1
|
Ren X, Liu X, Zhang Q, Yang C, Xu Z. Simultaneous imaging of telomerase activity and protein tyrosine kinase 7 in living cells during epithelial-mesenchymal transformation via a near-infrared light-activatable nanoprobe. Talanta 2024; 282:126993. [PMID: 39383724 DOI: 10.1016/j.talanta.2024.126993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exploring the relationship between key regulation molecules (such as telomerase and protein tyrosine kinase 7) during epithelial-mesenchymal transformation of cells is beneficial for studying malignant tumor metastasis. Fluorescence is usually used for real-time monitoring the distribution and expression of regulatory molecules in living cells. However, the recognition function of these classical nanoprobes is "always active" due to the absence of exogenous control, which leads to the amplification of both the background signal and the response signal, making it difficult to distinguish changes in biomolecule expression levels. To improve the fluorescence ratio between tumor and normal cells, we constructed near-infrared light-activatable nanoprobes by engineering the functional units of catalytic hairpin assembly and integrating upconversion luminescence nanoparticles. Under near-infrared light irradiation, the nanoparticles, serving as a near-infrared-to-ultraviolet light transducer, induced the photolysis of the photo-cleavable linkers sealed in hairpins. The recognition function of the nanoprobes can be controlled by near-infrared light, preventing them from recognizing the targets in non-irradiated regions. By employing the nanoprobes, we realized simultaneous imaging of two regulatory molecules in living cells and observed an increase in telomerase activity and a decrease in protein tyrosine kinase 7 expression during drug-induced epithelial-mesenchymal transformation. This work provides a promising method for revealing changes and relationships of regulatory molecules during tumor metastasis.
Collapse
Affiliation(s)
- Xiuyan Ren
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
2
|
Jiang N, Jiang J, Wang Q, Hao J, Yang R, Tian X, Wang H. Strategic targeting of miR-183 and β-catenin to enhance BMSC stemness in age-related osteoporosis therapy. Sci Rep 2024; 14:21489. [PMID: 39277663 PMCID: PMC11401869 DOI: 10.1038/s41598-024-72474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Age-related osteoporosis is a prevalent bone metabolic disorder distinguished by an aberration in the equilibrium between bone formation and resorption. The reduction in the stemness of Bone Marrow Mesenchymal Stem Cells (BMSCs) plays a pivotal role in the onset of this ailment. Comprehending the molecular pathways that govern BMSCs stemness is imperative for delineating the etiology of age-related osteoporosis and devising efficacious treatment modalities. The study utilized single-cell RNA sequencing and miRNA sequencing to investigate the cellular heterogeneity and stemness of BMSCs. Through dual-luciferase reporter assays and functional experiments, the regulatory effect of miR-183 on CTNNB1 (β-catenin) was confirmed. Overexpression and knockdown studies were conducted to explore the impact of miR-183 and β-catenin on stemness-related transcription factors Oct4, Nanog, and Sox2. Cell proliferation assays and osteogenic differentiation experiments were carried out to validate the influence of miR-183 and β-catenin on the stemness properties of BMSCs. Single-cell analysis revealed that β-catenin is highly expressed in both high stemness clusters and terminal differentiation clusters of BMSCs. Overexpression of β-catenin upregulated stemness transcription factors, while its suppression had the opposite effect, indicating a dual regulatory role of β-catenin in maintaining BMSCs stemness and promoting bone differentiation. Furthermore, the confluence of miRNA sequencing analyses and predictions from online databases revealed miR-183 as a potential modulator of BMSCs stemness and a novel upstream regulator of β-catenin. The overexpression of miR-183 effectively diminished the stemness characteristics of BMSCs by suppressing β-catenin, whereas the inhibition of miR-183 augmented stemness. These outcomes align with the observed alterations in the expression levels and functional assessments of transcription factors associated with stemness. This study provides evidence for the essential involvement of β-catenin in preserving the stemness of BMSCs, as well as elucidating the molecular mechanism through which miR-183 selectively targets β-catenin to modulate stemness. These results underscore the potential of miR-183 and β-catenin as molecular targets for augmenting the stemness of BMSCs. This strategy is anticipated to facilitate the restoration of bone microarchitecture and facilitate bone tissue regeneration by addressing potential cellular dysfunctions, thereby presenting novel targets and perspectives for the management of age-related osteoporosis.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
Dupoué A, Koechlin H, Huber M, Merrien P, Le Grand J, Corporeau C, Fleury E, Bernay B, de Villemereuil P, Morga B, Le Luyer J. Reproductive aging weakens offspring survival and constrains the telomerase response to herpesvirus in Pacific oysters. SCIENCE ADVANCES 2024; 10:eadq2311. [PMID: 39259784 PMCID: PMC11389786 DOI: 10.1126/sciadv.adq2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Telomere length (TL) is increasingly recognized as a molecular marker that reflects how reproductive aging affects intergenerational transmissions. Here, we investigated the effects of parental age on offspring survival and the regulation of TL by examining the telomere-elongating activity of telomerase in the Pacific oyster. We assessed the classical hallmarks of aging in parents at three age classes (young, middle-aged, and old) and crossbred them using a split-brood design to examine the consequences of the nine maternal-by-paternal age combinations on their offspring. Reproductive aging leads to increased larval mortality and accelerated telomere shortening in spats, rendering them more susceptible to infection by the Ostreid herpesvirus. Viral exposure stimulates telomerase activity, a response that we identified as adaptive, but weakened by parental aging. While telomerase lengthens a spat's telomere, paradoxically, longer individual TL predicts higher mortality in adults. The telomerase-telomere complex appeared as a conservative biomarker for distinguishing survivors and losers upon exposure to polymicrobial diseases.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Hugo Koechlin
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Matthias Huber
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Pauline Merrien
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | | | | | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Benoît Bernay
- Plateforme Proteogen US EMerode, Université de Caen Normandie, Caen, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Jérémy Le Luyer
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| |
Collapse
|
4
|
Huang X, Li Q, Zheng X, Jiang C. TTYH3 Promotes Cervical Cancer Progression by Activating the Wnt/ β-Catenin Signaling Pathway. Cancer Invest 2024; 42:726-739. [PMID: 39189652 DOI: 10.1080/07357907.2024.2395014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
The role of tweety homolog 3 (TTYH3) has been studied in several cancers, including hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer. The results showed that TTYH3 is highly expression in cervical cancer tissues and cells and high TTYH3 expression correlates with poor prognosis in patients with cervical cancer. TTYH3 markedly reduced the apoptosis rate and promoted proliferation, migration, and invasion. Silencing of TTYH3 has been shown to have an inhibitory effect on cervical cancer progression. Moreover, TTYH3 enhanced EMT and activated Wnt/β-catenin signaling. Furthermore, TTYH3 knockdown inhibited the tumor growth in vivo. In conclusion, TTYH3 promoted cervical cancer progression by activating the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiuyan Huang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Qing Li
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Xiaoxia Zheng
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Chen Jiang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| |
Collapse
|
5
|
Wei X, Zhou Y, Shao E, Shi X, Han Y, Zhang Y, Wei G, Zheng H, Huang S, Chen Y, Sun J, Liao Y, Liao W, Wang Y, Bin J, Li X. Tert promotes cardiac regenerative repair after MI through alleviating ROS-induced DNA damage response in cardiomyocyte. Cell Death Discov 2024; 10:381. [PMID: 39187478 PMCID: PMC11347641 DOI: 10.1038/s41420-024-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Telomerase reverse transcriptase (Tert) has been found to have a protective effect on telomeric DNA, but whether it could improve the repair of reactive oxygen species (ROS)-induced DNA damage and promote myocardial regenerative repair after myocardial infarction (MI) by protecting telomeric DNA is unclear. The immunofluorescence staining with TEL-CY3 and the TeloTAGGG Telomerase PCR ELISA kit were used to show the telomere length and telomerase activity. The heart-specific Tert-deletion homozygotes were generated by using commercial Cre tool mice and flox heterozygous mice for mating. We measured the telomere length and telomerase activity of mouse cardiomyocytes (CMs) at different days of age, and the results showed that they were negatively correlated with age. Overexpressed Tert could enhance telomerase activity and lengthen telomeres, thereby repairing the DNA damage induced by ROS and promoting CM proliferation in vitro. The in vivo results indicated that enhanced Tert could significantly improve cardiac function and prognosis by alleviating CM DNA damage and promoting angiogenesis post-MI. In terms of mechanism, DNA pulldown assay was used to identify that nuclear ribonucleoprotein A2B1 (hnRNPA2B1) could be an upstream regulator of Tert in CMs. Overexpressed Tert could activate the NF-κB signaling pathway in CMs and bind to the VEGF promoter in the endothelium to increase the VEGF level. Further immunoblotting showed that Tert protected DNA from ROS-induced damage by inhibiting ATM phosphorylation and blocking the Chk1/p53/p21 pathway activation. HnRNPA2B1-activated Tert could repair the ROS-induced telomeric DNA damage to induce the cell cycle re-entry in CMs and enhance the interaction between CMs and endothelium, thus achieving cardiac regenerative repair after MI.
Collapse
Affiliation(s)
- Xiaomin Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yilin Zhou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Enge Shao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Xiaoran Shi
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yeshen Zhang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Jie Sun
- Department of Cardiology, Zhongshan City People's Hospital, Zhongshan, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Wangjun Liao
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Department of Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yanbing Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| |
Collapse
|
6
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Liu Y, McGann CD, Krebs M, Perkins TA, Fields R, Camplisson CK, Nwizugbo DZ, Hsu C, Avanessian SC, Tsue AF, Kania EE, Shechner DM, Beliveau BJ, Schweppe DK. DNA O-MAP uncovers the molecular neighborhoods associated with specific genomic loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604987. [PMID: 39091817 PMCID: PMC11291153 DOI: 10.1101/2024.07.24.604987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The accuracy of crucial nuclear processes such as transcription, replication, and repair, depends on the local composition of chromatin and the regulatory proteins that reside there. Understanding these DNA-protein interactions at the level of specific genomic loci has remained challenging due to technical limitations. Here, we introduce a method termed "DNA O-MAP", which uses programmable peroxidase-conjugated oligonucleotide probes to biotinylate nearby proteins. We show that DNA O-MAP can be coupled with sample multiplexed quantitative proteomics and next-generation sequencing to quantify DNA-protein and DNA-DNA interactions at specific genomic loci.
Collapse
Affiliation(s)
- Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- These authors contributed equally: Yuzhen Liu, Christopher D. McGann
| | - Christopher D. McGann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- These authors contributed equally: Yuzhen Liu, Christopher D. McGann
| | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Thomas A. Perkins
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Conor K. Camplisson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - David Z. Nwizugbo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Chris Hsu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Shayan C. Avanessian
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Ashley F. Tsue
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Evan E. Kania
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - David M. Shechner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Brian J. Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, USA
| |
Collapse
|
8
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2024:10.1007/s12035-024-04316-z. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
10
|
Chen X, Yu B, Wang Z, Zhou Q, Wu Q, He J, Dai C, Li Q, Wei J. Dynamic Transcriptome Analysis of SFRP Family in Guided Bone Regeneration With Occlusive Periosteum in Swine Model. J Craniofac Surg 2024; 35:1432-1437. [PMID: 39042069 DOI: 10.1097/scs.0000000000010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND A variety of congenital or acquired conditions can cause craniomaxillofacial bone defects, resulting in a heavy financial burden and psychological stress. Guided bone self-generation with periosteum-preserved has great potential for reconstructing large bone defects. METHODS A swine model of guided bone regeneration with occlusive periosteum was established, the rib segment was removed, and the periosteum was sutured to form a closed regeneration chamber. Hematoxylin and eosin staining, Masson's staining, and Safranine O-Fast Green staining were done. Nine-time points were chosen for collecting the periosteum and regenerated bone tissue for gene sequencing. The expression level of each secreted frizzled-related protein (SFRP) member and the correlations among them were analyzed. RESULTS The process of bone regeneration is almost complete 1 month after surgery, and up to 1 week after surgery is an important interval for initiating the process. The expression of each SFRP family member fluctuated greatly. The highest expression level of all members ranged from 3 days to 3 months after surgery. The expression level of SFRP2 was the highest, and the difference between 2 groups was the largest. Secreted frizzled-related protein 2 and SFRP4 showed a notable positive correlation between the control and model groups. Secreted frizzled-related protein 1, SFRP2, and SFRP4 had a significant spike in fold change at 1 month postoperatively. Secreted frizzled-related protein 1 and SFRP2 had the strongest correlation. CONCLUSIONS This study revealed the dynamic expression of the SFRP family in guided bone regeneration with occlusive periosteum in a swine model, providing a possibility to advance the clinical application of bone defect repair.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
12
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
14
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Liu F, Wu Y, Zhang B, Yang S, Shang K, Li J, Zhang P, Deng W, Chen L, Zheng L, Gai X, Zhang H. Oncogenic β-catenin-driven liver cancer is susceptible to methotrexate-mediated disruption of nucleotide synthesis. Chin Med J (Engl) 2024; 137:181-189. [PMID: 37612257 PMCID: PMC10798734 DOI: 10.1097/cm9.0000000000002816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for β-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS Constitutive β-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( β-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited β-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on β-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with β-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); β-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of β-catenin mutant liver cancer. RESULTS MTX was identified and validated as a preferential agent against the proliferation and tumor formation of β-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in β-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; β-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION MTX is a promising chemotherapeutic agent for β-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuting Wu
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Yang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kezhuo Shang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Li
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pengju Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weiwei Deng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linlin Chen
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Xiaochen Gai
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
16
|
Wu S, Kou X, Niu Y, Liu Y, Zheng B, Ma J, Liu M, Xue Z. Progress on the mechanism of natural products alleviating androgenetic alopecia. Eur J Med Chem 2024; 264:116022. [PMID: 38086191 DOI: 10.1016/j.ejmech.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/β-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China.
| |
Collapse
|
17
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Co JY, Klein JA, Kang S, Homan KA. Toward Inclusivity in Preclinical Drug Development: A Proposition to Start with Intestinal Organoids. Adv Biol (Weinh) 2023; 7:e2200333. [PMID: 36932900 DOI: 10.1002/adbi.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Indexed: 03/19/2023]
Abstract
Representation of humans from diverse backgrounds in the drug development process is key to advancing health equity, and while clinical trial design has recently made strides toward greater inclusivity, preclinical drug development has struggled to make those same gains. One barrier to inclusion is the current lack of robust and established in vitro model systems that simultaneously capture the complexity of human tissues while representing patient diversity. Here, the use of primary human intestinal organoids as a mechanism to advance inclusive preclinical research is proposed. This in vitro model system not only recapitulates tissue functions and disease states, but also retains the genetic identity and epigenetic signatures of the donors from which they are derived. Thus, intestinal organoids are an ideal in vitro prototype for capturing human diversity. In this perspective, the authors call for an industry-wide effort to leverage intestinal organoids as a starting point to actively and intentionally incorporate diversity into preclinical drug programs.
Collapse
Affiliation(s)
- Julia Y Co
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jessica A Klein
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Serah Kang
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kimberly A Homan
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
19
|
Huang FY, Wong DKH, Mak LY, Cheung TT, Zhang SS, Chau HT, Hui RWH, Seto WK, Yuen MF. FAT4 loss initiates hepatocarcinogenesis through the switching of canonical to noncanonical WNT signaling pathways. Hepatol Commun 2023; 7:e0338. [PMID: 38055646 PMCID: PMC10984662 DOI: 10.1097/hc9.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Mutation and downregulation of FAT atypical cadherin 4 (FAT4) are frequently detected in HCC, suggesting a tumor suppressor role of FAT4. However, the underlying molecular mechanism remains elusive. METHODS CRISPR-Cas9 system was used to knockout FAT4 (FAT4-KO) in a normal human hepatic cell line L02 to investigate the impact of FAT4 loss on the development of HCC. RNA-sequencing and xenograft mouse model were used to study gene expression and tumorigenesis, respectively. The mechanistic basis of FAT4 loss on hepatocarcinogenesis was elucidated using in vitro experiments. RESULTS We found that FAT4-KO disrupted cell-cell adhesion, induced epithelial-mesenchymal transition, and increased expression of extracellular matrix components. FAT4-KO is sufficient for tumor initiation in a xenograft mouse model. RNA-sequencing of FAT4-KO cells identified PAK6-mediated WNT/β-catenin signaling to promote tumor growth. Suppression of PAK6 led to β-catenin shuttling out of the nucleus for ubiquitin-dependent degradation and constrained tumor growth. Further, RNA-sequencing of amassed FAT4-KO cells identified activation of WNT5A and ROR2. The noncanonical WNT5A/ROR2 signaling has no effect on β-catenin and its target genes (CCND1 and c-Myc) expression. Instead, we observed downregulation of receptors for WNT/β-catenin signaling, suggesting the shifting of β-catenin-dependent to β-catenin-independent pathways as tumor progression depends on its receptor expression. Both PAK6 and WNT5A could induce the expression of extracellular matrix glycoprotein, laminin subunit alpha 4. Laminin subunit alpha 4 upregulation in HCC correlated with poor patient survival. CONCLUSIONS Our data show that FAT4 loss is sufficient to drive HCC development through the switching of canonical to noncanonical Wingless-type signaling pathways. The findings may provide a mechanistic basis for an in-depth study of the two pathways in the early and late stages of HCC for precise treatment.
Collapse
Affiliation(s)
- Fung-Yu Huang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Danny Ka-Ho Wong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Sai-Sai Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Hau-Tak Chau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
20
|
Cai Y, Sun H, Song X, Zhao J, Xu D, Liu M. The Wnt/β-catenin signaling pathway inhibits osteoporosis by regulating the expression of TERT: an in vivo and in vitro study. Aging (Albany NY) 2023; 15:11471-11488. [PMID: 37862118 PMCID: PMC10637795 DOI: 10.18632/aging.205136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Our study was performed to investigate whether the Wingless and int-1 (Wnt) signaling pathway promotes osteogenic differentiation and inhibits apoptosis in bone marrow mesenchymal stem cells (BMSCs) by regulating telomerase reverse transcriptase (TERT) expression. An in vivo model of osteoporosis (OP) in C57BL/6J mice by bilateral ovariectomy (OVX) and an in vitro model of H2O2-induced BMSCs were established separately. Western blotting was used to detect the expression of the pathway-related proteins TERT, β-catenin, and phosphorylated-glycogen synthase kinase-3beta (p-GSK3β)/GSK3β, the osteogenic-related markers osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (Runx2), and the apoptosis-related indicators B-cell lymphoma-2 (Bcl-2) and BAX. Osteoblastic phenotypes were also evaluated by alkaline phosphatase (ALP) staining and serum ALP activity assays. Osteogenic differentiation phenotypes in mice were verified by H&E staining, micro-CT, and parameter analysis of the femur. Western blotting results showed that the expression of the pathway-related proteins TERT, β-catenin, p-GSK3β/GSK3β was reduced in OVX mice and H2O2-induced BMSCs, accompanied by downregulated protein expression of osteogenic-related markers and antiapoptotic indicators and upregulated protein expression of apoptotic proteins compared to those in the control group. Mechanistic studies showed that the activation of Wnt signaling pathway in BMSCs promoted β-catenin translocation to the nucleus, as verified by immunofluorescence and facilitated colocalization between β-catenin and TERT, as verified by double-labeling immunofluorescence, thereby promoting osteogenic differentiation and reducing apoptosis. In summary, our experiments confirmed that the GSK3β/β-catenin/TERT pathway could regulate the osteogenic differentiation and apoptosis of BMSCs and that TERT might be a promising target for the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuanqing Cai
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Lvshunkou, Dalian 116044, China
| | - Xingyu Song
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Dong Xu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Xigang, Dalian 116011, China
| |
Collapse
|
21
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
22
|
Alshahrani SH, Rakhimov N, Gupta J, Hassan ZF, Alsalamy A, Saleh EAM, Alsaab HO, Al-Aboudy FK, Alawadi AR, Mustafa YF. The mechanisms, functions and clinical applications of miR-542-3p in human cancers. Pathol Res Pract 2023; 248:154724. [PMID: 37542861 DOI: 10.1016/j.prp.2023.154724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
MicroRNAs, as a major type of noncoding RNAs, have crucial roles in various functions during development. Available data have shown that miR-542-3p decreased in various types of cancers. MiR-542-3p is engaged in various cancer-related behaviors like glycolysis, metastasis, epithelial-to-mesenchymal transition (EMT), cell cycle, apoptosis, and proliferation via targeting at least 18 genes and some important signaling pathways like Wnt/β-catenin, Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Janus kinase 2 (JAK2) signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Current studies have proposed that the level of miR-542-3p could be modulated by several upstream regulators like transcription factors, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the level of miR-542-3p or its related lncRNAs/circRNAs are correlated with poor prognosis and clinicopathological features of cancer-affected patients. Here, we have discussed the biogenesis, function, and regulation of miR-542-3p as well as its aberrant expression in various types of neoplastic cells. Moreover, we have discussed the prognostic value of miR-542-3p in cancer. Finally, we have added the underlying molecular mechanism of miR-542-3p in cancer pathogenesis.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Head of the Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U. P., India.
| | | | - Ali Alsalamy
- Department of Computer Technical engineering, College of Information Technology Imam Ja'afarAl-Sadiq University Al-Muthanna, Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | | | - Ahmed Radhi Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
23
|
Amin A, Morello M, Petrara MR, Rizzo B, Argenton F, De Rossi A, Giunco S. Short-Term TERT Inhibition Impairs Cellular Proliferation via a Telomere Length-Independent Mechanism and Can Be Exploited as a Potential Anticancer Approach. Cancers (Basel) 2023; 15:2673. [PMID: 37345011 DOI: 10.3390/cancers15102673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), the catalytic component of telomerase, may also contribute to carcinogenesis via telomere-length independent mechanisms. Our previous in vitro and in vivo studies demonstrated that short-term telomerase inhibition by BIBR1532 impairs cell proliferation without affecting telomere length. Here, we show that the impaired cell cycle progression following short-term TERT inhibition by BIBR1532 in in vitro models of B-cell lymphoproliferative disorders, i.e., Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines (LCLs), and B-cell malignancies, i.e., Burkitt's lymphoma (BL) cell lines, is characterized by a significant reduction in NF-κB p65 nuclear levels leading to the downregulation of its target gene MYC. MYC downregulation was associated with increased expression and nuclear localization of P21, thus promoting its cell cycle inhibitory function. Consistently, treatment with BIBR1532 in wild-type zebrafish embryos significantly decreased Myc and increased p21 expression. The combination of BIBR1532 with antineoplastic drugs (cyclophosphamide or fludarabine) significantly reduced xenografted cells' proliferation rate compared to monotherapy in the zebrafish xenograft model. Overall, these findings indicate that short-term inhibition of TERT impairs cell growth through the downregulation of MYC via NF-κB signalling and supports the use of TERT inhibitors in combination with antineoplastic drugs as an efficient anticancer strategy.
Collapse
Affiliation(s)
- Aamir Amin
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Raffaella Petrara
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Beatrice Rizzo
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | | | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| |
Collapse
|
24
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
25
|
Buch S, Innes H, Lutz PL, Nischalke HD, Marquardt JU, Fischer J, Weiss KH, Rosendahl J, Marot A, Krawczyk M, Casper M, Lammert F, Eyer F, Vogel A, Marhenke S, von Felden J, Sharma R, Atkinson SR, McQuillin A, Nattermann J, Schafmayer C, Franke A, Strassburg C, Rietschel M, Altmann H, Sulk S, Thangapandi VR, Brosch M, Lackner C, Stauber RE, Canbay A, Link A, Reiberger T, Mandorfer M, Semmler G, Scheiner B, Datz C, Romeo S, Ginanni Corradini S, Irving WL, Morling JR, Guha IN, Barnes E, Ansari MA, Quistrebert J, Valenti L, Müller SA, Morgan MY, Dufour JF, Trebicka J, Berg T, Deltenre P, Mueller S, Hampe J, Stickel F. Genetic variation in TERT modifies the risk of hepatocellular carcinoma in alcohol-related cirrhosis: results from a genome-wide case-control study. Gut 2023; 72:381-391. [PMID: 35788059 PMCID: PMC9872243 DOI: 10.1136/gutjnl-2022-327196] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) often develops in patients with alcohol-related cirrhosis at an annual risk of up to 2.5%. Some host genetic risk factors have been identified but do not account for the majority of the variance in occurrence. This study aimed to identify novel susceptibility loci for the development of HCC in people with alcohol related cirrhosis. DESIGN Patients with alcohol-related cirrhosis and HCC (cases: n=1214) and controls without HCC (n=1866), recruited from Germany, Austria, Switzerland, Italy and the UK, were included in a two-stage genome-wide association study using a case-control design. A validation cohort of 1520 people misusing alcohol but with no evidence of liver disease was included to control for possible association effects with alcohol misuse. Genotyping was performed using the InfiniumGlobal Screening Array (V.24v2, Illumina) and the OmniExpress Array (V.24v1-0a, Illumina). RESULTS Associations with variants rs738409 in PNPLA3 and rs58542926 in TM6SF2 previously associated with an increased risk of HCC in patients with alcohol-related cirrhosis were confirmed at genome-wide significance. A novel locus rs2242652(A) in TERT (telomerase reverse transcriptase) was also associated with a decreased risk of HCC, in the combined meta-analysis, at genome-wide significance (p=6.41×10-9, OR=0.61 (95% CI 0.52 to 0.70). This protective association remained significant after correction for sex, age, body mass index and type 2 diabetes (p=7.94×10-5, OR=0.63 (95% CI 0.50 to 0.79). Carriage of rs2242652(A) in TERT was associated with an increased leucocyte telomere length (p=2.12×10-44). CONCLUSION This study identifies rs2242652 in TERT as a novel protective factor for HCC in patients with alcohol-related cirrhosis.
Collapse
Affiliation(s)
- Stephan Buch
- Department of Medicine I, Dresden University Hospital, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Hamish Innes
- School of Health and Life Sciences, Glasgow Caledonian University School of Health and Life Sciences, Glasgow, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | - Jens U Marquardt
- Department of Medicine I, University of Luebeck Human Medicine, Lubeck, Germany
| | - Janett Fischer
- Department of Gastroenterology and Rheumatology, Section Hepatology, Leipzig University, Leipzig, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine, Krankenhaus Salem, Heidelberg, Germany
| | - Jonas Rosendahl
- Department of Gastroenterology, University Hospital Halle, Halle, Germany
| | - Astrid Marot
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Saarbrucken, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warszawa, Poland
| | - Markus Casper
- Department of Medicine II, Saarland University Medical Center, Saarland University, Saarbrucken, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Saarbrucken, Germany
| | - Florian Eyer
- Department of Clinical Toxicology, Klinikum Rechts der Isar, Technical University of Munich, Munchen, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Johann von Felden
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rohini Sharma
- Hammersmith Hospital Campus, Imperial College, London, UK
| | | | - Andrew McQuillin
- Molecular Psychiatry Laboratory, University College London, London, UK
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Clemens Schafmayer
- Department of General Surgery, Rostock University Medical Center, Rostock, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Heidi Altmann
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
| | - Stefan Sulk
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
| | - Mario Brosch
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
| | | | - Rudolf E Stauber
- Department of Internal Medicine, University of Graz, Graz, Austria
| | - Ali Canbay
- Department of Internal Medicine, Ruhr-Universitat Bochum, Bochum, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke Universitat Magdeburg, Magdeburg, Germany
| | - Thomas Reiberger
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Wien, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Wien, Austria
| | - Georg Semmler
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Wien, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Wien, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefano Ginanni Corradini
- Division of Gastroenterology, Department of Translational and Precision Medicine, University of Rome La Sapienza, Rome, Italy
| | | | - Joanne R Morling
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Indra Neil Guha
- Nottingham Digestive Diseases NIHR Biomedical Research Unit, University Hospital, Nottingham, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jocelyn Quistrebert
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sascha A Müller
- Department of Surgery, Hirslanden Klinik Beau-Site, Bern, Switzerland
| | - Marsha Yvonne Morgan
- Division of Medicine, Royal Free Campus, UCL Institute for Liver and Digestive Health, London, UK
| | | | - Jonel Trebicka
- Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University of Münster, Münster, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig University, Leipzig, Germany
| | - Pierre Deltenre
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sebastian Mueller
- Salem Medical Center, Department of Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Hampe
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
| | - Felix Stickel
- Department of Gatroenterology and Hepatology, University of Zürich, Zürich, Switzerland
- Hirslanden Klinik Beau-Site, Bern, Switzerland
| |
Collapse
|
26
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
27
|
Wu Y, Yang S, Han L, Shang K, Zhang B, Gai X, Deng W, Liu F, Zhang H. β-catenin-IRP2-primed iron availability to mitochondrial metabolism is druggable for active β-catenin-mediated cancer. J Transl Med 2023; 21:50. [PMID: 36703130 PMCID: PMC9879242 DOI: 10.1186/s12967-023-03914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. METHODS High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers. RESULTS Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation. CONCLUSIONS β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.
Collapse
Affiliation(s)
- Yuting Wu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Shuhui Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Luyang Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Kezhuo Shang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Baohui Zhang
- grid.412449.e0000 0000 9678 1884Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Xiaochen Gai
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Weiwei Deng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Fangming Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| |
Collapse
|
28
|
Hasanau TN, Pisarev EP, Kisil OV, Zvereva ME. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. BIOCHEMISTRY (MOSCOW) 2023; 88:S21-S38. [PMID: 37069112 DOI: 10.1134/s000629792314002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.
Collapse
Affiliation(s)
- Tsimur N Hasanau
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eduard P Pisarev
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Kisil
- Gause Institute of New Antibiotics, Moscow, 119021, Russia
| | - Maria E Zvereva
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
29
|
Shang D, Li Z, Tan X, Liu H, Tu Z. Inhibitory effects and molecular mechanisms of ginsenoside Rg1 on the senescence of hematopoietic stem cells. Fundam Clin Pharmacol 2022; 37:509-517. [PMID: 36582074 DOI: 10.1111/fcp.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) produce all blood cell lineages and maintain life-long hematopoiesis. However, the self-renewal ability and differentiation capacity of HSCs reduces with age. The senescence of HSCs can lead to the imbalance of hematopoietic homeostasis and immune disorder and induce a variety of age-related diseases. Recent studies have shown that therapeutic interventions targeting the senescence of HSCs may prevent disease progression. Ginsenoside Rg1 (Rg1), extracted from roots or stems of ginseng, has beneficial antiaging activities. It has been reported that Rg1 can inhibit the senescence of HSCs. Here, we reviewed recent advances of Rg1 in inhibiting the senescence of HSCs and discussed related molecular mechanisms. Bioinformatics and network databases have been widely applied to drug discoveries. Here, we predicted potential antiaging targets of Rg1 explored by bioinformatic methods, which may help discover new targets of Rg1 and provide novel strategies for delaying the aging process of HSCs.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhihuan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoli Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
30
|
Cruz-Pimentel M, Kohly RP. Subretinal drusenoid deposits and bilateral capillary peripheral occlusion in a patient with dyskeratosis congenita. CANADIAN JOURNAL OF OPHTHALMOLOGY 2022; 58:e126-e128. [PMID: 36535381 DOI: 10.1016/j.jcjo.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Miguel Cruz-Pimentel
- Donald K. Johnson Eye Institute, University Health Network, University of Toronto, Toronto, ON
| | - Radha P Kohly
- Kensington Vision and Research Centre and the John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, ON..
| |
Collapse
|
31
|
Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development. Dev Biol 2022; 492:14-24. [PMID: 36162552 DOI: 10.1016/j.ydbio.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The vertebrate nervous system develops from embryonic neural plate and neural crest. Although genetic mechanisms governing vertebrate neural development have been investigated in depth, epigenetic regulation of this process remains less understood. Redundancy of epigenetic factors and early lethality of animals deficient in critical epigenetic components pose major challenges in characterization of epigenetic factors in vertebrate neural development. In this study, we use the amphibian model Xenopus laevis to investigate the roles of non-redundant, obligatory components of all histone H3K4 activating methylation complexes (COMPASS, also known as SET1/MLL complexes) in early neural development. The two genes that we focus on, Ash2l and Dpy30, regulate mesendodermal differentiation in mouse embryonic stem cells and cause early embryonic lethality when removed from mouse embryos. Using targeted knockdown of the genes in dorsal ectoderm of Xenopus that gives rise to future nervous system, we show here that ash2l and dpy30 are required for neural and neural crest marker expression in Xenopus late neurula embryos but are dispensable for early neural and neural plate border gene expression. Co-immunoprecipitation assays reveal that Dpy30 and Ash2L associate with the neural plate border transcription factors, such as Msx1 and Tfap2a. Chromatin immunoprecipitation (ChIP) assay further demonstrates that Ash2L and the H3K4me3 active histone mark accumulate at the promoter regions of the neural crest gene sox10 in a Tfap2a-dependent manner. Collectively, our data suggest that Ash2l and Dpy30 interact with specific transcription factors to recruit COMPASS complexes to the regulatory regions of neural crest specification genes to control their expression and influence development of the nervous system during vertebrate embryogenesis.
Collapse
|
32
|
Liu C, Helsper S, Marzano M, Chen X, Muok L, Esmonde C, Zeng C, Sun L, Grant SC, Li Y. Human Forebrain Organoid-Derived Extracellular Vesicle Labeling with Iron Oxides for In Vitro Magnetic Resonance Imaging. Biomedicines 2022; 10:3060. [PMID: 36551816 PMCID: PMC9775717 DOI: 10.3390/biomedicines10123060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The significant roles of extracellular vesicles (EVs) as intracellular mediators, disease biomarkers, and therapeutic agents, make them a scientific hotspot. In particular, EVs secreted by human stem cells show significance in treating neurological disorders, such as Alzheimer’s disease and ischemic stroke. However, the clinical applications of EVs are limited due to their poor targeting capabilities and low therapeutic efficacies after intravenous administration. Superparamagnetic iron oxide (SPIO) nanoparticles are biocompatible and have been shown to improve the targeting ability of EVs. In particular, ultrasmall SPIO (USPIO, <50 nm) are more suitable for labeling nanoscale EVs due to their small size. In this study, induced forebrain neural progenitor cortical organoids (iNPCo) were differentiated from human induced pluripotent stem cells (iPSCs), and the iNPCo expressed FOXG1, Nkx2.1, α-catenin, as well as β-tubulin III. EVs were isolated from iNPCo media, then loaded with USPIOs by sonication. Size and concentration of EV particles were measured by nanoparticle tracking analysis, and no significant changes were observed in size distribution before and after sonication, but the concentration decreased after labeling. miR-21 and miR-133b decreased after sonication. Magnetic resonance imaging (MRI) demonstrated contrast visualized for the USPIO labeled EVs embedded in agarose gel phantoms. Upon calculation, USPIO labeled EVs exhibited considerably shorter relaxation times, quantified as T2 and T2* values, reducing the signal intensity and generating higher MRI contrast compared to unlabeled EVs and gel only. Our study demonstrated that USPIO labeling was a feasible approach for in vitro tracking of brain organoid-derived EVs, which paves the way for further in vivo examination.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Shannon Helsper
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32310, USA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
33
|
Tornesello ML, Tornesello AL, Starita N, Cerasuolo A, Izzo F, Buonaguro L, Buonaguro FM. Telomerase: a good target in hepatocellular carcinoma? An overview of relevant preclinical data. Expert Opin Ther Targets 2022; 26:767-780. [PMID: 36369706 DOI: 10.1080/14728222.2022.2147062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Cancer Immunoregulation, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| |
Collapse
|
34
|
Ahmad M, Yu J, Cheng S, Khan ZA, Luo Y, Luo H. Chick Early Amniotic Fluid (ceAF) Deters Tumorigenesis via Cell Cycle Arrest and Apoptosis. BIOLOGY 2022; 11:1577. [PMID: 36358278 PMCID: PMC9687777 DOI: 10.3390/biology11111577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023]
Abstract
In recent years, amniotic fluids have gained attention in cancer research. They have an influential role in protecting embryos against several anomalies. Chick early amniotic fluid (ceAF)-amniotic fluid isolated from growing chicken-has been used in many other studies, including myocardial infarctions and skin regeneration. In this study, we employed ceAF's promising therapeutic applications against tumorigenesis in both in vitro and in vivo studies. We selected three robust proliferating tumor cell lines: BCaP37, MCF7, and RKO. We found that selective dosage is required to obtain maximum impact to deter tumorigenesis. ceAF not only disrupted the uniform colonies of tumor cell lines via disturbing mitochondrial transmembrane potential, but also arrested many cells at growing G1 state via working agonistically with aphidicolin. The significant inhibition of tumor metastasis by ceAF was indicated by in vivo models. This leads to apoptosis analysis as verified by annexin-V staining stays and immunoblotting of critical proteins as cell cycle meditators and apoptosis regulators. Not only on the protein level, but we also tested ceAF's therapeutic potentials on mRNA levels as indicated by quantitative real-time PCR summarizing the promising role of ceAF in deterring tumor progression. In conclusion, our study reveals the potent role of ceAF against tumorigenesis in breast cancer and colon carcinoma. Further studies will be required to determine the critical components present in ceAF and its purification to narrow down this study.
Collapse
Affiliation(s)
- Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zara Ahmad Khan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
35
|
Shi Z, Ge X, Li M, Yin J, Wang X, Zhang J, Chen D, Li X, Wang X, Ji J, You Y, Qian X. Argininosuccinate lyase drives activation of mutant TERT promoter in glioblastomas. Mol Cell 2022; 82:3919-3931.e7. [DOI: 10.1016/j.molcel.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
36
|
Lei Z, Chen L, Hu Q, Yang Y, Tong F, Li K, Lin T, Nie Y, Rong H, Yu S, Song Q, Guo J. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. Front Pharmacol 2022; 13:991597. [PMID: 36238549 PMCID: PMC9552198 DOI: 10.3389/fphar.2022.991597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Keying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| |
Collapse
|
37
|
McKinney AM, Mathur R, Stevers NO, Molinaro AM, Chang SM, Phillips JJ, Costello JF. GABP couples oncogene signaling to telomere regulation in TERT promoter mutant cancer. Cell Rep 2022; 40:111344. [PMID: 36130485 PMCID: PMC9534059 DOI: 10.1016/j.celrep.2022.111344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Abstract
Telomerase activation counteracts senescence and telomere erosion caused by uncontrolled proliferation. Epidermal growth factor receptor (EGFR) amplification drives proliferation while telomerase reverse transcriptase promoter (TERTp) mutations underlie telomerase reactivation through recruitment of GA-binding protein (GABP). EGFR amplification and TERTp mutations typically co-occur in glioblastoma, the most common and aggressive primary brain tumor. To determine if these two frequent alterations driving proliferation and immortality are functionally connected, we combine analyses of copy number, mRNA, and protein data from tumor tissue with pharmacologic and genetic perturbations. We demonstrate that proliferation arrest decreases TERT expression in a GABP-dependent manner and elucidate a critical proliferation-to-immortality pathway from EGFR to TERT expression selectively from the mutant TERTp through activation of AMP-mediated kinase (AMPK) and GABP upregulation. EGFR-AMPK signaling promotes telomerase activity and maintains telomere length. These results define how the tumor cell immortality mechanism keeps pace with persistent oncogene signaling and cell cycling. TERT promoter mutations are common in human cancer and confer cellular immortality. McKinney et al. describe the interaction between TERT promoter mutations, EGFR amplification, and the cell cycle in glioblastoma. The results demonstrate how proliferation drivers cooperate with telomere maintenance mechanisms to counteract telomere shortening caused by unlimited cell division.
Collapse
Affiliation(s)
- Andrew M McKinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Glycogen Synthase Kinase 3β inhibits BMSCs Chondrogenesis in Inflammation via the Cross-Reaction between NF-κB and β-Catenin in the Nucleus. Stem Cells Int 2022; 2022:5670403. [PMID: 36132167 PMCID: PMC9484947 DOI: 10.1155/2022/5670403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation can influence the pluripotency and self-renewal of mesenchymal stem cells (MSCs), thereby altering their cartilage regeneration ability. Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (BMSCs) were isolated and found to be defective in differentiation potential in the interleukin-1β- (IL-1β-) induced inflammatory microenvironment. Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase that plays a role in numerous cellular processes. The role of GSK-3β in inflammation may be related to the nuclear factor-κB (NF-κB) signaling pathway and the Wnt/β-catenin signaling pathway, whose mechanism remains unclear. In this study, we found that GSK-3β can inhibit chondrogenesis of IL-1β-impaired BMSCs by disrupting metabolic balance and promoting cell apoptosis. By using the inhibitors LiCl and SN50, we demonstrated that GSK-3β regulates the chondrogenesis via the NF-κB and Wnt/β-catenin signaling pathways and possibly mediates the cross-reaction between NF-κB and β-catenin in the nucleus. Given the molecular mechanisms of GSK-3β in chondrogenic differentiation in inflammation, GSK-3β is a crucial target for the treatment of inflammation-induced cartilage disease.
Collapse
|
39
|
Guan S, Chen X, Chen Y, Xie W, Liang H, Zhu X, Yang Y, Fang W, Huang Y, Zhao H, Zhuang W, Liu S, Huang M, Wang X, Zhang L. FOXM1 Variant Contributes to Gefitinib Resistance via Activating Wnt/β-Catenin Signal Pathway in Patients with Non-Small Cell Lung Cancer. Clin Cancer Res 2022; 28:3770-3784. [PMID: 35695863 DOI: 10.1158/1078-0432.ccr-22-0791] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Although gefitinib prolonged the progression-free survival (PFS) of patients with non-small cell lung cancer (NSCLC), unpredictable resistance limited its clinical efficacy. Novel predictive biomarkers with explicit mechanisms are urgently needed. EXPERIMENTAL DESIGN A total of 282 patients with NSCLC with gefitinib treatment were randomly assigned in a 7:3 ratio to exploratory (n = 192) and validation (n = 90) cohorts. The candidate polymorphisms were selected with Haploview4.2 in Hapmap and genotyped by a MassARRAY system, and the feature variables were identified through Randomforest Survival analysis. Tanswell and clonogenic assays, base editing and cell-derived tumor xenograft model were performed to uncover the underlying mechanism. RESULTS We found that the germline missense polymorphism rs3742076 (A>G, S628P), located in transactivation domain of FOXM1, was associated with PFS in exploratory (median PFS: GG vs. GA&AA, 9.20 vs. 13.37 months, P = 0.00039, HR = 2.399) and validation (median PFS: GG vs. GA&AA, 8.13 vs. 13.80 months, P = 0.048, HR = 2.628) cohorts. We elucidated that rs3742076_G conferred resistance to gefitinib by increasing protein stability of FOXM1 and facilitating an aggressive phenotype in vitro and in vivo through activating wnt/β-catenin signaling pathway. Meanwhile, FOXM1 level was highly associated with prognosis in patients with EGFR-mutant NSCLC. Mechanistically, FOXM1 rs3742076_G upregulated wnt/β-catenin activity by directly binding to β-catenin in cytoplasm and promoting transcription of β-catenin in nucleus. Remarkably, inhibition of β-catenin markedly reversed rs3742076_G-induced gefitinib resistance and aggressive phenotypes. CONCLUSIONS These findings characterized rs3742076_G as a gain-of-function polymorphism in mediating gefitinib resistance and tumor aggressiveness, and highlighted the variant as a predictive biomarker in guiding gefitinib treatment.
Collapse
Affiliation(s)
- Shaoxing Guan
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Xi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Youhao Chen
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Wen Xie
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Heng Liang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Xia Zhu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei Zhuang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Shu Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Xueding Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangzhou, P. R. China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
40
|
Seibt K, Ghaffari M, Scheu T, Koch C, Sauerwein H. Effects of different feeding levels during a 14-week preweaning phase in dairy heifer calves on telomere length and mitochondrial DNA copy number in blood. J Dairy Sci 2022; 105:8509-8522. [DOI: 10.3168/jds.2022-21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
|
41
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
42
|
Chen F, Sun F, Liu X, Shao J, Zhang B. Glaucocalyxin A Inhibits the Malignant Progression of Epithelial Ovarian Cancer by Affecting the MicroRNA-374b-5p/HMGB3/Wnt-β-Catenin Pathway Axis. Front Oncol 2022; 12:955830. [PMID: 35912216 PMCID: PMC9329791 DOI: 10.3389/fonc.2022.955830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Glaucocalyxin A (GLA) is an ent-kaurene diterpenoid from Rabdosia japonica var possessing anti-tumor activity. This study aimed to investigate effects of GLA on epithelial ovarian cancer (EOC) and elucidate underlying mechanisms. Methods The expression of HMGB3 in EOC tissues was analyzed by GEPIA and immunohistochemistry. Cell proliferation was determined using CCK-8 and colony formation assays. Cell invasion, migration, and apoptosis were detected using Transwell, wound healing, and flow cytometry assays, respectively. Interactions between HMGB3 and miRNAs were predicted using ENCORI and validated using a dual-luciferase assay. mRNA expression levels of HMGB3 and miRNAs were measured using qPCR. Protein expression levels of HMGB3, E-cadherin, N-cadherin, Wnt3a,β-catenin, Bcl-2, and Bax were measured by western blotting. A tumor xenograft model was established to validate the efficacy and mechanism of GLA in vivo. Results HMGB3 was upregulated in EOC tissues and cells. GLA dose-dependently inhibited EOC cell proliferation and epithelial-mesenchymal transition (EMT). HMGB3 overexpression promoted proliferation, invasion, migration, and EMT, and suppressed the apoptosis of EOC cells. In addition, miR-374b-5p was targeted by HMGB3, and its overexpression hindered malignant characteristics of EOC cells. HMGB3 overexpression weakened antitumor effects of GLA and miR-374b-5p in EOC cells. Moreover, the Wnt-β-catenin pathway was inhibited by the GLA-mediated miR-374b-5p/HMGB3 axis. In vivo experiments showed that GLA inhibited EOC tumor growth, meanwhile, upregulated the miR-374b-5p level and downregulated the expression of HMGB3, Wnt3a, and β-catenin in tumor tissues. Conclusions GLA suppressed the malignant progression of EOC by regulating the miR-374b-5p/HMGB3/Wnt-β-catenin pathway axis.
Collapse
Affiliation(s)
- Feng Chen
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Fang Sun
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Xia Liu
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, China
| | - Jing Shao
- Department of Clinical Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Bei Zhang
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
- *Correspondence: Bei Zhang,
| |
Collapse
|
43
|
Maloberti T, De Leo A, Sanza V, Gruppioni E, Altimari A, Riefolo M, Visani M, Malvi D, D’Errico A, Tallini G, Vasuri F, de Biase D. Correlation of molecular alterations with pathological features in hepatocellular carcinoma: Literature review and experience of an Italian center. World J Gastroenterol 2022; 28:2854-2866. [PMID: 35978866 PMCID: PMC9280731 DOI: 10.3748/wjg.v28.i25.2854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/23/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the primary carcinoma of the liver and the fourth leading cause of cancer-related deaths. The World Health Organization estimates an increase in cases in the coming years. The risk factors of HCC are multiple, and the incidence in different countries is closely related to the different risk factors to which the population is exposed. The molecular mechanisms that drive HCC tumorigenesis are extremely complex, but understanding this multistep process is essential for the identification of diagnostic, prognostic, and therapeutic markers. The development of multigenic next-generation sequencing panels through the parallel analysis of multiple markers can provide a landscape of the genomic status of the tumor. Considering the literature and our preliminary data based on 36 HCCs, the most frequently altered genes in HCCs are TERT, CTNNB1, and TP53. Over the years, many groups have attempted to classify HCCs on a molecular basis, but a univocal classification has never been achieved. Nevertheless, statistically significant correlations have been found in HCCs between the molecular signature and morphologic features, and this leads us to think that it would be desirable to integrate the approach between anatomic pathology and molecular laboratories.
Collapse
Affiliation(s)
- Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Viviana Sanza
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Mattia Riefolo
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
| | - Deborah Malvi
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Antonia D’Errico
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Francesco Vasuri
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Dario de Biase
- Department of Pharmacy and biotechnology (FaBiT), University of Bologna, Bologna 40138, Italy
| |
Collapse
|
44
|
Fernandez RJ, Gardner ZJG, Slovik KJ, Liberti DC, Estep KN, Yang W, Chen Q, Santini GT, Perez JV, Root S, Bhatia R, Tobias JW, Babu A, Morley MP, Frank DB, Morrisey EE, Lengner CJ, Johnson FB. GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells. eLife 2022; 11:64430. [PMID: 35559731 PMCID: PMC9200405 DOI: 10.7554/elife.64430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Zachary J G Gardner
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Katherine J Slovik
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Derek C Liberti
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Katrina N Estep
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Garrett T Santini
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Javier V Perez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sarah Root
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Philadelphia, United States
| | - Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, United States
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Edward E Morrisey
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
45
|
Histone Modification on Parathyroid Tumors: A Review of Epigenetics. Int J Mol Sci 2022; 23:ijms23105378. [PMID: 35628190 PMCID: PMC9140881 DOI: 10.3390/ijms23105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
Parathyroid tumors are very prevalent conditions among endocrine tumors, being the second most common behind thyroid tumors. Secondary hyperplasia can occur beyond benign and malignant neoplasia in parathyroid glands. Adenomas are the leading cause of hyperparathyroidism, while carcinomas represent less than 1% of the cases. Tumor suppressor gene mutations such as MEN1 and CDC73 were demonstrated to be involved in tumor development in both familiar and sporadic types; however, the epigenetic features of the parathyroid tumors are still a little-explored subject. We present a review of epigenetic mechanisms related to parathyroid tumors, emphasizing advances in histone modification and its perspective of becoming a promising area in parathyroid tumor research.
Collapse
|
46
|
KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis 2022; 13:435. [PMID: 35508454 PMCID: PMC9068714 DOI: 10.1038/s41419-022-04886-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) was considered as a telomere-mediated disease. TERT and TERC correlated with telomere length. Although telomerase gene mutations were associated with IPF, majority patients did not carry mutations. The mechanism by which telomerase expression was regulated in IPF are still unclear. In this study, we aimed to delineate the mechanisms that how TERT protein expression were regulated in alveolar epithelial cells (AECs) in pulmonary fibrosis. Here, we found that P16, P21 and fibrosis markers (αSMA and Collagen-I) were prominently increased in lung tissues of IPF patients and bleomycin-induced mouse models, while the expression of KLF4 and TERT were decreased in AECs. In vivo experiments, AAV-6 vectors mediated KLF4 over-expression with specific SP-C promoter was constructed. Over-expression of KLF4 in AECs could protect TERT expression and suppress the development of pulmonary fibrosis in bleomycin-induced mouse models. In the mechanism exploration of TERT regulation, KLF4 and TERT were both down-regulated in bleomycin-induced senescent MLE-12 and BEAS-2B cells. Compared with control group, small-interfering RNA targeting KLF4 significantly reduced the TERT expression and telomerase activity, while overexpression of KLF4 can increased the expression of TERT and telomerase activity in senescent AECs. Furthermore, ChIP showed that KLF4 protein could bind to the TERT promoter region in MLE-12 cells, suggesting that KLF4 could implicate in pathogenesis of lung fibrosis through regulating TERT transcription in AECs. Taken together, this study identified that KLF4 might be a promising potential target for further understanding the mechanism and developing novel strategy for the treatment of lung fibrosis in IPF.
Collapse
|
47
|
Yuan H, Wu Y, Wang J, Qin X, Huang Y, Yan L, Fana Y, Zedenius J, Juhlin CC, Larsson C, Lui WO, Xu D. Synergistic effects of telomerase reverse transcriptase and regulator of telomere elongation helicase 1 on aggressiveness and outcomes in adrenocortical carcinoma. Biomed Pharmacother 2022; 149:112796. [PMID: 35279598 DOI: 10.1016/j.biopha.2022.112796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is one of the deadliest endocrine malignancies and telomere maintenance by activated telomerase is critically required for ACC development and progression. Because telomerase reverse transcriptase (TERT) and regulator of telomere elongation helicase 1 (RTEL1) play key roles in telomere homeostasis, we determined their effect on ACC pathogenesis and outcomes. Analyses of TCGA and GEO datasets showed significantly higher expression of RTEL1 but not TERT in ACC tumors, compared to their benign or normal counterparts. Furthermore, gains/amplifications of both TERT and RTEL1 genes were widespread in ACC tumors and their expression correlated with their gene copy numbers. Higher expression of either TERT or RTEL1 was associated with shorter overall and progression-free survival (OS and PFS) in the TCGA ACC patient cohort, and higher levels of both TERT and RTEL1 mRNA predicted the shortest patient OS and PFS. However, multivariate analyses showed that only RTEL1 independently predicted patient OS and PFS. Gene set enrichment analysis further showed enrichments of wnt/β-catenin, MYC, glycolysis, MTOR, and DNA repair signaling pathways in ACC tumors expressing high TERT and RTEL1 mRNA levels. Taken together, TERT and RTEL1 promote ACC aggressiveness synergistically and may serve as prognostic factors and therapeutic targets for ACC.
Collapse
Affiliation(s)
- Huiyang Yuan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yujiao Wu
- Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden
| | - Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Xin Qin
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yongsheng Huang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Yidong Fana
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden.
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden
| | - C Christofer Juhlin
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden; Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Bioclinicum, Stockholm SE-171 64, Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 64, Sweden.
| |
Collapse
|
48
|
Chu CY, Wang R, Liu XL. Roles of Wnt/β-catenin signaling pathway related microRNAs in esophageal cancer. World J Clin Cases 2022; 10:2678-2686. [PMID: 35434118 PMCID: PMC8968815 DOI: 10.12998/wjcc.v10.i9.2678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded small RNAs that regulate expression of tumor suppressor genes and oncogenes and are involved in almost all tumor-related processes. MiRNA dysregulation plays an important role in the occurrence and development of esophageal cancer through specific signal pathways, including the Wnt/β-catenin signaling pathway, and is closely related to the malignant characteristics of esophageal cancer. The interaction between miRNAs and the Wnt/β-catenin signaling pathway, which is specifically expressed in esophageal cancer tissues, shows potential as a new biomarker and therapeutic target. This article reviews the role of miRNAs related to the Wnt pathway in the carcinogenesis of esophageal carcinoma and its role in Wnt signal transduction. The content of this review can be used as the basis for formulating or improving the treatment strategy of esophageal cancer.
Collapse
Affiliation(s)
- Chao-Yang Chu
- Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Rui Wang
- Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Xian-Li Liu
- Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| |
Collapse
|
49
|
Liu H, Zhang Z, Song L, Gao J, Liu Y. Lipid metabolism of cancer stem cells (Review). Oncol Lett 2022; 23:119. [PMID: 35261633 PMCID: PMC8855159 DOI: 10.3892/ol.2022.13239] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSCs), also termed cancer-initiating cells, are a special subset of cells with high self-replicating and self-renewing abilities that can differentiate into various cell types under certain conditions. A number of studies have demonstrated that CSCs have distinct metabolic properties. The reprogramming of energy metabolism enables CSCs to meet the needs of self-renewal and stemness maintenance. Increasing evidence supports the view that alterations in lipid metabolism, including an increase in fatty acid (FA) uptake, de novo lipogenesis, formation of lipid droplets and mitochondrial FA oxidation, are involved in CSC regulation. In the present review, the metabolic characteristics of CSCs, particularly in lipid metabolism, were summarized. In addition, the potential mechanisms of CSC lipid metabolism in treatment resistance were discussed. Given their significance in cancer biology, targeting CSC metabolism may serve an important role in future cancer treatment.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhengyang Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lian Song
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jie Gao
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yanfang Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
50
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|