. [PMID: 26031938 PMCID: PMC4689296 DOI: 10.1111/mmi.13076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 01/09/2023]
Abstract
Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion-specific requirements for the propagation of the [URE3] prion variant [URE3-1], we screened 12 yeast cytosolic J-proteins, and here we report a novel role for the J-protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle-mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE3-1] is specifically dependent upon Swa2, but not on any of the 11 other J-proteins. Further, we show that [URE3-1] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2-clathrin binding. Because the J-domain of Swa2 can be replaced with the J-domains of other proteins, our data strongly suggest that prion-chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation.
Collapse
Affiliation(s)
| | | | - Phil P Nguyen
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Emily E Oliver
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| |
Collapse
|
36
|
A mathematical model of the dynamics of prion aggregates with chaperone-mediated fragmentation. J Math Biol 2015; 72:1555-78. [PMID: 26297259 PMCID: PMC4823377 DOI: 10.1007/s00285-015-0921-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/22/2015] [Indexed: 11/18/2022]
Abstract
Prions are proteins most commonly associated with fatal neurodegenerative diseases in mammals but are also responsible for a number of harmless heritable phenotypes in yeast. These states arise when a misfolded form of a protein appears and, rather than be removed by cellular quality control mechanisms, persists. The misfolded prion protein forms aggregates and is capable of converting normally folded protein to the misfolded state through direct interaction between the two forms. The dominant mathematical model for prion aggregate dynamics has been the nucleated polymerization model (NPM) which considers the dynamics of only the normal protein and the aggregates. However, for yeast prions the molecular chaperone Hsp104 is essential for prion propagation. Further, although mammals do not express Hsp104, experimental assays have shown Hsp104 also interacts with mammalian prion aggregates. In this study, we generalize the NPM to account for molecular chaperones and develop what we call the enzyme-limited nucleated polymerization model (ELNPM). We discuss existence, uniqueness and stability of solutions to our model and demonstrate that the NPM represents a quasi-steady-state reduction of our model. We validate the ELNPM by demonstrating agreement with experimental results on the yeast prion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[$$\end{document}[PSI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{+}]$$\end{document}+] that could not be supported by the NPM. Finally, we demonstrate that, in contrast to the NPM, the ELNPM permits the coexistence of multiple prion strains.
Collapse
|
37
|
Garcia DM, Jarosz DF. Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 2015; 14:136-47. [PMID: 25667942 DOI: 10.1111/1567-1364.12116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.
Collapse
|
38
|
Yeast prions: Paramutation at the protein level? Semin Cell Dev Biol 2015; 44:51-61. [DOI: 10.1016/j.semcdb.2015.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
|
39
|
Gasset-Rosa F, Giraldo R. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI (+)]. Front Microbiol 2015; 6:311. [PMID: 25954252 PMCID: PMC4404881 DOI: 10.3389/fmicb.2015.00311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022] Open
Abstract
The yeast translation termination factor Sup35p, by aggregating as the [PSI (+)] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs), which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI (+)], (i) was functional in a stop codon read-through assay in S. cerevisiae; (ii) generates weak phenotypic variants upon both its expression or transformation into [psi (-)] cells; (iii) these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and (iv) according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI (+)]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats.
Collapse
Affiliation(s)
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
40
|
Tartakoff AM. Cell biology of yeast zygotes, from genesis to budding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1702-14. [PMID: 25862405 DOI: 10.1016/j.bbamcr.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology and Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Davis JK, Sindi SS. A Study in Nucleated Polymerization Models of Protein Aggregation. APPLIED MATHEMATICS LETTERS 2015; 40:97-101. [PMID: 31692931 PMCID: PMC6830736 DOI: 10.1016/j.aml.2014.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nucleated polymerization model is a mathematical framework that has been applied to aggregation and fragmentation processes in both the discrete and continuous setting. In particular, this model has been the canonical framework for analyzing the dynamics of protein aggregates arising in prion and amyloid diseases such as as Alzheimer's and Parkinson's disease. We present an explicit steady-state solution to the aggregate size distribution governed by the discrete nucleated polymerization equations. Steady-state solutions have been previously obtained under the assumption of continuous aggregate sizes; however, the discrete solution allows for direct computation and parameter inference, as well as facilitates estimates on the accuracy of the continuous approximation.
Collapse
Affiliation(s)
- Jason K. Davis
- University of California, Merced, School of Natural Sciences, 5200 N Lake Rd, Merced, CA 95343
| | - Suzanne S. Sindi
- University of California, Merced, School of Natural Sciences, 5200 N Lake Rd, Merced, CA 95343
| |
Collapse
|
42
|
Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast. Mol Cell Biol 2014; 35:899-911. [PMID: 25547291 DOI: 10.1128/mcb.01020-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions.
Collapse
|
43
|
Odani W, Urata K, Okuda M, Okuma S, Koyama H, Pack CG, Fujiwara K, Nojima T, Kinjo M, Kawai-Noma S, Taguchi H. Peptide sequences converting polyglutamine into a prion in yeast. FEBS J 2014; 282:477-90. [PMID: 25406629 DOI: 10.1111/febs.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
Amyloids are ordered protein aggregates composed of cross-β sheet structures. Amyloids include prions, defined as infectious proteins, which are responsible for mammalian transmissible spongiform encephalopathies, and fungal prions. Although the conventional view is that typical amyloids are associated with nontransmissible mammalian neurodegenerative diseases such as Alzheimer's disease, increasing evidence suggests that the boundary between transmissible and nontransmissible amyloids is ambiguous. To clarify the mechanism underlying the difference in transmissibility, we investigated the dynamics and the properties of polyglutamine (polyQ) amyloids in yeast cells, in which the polyQ aggregates are not transmissible but can be converted into transmissible amyloids. We found that polyQ had an increased tendency to form aggregates compared to the yeast prion Sup35. In addition, we screened dozens of peptides that converted the nontransmissible polyQ to transmissible aggregates when they flanked the polyQ stretch, and also investigated their cellular dynamics aiming to understand the mechanism of transmission.
Collapse
Affiliation(s)
- Wataru Odani
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing. eLife 2014; 3. [PMID: 25490068 PMCID: PMC4270096 DOI: 10.7554/elife.04288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 01/16/2023] Open
Abstract
The proteostasis network has evolved to support protein folding under normal conditions and to expand this capacity in response to proteotoxic stresses. Nevertheless, many pathogenic states are associated with protein misfolding, revealing in vivo limitations on quality control mechanisms. One contributor to these limitations is the physical characteristics of misfolded proteins, as exemplified by amyloids, which are largely resistant to clearance. However, other limitations imposed by the cellular environment are poorly understood. To identify cell-based restrictions on proteostasis capacity, we determined the mechanism by which thermal stress cures the [PSI(+)]/Sup35 prion. Remarkably, Sup35 amyloid is disassembled at elevated temperatures by the molecular chaperone Hsp104. This process requires Hsp104 engagement with heat-induced non-prion aggregates in late cell-cycle stage cells, which promotes its asymmetric retention and thereby effective activity. Thus, cell division imposes a potent limitation on proteostasis capacity that can be bypassed by the spatial engagement of a quality control factor.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Megan L Hochstrasser
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Christine R Langlois
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Tricia R Serio
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
45
|
Stein KC, True HL. Structural variants of yeast prions show conformer-specific requirements for chaperone activity. Mol Microbiol 2014; 93:1156-71. [PMID: 25060529 DOI: 10.1111/mmi.12725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 02/03/2023]
Abstract
Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1 and its human orthologue Hdj1 had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
46
|
Amyloid-associated activity contributes to the severity and toxicity of a prion phenotype. Nat Commun 2014; 5:4384. [PMID: 25023996 PMCID: PMC4156856 DOI: 10.1038/ncomms5384] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 11/08/2022] Open
Abstract
The self-assembly of alternative conformations of normal proteins into amyloid aggregates has been implicated in both the acquisition of new functions and in the appearance and progression of disease. However, while these amyloidogenic pathways are linked to the emergence of new phenotypes, numerous studies have uncoupled the accumulation of aggregates from their biological consequences, revealing currently underappreciated complexity in the determination of these traits. Here, to explore the molecular basis of protein-only phenotypes, we focused on the S. cerevisiae Sup35/[PSI+] prion, which confers a translation termination defect and expression level-dependent toxicity in its amyloid form. Our studies reveal that aggregated Sup35 retains its normal function as a translation release factor. However, fluctuations in the composition and size of these complexes specifically alter the level of this aggregate-associated activity and thereby the severity and toxicity of the amyloid state. Thus, amyloid heterogeneity is a crucial contributor to protein-only phenotypes.
Collapse
|
47
|
Holmes WM, Mannakee BK, Gutenkunst RN, Serio TR. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat Commun 2014; 5:4383. [PMID: 25023910 PMCID: PMC4140192 DOI: 10.1038/ncomms5383] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
N-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. While loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI+], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype.
Collapse
Affiliation(s)
- William M Holmes
- 1] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA [2]
| | - Brian K Mannakee
- Graduate Interdisciplinary Program in Statistics, University of Arizona, 1548 East Drachman Street, Tucson, Arizona 85721, USA
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona 85721, USA
| | - Tricia R Serio
- 1] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA [2]
| |
Collapse
|
48
|
Abstract
The yeast Saccharomyces cerevisiae has emerged as an ideal model system to study the dynamics of prion proteins which are responsible for a number of fatal neurodegenerative diseases in humans. Within an infected cell, prion proteins aggregate in complexes which may increase in size or be fragmented and are transmitted upon cell division. Recent work in yeast suggests that only aggregates below a critical size are transmitted efficiently. We formulate a continuous-time branching process model of a yeast colony under conditions of prion curing. We generalize previous approaches by providing an explicit formula approximating prion loss as influenced by both aggregate growth and size-dependent transmission.
Collapse
|
49
|
Aggregation interplay between variants of the RepA-WH1 prionoid in Escherichia coli. J Bacteriol 2014; 196:2536-42. [PMID: 24794561 DOI: 10.1128/jb.01527-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal domain (winged-helix domain, or WH1) of the Pseudomonas pPS10 plasmid DNA replication protein RepA can assemble into amyloid fibers in vitro and, when expressed in Escherichia coli, leads to a unique intracellular amyloid proteinopathy by hampering bacterial proliferation. RepA-WH1 amyloidosis propagates along generations through the transmission of aggregated particles across the progeny, but it is unable to propagate horizontally as an infectious agent and is thus the first synthetic bacterial prionoid. RepA-WH1 amyloidosis is promoted by binding to double-stranded DNA (dsDNA) in vitro, and it is modulated by the Hsp70 chaperone DnaK in vivo. Different mutations in the repA-WH1 gene result in variants of the protein with distinct amyloidogenic properties. Here, we report that intracellular aggregates of the hyperamyloidogenic RepA with an A31V change in WH1 [RepA-WH1(A31V)] are able to induce and enhance the growth in vivo of new amyloid particles from molecules of wild-type RepA-WH1 [RepA-WH1(WT)], which otherwise would remain soluble in the cytoplasm. In contrast, RepA-WH1(ΔN37), a variant lacking a clear amyloidogenic sequence stretch that aggregates as conventional inclusion bodies (IBs), can drive the aggregation of the soluble protein into IBs only if expressed at high molar ratios over RepA-WH1(WT). The cytotoxic bacterial intracellular prionoid RepA-WH1 thus exhibits a hallmark feature of amyloids, as characterized in eukaryotes: cross-aggregation between variants of the same protein.
Collapse
|
50
|
Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:294-303. [PMID: 24766537 DOI: 10.3109/10409238.2014.914151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract others complementary, to resolve mis-folded proteins when they arise, ranging from refolding through the action of molecular chaperones to elimination through regulated proteolytic mechanisms. These protein quality control pathways are sufficient, under normal conditions, to maintain a functioning proteome, but in response to diverse environmental, genetic and/or stochastic events, protein mis-folding exceeds the corrective capacity of these pathways, leading to the accumulation of aggregates and ultimately toxicity. Particularly devastating examples of these effects include certain neurodegenerative diseases, such as Huntington's Disease, which are associated with the expansion of polyglutamine tracks in proteins. In these cases, protein mis-folding and aggregation are clear contributors to pathogenesis, but uncovering the precise mechanistic links between the two events remains an area of active research. Studies in the yeast Saccharomyces cerevisiae and other model systems have uncovered previously unanticipated complexity in aggregation pathways, the contributions of protein quality control processes to them and the cellular perturbations that result from them. Together these studies suggest that aggregate interactions and localization, rather than their size, are the crucial considerations in understanding the molecular basis of toxicity.
Collapse
Affiliation(s)
- William M Holmes
- Biology Department, College of the Holy Cross , Worcester, MA , USA and
| | | | | |
Collapse
|