1
|
Szyjka CE, Kelly SL, Strobel EJ. Sequential structure probing of cotranscriptional RNA folding intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618260. [PMID: 39464030 PMCID: PMC11507761 DOI: 10.1101/2024.10.14.618260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly. To address this limitation, we have developed linked-multipoint Transcription Elongation Complex RNA structure probing (TECprobe-LM), which assesses the cotranscriptional rearrangement of RNA structures by sequentially positioning E. coli RNAP at two or more points within a DNA template so that nascent RNA can be chemically probed. We validated TECprobe-LM by measuring known folding events that occur within the E. coli signal recognition particle RNA, Clostridium beijerinckii pfl ZTP riboswitch, and Bacillus cereus crcB fluoride riboswitch folding pathways. Our findings establish TECprobe-LM as a strategy for detecting cotranscriptional RNA folding events directly using chemical probing.
Collapse
Affiliation(s)
- Courtney E. Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Hall I, Zablock K, Sobetski R, Weidmann CA, Keane SC. Functional Validation of SAM Riboswitch Element A from Listeria monocytogenes. Biochemistry 2024; 63:2621-2631. [PMID: 39323220 DOI: 10.1021/acs.biochem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
SreA is one of seven candidate S-adenosyl methionine (SAM) class I riboswitches identified in Listeria monocytogenes, a saprophyte and opportunistic foodborne pathogen. SreA precedes genes encoding a methionine ATP-binding cassette (ABC) transporter, which imports methionine and is presumed to regulate transcription of its downstream genes in a SAM-dependent manner. The proposed role of SreA in controlling the transcription of genes encoding an ABC transporter complex may have important implications for how the bacteria senses and responds to the availability of the metabolite SAM in the diverse environments in which L. monocytogenes persists. Here we validate SreA as a functional SAM-I riboswitch through ligand binding studies, structure characterization, and transcription termination assays. We determined that SreA has both a structure and SAM binding properties similar to those of other well-characterized SAM-I riboswitches. Despite the apparent structural similarities to previously described SAM-I riboswitches, SreA induces transcription termination in response to comparatively lower (nanomolar) ligand concentrations. Furthermore, SreA is a leaky riboswitch that permits some transcription of the downstream gene even in the presence of millimolar SAM, suggesting that L. monocytogenes may "dampen" the expression of genes for methionine import but likely does not turn them "OFF".
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlyn Zablock
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raeleen Sobetski
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Zhuo C, Gao J, Li A, Liu X, Zhao Y. A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction. J Chem Inf Model 2024; 64:7386-7397. [PMID: 39265103 DOI: 10.1021/acs.jcim.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The interaction between RNA and small molecules is crucial in various biological functions. Identifying molecules targeting RNA is essential for the inhibitor design and RNA-related studies. However, traditional methods focus on learning RNA sequence and secondary structure features and neglect small molecule characteristics, and resulting in poor performance on unknown small molecule testing. To overcome this limitation, we developed a double-layer stacking-based machine learning model called ZHMol-RLinter. This approach more effectively predicts RNA-small molecule binding preferences by learning RNA and small molecule features to capture their interaction information. ZHMol-RLinter also combines sequence and secondary structural features with structural geometric and physicochemical environment information to capture the specificity of RNA spatial conformations in recognizing small molecules. Our results demonstrate that ZHMol-RLinter has a success rate of 90.8% on the published RL98 testing set, representing a significant improvement over existing methods. Additionally, ZHMol-RLinter achieved a success rate of 77.1% on the unknown small molecule UNK96 testing set, showing substantial improvement over the existing methods. The evaluation of predicted structures confirms that ZHMol-RLinter is reliable and accurate for predicting RNA-small molecule binding preferences, even for challenging unknown small molecule testing. Predicting RNA-small molecule binding preferences can help in the understanding of RNA-small molecule interactions and promote the design of RNA-related drugs for biological and medical applications.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Anbang Li
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Xuefeng Liu
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Liu J, Weng Q, Da D, Yao S, Zhang Y, Wu Y. Enhancement of Fluoride's Antibacterial and Antibiofilm Effects against Oral Staphylococcus aureus by the Urea Derivative BPU. Antibiotics (Basel) 2024; 13:930. [PMID: 39452197 PMCID: PMC11505350 DOI: 10.3390/antibiotics13100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The oral cavity is an important but often overlooked reservoir for Staphylococcus aureus. The effective control and prevention of S. aureus colonization and infection in the oral and maxillofacial regions are crucial for public health. Fluoride is widely used in dental care for its remineralization and antibacterial properties. However, its effectiveness against S. aureus has not been thoroughly investigated. Objectives: This study aimed to evaluate the potential of combining sodium fluoride (NaF) with compounds to enhance its antibacterial and antibiofilm effects against S. aureus. Method: We found that a urea derivative significantly enhances the efficacy of fluoride by promoting the retention of fluoride ions within the cells. The synergistic antibacterial and antibiofilm effects of BPU with NaF were confirmed through various assays, including checkerboard assays, time-kill assays, and growth curve analysis. These findings were further supported by additional methods, including transmission electron microscopy (TEM), in silico simulations, and gene overexpression studies. Results: These findings suggest that targeting fluoride ion membrane exporters could enhance antibacterial efficacy. When combined with fluoride, 1,3-Bis [3,5-bis(trifluoromethyl)phenyl]urea (BPU) showed increased effectiveness in inhibiting S. aureus growth and reducing established biofilms. Conclusions: This novel combination represents a promising therapeutic strategy for treating biofilm-associated S. aureus infections, offering a new strategy in oral healthcare. To fully evaluate the clinical potential of this synergistic therapy, further in vivo studies are essential.
Collapse
Affiliation(s)
- Jia Liu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200120, China; (J.L.); (Q.W.); (D.D.); (S.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200120, China
| | - Qingqing Weng
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200120, China; (J.L.); (Q.W.); (D.D.); (S.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200120, China
| | - Dongxin Da
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200120, China; (J.L.); (Q.W.); (D.D.); (S.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200120, China
| | - Shuran Yao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200120, China; (J.L.); (Q.W.); (D.D.); (S.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200120, China
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200120, China; (J.L.); (Q.W.); (D.D.); (S.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200120, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Stephen C, Palmer D, Mishanina TV. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events. Int J Mol Sci 2024; 25:10495. [PMID: 39408823 PMCID: PMC11476745 DOI: 10.3390/ijms251910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
Collapse
Affiliation(s)
| | | | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA (D.P.)
| |
Collapse
|
7
|
Remmel L, Meyer A, Ackermann K, Hagelueken G, Bennati M, Bode BE. Pulsed EPR Methods in the Angstrom to Nanometre Scale Shed Light on the Conformational Flexibility of a Fluoride Riboswitch. Angew Chem Int Ed Engl 2024:e202411241. [PMID: 39225197 DOI: 10.1002/anie.202411241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Riboswitches control gene regulation upon external stimuli such as environmental factors or ligand binding. The fluoride sensing riboswitch from Thermotoga petrophila is a complex regulatory RNA proposed to be involved in resistance to F- cytotoxicity. The details of structure and dynamics underpinning the regulatory mechanism are currently debated. Here we demonstrate that a combination of pulsed electron paramagnetic resonance (ESR/EPR) spectroscopies, detecting distances in the angstrom to nanometre range, can probe distinct regions of conformational flexibility in this riboswitch. PELDOR (pulsed electron-electron double resonance) revealed a similar preorganisation of the sensing domain in three forms, i.e. the free aptamer, the Mg2+-bound apo, and the F--bound holo form. 19F ENDOR (electron-nuclear double resonance) was used to investigate the active site structure of the F--bound holo form. Distance distributions without a priori structural information were compared with in silico modelling of spin label conformations based on the crystal structure. While PELDOR, probing the periphery of the RNA fold, revealed conformational flexibility of the RNA backbone, ENDOR indicated low structural heterogeneity at the ligand binding site. Overall, the combination of PELDOR and ENDOR with sub-angstrom precision gave insight into structural organisation and flexibility of a riboswitch, not easily attainable by other biophysical techniques.
Collapse
Affiliation(s)
- Laura Remmel
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, KY16 9ST, St Andrews, United Kingdom
| | - Andreas Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Georg-August University, Tammannstraße 6, 37077, Göttingen, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, KY16 9ST, St Andrews, United Kingdom
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Georg-August University, Tammannstraße 6, 37077, Göttingen, Germany
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, KY16 9ST, St Andrews, United Kingdom
| |
Collapse
|
8
|
Yu Y, Xu F, Zhao W, Thoma C, Che S, Richman JE, Jin B, Zhu Y, Xing Y, Wackett L, Men Y. Electron bifurcation and fluoride efflux systems implicated in defluorination of perfluorinated unsaturated carboxylic acids by Acetobacterium spp. SCIENCE ADVANCES 2024; 10:eado2957. [PMID: 39018407 PMCID: PMC466959 DOI: 10.1126/sciadv.ado2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Weiyang Zhao
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Calvin Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Shun Che
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Jack E. Richman
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Bosen Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Yiwen Zhu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Yue Xing
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Lawrence Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Wu Z, Xing A, Chu R, Xu X, Sun Y, Zhu J, Yang Y, Yin J, Wang Y. The fluoride exporter (CsFEX) regulates fluoride uptake/accumulation in Camellia sinensis under different pH. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116407. [PMID: 38691884 DOI: 10.1016/j.ecoenv.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/06/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Fluoride (F) can be absorbed from the environment and hyperaccumulate in leaves of Camellia sinensis without exhibiting any toxic symptoms. Fluoride exporter in C. sinensis (CsFEX) could transport F to extracellular environment to alleviate F accumulation and F toxicity, but its functional mechanism remains unclear. Here, combining with pH condition of C. sinensis growth, the characteristics of CsFEX and mechanism of F detoxification were further explored. The results showed that F accumulation was influenced by various pH, and pH 4.5 and 6.5 had a greater impact on the F accumulation of C. sinensis. Through Non-invasive Micro-test Technology (NMT) detection, it was found that F uptake/accumulation of C. sinensis and Arabidopsis thaliana might be affected by pH through changing the transmembrane electrochemical proton gradient of roots. Furthermore, diverse expression patterns of CsFEX were induced by F treatment under different pH, which was basically up-regulated in response to high F accumulation, indicating that CsFEX was likely to participate in the process of F accumulation in C. sinensis and this process might be regulated by pH. Additionally, CsFEX functioned in the mitigation of F sensitivity and accumulation strengthened by lower pH in Escherichia coli and A. thaliana. Moreover, the changes of H+ flux and potential gradient caused by F were relieved as well in transgenic lines, also suggesting that CsFEX might play an important role in the process of F accumulation. Above all, F uptake/accumulation were alleviated in E. coli and A. thaliana by CsFEX through exporting F-, especially at lower pH, implying that CsFEX might regulate F accumulation in C. sinensis.
Collapse
Affiliation(s)
- Zichen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiwen Chu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangyuan Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyang Yang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juan Yin
- Jiangsu Maoshan Tea Resorts Company Limited, Changzhou 213200, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Yan M, Gao Z, Xiang X, Wang Q, Song X, Wu Y, Löffler FE, Zeng J, Lin X. Defluorination of monofluorinated alkane by Rhodococcus sp. NJF-7 isolated from soil. AMB Express 2024; 14:65. [PMID: 38842638 PMCID: PMC11156826 DOI: 10.1186/s13568-024-01729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Microbial degradation of fluorinated compounds raised significant attention because of their widespread distribution and potential environmental impacts. Here, we report a bacterial isolate, Rhodococcus sp. NJF-7 capable of defluorinating monofluorinated medium-chain length alkanes. This isolate consumed 2.29 ± 0.13 mmol L- 1 of 1-fluorodecane (FD) during a 52 h incubation period, resulting in a significant release of inorganic fluoride amounting to 2.16 ± 0.03 mmol L- 1. The defluorination process was strongly affected by the initial FD concentration and pH conditions, with lower pH increasing fluoride toxicity to bacterial cells and inhibiting enzymatic defluorination activity. Stoichiometric conversion of FD to fluoride was observed at neutral pH with resting cells, while defluorination was significantly lower at reduced pH (6.5). The discovery of the metabolites decanoic acid and methyl decanoate suggests that the initial attack by monooxygenases may be responsible for the biological defluorination of FD. The findings here provide new insights into microbial defluorination processes, specifically aiding in understanding the environmental fate of organic semi-fluorinated alkane chemicals.
Collapse
Affiliation(s)
- Meng Yan
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Zhaozhao Gao
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Qing Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Yucheng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, Department of Microbiology, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jun Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China.
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| |
Collapse
|
11
|
Selim KA, Alva V. PII-like signaling proteins: a new paradigm in orchestrating cellular homeostasis. Curr Opin Microbiol 2024; 79:102453. [PMID: 38678827 DOI: 10.1016/j.mib.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
Members of the PII superfamily are versatile, multitasking signaling proteins ubiquitously found in all domains of life. They adeptly monitor and synchronize the cell's carbon, nitrogen, energy, redox, and diurnal states, primarily by binding interdependently to adenyl-nucleotides, including charged nucleotides (ATP, ADP, and AMP) and second messengers such as cyclic adenosine monophosphate (cAMP), cyclic di-adenosine monophosphate (c-di-AMP), and S-adenosylmethionine-AMP (SAM-AMP). These proteins also undergo a variety of posttranslational modifications, such as phosphorylation, adenylation, uridylation, carboxylation, and disulfide bond formation, which further provide cues on the metabolic state of the cell. Serving as precise metabolic sensors, PII superfamily proteins transmit this information to diverse cellular targets, establishing dynamic regulatory assemblies that fine-tune cellular homeostasis. Recently discovered, PII-like proteins are emerging families of signaling proteins that, while related to canonical PII proteins, have evolved to fulfill a diverse range of cellular functions, many of which remain elusive. In this review, we focus on the evolution of PII-like proteins and summarize the molecular mechanisms governing the assembly dynamics of PII complexes, with a special emphasis on the PII-like protein SbtB.
Collapse
Affiliation(s)
- Khaled A Selim
- Microbiology / Molecular Physiology of Prokaryotes, Institute of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; Protein Evolution Department, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany.
| | - Vikram Alva
- Protein Evolution Department, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Stockbridge RB, Wackett LP. The link between ancient microbial fluoride resistance mechanisms and bioengineering organofluorine degradation or synthesis. Nat Commun 2024; 15:4593. [PMID: 38816380 PMCID: PMC11139923 DOI: 10.1038/s41467-024-49018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorinated organic chemicals, such as per- and polyfluorinated alkyl substances (PFAS) and fluorinated pesticides, are both broadly useful and unusually long-lived. To combat problems related to the accumulation of these compounds, microbial PFAS and organofluorine degradation and biosynthesis of less-fluorinated replacement chemicals are under intense study. Both efforts are undermined by the substantial toxicity of fluoride, an anion that powerfully inhibits metabolism. Microorganisms have contended with environmental mineral fluoride over evolutionary time, evolving a suite of detoxification mechanisms. In this perspective, we synthesize emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms and identify best approaches for bioengineering new approaches for degrading and making organofluorine compounds.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Lawrence P Wackett
- Department of Biochemistry, Biophysics & Molecular Biology and Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Hertz LM, White EN, Kuznedelov K, Cheng L, Yu AM, Kakkaramadam R, Severinov K, Chen A, Lucks J. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch. Nucleic Acids Res 2024; 52:4466-4482. [PMID: 38567721 PMCID: PMC11077080 DOI: 10.1093/nar/gkae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.
Collapse
Affiliation(s)
- Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | | | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rivaan Kakkaramadam
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
14
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for the competitive fitness of pathogenic microorganisms in dental biofilm models. mBio 2024; 15:e0018424. [PMID: 38624207 PMCID: PMC11077948 DOI: 10.1128/mbio.00184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
16
|
Wackett LP. Evolutionary obstacles and not C-F bond strength make PFAS persistent. Microb Biotechnol 2024; 17:e14463. [PMID: 38593328 PMCID: PMC11003709 DOI: 10.1111/1751-7915.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The fate of organic matter in the environment, including anthropogenic chemicals, is largely predicated on the enzymatic capabilities of microorganisms. Microbes readily degrade, and thus recycle, most of the ~100,000 commercial chemicals used in modern society. Per- and polyfluorinated compounds (PFAS) are different. Many research papers posit that the general resistance of PFAS to microbial degradation is based in chemistry and that argument relates to the strength of the C-F bond. Here, I advance the opinion that the low biodegradability of PFAS is best formulated as a biological optimization problem, hence evolution. The framing of the problem is important. If it is framed around C-F bond strength, the major effort should focus on finding and engineering new C-F cleaving enzymes. The alternative, and preferred approach suggested here, is to focus on the directed evolution of biological systems containing known C-F cleaving systems. There are now reports of bacteria degrading and/or growing on multiply fluorinated arenes, alkenoic and alkanoic acids. The impediment to more efficient and widespread biodegradation in these systems is biological, not chemical. The rationale for this argument is made in the five sections below that follow the Introduction.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
17
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587317. [PMID: 38585885 PMCID: PMC10996619 DOI: 10.1101/2024.03.29.587317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z. Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B. Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
Chon NL, Lin H. Fluoride Ion Binding and Translocation in the CLC F Fluoride/Proton Antiporter: Molecular Insights from Combined Quantum-Mechanical/Molecular-Mechanical Modeling. J Phys Chem B 2024; 128:2697-2706. [PMID: 38447081 PMCID: PMC10962343 DOI: 10.1021/acs.jpcb.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| |
Collapse
|
19
|
Phan MD, Schirra HJ, Nhu NTK, Peters KM, Sarkar S, Allsopp LP, Achard MES, Kappler U, Schembri MA. Combined functional genomic and metabolomic approaches identify new genes required for growth in human urine by multidrug-resistant Escherichia coli ST131. mBio 2024; 15:e0338823. [PMID: 38353545 PMCID: PMC10936160 DOI: 10.1128/mbio.03388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 03/14/2024] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.
Collapse
Affiliation(s)
- Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Horst Joachim Schirra
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M. Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke P. Allsopp
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maud E. S. Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Kang CY, An M, Stockbridge RB. Lanthanum-fluoride electrode-based methods to monitor fluoride transport in cells and reconstituted lipid vesicles. Methods Enzymol 2024; 696:43-63. [PMID: 38658088 DOI: 10.1016/bs.mie.2024.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluoride (F-) export proteins, including F- channels and F- transporters, are widespread in biology. They contribute to cellular resistance against fluoride ion, which has relevance as an ancient xenobiotic, and in more modern contexts like organofluorine biosynthesis and degradation or dental medicine. This chapter summarizes quantitative methods to measure fluoride transport across membranes using fluoride-specific lanthanum-fluoride electrodes. Electrode-based measurements can be used to measure unitary fluoride transport rates by membrane proteins that have been purified and reconstituted into lipid vesicles, or to monitor fluoride efflux into living microbial cells. Thus, fluoride electrode-based measurements yield quantitative mechanistic insight into one of the major determinants of fluoride resistance in microorganisms, fungi, yeasts, and plants.
Collapse
Affiliation(s)
- Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Program in Biophysics, University of Michigan, Ann Arbor, MI, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
21
|
Banerjee A, Stockbridge RB, Tenuta LMA. Measurement and analysis of microbial fluoride resistance in dental biofilm models. Methods Enzymol 2024; 696:155-174. [PMID: 38658078 DOI: 10.1016/bs.mie.2023.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Livia M A Tenuta
- School of Dentistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
22
|
Mills KR, Torabifard H. Computational approaches to investigate fluoride binding, selectivity and transport across the membrane. Methods Enzymol 2024; 696:109-154. [PMID: 38658077 DOI: 10.1016/bs.mie.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.
Collapse
Affiliation(s)
- Kira R Mills
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
| | - Hedieh Torabifard
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
23
|
Rivetta A, Slayman C. Electrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans. Methods Enzymol 2024; 696:3-24. [PMID: 38658085 DOI: 10.1016/bs.mie.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tight regulation of molecules moving through the cell membrane is particularly important for free-living microorganisms because of their small cell volumes and frequent changes in the chemical composition of the extracellular environment. This is true for nutrients, but even more so for toxic molecules. Traditionally, the transport of these diverse molecules in microorganisms has been studied on cell populations rather than on single cells, mainly because of technical difficulties. The goal of this chapter is to make available a detailed method to prepare yeast spheroplasts to study the movement of fluoride ions across the plasma membrane of single cells by the patch-clamp technique. In this procedure, three steps are critical to achieve high resistance (GΩ) seals between the membrane and the glass electrode: (1) appropriate removal of the cell wall by enzymatic treatment; (2) balance between the osmotic strength of sealing solutions and cell membrane turgor; and (3) meticulous morphological inspection of spheroplasts suitable for gigaseal formation. We show now that this method, originally developed for Saccharomyces cerevisiae, can also be applied to Candida albicans, an opportunistic human pathogen.
Collapse
Affiliation(s)
- Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States.
| | - Clifford Slayman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for competitive fitness of pathogenic microorganisms in dental biofilm models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576223. [PMID: 38293214 PMCID: PMC10827179 DOI: 10.1101/2024.01.18.576223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride, but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time, and biochemical purification the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms, and that S. mutans is especially susceptible to fluoride toxicity.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Dodge AG, Thoma CJ, O’Connor MR, Wackett LP. Recombinant Pseudomonas growing on non-natural fluorinated substrates shows stress but overall tolerance to cytoplasmically released fluoride anion. mBio 2024; 15:e0278523. [PMID: 38063407 PMCID: PMC10790756 DOI: 10.1128/mbio.02785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.
Collapse
Affiliation(s)
- Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Madeline R. O’Connor
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
26
|
Wei YL, Lin XC, Liu YY, Lei YQ, Zhuang XD, Zhang HT, Wang XR. Effects of water fluoridation on early embryonic development of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115907. [PMID: 38176185 DOI: 10.1016/j.ecoenv.2023.115907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.
Collapse
Affiliation(s)
- Ya-Lan Wei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Ying-Ying Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu-Qing Lei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xu-Dong Zhuang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hai-Tao Zhang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Rui Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
27
|
Khodr R, Husser C, Ryckelynck M. Direct fluoride monitoring using a fluorogenic RNA-based biosensor. Methods Enzymol 2024; 696:85-107. [PMID: 38658090 DOI: 10.1016/bs.mie.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluorinated compounds, whether naturally occurring or from anthropogenic origin, have been extensively exploited in the last century. Degradation of these compounds by physical or biochemical processes is expected to result in the release of fluoride. Several fluoride detection mechanisms have been previously described. However, most of these methods are not compatible with high- and ultrahigh-throughput screening technologies, lack the ability to real-time monitor the increase of fluoride concentration in solution, or rely on costly reagents (such as cell-free expression systems). Our group recently developed "FluorMango" as the first completely RNA-based and direct fluoride-specific fluorogenic biosensor. To do so, we merged and engineered the Mango-III light-up RNA aptamer and the fluoride-specific aptamer derived from a riboswitch, crcB. In this chapter, we explain how this RNA-based biosensor can be produced in large scale before providing examples of how it can be used to quantitatively detect (end-point measurement) or monitor in real-time fluoride release in complex biological systems by translating it into measurable fluorescent signal.
Collapse
Affiliation(s)
- Radi Khodr
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR, Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR, Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR, Strasbourg, France.
| |
Collapse
|
28
|
Wackett LP. Microwell fluoride assay screening for enzymatic defluorination. Methods Enzymol 2024; 696:65-83. [PMID: 38658089 DOI: 10.1016/bs.mie.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is intense interest in removing fluorinated compounds from the environment, environments are most efficiently remediated by microbial enzymes, and defluorinating enzymes are readily monitored by fluoride determination. Fluorine is the most electronegative element. Consequently, all mechanisms of enzymatic C-F bond cleavage produce fluoride anion, F-. Therefore, methods for the determination of fluoride are critical for C-F enzymology and apply to any fluorinated organic compounds, including PFAS, or per- and polyfluorinated alkyl substances. The biodegradation of most PFAS chemicals is rare or unknown. Accordingly, identifying new enzymes, or re-engineering the known defluorinases, will require rapid and sensitive methods for measuring fluoride in aqueous media. Most studies currently use ion chromatography or fluoride specific electrodes which are relatively sensitive but low throughput. The methods here describe refashioning a drinking water test to efficiently determine fluoride in enzyme and cell culture reaction mixtures. The method is based on lanthanum alizarin complexone binding of fluoride. Reworking the method to a microtiter well plate format allows detection of as little as 4 nmol of fluoride in 200 μL of assay buffer. The method is amenable to color imaging, spectrophotometric plate reading and automated liquid handling to expedite assays with thousands of enzymes and/or substrates for discovering and improving enzymatic defluorination.
Collapse
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, United States.
| |
Collapse
|
29
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
30
|
Elkomy HA, El-Naggar SA, Elantary MA, Gamea SM, Ragab MA, Basyouni OM, Mouhamed MS, Elnajjar FF. Nanozyme as detector and remediator to environmental pollutants: between current situation and future prospective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3435-3465. [PMID: 38141123 PMCID: PMC10794287 DOI: 10.1007/s11356-023-31429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
The term "nanozyme" refers to a nanomaterial possessing enzymatic capabilities, and in recent years, the field of nanozymes has experienced rapid advancement. Nanozymes offer distinct advantages over natural enzymes, including ease of production, cost-effectiveness, prolonged storage capabilities, and exceptional environmental stability. In this review, we provide a concise overview of various common applications of nanozymes, encompassing the detection and removal of pollutants such as pathogens, toxic ions, pesticides, phenols, organic contaminants, air pollution, and antibiotic residues. Furthermore, our focus is directed towards the potential challenges and future developments within the realm of nanozymes. The burgeoning applications of nanozymes in bioscience and technology have kindled significant interest in research in this domain, and it is anticipated that nanozymes will soon become a topic of explosive discussion.
Collapse
Affiliation(s)
- Hager A Elkomy
- Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Shimaa A El-Naggar
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Gamea
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Moustafa S Mouhamed
- Microbiology Sector, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F Elnajjar
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
31
|
Yu Y, Xu F, Zhao W, Thoma C, Che S, Richman JE, Jin B, Zhu Y, Xing Y, Wackett L, Men Y. Electron-bifurcation and fluoride efflux systems in Acetobacterium spp. drive defluorination of perfluorinated unsaturated carboxylic acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.568471. [PMID: 38168399 PMCID: PMC10760045 DOI: 10.1101/2023.12.13.568471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Enzymatic cleavage of C-F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. Two critical molecular features in Acetobacterium species enabling reductive defluorination are (i) a functional fluoride efflux transporter (CrcB) and (ii) an electron-bifurcating caffeate reduction pathway (CarABCDE). The fluoride transporter was required for detoxification of released fluoride. Car enzymes were implicated in defluorination by the following evidence: (i) only Acetobacterium spp. with car genes catalyzed defluorination; (ii) caffeate and PFAS competed in vivo ; (iii) models from the X-ray structure of the electron-bifurcating reductase (CarC) positioned the PFAS substrate optimally for reductive defluorination; (iv) products identified by 19 F-NMR and high-resolution mass spectrometry were consistent with the model. Defluorination biomarkers identified here were found in wastewater treatment plant metagenomes on six continents.
Collapse
|
32
|
Hertz LM, White EN, Kuznedelov K, Cheng L, Yu AM, Kakkaramadam R, Severinov K, Chen A, Lucks JB. The Effect of Pseudoknot Base Pairing on Cotranscriptional Structural Switching of the Fluoride Riboswitch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570056. [PMID: 38106011 PMCID: PMC10723315 DOI: 10.1101/2023.12.05.570056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of E. coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37 °C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65 °C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.
Collapse
Affiliation(s)
- Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | | | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rivaan Kakkaramadam
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
33
|
Szyjka CE, Strobel EJ. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing. Nat Commun 2023; 14:7839. [PMID: 38030633 PMCID: PMC10687018 DOI: 10.1038/s41467-023-43395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
RNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates. Cotranscriptional RNA chemical probing methods accomplish this by systematically probing the structure of nascent RNA that is displayed from an RNA polymerase. Here, we describe a concise, high-resolution cotranscriptional RNA chemical probing procedure called variable length Transcription Elongation Complex RNA structure probing (TECprobe-VL). We demonstrate the accuracy and resolution of TECprobe-VL by replicating and extending previous analyses of ZTP and fluoride riboswitch folding and mapping the folding pathway of a ppGpp-sensing riboswitch. In each system, we show that TECprobe-VL identifies coordinated cotranscriptional folding events that mediate transcription antitermination. Our findings establish TECprobe-VL as an accessible method for mapping cotranscriptional RNA folding pathways.
Collapse
Affiliation(s)
- Courtney E Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
34
|
Ernst M, Orabi EA, Stockbridge RB, Faraldo-Gómez JD, Robertson JL. Dimerization mechanism of an inverted-topology ion channel in membranes. Proc Natl Acad Sci U S A 2023; 120:e2308454120. [PMID: 37956279 PMCID: PMC10666096 DOI: 10.1073/pnas.2308454120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na+ binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na+ binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na+. Quantifying the thermodynamic stability while titrating Na+ indicates that dimerization occurs first, providing a membrane-embedded binding site where Na+ binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na+ binding, result in channel activation.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Esam A. Orabi
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20894
| | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20894
| | - Janice L. Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
35
|
Mathur M, Rawat N, Saxena T, Khandelwal R, Jain N, Sharma MK, Mohan MK, Bhatnagar P, Flora SJS, Kaushik P. Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1. TOXICS 2023; 11:945. [PMID: 37999597 PMCID: PMC10675054 DOI: 10.3390/toxics11110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Fluoride (F) and arsenic (As) are two major contaminants of water and soil systems around the globe, causing potential toxicity to humans, plants, animals, and microbes. These contaminated soil systems can be restored by microorganisms that can tolerate toxic stress and provide rapid mineralization of soil, organic matter, and contaminants, using various tolerance mechanisms. Thus, the present study was undertaken with the arsenic hyper-tolerant bacterium Microbacterium paraoxydans strain IR-1 to determine its tolerance and toxicity to increasing doses of fluoride, either individually or in combination with arsenic, in terms of growth inhibition using a toxicity unit model. The minimum inhibitory concentration (MIC)and half maximal inhibitory concentration (IC50) values for fluoride increased, from 9 g/L to 11 g/L and from 5.91 ± 0.1 g/L to 6.32 ± 0.028 g/L, respectively, in the combination (F + As) group. The statistical comparison of observed and expected additive toxicities, with respect to toxicity unit (TU difference), using Student's t-test, was found to be highly significant (p < 0.001). This suggests the antagonistic effect of arsenic on fluoride toxicity to the strain IR-1. The unique stress tolerance of IR-1 ensures its survival as well as preponderance in fluoride and arsenic co-contaminated sites, thus paving the way for its possible application in the natural or artificial remediation of toxicant-exposed degraded soil systems.
Collapse
Affiliation(s)
- Megha Mathur
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi 110016, India;
| | - Neha Rawat
- Department of Life Sciences, IIS University, Mansarovar, Jaipur 302020, India (P.B.)
| | - Tanushree Saxena
- Department of Life Sciences, IIS University, Mansarovar, Jaipur 302020, India (P.B.)
| | - Renu Khandelwal
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Neha Jain
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Mukesh K. Sharma
- Department of Zoology, S.P.C., Government College, Ajmer 305001, India
| | - Medicherla K. Mohan
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, C Scheme, Jaipur 302001, India;
| | - Pradeep Bhatnagar
- Department of Life Sciences, IIS University, Mansarovar, Jaipur 302020, India (P.B.)
| | - Swaran J. S. Flora
- National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Pallavi Kaushik
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
36
|
Sabalette KB, Makarova L, Marcia M. G·U base pairing motifs in long non-coding RNAs. Biochimie 2023; 214:123-140. [PMID: 37353139 DOI: 10.1016/j.biochi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts involved in gene expression regulation and associated with diseases. Despite the unprecedented molecular complexity of these transcripts, recent studies of the secondary and tertiary structure of lncRNAs are starting to reveal the principles of lncRNA structural organization, with important functional implications. It therefore starts to be possible to analyze lncRNA structures systematically. Here, using a set of prototypical and medically-relevant lncRNAs of known secondary structure, we specifically catalogue the distribution and structural environment of one of the first-identified and most frequently occurring non-canonical Watson-Crick interactions, the G·U base pair. We compare the properties of G·U base pairs in our set of lncRNAs to those of the G·U base pairs in other well-characterized transcripts, like rRNAs, tRNAs, ribozymes, and riboswitches. Furthermore, we discuss how G·U base pairs in these targets participate in establishing interactions with proteins or miRNAs, and how they enable lncRNA tertiary folding by forming intramolecular or metal-ion interactions. Finally, by identifying highly-G·U-enriched regions of yet unknown function in our target lncRNAs, we provide a new rationale for future experimental investigation of these motifs, which will help obtain a more comprehensive understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Karina Belen Sabalette
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Liubov Makarova
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
37
|
Berman KE, Steans R, Hertz LM, Lucks JB. A transient intermediate RNA structure underlies the regulatory function of the E. coli thiB TPP translational riboswitch. RNA (NEW YORK, N.Y.) 2023; 29:1658-1672. [PMID: 37419663 PMCID: PMC10578472 DOI: 10.1261/rna.079427.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Riboswitches are cis-regulatory RNA elements that regulate gene expression in response to ligand binding through the coordinated action of a ligand-binding aptamer domain (AD) and a downstream expression platform (EP). Previous studies of transcriptional riboswitches have uncovered diverse examples that utilize structural intermediates that compete with the AD and EP folds to mediate the switching mechanism on the timescale of transcription. Here we investigate whether similar intermediates are important for riboswitches that control translation by studying the Escherichia coli thiB thiamin pyrophosphate (TPP) riboswitch. Using cellular gene expression assays, we first confirmed that the riboswitch acts at the level of translational regulation. Deletion mutagenesis showed the importance of the AD-EP linker sequence for riboswitch function. Sequence complementarity between the linker region and the AD P1 stem suggested the possibility of an intermediate nascent RNA structure called the antisequestering stem that could mediate the thiB switching mechanism. Experimentally informed secondary structure models of the thiB folding pathway generated from chemical probing of nascent thiB structures in stalled transcription elongation complexes confirmed the presence of the antisequestering stem, and showed it may form cotranscriptionally. Additional mutational analysis showed that mutations to the antisequestering stem break or bias thiB function according to whether the antisequestering stem or P1 is favored. This work provides an important example of intermediate structures that compete with AD and EP folds to implement riboswitch mechanisms.
Collapse
Affiliation(s)
- Katherine E Berman
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Russell Steans
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
38
|
Wang M, Wang H, Lei G, Yang B, Hu T, Ye Y, Li W, Zhou Y, Yang X, Xu H. Current progress on fluoride occurrence in the soil environment: Sources, transformation, regulations and remediation. CHEMOSPHERE 2023; 341:139901. [PMID: 37659515 DOI: 10.1016/j.chemosphere.2023.139901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
Fluorine is a halogen element widely distributed in nature, but due to excessive emissions from industrial manufacturing and agricultural production, etc., the soil is over-enriched with fluoride and the normal growth of plants is under stress, and it also poses a great threat to human health. In this review, we summarized the sources of fluoride in soil, and then analyzed the potential mechanisms of fluoride uptake in soil-plant systems. In addition, the main influences of soil ecosystems on plant fluoride uptake were discussed, soil management options to mitigate fluoride accumulation in plants were also summarized. The bioremediation techniques were found to be a developmental direction to improve fluoride pollution. Finally, we proposed other research directions, including fluoride uptake mechanisms in soil-plant systems at the molecular expression levels, development of visualization techniques for fluoride transport in plants, interactions mechanisms between soil microhabitats and plant metabolism affecting fluoride uptake, as well as combining abiotic additives, nanotechnology and biotechnology to remediate fluoride contamination problems.
Collapse
Affiliation(s)
- Minghan Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Haoyang Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ge Lei
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Biao Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Teng Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Ye
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaqin Xu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
39
|
Zhang J, Song D, Schackert FK, Li J, Xiang S, Tian C, Gong W, Carloni P, Alfonso-Prieto M, Shi C. Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR. SCIENCE ADVANCES 2023; 9:eadg9709. [PMID: 37611110 PMCID: PMC10446490 DOI: 10.1126/sciadv.adg9709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) methods can probe the motions of membrane proteins in liposomes at the atomic level and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we report our study on the fluoride channel Fluc-Ec1 in phospholipid bilayers based on ssNMR and molecular dynamics simulations. Previously unidentified fluoride binding sites in the aqueous vestibules were experimentally verified by 19F-detected ssNMR. One of the two fluoride binding sites in the polar track was identified as a water molecule by 1H-detected ssNMR. Meanwhile, a dynamic hotspot at loop 1 was observed by comparing the spectra of wild-type Fluc-Ec1 in variant buffer conditions or with its mutants. Therefore, we propose that fluoride conduction in the Fluc channel occurs via a "water-mediated knock-on" permeation mechanism and that loop 1 is a key molecular determinant for channel gating.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Dan Song
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Florian Karl Schackert
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Juan Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Shengqi Xiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Changlin Tian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Weimin Gong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| | - Paolo Carloni
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Chaowei Shi
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Center for BioAnalytical Chemistry, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, 230027 Hefei, P. R. China
| |
Collapse
|
40
|
Petrová N, Kisková J, Kolesárová M, Pristaš P. Genetic Basis of Acinetobacter sp. K1 Adaptation Mechanisms to Extreme Environmental Conditions. Life (Basel) 2023; 13:1728. [PMID: 37629585 PMCID: PMC10455571 DOI: 10.3390/life13081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Anthropogenic pollution often leads to the generation of technosols, technogenic soils with inhospitable conditions for all living organisms including microbiota. Aluminum production near Ziar nad Hronom (Slovakia) resulted in the creation of a highly alkaline and heavy-metal-rich brown mud landfill, from which a bacterial strain of a likely new species of the genus Acinetobacter, Acinetobacter sp. K1, was isolated. The whole-genome sequence analysis of this strain confirmed the presence of operon units enabling tolerance to the heavy metals copper, zinc, cobalt, cadmium, chromium, and metalloid arsenic, which are functionally active. Despite the predominance of plasmid-related sequences in the K1 genome, the results indicate that most of the resistance genes are chromosomally encoded. No significant alkali tolerance of Acinetobacter sp. K1 was observed in vitro, suggesting that community level mechanisms are responsible for the survival of this strain in the highly alkaline, brown mud bacterial community.
Collapse
Affiliation(s)
- Nikola Petrová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia; (N.P.); (J.K.); (M.K.)
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia; (N.P.); (J.K.); (M.K.)
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia; (N.P.); (J.K.); (M.K.)
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia; (N.P.); (J.K.); (M.K.)
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| |
Collapse
|
41
|
Zhang Y, Fang Y, Zhao S, Wu J, Lu C, Jiang L, Ran S, Wang J, Sun F, Liu B. Fluoride resistance capacity in mammalian cells involves global gene expression changes associate with ferroptosis. Chem Biol Interact 2023:110555. [PMID: 37245782 DOI: 10.1016/j.cbi.2023.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE The purpose of this study was to understand mouse osteoblast ferroptosis under high fluoride environment by stimulating fluoride levels to corresponding levels. In order to define the underlying mechanism of fluoride resistance in mammals and provide a theoretical basis for fluorosis treatment, high-throughput sequencing was applied to map the genetic changes of fluoride-resistant mouse osteoblasts and analyze the role of ferroptosis-related genes. METHODS Cell Counting Kit-8, Reactive Oxygen Species Assay Kit and C11 BODIPY 581/591 were used to monitor proliferation and ferroptosis of mouse osteoblasts MC3T3-E1 under high fluoride environment. Fluoride-tolerant MC3T3-E1 cells were developed by gradient fluoride exposure. The differentially expressed genes of fluorine-resistant MC3T3-E1 cells were identified by high-throughput sequencing. RESULTS MC3T3-E1 cells cultured in medium containing 20, 30, 60, 90 ppm F- exhibited decreased viability and increased reactive oxygen species and lipid peroxidation levels in correlation with F- concentrations. High-throughput RNA sequencing identified 2702 differentially expressed genes (DEGs) showed more than 2-fold difference in 30 ppm FR MC3T3-E1 cells, of which 17 DEGs were associated with ferroptosis. CONCLUSION High fluoride environment affected the content of lipid peroxides in the body and increased the level of ferroptosis, further, ferroptosis-related genes played specific roles in the fluoride resistance of mouse osteoblasts.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shen Zhao
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jialong Wu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenkang Lu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lai Jiang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fei Sun
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Bin Liu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
42
|
McCarthy E, Ekesan Ş, Giese TJ, Wilson TJ, Deng J, Huang L, Lilley DJ, York DM. Catalytic mechanism and pH dependence of a methyltransferase ribozyme (MTR1) from computational enzymology. Nucleic Acids Res 2023; 51:4508-4518. [PMID: 37070188 PMCID: PMC10201425 DOI: 10.1093/nar/gkad260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/09/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
A methyltransferase ribozyme (MTR1) was selected in vitro to catalyze alkyl transfer from exogenous O6-methylguanine (O6mG) to a target adenine N1, and recently, high-resolution crystal structures have become available. We use a combination of classical molecular dynamics, ab initio quantum mechanical/molecular mechanical (QM/MM) and alchemical free energy (AFE) simulations to elucidate the atomic-level solution mechanism of MTR1. Simulations identify an active reactant state involving protonation of C10 that hydrogen bonds with O6mG:N1. The deduced mechanism involves a stepwise mechanism with two transition states corresponding to proton transfer from C10:N3 to O6mG:N1 and rate-controlling methyl transfer (19.4 kcal·mol-1 barrier). AFE simulations predict the pKa for C10 to be 6.3, close to the experimental apparent pKa of 6.2, further implicating it as a critical general acid. The intrinsic rate derived from QM/MM simulations, together with pKa calculations, enables us to predict an activity-pH profile that agrees well with experiment. The insights gained provide further support for a putative RNA world and establish new design principles for RNA-based biochemical tools.
Collapse
Affiliation(s)
- Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Timothy J Wilson
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
43
|
Xue Y, Li J, Chen D, Zhao X, Hong L, Liu Y. Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution. Nat Commun 2023; 14:2320. [PMID: 37087479 PMCID: PMC10122661 DOI: 10.1038/s41467-023-38042-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Growing RNAs fold differently as they are transcribed, which modulates their finally adopted structures. Riboswitches regulate gene expression by structural change, which are sensitive to co-transcriptionally structural biology. Here we develop a strategy to track the structural change of RNAs during transcription at single-nucleotide and single-molecule resolution and use it to monitor individual transcripts of the SAM-VI riboswitch (riboSAM) as transcription proceeds, observing co-existence of five states in riboSAM. We report a bifurcated helix in one newly identified state from NMR and single-molecule FRET (smFRET) results, and its presence directs the translation inhibition in our cellular translation experiments. A model is proposed to illustrate the distinct switch patterns and gene-regulatory outcome of riboSAM when SAM is present or absent. Our strategy enables the precise mapping of RNAs' conformational landscape during transcription, and may combine with detection methods other than smFRET for structural studies of RNAs in general.
Collapse
Affiliation(s)
- Yanyan Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xizhu Zhao
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
44
|
Dias SADN, Divyasorubini S, Gamage KTJ, Dalath RM, Weerasinghe MSS, Silva GN. Na +/K + carrier ionophore antibiotics valinomycin and monensin enhance the antibacterial activity of fluoride. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00619-w. [PMID: 37069308 DOI: 10.1038/s41429-023-00619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Fluoride is routinely used as a highly effective antibacterial agent that interferes with bacterial metabolism through fundamentally different mechanisms. One of the major bacterial evasion mechanisms against fluoride is the impermeability of cell envelope to the anion that limits its cellular uptake. Therefore, translating such compounds to clinical settings requires novel mechanisms to facilitate the uptake of membrane-impermeant molecules. Published data have indicated antibiotic synergy between fluoride and membrane destabilizing agents that induce strong fluoride toxicity in bacteria via enhancing the permeability of bacterial membranes to fluoride. Here, we report a similar mechanism of antibiotic synergy between fluoride and potassium ion carriers, valinomycin and monensin against Gram-positive bacteria, B. subtilis and S. aureus. Molecular dynamics simulations were performed to understand the effect of potassium on the binding affinity of fluoride to monensin and valinomycin. The trajectory results strongly indicated that the monensin molecules transport fluoride ions across the cell membrane via formation of ion-pair between the monensin-K+ complex and a fluoride. This study provides new insights to design novel compounds to enhance the uptake of small toxic anions via synergistic interactions and thus exert strong antibacterial activity against a wide variety of pathogens.
Collapse
Affiliation(s)
- S A D N Dias
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - S Divyasorubini
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry, Microbiology and Molecular Biology (BMMB), Pennsylvania State University, University Park, PA, USA
| | - K T J Gamage
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - R M Dalath
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - M S S Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - G N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
45
|
Mills KR, Torabifard H. Uncovering the Mechanism of the Proton-Coupled Fluoride Transport in the CLC F Antiporter. J Chem Inf Model 2023; 63:2445-2455. [PMID: 37053383 DOI: 10.1021/acs.jcim.2c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Fluoride is a natural antibiotic abundantly present in the environment and, in micromolar concentrations, is able to inhibit enzymes necessary for bacteria to survive. However, as is the case with many antibiotics, bacteria have evolved resistance methods, including through the use of recently discovered membrane proteins. One such protein is the CLCF F-/H+ antiporter protein, a member of the CLC superfamily of anion-transport proteins. Though previous studies have examined this F- transporter, many questions are still left unanswered. To reveal details of the transport mechanism used by CLCF, we have employed molecular dynamics simulations and umbrella sampling calculations. Our results have led to several discoveries, including the mechanism of proton import and how it is able to aid in the fluoride export. Additionally, we have determined the role of the previously identified residues Glu118, Glu318, Met79, and Tyr396. This work is among the first studies of the CLCF F-/H+ antiporter and is the first computational investigation to model the full transport process, proposing a mechanism which couples the F- export with the H+ import.
Collapse
Affiliation(s)
- Kira R Mills
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
46
|
Cataldo A, Chvojka M, Park G, Šindelář V, Gabbaï FP, Butler SJ, Valkenier H. Transmembrane transport of fluoride studied by time-resolved emission spectroscopy. Chem Commun (Camb) 2023; 59:4185-4188. [PMID: 36938842 PMCID: PMC10072081 DOI: 10.1039/d3cc00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Here we present a new method to monitor fluoride transmembrane transport into liposomes using a europium(III) complex. We take advantage of the long emission lifetime of this probe to measure the transport activity of a fluorescent transporter. The high sensitivity, selectivity, and versatility of the assay allowed us to study different types of fluoride transporters and unravel their mechanisms of action.
Collapse
Affiliation(s)
- Alessio Cataldo
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Matúš Chvojka
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium. .,Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Gyeongjin Park
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, UK.
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| |
Collapse
|
47
|
Husser C, Vuilleumier S, Ryckelynck M. FluorMango, an RNA-Based Fluorogenic Biosensor for the Direct and Specific Detection of Fluoride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205232. [PMID: 36436882 DOI: 10.1002/smll.202205232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are not only essential actors of cell life but also extremely appealing molecular objects in the development of synthetic molecules for biotechnological application, such as biosensors to report on the presence and concentration of a target ligand by emission of a measurable signal. In this work, FluorMango, a fluorogenic ribonucleic acid (RNA)-based biosensor specific for fluoride is introduced. The molecule consists of two RNA aptamer modules, a fluoride-specific sensor derived from the crcB riboswitch which changes its structure upon interaction with the target ion, and the light-up RNA Mango-III that emits fluorescence when complexed with a fluorogen. The two modules are connected by an optimized communication module identified by ultrahigh-throughput screening, which results in extremely high fluorescence of FluorMango in the presence of fluoride, and background fluorescence in its absence. The value and efficiency of this biosensor by direct monitoring of defluorinase activity in living bacterial cells is illustrated, and the use of this new tool in future screening campaigns aiming at discovering new defluorinase activities is discussed.
Collapse
Affiliation(s)
- Claire Husser
- CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, UPR 9002, 2 allée Konrad Roentgen, Strasbourg, 67000, France
| | - Stéphane Vuilleumier
- CNRS, Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR 7156, 4 allée Konrad Roentgen, Strasbourg, 67000, France
| | - Michael Ryckelynck
- CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, UPR 9002, 2 allée Konrad Roentgen, Strasbourg, 67000, France
| |
Collapse
|
48
|
Szyjka CE, Strobel EJ. Observation of coordinated cotranscriptional RNA folding events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529405. [PMID: 36865203 PMCID: PMC9980086 DOI: 10.1101/2023.02.21.529405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
RNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates. Cotranscriptional RNA chemical probing methods accomplish this by systematically probing the structure of nascent RNA that is displayed from RNA polymerase. Here, we have developed a concise, high-resolution cotranscriptional RNA chemical probing procedure called Transcription Elongation Complex RNA structure probing-Multilength (TECprobe-ML). We validated TECprobe-ML by replicating and extending previous analyses of ZTP and fluoride riboswitch folding, and mapped the folding pathway of a ppGpp-sensing riboswitch. In each system, TECprobe-ML identified coordinated cotranscriptional folding events that mediate transcription antitermination. Our findings establish TECprobe-ML as an accessible method for mapping cotranscriptional RNA folding pathways.
Collapse
Affiliation(s)
- Courtney E. Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
49
|
Sawangjang B, Takizawa S. Re-evaluating fluoride intake from food and drinking water: Effect of boiling and fluoride adsorption on food. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130162. [PMID: 36257112 DOI: 10.1016/j.jhazmat.2022.130162] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Although drinking water is the main source of fluoride intake, recent studies reported that fluoride intake from foods could also be high, depending on cooking methods. In this study, we quantified the fluoride accumulation in foods soaked or boiled in fluoride-containing water and assessed the fluoride intake in different age groups from food and drinking water. We observed that, in the case of rice soaked in fluoride-containing water, more fluoride was accumulated in the rice than previously estimated. Fluoride interferes with the iodine staining process of rice, indicating fluoride adsorption. Fluoride accumulation in rice and vegetables increased when the soaking temperature was raised to 100 °C due to the gelatinization of rice grains and softening of vegetables. Ingesting foods boiled in fluoride-containing water increased the fluoride intake per body weight of infants more significantly than that in children and adults due to their low body weight. These results indicate that soaking and boiling foods in fluoride-containing water significantly increases fluoride intake compared to previous estimations. Therefore, it is necessary to re-evaluate the fluoride intake from food and drinking water considering the methods used for cooking food in each country and region.
Collapse
Affiliation(s)
- Benyapa Sawangjang
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Japan 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Japan 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
50
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|