1
|
Kim H, Jin KH, Yeom HW. Electronically Seamless Domain Wall of Chiral Charge Density Wave in 1 T-TiSe 2. NANO LETTERS 2024; 24:14323-14328. [PMID: 39471157 PMCID: PMC11566109 DOI: 10.1021/acs.nanolett.4c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Domain walls (DWs) have been recognized to play crucial roles in various interesting properties and functionalities in quantum materials. A notable example is DWs in charge density wave (CDW), which are believed to provide metallic electron channels for emerging superconductivity. However, electronic states of DWs and the microscopic mechanism toward superconductivity have been elusive. Here, we clarify the atomic/electronic structure of DWs of the chiral CDW emerging in 1T-TiSe2, using scanning tunneling microscopy and density functional calculations. We reveal unambiguously the microscopic origin of chiral CDW as the C2 distortion in Se layers and its interlayer coupling. We further identify unique DWs connecting CDW domains of opposite chirality. The DWs are endowed with no in-gap state due to the characteristic multibands around the band gap, which defies the widely believed notion for CDW DWs. These results provide an important insight into the role of DWs in emerging superconductivity.
Collapse
Affiliation(s)
- Hyeonjung Kim
- Center
for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Physics, Pohang University of Science
and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung-Hwan Jin
- Center
for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Physics and Research Institute of Materials and Energy Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Han Woong Yeom
- Center
for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Physics, Pohang University of Science
and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Bluschke M, Gupta NK, Jang H, Husain AA, Lee B, Kim M, Na M, Dos Remedios B, Smit S, Moen P, Park SY, Kim M, Jang D, Choi H, Sutarto R, Reid AH, Dakovski GL, Coslovich G, Nguyen QL, Burdet NG, Lin MF, Revcolevschi A, Park JH, Geck J, Turner JJ, Damascelli A, Hawthorn DG. Orbital-selective time-domain signature of nematicity dynamics in the charge-density-wave phase of La 1.65Eu 0.2Sr 0.15CuO 4. Proc Natl Acad Sci U S A 2024; 121:e2400727121. [PMID: 38819998 PMCID: PMC11161785 DOI: 10.1073/pnas.2400727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.
Collapse
Affiliation(s)
- Martin Bluschke
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Naman K. Gupta
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| | - Hoyoung Jang
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Ali. A. Husain
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Byungjune Lee
- Max Planck - Pohang University of Science and Technology/Korea Research Initiative, Center for Complex Phase Materials, Pohang37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Minjune Kim
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - MengXing Na
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Brandon Dos Remedios
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Steef Smit
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Peter Moen
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Sang-Youn Park
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Minseok Kim
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Dogeun Jang
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Hyeongi Choi
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | | | - Alexander H. Reid
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Georgi L. Dakovski
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Giacomo Coslovich
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Quynh L. Nguyen
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
- Stanford PULSE Institute, Stanford University and Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Nicolas G. Burdet
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
- Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center National Accelerator Laboratory and Stanford University, Menlo Park, CA94025
| | - Ming-Fu Lin
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Alexandre Revcolevschi
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 8182, 91405Orsay, France
| | - Jae-Hoon Park
- Max Planck - Pohang University of Science and Technology/Korea Research Initiative, Center for Complex Phase Materials, Pohang37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Jochen Geck
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01069Dresden, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062Dresden, Germany
| | - Joshua J. Turner
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
- Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center National Accelerator Laboratory and Stanford University, Menlo Park, CA94025
| | - Andrea Damascelli
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - David G. Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| |
Collapse
|
3
|
Wang S, Kennedy N, Fujita K, Uchida SI, Eisaki H, Johnson PD, Davis JCS, O'Mahony SM. Discovery of orbital ordering in Bi 2Sr 2CaCu 2O 8+x. NATURE MATERIALS 2024; 23:492-498. [PMID: 38438620 PMCID: PMC10990940 DOI: 10.1038/s41563-024-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
The primordial ingredient of cuprate superconductivity is the CuO2 unit cell. Theories usually concentrate on the intra-atom Coulombic interactions dominating the 3d9 and 3d10 configurations of each copper ion. However, if Coulombic interactions also occur between electrons of the 2p6 orbitals of each planar oxygen atom, spontaneous orbital ordering may split their energy levels. This long-predicted intra-unit-cell symmetry breaking should generate an orbitally ordered phase, for which the charge transfer energy ε separating the 2p6 and 3d10 orbitals is distinct for the two oxygen atoms. Here we introduce sublattice-resolved ε(r) imaging to CuO2 studies and discover intra-unit-cell rotational symmetry breaking of ε(r). Spatially, this state is arranged in disordered Ising domains of orthogonally oriented orbital order bounded by dopant ions, and within whose domain walls low-energy electronic quadrupolar two-level systems occur. Overall, these data reveal a Q = 0 orbitally ordered state that splits the oxygen energy levels by ~50 meV, in underdoped CuO2.
Collapse
Affiliation(s)
- Shuqiu Wang
- Clarendon Laboratory, University of Oxford, Oxford, UK.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK.
| | - Niall Kennedy
- Clarendon Laboratory, University of Oxford, Oxford, UK
- School of Physics, University College Cork, Cork, Ireland
| | - Kazuhiro Fujita
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Peter D Johnson
- Clarendon Laboratory, University of Oxford, Oxford, UK
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - J C Séamus Davis
- Clarendon Laboratory, University of Oxford, Oxford, UK.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- School of Physics, University College Cork, Cork, Ireland.
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| | | |
Collapse
|
4
|
Gao Z, Zhang Y, Li X, Zhang X, Chen X, Du G, Hou F, Gu B, Lun Y, Zhao Y, Zhao Y, Qu Z, Jin K, Wang X, Chen Y, Liu Z, Huang H, Gao P, Mostovoy M, Hong J, Cheong SW, Wang X. Mechanical manipulation for ordered topological defects. SCIENCE ADVANCES 2024; 10:eadi5894. [PMID: 38170776 PMCID: PMC10796077 DOI: 10.1126/sciadv.adi5894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Randomly distributed topological defects created during the spontaneous symmetry breaking are the fingerprints to trace the evolution of symmetry, range of interaction, and order parameters in condensed matter systems. However, the effective mean to manipulate topological defects into ordered form is elusive due to the topological protection. Here, we establish a strategy to effectively align the topological domain networks in hexagonal manganites through a mechanical approach. It is found that the nanoindentation strain gives rise to a threefold Magnus-type force distribution, leading to a sixfold symmetric domain pattern by driving the vortex and antivortex in opposite directions. On the basis of this rationale, sizeable mono-chirality topological stripe is readily achieved by expanding the nanoindentation to scratch, directly transferring the randomly distributed topological defects into an ordered form. This discovery provides a mechanical strategy to manipulate topological protected domains not only on ferroelectrics but also on ferromagnets/antiferromagnets and ferroelastics.
Collapse
Affiliation(s)
- Ziyan Gao
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yixuan Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaomei Li
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiangping Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xue Chen
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Guoshuai Du
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Fei Hou
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Baijun Gu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingzhuo Lun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Zhao
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingtao Zhao
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaoliang Qu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Jin
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolei Wang
- Department of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Yabin Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhanwei Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Maxim Mostovoy
- Zernile Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jiawang Hong
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sang-Wook Cheong
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Xueyun Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Im T, Song SK, Park JW, Yeom HW. Topological soliton molecule in quasi 1D charge density wave. Nat Commun 2023; 14:5085. [PMID: 37607969 PMCID: PMC10444770 DOI: 10.1038/s41467-023-40834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Soliton molecules, bound states of two solitons, can be important for the informatics using solitons and the quest for exotic particles in a wide range of physical systems from unconventional superconductors to nuclear matter and Higgs field, but have been observed only in temporal dimension for classical wave optical systems. Here, we identify a topological soliton molecule formed spatially in an electronic system, a quasi 1D charge density wave of indium atomic wires. This system is composed of two coupled Peierls chains, which are endowed with a Z4 topology and three distinct, right-chiral, left-chiral, and non-chiral, solitons. Our scanning tunneling microscopy measurements identify a bound state of right- and left-chiral solitons with distinct in-gap states and net zero phase shift. Our density functional theory calculations reveal the attractive interaction of these solitons and the hybridization of their electronic states. This result initiates the study of the interaction between solitons in electronic systems, which can provide novel manybody electronic states and extra data-handling capacity beyond the given soliton topology.
Collapse
Affiliation(s)
- Taehwan Im
- Center for Artificial Low Dimensional Electronic System, Institute for Basic Science, Pohang, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
| | - Sun Kyu Song
- Center for Artificial Low Dimensional Electronic System, Institute for Basic Science, Pohang, Korea
| | - Jae Whan Park
- Center for Artificial Low Dimensional Electronic System, Institute for Basic Science, Pohang, Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic System, Institute for Basic Science, Pohang, Korea.
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
6
|
Chen W, Ren W, Kennedy N, Hamidian MH, Uchida S, Eisaki H, Johnson PD, O’Mahony SM, Davis JCS. Identification of a nematic pair density wave state in Bi 2Sr 2CaCu 2O 8+x. Proc Natl Acad Sci U S A 2022; 119:e2206481119. [PMID: 35895680 PMCID: PMC9351522 DOI: 10.1073/pnas.2206481119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 01/29/2023] Open
Abstract
Electron-pair density wave (PDW) states are now an intense focus of research in the field of cuprate correlated superconductivity. PDWs exhibit periodically modulating superconductive electron pairing that can be visualized directly using scanned Josephson tunneling microscopy (SJTM). Although from theory, intertwining the d-wave superconducting (DSC) and PDW order parameters allows a plethora of global electron-pair orders to appear, which one actually occurs in the various cuprates is unknown. Here, we use SJTM to visualize the interplay of PDW and DSC states in Bi2Sr2CaCu2O8+x at a carrier density where the charge density wave modulations are virtually nonexistent. Simultaneous visualization of their amplitudes reveals that the intertwined PDW and DSC are mutually attractive states. Then, by separately imaging the electron-pair density modulations of the two orthogonal PDWs, we discover a robust nematic PDW state. Its spatial arrangement entails Ising domains of opposite nematicity, each consisting primarily of unidirectional and lattice commensurate electron-pair density modulations. Further, we demonstrate by direct imaging that the scattering resonances identifying Zn impurity atom sites occur predominantly within boundaries between these domains. This implies that the nematic PDW state is pinned by Zn atoms, as was recently proposed [Lozano et al., Phys. Rev. B 103, L020502 (2021)]. Taken in combination, these data indicate that the PDW in Bi2Sr2CaCu2O8+x is a vestigial nematic pair density wave state [Agterberg et al. Phys. Rev. B 91, 054502 (2015); Wardh and Granath arXiv:2203.08250].
Collapse
Affiliation(s)
- Weijiong Chen
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Wangping Ren
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Niall Kennedy
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- Department of Physics, University College Cork, Cork T12 R5C, Ireland
| | - M. H. Hamidian
- Department of Physics, Cornell University, Ithaca, NY 14850
| | - S. Uchida
- Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| | - H. Eisaki
- Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| | - Peter D. Johnson
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Shane M. O’Mahony
- Department of Physics, University College Cork, Cork T12 R5C, Ireland
| | - J. C. Séamus Davis
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- Department of Physics, University College Cork, Cork T12 R5C, Ireland
- Department of Physics, Cornell University, Ithaca, NY 14850
- Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| |
Collapse
|
7
|
Wandel S, Boschini F, da Silva Neto EH, Shen L, Na MX, Zohar S, Wang Y, Welch SB, Seaberg MH, Koralek JD, Dakovski GL, Hettel W, Lin MF, Moeller SP, Schlotter WF, Reid AH, Minitti MP, Boyle T, He F, Sutarto R, Liang R, Bonn D, Hardy W, Kaindl RA, Hawthorn DG, Lee JS, Kemper AF, Damascelli A, Giannetti C, Turner JJ, Coslovich G. Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor. Science 2022; 376:860-864. [PMID: 35587968 DOI: 10.1126/science.abd7213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.
Collapse
Affiliation(s)
- S Wandel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - F Boschini
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
| | - E H da Silva Neto
- Department of Physics, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - L Shen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - M X Na
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S Zohar
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Y Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S B Welch
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J D Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - G L Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W Hettel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M-F Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S P Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W F Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A H Reid
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M P Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - T Boyle
- Department of Physics, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - F He
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - R Sutarto
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - R Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - D Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - W Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R A Kaindl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D G Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - J-S Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A F Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - A Damascelli
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - C Giannetti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia, BS I-25121, Italy
| | - J J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - G Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
8
|
Goodge BH, El Baggari I, Hong SS, Wang Z, Schlom DG, Hwang HY, Kourkoutis LF. Disentangling Coexisting Structural Order Through Phase Lock-In Analysis of Atomic-Resolution STEM Data. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35190012 DOI: 10.1017/s1431927622000125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a real-space technique, atomic-resolution STEM imaging contains both amplitude and geometric phase information about structural order in materials, with the latter encoding important information about local variations and heterogeneities present in crystalline lattices. Such phase information can be extracted using geometric phase analysis (GPA), a method which has generally focused on spatially mapping elastic strain. Here we demonstrate an alternative phase demodulation technique and its application to reveal complex structural phenomena in correlated quantum materials. As with other methods of image phase analysis, the phase lock-in approach can be implemented to extract detailed information about structural order and disorder, including dislocations and compound defects in crystals. Extending the application of this phase analysis to Fourier components that encode periodic modulations of the crystalline lattice, such as superlattice or secondary frequency peaks, we extract the behavior of multiple distinct order parameters within the same image, yielding insights into not only the crystalline heterogeneity but also subtle emergent order parameters such as antipolar displacements. When applied to atomic-resolution images spanning large (~0.5 × 0.5 μm2) fields of view, this approach enables vivid visualizations of the spatial interplay between various structural orders in novel materials.
Collapse
Affiliation(s)
- Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
| | | | - Seung Sae Hong
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA94025, USA
| | - Zhe Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| | - Harold Y Hwang
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA94025, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
9
|
Negi D, Singh D, Ahuja R, van Aken PA. Coexisting commensurate and incommensurate charge ordered phases in CoO. Sci Rep 2021; 11:19415. [PMID: 34593883 PMCID: PMC8484683 DOI: 10.1038/s41598-021-98739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
The subtle interplay of strong electronic correlations in a distorted crystal lattice often leads to the evolution of novel emergent functionalities in the strongly correlated materials (SCM). Here, we unravel such unprecedented commensurate (COM) and incommensurate (ICOM) charge ordered (CO) phases at room temperature in a simple transition-metal mono-oxide, namely CoO. The electron diffraction pattern unveils a COM ([Formula: see text]=[Formula: see text] and ICOM ([Formula: see text]) periodic lattice distortion. Transmission electron microscopy (TEM) captures unidirectional and bidirectional stripe patterns of charge density modulations. The widespread phase singularities in the phase-field of the order parameter (OP) affirms the abundant topological disorder. Using, density functional theory (DFT) calculations, we demystify the underlying electronic mechanism. The DFT study shows that a cation disordering ([Formula: see text]) stabilizes Jahn-Teller (JT) distortion and localized aliovalent [Formula: see text] states in CoO. Therefore, the lattice distortion accompanied with mixed valence states ([Formula: see text]) states introduces CO in CoO. Our findings offer an electronic paradigm to engineer CO to exploit the associated electronic functionalities in widely available transition-metal mono-oxides.
Collapse
Affiliation(s)
- Devendra Negi
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr.1, 70569, Stuttgart, Germany.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Peter A van Aken
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr.1, 70569, Stuttgart, Germany
| |
Collapse
|
10
|
Bianco E, Kourkoutis LF. Atomic-Resolution Cryogenic Scanning Transmission Electron Microscopy for Quantum Materials. Acc Chem Res 2021; 54:3277-3287. [PMID: 34415721 DOI: 10.1021/acs.accounts.1c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusThe rich physics permeating the phase diagrams of quantum materials have commanded the attention of the solid-state chemistry, materials science, and condensed-matter physics communities, sparking immense research into quantum phase transitions including superconducting, ferroic, and charge-order transitions. Many of these transitions occur at low temperatures and involve electronic, magnetic, or lattice order, which emerges on the atomic to mesoscopic scales. The complex interplay of these states and the heterogeneity that arises due to competition and intertwining of phases, however, is not fully understood and requires probes that capture ordering over multiple length scales down to the local atomic symmetries. Advances in scanning transmission electron microscopy (STEM) have enabled atomic-resolution imaging as well as mapping of functional picometer-scale atomic displacements inside materials. In this Account, we discuss our group's work to expand the reach of atomic-resolution STEM to cryogenic temperatures (cryo-STEM) to study quantum materials with focus on charge-ordered systems.Charge-ordered phases, in which electrons as well as the atomic lattice form periodic patterns that lift the translational symmetries of the crystal, are not only intertwined with superconductivity but also underlie other exotic electronic phenomena such as colossal magnetoresistance and metal-insulator transitions. The periodic lattice distortions (PLDs) modulate the positions of the crystal's nuclei, which can be readily probed by electron microscopy. In a set of examples, we demonstrate cryo-STEM as a powerful technique for probing local order, nanometer-scale heterogeneities, and topological defects in charge-ordered manganites and in transition metal dichalcogenide charge density wave (CDW) systems.With the nearly commensurate-to-commensurate CDW transition upon cooling in 1T-TaS2, we show that nanoscale lattice textures in CDW phases can be revealed through direct imaging. These early atomic-resolution results, however, also highlighted the need for improvements in cryo-STEM imaging, which led to a push to advance data collection and analysis for direct spatial mapping and quantification of PLDs. By introducing an image registration algorithm developed specifically to accommodate fast, low signal-to-noise image acquisitions of crystalline lattices, we address previous limitations due to sample drift in cryo-STEM experiments. This has enabled subangstrom cryo-STEM imaging with sufficient signal-to-noise to reveal the low temperature structure of 1T'-TaTe2. Furthermore, it allows mapping and quantification of PLD atomic displacements in the charge-ordered manganites Bi0.35Sr0.18Ca0.47MnO3 and Nd0.5Sr0.5MnO3 with picometer precision at ∼95 K to resolve not only distinct ordered phases (i.e., site- and bond-centered charge order) but also their nanoscale coexistence within the same sample.Atomic-resolution cryo-STEM opens new opportunities for understanding the microscopic underpinnings of quantum phases. In this Account, we focus on spatial mapping of lattice degrees of freedom in phases that are present at temperatures down to liquid nitrogen. Further advances in instrumentation are needed to expand the temperature range and to also enable atomic-resolution measurements that rely on weaker signals such as electron energy loss spectroscopy (EELS) for probing of electronic structure or 4D-STEM approaches to map electric and magnetic fields.
Collapse
Affiliation(s)
- Elisabeth Bianco
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Lena F. Kourkoutis
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Dehghani A, Hendi S, Mann R. Range of novel black hole phase transitions via massive gravity: Triple points and
N
-fold reentrant phase transitions. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.084026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Imaging the energy gap modulations of the cuprate pair-density-wave state. Nature 2020; 580:65-70. [PMID: 32238945 DOI: 10.1038/s41586-020-2143-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/20/2020] [Indexed: 11/08/2022]
Abstract
The defining characteristic1,2 of Cooper pairs with finite centre-of-mass momentum is a spatially modulating superconducting energy gap Δ(r), where r is a position. Recently, this concept has been generalized to the pair-density-wave (PDW) state predicted to exist in copper oxides (cuprates)3,4. Although the signature of a cuprate PDW has been detected in Cooper-pair tunnelling5, the distinctive signature in single-electron tunnelling of a periodic Δ(r) modulation has not been observed. Here, using a spectroscopic technique based on scanning tunnelling microscopy, we find strong Δ(r) modulations in the canonical cuprate Bi2Sr2CaCu2O8+δ that have eight-unit-cell periodicity or wavevectors Q ≈ (2π/a0)(1/8, 0) and Q ≈ (2π/a0)(0, 1/8) (where a0 is the distance between neighbouring Cu atoms). Simultaneous imaging of the local density of states N(r, E) (where E is the energy) reveals electronic modulations with wavevectors Q and 2Q, as anticipated when the PDW coexists with superconductivity. Finally, by visualizing the topological defects in these N(r, E) density waves at 2Q, we find them to be concentrated in areas where the PDW spatial phase changes by π, as predicted by the theory of half-vortices in a PDW state6,7. Overall, this is a compelling demonstration, from multiple single-electron signatures, of a PDW state coexisting with superconductivity in Bi2Sr2CaCu2O8+δ.
Collapse
|
13
|
Zhang Y, Lane C, Furness JW, Barbiellini B, Perdew JP, Markiewicz RS, Bansil A, Sun J. Competing stripe and magnetic phases in the cuprates from first principles. Proc Natl Acad Sci U S A 2020; 117:68-72. [PMID: 31843896 PMCID: PMC6955329 DOI: 10.1073/pnas.1910411116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Realistic description of competing phases in complex quantum materials has proven extremely challenging. For example, much of the existing density-functional-theory-based first-principles framework fails in the cuprate superconductors. Various many-body approaches involve generic model Hamiltonians and do not account for the interplay between the spin, charge, and lattice degrees of freedom. Here, by deploying the recently constructed strongly constrained and appropriately normed (SCAN) density functional, we show how the landscape of competing stripe and magnetic phases can be addressed on a first-principles basis both in the parent insulator YBa2Cu3O6 and the near-optimally doped YBa2Cu3O7 as archetype cuprate compounds. In YBa2Cu3O7, we find many stripe phases that are nearly degenerate with the ground state and may give rise to the pseudogap state from which the high-temperature superconducting state emerges. We invoke no free parameters such as the Hubbard U, which has been the basis of much of the existing cuprate literature. Lattice degrees of freedom are found to be crucially important in stabilizing the various phases.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Christopher Lane
- Department of Physics, Northeastern University, Boston, MA 02115
| | - James W Furness
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53851 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, MA 02115
| | - John P Perdew
- Department of Physics, Temple University, Philadelphia, PA 19122;
- Department of Chemistry, Temple University, Philadelphia, PA 19122
| | | | - Arun Bansil
- Department of Physics, Northeastern University, Boston, MA 02115;
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118;
| |
Collapse
|
14
|
Yue L, Xue S, Li J, Hu W, Barbour A, Zheng F, Wang L, Feng J, Wilkins SB, Mazzoli C, Comin R, Li Y. Distinction between pristine and disorder-perturbed charge density waves in ZrTe 3. Nat Commun 2020; 11:98. [PMID: 31911603 PMCID: PMC6946692 DOI: 10.1038/s41467-019-13813-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022] Open
Abstract
Charge density waves (CDWs) in the cuprate high-temperature superconductors have evoked much interest, yet their typical short-range nature has raised questions regarding the role of disorder. Here we report a resonant X-ray diffraction study of ZrTe[Formula: see text], a model CDW system, with focus on the influence of disorder. Near the CDW transition temperature, we observe two independent signals that arise concomitantly, only to become clearly separated in momentum while developing very different correlation lengths in the well-ordered state that is reached at a distinctly lower temperature. Anomalously slow dynamics of mesoscopic charge domains are further found near the transition temperature, in spite of the expected strong thermal fluctuations. Our observations signify the presence of distinct experimental fingerprints of pristine and disorder-perturbed CDWs. We discuss the latter also in the context of Friedel oscillations, which we argue might promote CDW formation via a self-amplifying process.
Collapse
Affiliation(s)
- Li Yue
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Shangjie Xue
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiarui Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wen Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Andi Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Feipeng Zheng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Lichen Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Ji Feng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
| | - Stuart B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Claudio Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Yuan Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
| |
Collapse
|
15
|
Massee F, Huang YK, Aprili M. Atomic manipulation of the gap in Bi 2Sr 2CaCu 2O 8+x. Science 2020; 367:68-71. [PMID: 31896712 DOI: 10.1126/science.aaw7964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/07/2019] [Indexed: 11/02/2022]
Abstract
Single-atom manipulation within doped correlated electron systems could help disentangle the influence of dopants, structural defects, and crystallographic characteristics on local electronic states. Unfortunately, the high diffusion barrier in these materials prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high-temperature superconductor Bi2Sr2CaCu2O8+x using the local electric field of the tip of a scanning tunneling microscope. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 milli-electron volts (on average ~5% of the total gap size). Our toy model, which captures all observed characteristics, suggests that the electric field induces lateral movement of local pairing potentials in the CuO2 plane.
Collapse
Affiliation(s)
- F Massee
- Laboratoire de Physique des Solides, CNRS UMR 8502, Bâtiment 510, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| | - Y K Huang
- Institute of Physics, University of Amsterdam, 1098XH Amsterdam, Netherlands
| | - M Aprili
- Laboratoire de Physique des Solides, CNRS UMR 8502, Bâtiment 510, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
16
|
Wang X, Yuan Y, Xue QK, Li W. Charge ordering in high-temperature superconductors visualized by scanning tunneling microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013002. [PMID: 31487703 DOI: 10.1088/1361-648x/ab41c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of stripe order in La1.6-x Nd0.4Sr x CuO4 superconductors in 1995, charge ordering in cuprate superconductors has been intensively studied by various experimental techniques. Among these studies, scanning tunneling microscope (STM) plays an irreplaceable role in determining the real space structures of charge ordering. STM imaging of different families of cuprates over a wide range of doping levels reveal similar checkerboard-like patterns, indicating that such a charge ordered state is likely a ubiquitous and intrinsic characteristic of cuprate superconductors, which may shed light on understanding the mechanism of high-temperature superconductivity. In another class of high-temperature superconductors, iron-based superconductors, STM studies reveal several charge ordered states as well, but their real-space patterns and the interplay with superconductivity are markedly different among different materials. In this paper, we present a brief review on STM studies of charge ordering in these two classes of high-temperature superconductors. Possible origins of charge ordering and its interplay with superconductivity will be discussed.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Abstract
An account is given of the main steps that led the research group in Rome, to which the author belongs, to the formulation of the charge-density-wave scenario for high- T c superconducting cuprates. The early finding of the generic tendency of strongly correlated electron systems with short range interactions to undergo electron phase separation was subsequently contrasted with the homogenizing effect of the long-range Coulomb interaction. The two effects can find a compromise in the formation of incommensurate charge density waves. These charge density waves are inherently dynamical and are overdamped as a consequence of the possibility to decay in electron-hole pairs, yet tend to maintain a (quantum) critical character, which is mirrored in their marked momentum and frequency dependence and in their strong variation with temperature and doping. These dynamical incommensurate charge density waves act as mediators of pairing lading to high- T c superconductivity, and provide the scattering mechanism that produces the observed violation of the Fermi-liquid paradigm in the metallic phase.
Collapse
|
18
|
Evidence for a vestigial nematic state in the cuprate pseudogap phase. Proc Natl Acad Sci U S A 2019; 116:13249-13254. [PMID: 31160468 DOI: 10.1073/pnas.1821454116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CuO2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase. Its defining characteristic is a strong suppression of the electronic density-of-states D(E) for energies |E| < [Formula: see text], where [Formula: see text] is the PG energy. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite-Q density-wave (DW) state and a Q = 0 nematic (NE) state. Sublattice-phase-resolved imaging of electronic structure allows the doping and energy dependence of these distinct broken-symmetry states to be visualized simultaneously. Using this approach, we show that even though their reported ordering temperatures T DW and T NE are unrelated to each other, both the DW and NE states always exhibit their maximum spectral intensity at the same energy, and using independent measurements that this is the PG energy [Formula: see text] Moreover, no new energy-gap opening coincides with the appearance of the DW state (which should theoretically open an energy gap on the Fermi surface), while the observed PG opening coincides with the appearance of the NE state (which should theoretically be incapable of opening a Fermi-surface gap). We demonstrate how this perplexing phenomenology of thermal transitions and energy-gap opening at the breaking of two highly distinct symmetries may be understood as the natural consequence of a vestigial nematic state within the pseudogap phase of Bi2Sr2CaCu2O8.
Collapse
|
19
|
Morice C, Chakraborty D, Montiel X, Pépin C. Pseudo-spin skyrmions in the phase diagram of cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:295601. [PMID: 29947331 DOI: 10.1088/1361-648x/aacc0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Topological states of matter are at the root of some of the most fascinating phenomena in condensed matter physics. Here we argue that skyrmions in the pseudo-spin space related to an emerging SU(2) symmetry enlighten many mysterious properties of the pseudogap phase in under-doped cuprates. We detail the role of the SU(2) symmetry in controlling the phase diagram of the cuprates, in particular how a cascade of phase transitions explains the arising of the pseudogap, superconducting and charge modulation phases seen at low temperature. We specify the structure of the charge modulations inside the vortex core below T c, as well as in a wide temperature region above T c, which is a signature of the skyrmion topological structure. We argue that the underlying SU(2) symmetry is the main structure controlling the emergent complexity of excitations at the pseudogap scale T *. The theory yields a gapping of a large part of the anti-nodal region of the Brillouin zone, along with q = 0 phase transitions, of both nematic and loop currents characters.
Collapse
Affiliation(s)
- C Morice
- Institut de Physique Théorique, CEA, Université Paris-Saclay, Saclay, France
| | | | | | | |
Collapse
|
20
|
Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy. Proc Natl Acad Sci U S A 2018; 115:1445-1450. [PMID: 29382750 PMCID: PMC5816166 DOI: 10.1073/pnas.1714901115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Charge order is a modulation of the electron density and is associated with unconventional phenomena, including colossal magnetoresistance and metal–insulator transitions. Determining how the lattice responds provides insights into the nature and symmetry of the ordered state. Scanning transmission electron microscopy can measure lattice displacements with picometer precision, but its use has been limited to room-temperature phases only. Here, we demonstrate high-resolution imaging at cryogenic temperature and map the nature and evolution of charge order in a manganite. We uncover picometer-scale displacive modulations whose periodicity is strongly locked to the lattice and visualize temperature-dependent phase inhomogeneity in the modulations. These results pave the way to understanding the underlying structure of charge-ordered states and other complex phenomena. Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides.
Collapse
|
21
|
The study of electronic nematicity in an overdoped (Bi, Pb) 2Sr 2CuO 6+δ superconductor using scanning tunneling spectroscopy. Sci Rep 2017; 7:8059. [PMID: 28808301 PMCID: PMC5556024 DOI: 10.1038/s41598-017-08376-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/12/2017] [Indexed: 11/08/2022] Open
Abstract
The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi2Sr2CaCu2O8+δ, especially underdoped samples, its behavior in other cuprates and different doping regions is still unclear. Here we apply a scanning tunneling microscope to explore an overdoped (Bi, Pb)2Sr2CuO6+δ with a large Fermi surface (FS). The establishment of a nematic order and its real-space distribution is visualized as the energy scale approaches the PG.
Collapse
|
22
|
Wu J, Bollinger AT, He X, Božović I. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 2017; 547:432-435. [DOI: 10.1038/nature23290] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022]
|
23
|
Zhong R, Winn BL, Gu G, Reznik D, Tranquada JM. Evidence for a Nematic Phase in La_{1.75}Sr_{0.25}NiO_{4}. PHYSICAL REVIEW LETTERS 2017; 118:177601. [PMID: 28498689 DOI: 10.1103/physrevlett.118.177601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La_{2-x}Sr_{x}NiO_{4}, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, we use neutron scattering measurements on an x=0.25 crystal to demonstrate that the dispersion of the charge-stripe excitations is anisotropic. This observation provides compelling evidence for the presence of electronic nematic order.
Collapse
Affiliation(s)
- Ruidan Zhong
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Materials Science and Engineering Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Barry L Winn
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dmitry Reznik
- Department of Physics, University of Colorado, Boulder, Colorado 80304, USA
| | - J M Tranquada
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
24
|
Tao J, Sun K, Yin WG, Wu L, Xin H, Wen JG, Luo W, Pennycook SJ, Tranquada JM, Zhu Y. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La 1/3Ca 2/3MnO 3. Sci Rep 2016; 6:37624. [PMID: 27874069 PMCID: PMC5118726 DOI: 10.1038/srep37624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.
Collapse
Affiliation(s)
- J. Tao
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - K. Sun
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - W.-G. Yin
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - L. Wu
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - H. Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J. G. Wen
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - W. Luo
- Department of Physics & Astronomy, Shanghai JiaoTong University, Shanghai, China
| | - S. J. Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 119077 Singapore
| | - J. M. Tranquada
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Y. Zhu
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
25
|
Commensurate 4 a0-period charge density modulations throughout the Bi 2Sr 2CaCu 2O 8+x pseudogap regime. Proc Natl Acad Sci U S A 2016; 113:12661-12666. [PMID: 27791157 DOI: 10.1073/pnas.1614247113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a0) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QA of the CDM to evolve continuously as if driven primarily by momentum-space (k-space) effects. Here we introduce phase-resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this technique reveals a virtually doping-independent locking of the local CDM wavevector at [Formula: see text] throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8 These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi-surface)-based picture of the cuprate CDMs but are consistent with strong-coupling r-space-based theories. Our findings imply that it is the latter that provides the intrinsic organizational principle for the cuprate CDM state.
Collapse
|
26
|
Achkar AJ, Zwiebler M, McMahon C, He F, Sutarto R, Djianto I, Hao Z, Gingras MJP, Hücker M, Gu GD, Revcolevschi A, Zhang H, Kim YJ, Geck J, Hawthorn DG. Nematicity in stripe-ordered cuprates probed via resonant x-ray scattering. Science 2016; 351:576-8. [DOI: 10.1126/science.aad1824] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- A. J. Achkar
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - M. Zwiebler
- Leibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Christopher McMahon
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - F. He
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - R. Sutarto
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Isaiah Djianto
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhihao Hao
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Michel J. P. Gingras
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
- Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
| | - M. Hücker
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - G. D. Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Revcolevschi
- Synthèse Propriétés et Modélisation des Matériaux (SP2M), UMR 8182, Université Paris-Sud, 91405 Orsay Cedex, France
| | - H. Zhang
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Y.-J. Kim
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - J. Geck
- Leibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Paris Lodron University Salzburg, Chemistry and Physics of Materials, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - D. G. Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
27
|
Markiewicz RS, Lorenzana J, Seibold G, Bansil A. Short range smectic order driving long range nematic order: example of cuprates. Sci Rep 2016; 6:19678. [PMID: 26813579 PMCID: PMC4728556 DOI: 10.1038/srep19678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/19/2015] [Indexed: 12/03/2022] Open
Abstract
We present a model for describing the combined presence of nematic and 'smectic' or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a 'Pomeranchuk wave'. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. A variety of experimental results are shown to be consistent with our theoretical predictions.
Collapse
Affiliation(s)
- R. S. Markiewicz
- Physics Department, Northeastern University, Boston MA 02115, USA
| | - J. Lorenzana
- ISC-CNR and Dipartimento di Fisica, Università di Roma “La Sapienza”, P. Aldo Moro 2, 00185 Roma, Italy
- ISC-CNR, Via dei Taurini 19, I-00185 Roma, Italy
| | - G. Seibold
- Institut Für Physik, BTU Cottbus-Senftenberg, PBox 101344, 03013 Cottbus, Germany
| | - A. Bansil
- Physics Department, Northeastern University, Boston MA 02115, USA
| |
Collapse
|
28
|
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015; 525:359-62. [PMID: 26381983 DOI: 10.1038/nature14987] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/21/2015] [Indexed: 11/08/2022]
Abstract
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave 'puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26-28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity.
Collapse
|
29
|
Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy. Nat Commun 2015; 6:6438. [PMID: 25751448 PMCID: PMC4366503 DOI: 10.1038/ncomms7438] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 11/08/2022] Open
Abstract
The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.
Collapse
|
30
|
Nazaretski E, Lauer K, Yan H, Bouet N, Zhou J, Conley R, Huang X, Xu W, Lu M, Gofron K, Kalbfleisch S, Wagner U, Rau C, Chu YS. Pushing the limits: an instrument for hard X-ray imaging below 20 nm. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:336-341. [PMID: 25723934 DOI: 10.1107/s1600577514025715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Hard X-ray microscopy is a prominent tool suitable for nanoscale-resolution non-destructive imaging of various materials used in different areas of science and technology. With an ongoing effort to push the 2D/3D imaging resolution down to 10 nm in the hard X-ray regime, both the fabrication of nano-focusing optics and the stability of the microscope using those optics become extremely challenging. In this work a microscopy system designed and constructed to accommodate multilayer Laue lenses as nanofocusing optics is presented. The developed apparatus has been thoroughly characterized in terms of resolution and stability followed by imaging experiments at a synchrotron facility. Drift rates of ∼2 nm h(-1) accompanied by 13 nm × 33 nm imaging resolution at 11.8 keV are reported.
Collapse
Affiliation(s)
| | - K Lauer
- Brookhaven National Laboratory, Upton, NY, USA
| | - H Yan
- Brookhaven National Laboratory, Upton, NY, USA
| | - N Bouet
- Brookhaven National Laboratory, Upton, NY, USA
| | - J Zhou
- Brookhaven National Laboratory, Upton, NY, USA
| | - R Conley
- Brookhaven National Laboratory, Upton, NY, USA
| | - X Huang
- Brookhaven National Laboratory, Upton, NY, USA
| | - W Xu
- Brookhaven National Laboratory, Upton, NY, USA
| | - M Lu
- Brookhaven National Laboratory, Upton, NY, USA
| | - K Gofron
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - U Wagner
- Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, UK
| | - C Rau
- Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, UK
| | - Y S Chu
- Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
31
|
Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y, Azuma M, Takano M, Takagi H, Eisaki H, Uchida SI, Allais A, Lawler MJ, Kim EA, Sachdev S, Davis JCS. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. Proc Natl Acad Sci U S A 2014; 111:E3026-32. [PMID: 24989503 PMCID: PMC4121838 DOI: 10.1073/pnas.1406297111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identity of the fundamental broken symmetry (if any) in the underdoped cuprates is unresolved. However, evidence has been accumulating that this state may be an unconventional density wave. Here we carry out site-specific measurements within each CuO2 unit cell, segregating the results into three separate electronic structure images containing only the Cu sites [Cu(r)] and only the x/y axis O sites [Ox(r) and O(y)(r)]. Phase-resolved Fourier analysis reveals directly that the modulations in the O(x)(r) and O(y)(r) sublattice images consistently exhibit a relative phase of π. We confirm this discovery on two highly distinct cuprate compounds, ruling out tunnel matrix-element and materials-specific systematics. These observations demonstrate by direct sublattice phase-resolved visualization that the density wave found in underdoped cuprates consists of modulations of the intraunit-cell states that exhibit a predominantly d-symmetry form factor.
Collapse
Affiliation(s)
- Kazuhiro Fujita
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973;Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853;Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mohammad H Hamidian
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973;Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853
| | - Stephen D Edkins
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853;School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland
| | - Chung Koo Kim
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Yuhki Kohsaka
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Masaki Azuma
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Mikio Takano
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidenori Takagi
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan;RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan;Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany
| | - Hiroshi Eisaki
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Shin-Ichi Uchida
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Andrea Allais
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Michael J Lawler
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853;Department of Physics and Astronomy, Binghamton University, Binghamton, NY 13902; and
| | - Eun-Ah Kim
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138;Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5
| | - J C Séamus Davis
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973;Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853;School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland;
| |
Collapse
|
32
|
Cilento F, Dal Conte S, Coslovich G, Peli S, Nembrini N, Mor S, Banfi F, Ferrini G, Eisaki H, Chan MK, Dorow CJ, Veit MJ, Greven M, van der Marel D, Comin R, Damascelli A, Rettig L, Bovensiepen U, Capone M, Giannetti C, Parmigiani F. Photo-enhanced antinodal conductivity in the pseudogap state of high-Tc cuprates. Nat Commun 2014; 5:4353. [PMID: 25014895 PMCID: PMC4104437 DOI: 10.1038/ncomms5353] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/07/2014] [Indexed: 11/24/2022] Open
Abstract
A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5–2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*neq(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the single-band Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations. The pseudogap phase exhibited by the cuprates is almost as enigmatic as superconductivity in these materials itself. A time-resolved study performed by Cilento et al. suggests that this state can be photoexcited into a transient non-equilibrium state that is more conductive than the equilibrium state.
Collapse
Affiliation(s)
- F Cilento
- Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Basovizza, Italy
| | - S Dal Conte
- 1] Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [2] i-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [3]
| | - G Coslovich
- 1] Department of Physics, Università degli Studi di Trieste, I-34127 Trieste, Italy [2]
| | - S Peli
- 1] Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [2] Department of Physics, Università degli Studi di Milano, I-20133 Milano, Italy
| | - N Nembrini
- 1] Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [2] Department of Physics, Università degli Studi di Milano, I-20133 Milano, Italy
| | - S Mor
- Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - F Banfi
- 1] Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [2] i-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - G Ferrini
- 1] Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [2] i-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - H Eisaki
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - M K Chan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C J Dorow
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M J Veit
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - D van der Marel
- Département de Physique de la Matière Condensée, Université de Genève, CH1211 Genève, Switzerland
| | - R Comin
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 [2] Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - A Damascelli
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 [2] Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - L Rettig
- 1] Fakultaet fuer Physik and Zentrum für Nanointegration (CENIDE), Universitaet Duisburg-Essen, 47048 Duisburg, Germany [2]
| | - U Bovensiepen
- Fakultaet fuer Physik and Zentrum für Nanointegration (CENIDE), Universitaet Duisburg-Essen, 47048 Duisburg, Germany
| | - M Capone
- CNR-IOM Democritos National Simulation Center and Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - C Giannetti
- 1] Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy [2] i-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - F Parmigiani
- 1] Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Basovizza, Italy [2] Department of Physics, Università degli Studi di Trieste, I-34127 Trieste, Italy
| |
Collapse
|
33
|
Zhang Q, Tan G, Gu L, Yao Y, Jin C, Wang Y, Duan X, Yu R. Direct observation of multiferroic vortex domains in YMnO3. Sci Rep 2014; 3:2741. [PMID: 24061552 PMCID: PMC3781397 DOI: 10.1038/srep02741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/05/2013] [Indexed: 12/02/2022] Open
Abstract
Topological vortices with swirling ferroelectric, magnetic and structural anti-phase relationship in hexagonal RMnO3 (R = Ho to Lu, Y, and Sc) have attracted much attention because of their intriguing behaviors. Herein, we report the structure of multiferroic vortex domains in YMnO3 at atomic scale using state-of-the-art aberration-corrected scanning transmission electron microscopy (STEM). Two types of displacements were identified among six domain walls (DWs); six translation-ferroelectric domains denoted by α+, γ−, β+, α−, γ+ and β−, respectively, were recognized, demonstrating the interlocking nature of the anti-vortex domain. We found that the anti-vortex core is about four unit cells wide. In addition, we reconstructed the vortex model with three swirling pairs of DWs along the [001] direction. These results are very critical for the understanding of topological behaviors and unusual properties of the multiferroic vortex.
Collapse
Affiliation(s)
- Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fujita K, Kim CK, Lee I, Lee J, Hamidian MH, Firmo IA, Mukhopadhyay S, Eisaki H, Uchida S, Lawler MJ, Kim EA, Davis JC. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 2014; 344:612-6. [PMID: 24812397 DOI: 10.1126/science.1248783] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The existence of electronic symmetry breaking in the underdoped cuprates and its disappearance with increased hole density p are now widely reported. However, the relation between this transition and the momentum-space (k-space) electronic structure underpinning the superconductivity has not yet been established. Here, we visualize the Q = 0 (intra-unit-cell) and Q ≠ 0 (density-wave) broken-symmetry states, simultaneously with the coherent k-space topology, for Bi₂Sr₂CaCu₂O(8+δ) samples spanning the phase diagram 0.06 ≤ p ≤ 0.23. We show that the electronic symmetry-breaking tendencies weaken with increasing p and disappear close to a critical doping p(c) = 0.19. Concomitantly, the coherent k-space topology undergoes an abrupt transition, from arcs to closed contours, at the same p(c). These data reveal that the k-space topology transformation in cuprates is linked intimately with the disappearance of the electronic symmetry breaking at a concealed critical point.
Collapse
Affiliation(s)
- K Fujita
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc Natl Acad Sci U S A 2014; 111:7980-5. [PMID: 24799709 DOI: 10.1073/pnas.1406019111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cuprate high-temperature superconductors have been the focus of unprecedentedly intense and sustained study not only because of their high superconducting transition temperatures, but also because they represent the most exquisitely investigated examples of highly correlated electronic materials. In particular, the pseudogap regime of the phase diagram exhibits a variety of mysterious emergent behaviors. In the last few years, evidence from NMR and scanning tunneling microscopy (STM) studies, as well as from a new generation of X-ray scattering experiments, has accumulated, indicating that a general tendency to short-range-correlated incommensurate charge density wave (CDW) order is "intertwined" with the superconductivity in this regime. Additionally, transport, STM, neutron-scattering, and optical experiments have produced evidence--not yet entirely understood--of the existence of an associated pattern of long-range-ordered point-group symmetry breaking with an electron-nematic character. We have carried out a theoretical analysis of the Landau-Ginzburg-Wilson effective field theory of a classical incommensurate CDW in the presence of weak quenched disorder. Although the possibilities of a sharp phase transition and long-range CDW order are precluded in such systems, we show that any discrete symmetry-breaking aspect of the charge order--nematicity in the case of the unidirectional (stripe) CDW we consider explicitly--generically survives up to a nonzero critical disorder strength. Such "vestigial order," which is subject to unambiguous macroscopic detection, can serve as an avatar of what would be CDW order in the ideal, zero disorder limit. Various recent experiments in the pseudogap regime of the hole-doped cuprates are readily interpreted in light of these results.
Collapse
|
36
|
Cu(Ir₁ - xCrx)₂S₄: a model system for studying nanoscale phase coexistence at the metal-insulator transition. Sci Rep 2014; 4:4081. [PMID: 24518384 PMCID: PMC3921632 DOI: 10.1038/srep04081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/28/2014] [Indexed: 11/30/2022] Open
Abstract
Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 − xCrx)2S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states.
Collapse
|
37
|
Kondo T, Palczewski AD, Hamaya Y, Takeuchi T, Wen JS, Xu ZJ, Gu G, Kaminski A. Formation of gapless Fermi arcs and fingerprints of order in the pseudogap state of cuprate superconductors. PHYSICAL REVIEW LETTERS 2013; 111:157003. [PMID: 24160620 DOI: 10.1103/physrevlett.111.157003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 06/02/2023]
Abstract
We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T* and T(pair), consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (T(pair)) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.
Collapse
Affiliation(s)
- Takeshi Kondo
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Alldredge JW, Calleja EM, Dai J, Eisaki H, Uchida S, McElroy K. The k-space origins of scattering in Bi2Sr2CaCu2O8+x. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:335601. [PMID: 23883664 DOI: 10.1088/0953-8984/25/33/335601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ([Formula: see text] excitation). We have measured the k-space scattering structure over a wide range of doping (p ∼ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.
Collapse
|
39
|
Sachdev S, La Placa R. Bond order in two-dimensional metals with antiferromagnetic exchange interactions. PHYSICAL REVIEW LETTERS 2013; 111:027202. [PMID: 23889434 DOI: 10.1103/physrevlett.111.027202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 06/02/2023]
Abstract
We present an unrestricted Hartree-Fock computation of charge-ordering instabilities of two-dimensional metals with antiferromagnetic exchange interactions, allowing for arbitrary ordering wave vectors and internal wave functions of the particle-hole pair condensate. We find that the ordering has a dominant d symmetry of rotations about lattice points for a range of ordering wave vectors, including those observed in recent experiments at low temperatures on YBa2Cu3O(y). This d symmetry implies the charge ordering is primarily on the bonds of the Cu lattice, and we propose incommensurate bond order parameters for the underdoped cuprates. The field theory for the onset of Néel order in a metal has an emergent pseudospin symmetry which "rotates" d-wave Cooper pairs to particle-hole pairs [M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075128 (2010)]; our results show that this symmetry has consequences even when the spin correlations are short ranged and incommensurate.
Collapse
Affiliation(s)
- Subir Sachdev
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
40
|
Rosen JA, Comin R, Levy G, Fournier D, Zhu ZH, Ludbrook B, Veenstra CN, Nicolaou A, Wong D, Dosanjh P, Yoshida Y, Eisaki H, Blake GR, White F, Palstra TTM, Sutarto R, He F, Fraño Pereira A, Lu Y, Keimer B, Sawatzky G, Petaccia L, Damascelli A. Surface-enhanced charge-density-wave instability in underdoped Bi2Sr(2-x)La(x)CuO(6+δ). Nat Commun 2013; 4:1977. [PMID: 23817313 DOI: 10.1038/ncomms2977] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/03/2013] [Indexed: 11/09/2022] Open
Abstract
Neutron and X-ray scattering experiments have provided mounting evidence for spin and charge ordering phenomena in underdoped cuprates. These range from early work on stripe correlations in Nd-LSCO to the latest discovery of charge-density-waves in YBa2Cu3O(6+x). Both phenomena are characterized by a pronounced dependence on doping, temperature and an externally applied magnetic field. Here, we show that these electron-lattice instabilities exhibit also a previously unrecognized bulk-surface dichotomy. Surface-sensitive electronic and structural probes uncover a temperature-dependent evolution of the CuO2 plane band dispersion and apparent Fermi pockets in underdoped Bi2 Sr(2-x) La(x) CuO(6+δ) (Bi2201), which is directly associated with an hitherto-undetected strong temperature dependence of the incommensurate superstructure periodicity below 130 K. In stark contrast, the structural modulation revealed by bulk-sensitive probes is temperature-independent. These findings point to a surface-enhanced incipient charge-density-wave instability, driven by Fermi surface nesting. This discovery is of critical importance in the interpretation of single-particle spectroscopy data, and establishes the surface of cuprates and other complex oxides as a rich playground for the study of electronically soft phases.
Collapse
Affiliation(s)
- J A Rosen
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nazaretski E, Kim J, Yan H, Lauer K, Eom D, Shu D, Maser J, Pešić Z, Wagner U, Rau C, Chu YS. Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:033701. [PMID: 23556821 DOI: 10.1063/1.4774387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Synchrotron based x-ray microscopy established itself as a prominent tool for noninvasive investigations in many areas of science and technology. Many facilities around the world routinely achieve sub-micrometer resolution with a few instruments capable of imaging with the spatial resolution better than 100 nm. With an ongoing effort to push the 2D/3D resolution down to 10 nm in the hard x-ray regime both fabrication of the nano-focusing optics and stability of a microscope become extremely challenging. In this work we present our approach to overcome technical challenges on the path towards high spatial resolution hard x-ray microscopy and demonstrate the performance of a scanning fluorescence microscope equipped with the multilayer Laue lenses focusing optics.
Collapse
Affiliation(s)
- E Nazaretski
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang HU, Hebestreit E, Josberger EE, Raschke MB. A cryogenic scattering-type scanning near-field optical microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:023701. [PMID: 23464212 DOI: 10.1063/1.4789428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Scattering-type scanning near-field optical microscopy (s-SNOM) provides few nanometer optical spatial resolution and is compatible with nearly any form of linear and nonlinear optical spectroscopy. We have developed a versatile s-SNOM instrument operating under cryogenic and variable temperature (∼20-500 K) and compatible with high magnetic fields (up to 7 T). The instrument features independent tip and sample scanning and free-space light delivery with an integrated off-axis parabolic mirror for tip-illumination and signal collection with a numerical aperture of N.A. = 0.45. The optics operate from the UV to THz range allowing for continuous wave, broadband, and ultrafast s-SNOM spectroscopy, including different variants of tip-enhanced spectroscopy. We discuss the instrument design, implementation, and demonstrate its performance with mid-infrared Drude response s-SNOM probing of the domain formation associated with the metal-insulator transitions of VO2 (TMIT ≃ 340 K) and V2O3 (TMIT ≃ 150 K). This instrument enables the study of mesoscopic order and domains of competing quantum phases in correlated electron materials over a wide range of controlled electric and magnetic fields, strain, current, and temperature.
Collapse
Affiliation(s)
- Honghua U Yang
- Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
43
|
Geng Y, Lee N, Choi YJ, Cheong SW, Wu W. Collective magnetism at multiferroic vortex domain walls. NANO LETTERS 2012; 12:6055-6059. [PMID: 23151028 DOI: 10.1021/nl301432z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cross-coupled phenomena of multiferroic domains and domain walls are of fundamental scientific and technological interest. Using cryogenic magnetic force microscopy, we find alternating net magnetic moments at ferroelectric domain walls around vortex cores in multiferroic hexagonal ErMnO(3), which correlate with each other throughout the entire vortex network. This collective nature of domain wall magnetism originates from the uncompensated Er(3+) moments at domain walls and the self-organization of the vortex network. Our results demonstrate that the collective domain wall magnetism can be controlled by external magnetic fields and represent a major advancement in the manipulation of local magnetic moments by harnessing cross-coupled domain walls.
Collapse
Affiliation(s)
- Yanan Geng
- Department of Physics and Astronomy and Rutgers Center for Emergent Materials, Rutgers University, Piscataway, New Jersey 08854, United States
| | | | | | | | | |
Collapse
|
44
|
Chakrabarty S, Dobrosavljević V, Seidel A, Nussinov Z. Universality of modulation length and time exponents. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041132. [PMID: 23214554 DOI: 10.1103/physreve.86.041132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Indexed: 06/01/2023]
Abstract
We study systems with a crossover parameter λ, such as the temperature T, which has a threshold value λ(*) across which the correlation function changes from exhibiting fixed wavelength (or time period) modulations to continuously varying modulation lengths (or times). We introduce a hitherto unknown exponent ν(L) characterizing the universal nature of this crossover and compute its value in general instances. This exponent, similar to standard correlation length exponents, is obtained from motion of the poles of the momentum (or frequency) space correlation functions in the complex k-plane (or ω-plane) as the parameter λ is varied. Near the crossover (i.e., for λ→λ(*)), the characteristic modulation wave vector K(R) in the variable modulation length "phase" is related to that in the fixed modulation length "phase" q via |K(R)-q|[proportionality]|T-T(*)|(νL). We find, in general, that ν(L)=1/2. In some special instances, ν(L) may attain other rational values. We extend this result to general problems in which the eigenvalue of an operator or a pole characterizing general response functions may attain a constant real (or imaginary) part beyond a particular threshold value λ(*). We discuss extensions of this result to multiple other arenas. These include the axial next-nearest-neighbor Ising (ANNNI) model. By extending our considerations, we comment on relations pertaining not only to the modulation lengths (or times), but also to the standard correlation lengths (or times). We introduce the notion of a Josephson time scale. We comment on the presence of aperiodic "chaotic" modulations in "soft-spin" and other systems. These relate to glass-type features. We discuss applications to Fermi systems, with particular application to metal to band insulator transitions, change of Fermi surface topology, divergent effective masses, Dirac systems, and topological insulators. Both regular periodic and glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.
Collapse
Affiliation(s)
- Saurish Chakrabarty
- Department of Physics and Center for Materials Innovation, Washington University in St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
45
|
Zeljkovic I, Xu Z, Wen J, Gu G, Markiewicz RS, Hoffman JE. Imaging the Impact of Single Oxygen Atoms on Superconducting Bi2+ySr2-yCaCu2O8+x. Science 2012; 337:320-3. [PMID: 22822144 DOI: 10.1126/science.1218648] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ilija Zeljkovic
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kasch N. News. LIQUID CRYSTALS TODAY 2011. [DOI: 10.1080/1358314x.2011.616104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|