1
|
Zhou L, Jiang L, Li L, Ma C, Xia P, Ding W, Liu Y. A germline-to-soma signal triggers an age-related decline of mitochondrial stress response. Nat Commun 2024; 15:8723. [PMID: 39379393 PMCID: PMC11461804 DOI: 10.1038/s41467-024-53064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
The abilities of an organism to cope with extrinsic stresses and activate cellular stress responses decline during aging. The signals that modulate stress responses in aged animals remain to be elucidated. Here, we discover that feeding Caenorhabditis elegans (C. elegans) embryo lysates to adult worms enabled the animals to activate the mitochondrial unfolded protein response (UPRmt) upon mitochondrial perturbations. This discovery led to subsequent investigations that unveil a hedgehog-like signal that is transmitted from the germline to the soma in adults to inhibit UPRmt in somatic tissues. Additionally, we find that the levels of germline-expressed piRNAs in adult animals markedly decreased. This reduction in piRNA levels coincides with the production and secretion of a hedgehog-like signal and suppression of the UPRmt in somatic cells. Building upon existing research, our study further elucidates the intricate mechanisms of germline-to-soma signaling and its role in modulating the trade-offs between reproduction and somatic maintenance within the context of organismal aging.
Collapse
Affiliation(s)
- Liankui Zhou
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Liu Jiang
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Lan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Chengchuan Ma
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Peixue Xia
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Wanqiu Ding
- Bioinformatics Core Facility, College of Future Technology, Peking University, 100871, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
2
|
Ortega J, Wahba L, Seemann J, Chen SY, Fire AZ, Arur S. Pachytene piRNAs control discrete meiotic events during spermatogenesis and restrict gene expression in space and time. SCIENCE ADVANCES 2024; 10:eadp0466. [PMID: 39356768 PMCID: PMC11446278 DOI: 10.1126/sciadv.adp0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Pachytene piRNAs, a Piwi-interacting RNA subclass in mammals, are hypothesized to regulate non-transposon sequences during spermatogenesis. Caenorhabditis elegans piRNAs, the 21URNAs, are implicated in regulating coding sequences; the messenger RNA targets and biological processes they control during spermatogenesis are largely unknown. We demonstrate that loss of 21URNAs compromises homolog pairing and makes it permissive for nonhomologous synapsis resulting in defects in crossover formation and chromosome segregation during spermatogenesis. We identify Polo-like kinase 3 (PLK-3), among others, as a 21URNA target. 21URNA activity restricts PLK-3 protein to proliferative cells, and expansion of PLK-3 in pachytene overlaps with the meiotic defects. Removal of plk-3 results in quantitative genetic suppression of the meiotic defects. One discrete 21URNA inhibits PLK-3 expression in late pachytene cells. Together, these results suggest that the 21URNAs function as pachytene piRNAs during C. elegans spermatogenesis. We identify their targets and meiotic events and highlight the remarkable intricacy of this multi-effector mechanism during spermatogenesis.
Collapse
Affiliation(s)
- Jacob Ortega
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Laboratory of Non-canonical Modes of Inheritance, Rockefeller University, New York, NY 10065, USA
| | - Jacob Seemann
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Z. Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Swathi Arur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhao C, Cai S, Shi R, Li X, Deng B, Li R, Yang S, Huang J, Liang Y, Lu P, Yuan Z, Jia H, Jiang Z, Zhang X, Kennedy S, Wan G. HERD-1 mediates multiphase condensate immiscibility to regulate small RNA-driven transgenerational epigenetic inheritance. Nat Cell Biol 2024:10.1038/s41556-024-01514-8. [PMID: 39354132 DOI: 10.1038/s41556-024-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate's proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans.
Collapse
Affiliation(s)
- Changfeng Zhao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xinru Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boyuan Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuhan Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonglin Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pu Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongping Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haoxiang Jia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zongjin Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Mendoza H, Jash E, Davis MB, Haines RA, Van Diepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615038. [PMID: 39386440 PMCID: PMC11463658 DOI: 10.1101/2024.09.25.615038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA interference is a conserved silencing mechanism that depends on the generation of small RNA molecules that disrupt synthesis of their corresponding transcripts. Nuclear RNA interference is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation, a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes from the perspective of the transcriptome. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during dosage compensation but the consequences on their transcriptional output are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their native targets through different modes of regulation and different relationships to H3K9 methylation. ARTICLE SUMMARY This study examines the transcriptional consequences during the disruption of the nuclear RNAi silencing mechanism in C. elegans . Through microscopy and bioinformatic work, we demonstrate that although nuclear RNAi mutants exhibit significantly decondensed X chromosomes, chromosome-wide transcriptional de-repression is not detectable. Downstream analyses further explore the global influence of the nuclear RNAi pathway, indicating that the nuclear Argonautes HRDE-1 and NRDE-3 function through two distinct mechanisms.
Collapse
|
5
|
Du L, Chen W, Zhang D, Cui Y, He Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol Life Sci 2024; 81:379. [PMID: 39222270 PMCID: PMC11369131 DOI: 10.1007/s00018-024-05399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.
Collapse
Affiliation(s)
- Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Dong Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates K, Huberdeau MQ, Abbott A, Simard M. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals. Nucleic Acids Res 2024; 52:5002-5015. [PMID: 38477356 PMCID: PMC11109967 DOI: 10.1093/nar/gkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
Affiliation(s)
- Anisha Pal
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Vaishnav Vasudevan
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Michael Lantin
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Katherine A Maniates
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, USA
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
8
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala R, Yu G, Benner LK, Joshua-Tor L, McJunkin K. Catalytic residues of microRNA Argonautes play a modest role in microRNA star strand destabilization in C. elegans. Nucleic Acids Res 2024; 52:4985-5001. [PMID: 38471816 PMCID: PMC11109956 DOI: 10.1093/nar/gkae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Durkan A, Koup A, Bell SE, Lyczak R. Loss of the puromycin-sensitive aminopeptidase, PAM-1, triggers the spindle assembly checkpoint during the first mitotic division in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001167. [PMID: 38633870 PMCID: PMC11022077 DOI: 10.17912/micropub.biology.001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024]
Abstract
Puromycin-sensitive aminopeptidases have long been implicated in cell-cycle regulation, but the mechanism remains unknown. Here we show that mutations in the gene encoding the C. elegans puromycin-sensitive aminopeptidase, PAM-1 , cause chromosome segregation defects and an elongated mitosis in the one-cell embryo. Depleting a known regulator of the spindle assembly checkpoint (SAC), MDF-2 (MAD2 in humans), restores normal mitotic timing to pam-1 mutants but exacerbates the chromosome segregation defects. Thus, PAM-1 is required for proper attachment of chromosomes to the mitotic spindle and its absence triggers the SAC.
Collapse
Affiliation(s)
- Aidan Durkan
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Annalise Koup
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Sarah E. Bell
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Rebecca Lyczak
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| |
Collapse
|
10
|
Pliota P, Marvanova H, Koreshova A, Kaufman Y, Tikanova P, Krogull D, Hagmüller A, Widen SA, Handler D, Gokcezade J, Duchek P, Brennecke J, Ben-David E, Burga A. Selfish conflict underlies RNA-mediated parent-of-origin effects. Nature 2024; 628:122-129. [PMID: 38448590 PMCID: PMC10990930 DOI: 10.1038/s41586-024-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.
Collapse
Affiliation(s)
- Pinelopi Pliota
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Hana Marvanova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alevtina Koreshova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Yotam Kaufman
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Tikanova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Daniel Krogull
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Andreas Hagmüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Sonya A Widen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Joseph Gokcezade
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Eyal Ben-David
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
11
|
Zhang G, Zheng C, Ding YH, Mello C. Casein kinase II promotes piRNA production through direct phosphorylation of USTC component TOFU-4. Nat Commun 2024; 15:2727. [PMID: 38548791 PMCID: PMC10978872 DOI: 10.1038/s41467-024-46882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are genomically encoded small RNAs that engage Piwi Argonaute proteins to direct mRNA surveillance and transposon silencing. Despite advances in understanding piRNA pathways and functions, how the production of piRNA is regulated remains elusive. Here, using a genetic screen, we identify casein kinase II (CK2) as a factor required for piRNA pathway function. We show that CK2 is required for the localization of PRG-1 and for the proper localization of several factors that comprise the 'upstream sequence transcription complex' (USTC), which is required for piRNA transcription. Loss of CK2 impairs piRNA levels suggesting that CK2 promotes USTC function. We identify the USTC component twenty-one-U fouled-up 4 (TOFU-4) as a direct substrate for CK2. Our findings suggest that phosphorylation of TOFU-4 by CK2 promotes the assembly of USTC and piRNA transcription. Notably, during the aging process, CK2 activity declines, resulting in the disassembly of USTC, decreased piRNA production, and defects in piRNA-mediated gene silencing, including transposons silencing. These findings highlight the significance of posttranslational modification in regulating piRNA biogenesis and its implications for the aging process. Overall, our study provides compelling evidence for the involvement of a posttranslational modification mechanism in the regulation of piRNA biogenesis.
Collapse
Affiliation(s)
- Gangming Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Craig Mello
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Howard Hughes Medical Institute, Worcester, MA, 01605, USA.
| |
Collapse
|
12
|
Pastore B, Hertz HL, Tang W. Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA polymerase. Cell Rep 2024; 43:113692. [PMID: 38244197 PMCID: PMC10949418 DOI: 10.1016/j.celrep.2024.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The Piwi/Piwi-interacting RNA (piRNA) pathway protects genome integrity in animal germ lines. Maturation of piRNAs involves nucleolytic processing at both 5' and 3' ends. The ribonuclease PARN-1 and its orthologs mediate piRNA 3' trimming in worms, insects, and mammals. However, the significance of this evolutionarily conserved processing step is not fully understood. Employing C. elegans as a model, we recently discovered that 3' trimming protects piRNAs against non-templated nucleotide additions and degradation. Here, we find that worms lacking PARN-1 accumulate an uncharacterized RNA species termed anti-piRNAs, which are antisense to piRNAs. Anti-piRNAs associate with Piwi proteins, are 17-19 nucleotides long, and begin with 5' guanine or adenine. Untrimmed pre-piRNAs are misdirected by the terminal nucleotidyltransferase RDE-3 and RNA-dependent RNA polymerase EGO-1, leading to the formation of anti-piRNAs. This work identifies a class of small RNAs in parn-1 mutants and provides insight into the activities of RDE-3, EGO-1, and Piwi proteins.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Mazzetto M, Gonzalez LE, Sanchez N, Reinke V. Characterization of the distribution and dynamics of chromatin states in the C. elegans germline reveals substantial H3K4me3 remodeling during oogenesis. Genome Res 2024; 34:57-69. [PMID: 38164610 PMCID: PMC10903938 DOI: 10.1101/gr.278247.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.
Collapse
Affiliation(s)
| | - Lauren E Gonzalez
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Nancy Sanchez
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
14
|
Chen S, Phillips CM. HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1. Nat Commun 2024; 15:957. [PMID: 38302462 PMCID: PMC10834429 DOI: 10.1038/s41467-024-45245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
RNA interference (RNAi) is a conserved gene silencing process that exists in diverse organisms to protect genome integrity and regulate gene expression. In C. elegans, the majority of RNAi pathway proteins localize to perinuclear, phase-separated germ granules, which are comprised of sub-domains referred to as P granules, Mutator foci, Z granules, and SIMR foci. However, the protein components and function of the newly discovered SIMR foci are unknown. Here we demonstrate that HRDE-2 localizes to SIMR foci and interacts with the germline nuclear Argonaute HRDE-1 in its small RNA unbound state. In the absence of HRDE-2, HRDE-1 exclusively loads CSR-class 22G-RNAs rather than WAGO-class 22G-RNAs, resulting in inappropriate H3K9me3 deposition on CSR-target genes. Thus, our study demonstrates that the recruitment of unloaded HRDE-1 to germ granules, mediated by HRDE-2, is critical to ensure that the correct small RNAs are used to guide nuclear RNA silencing in the C. elegans germline.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
15
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates KA, Quevillon Huberdeau M, Abbott A, Simard MJ. Defining the contribution of microRNA-specific slicing Argonautes in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524781. [PMID: 36711744 PMCID: PMC9882343 DOI: 10.1101/2023.01.19.524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein family member. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicing activity in the canonical microRNA pathway is still unclear in animals. To address the importance of slicing Argonautes in animals, we created Caenorhabditis elegans strains, carrying catalytically dead endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the loss of ALG-1 and ALG-2 slicing activity affects overall animal fitness and causes phenotypes, reminiscent of miRNA defects, only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the catalytic activity of ALG-1 and ALG-2 differentially regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the slicing activity of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicing activity of miRNA-specific Argonautes function to maintain the levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
|
16
|
Uebel CJ, Rajeev S, Phillips CM. Caenorhabditis elegans germ granules are present in distinct configurations and assemble in a hierarchical manner. Development 2023; 150:dev202284. [PMID: 38009921 PMCID: PMC10753583 DOI: 10.1242/dev.202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
RNA silencing pathways are complex, highly conserved, and perform crucial regulatory roles. In Caenorhabditis elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments - P granules, Z granules, SIMR foci, and Mutator foci - multiple of which form via phase separation. Although the functions of individual germ granule proteins have been extensively studied, the relationships between germ granule compartments (collectively, 'nuage') are less understood. We find that key germ granule proteins assemble into separate but adjacent condensates, and that boundaries between germ granule compartments re-establish after perturbation. We discover a toroidal P granule morphology, which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization, providing broad implications for the trajectory of an RNA as it exits the nucleus. Moreover, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that assemble in a hierarchical manner and differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Our work creates a more accurate model of C. elegans nuage and informs the conceptualization of RNA silencing through the germ granule compartments.
Collapse
Affiliation(s)
- Celja J. Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sanjana Rajeev
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M. Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
Huang X, Wang C, Zhang T, Li R, Chen L, Leung KL, Lakso M, Zhou Q, Zhang H, Wong G. PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease. Nat Commun 2023; 14:6137. [PMID: 37783675 PMCID: PMC10545829 DOI: 10.1038/s41467-023-41881-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that regulate gene expression, yet their molecular functions in neurobiology are unclear. While investigating neurodegeneration mechanisms using human α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg pan-neuronal overexpressing strains, we unexpectedly observed dysregulation of piRNAs. RNAi screening revealed that knock down of piRNA biogenesis genes improved thrashing behavior; further, a tofu-1 gene deletion ameliorated phenotypic deficits in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg transgenic strains. piRNA expression was extensively downregulated and H3K9me3 marks were decreased after tofu-1 deletion in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg strains. Dysregulated piRNAs targeted protein degradation genes suggesting that a decrease of piRNA expression leads to an increase of degradation ability in C. elegans. Finally, we interrogated piRNA expression in brain samples from PD patients. piRNAs were observed to be widely overexpressed at late motor stage. In this work, our results provide evidence that piRNAs are mediators in pathogenesis of Lewy body diseases and suggest a molecular mechanism for neurodegeneration in these and related disorders.
Collapse
Affiliation(s)
- Xiaobing Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Changliang Wang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510799, China
| | - Tianjiao Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Rongzhen Li
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China
| | - Ka Lai Leung
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Merja Lakso
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Qinghua Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Hongjie Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Garry Wong
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China.
| |
Collapse
|
18
|
Podvalnaya N, Bronkhorst AW, Lichtenberger R, Hellmann S, Nischwitz E, Falk T, Karaulanov E, Butter F, Falk S, Ketting RF. piRNA processing by a trimeric Schlafen-domain nuclease. Nature 2023; 622:402-409. [PMID: 37758951 PMCID: PMC10567574 DOI: 10.1038/s41586-023-06588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.
Collapse
Affiliation(s)
- Nadezda Podvalnaya
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Alfred W Bronkhorst
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Svenja Hellmann
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Emily Nischwitz
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
- Quantitative Proteomics group, Institute of Molecular Biology, Mainz, Germany
| | - Torben Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Falk Butter
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - René F Ketting
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany.
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
19
|
Pastore B, Hertz HL, Tang W. Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA Polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559619. [PMID: 37808652 PMCID: PMC10557677 DOI: 10.1101/2023.09.26.559619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In animal germ lines, The Piwi/piRNA pathway plays a crucial role in safeguarding genome integrity and promoting fertility. Following transcription from discrete genomic loci, piRNA precursors undergo nucleolytic processing at both 5' and 3' ends. The ribonuclease PARN-1 and its orthologs mediate piRNA 3' trimming in worms, insects and mammals. Yet, the significance of this evolutionarily conserved processing step is not well understood. Employing C. elegans as a model organism, our recent work has demonstrated that 3' trimming protects piRNAs against non-templated nucleotide additions and degradation. In this study, we present an unexpected finding that C. elegans deficient for PARN-1 accumulate a heretofore uncharacterized RNA species termed anti-piRNAs, which are antisense to piRNAs. These anti-piRNAs associate with Piwi proteins and display the propensity for a length of 17-19 nucleotides and 5' guanine and adenine residues. We show that untrimmed pre-piRNAs in parn-1 mutants are modified by the terminal nucleotidyltransferase RDE-3 and erroneously targeted by the RNA-dependent RNA polymerase EGO-1, thereby giving rise to anti-piRNAs. Taken together, our work identifies a previously unknown class of small RNAs upon loss of parn-1 and provides mechanistic insight to activities of RDE-3, EGO-1 and Piwi proteins.
Collapse
|
20
|
Price IF, Wagner JA, Pastore B, Hertz HL, Tang W. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun 2023; 14:5965. [PMID: 37749091 PMCID: PMC10520050 DOI: 10.1038/s41467-023-41556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Germ granules are membrane-less organelles essential for small RNA biogenesis and germline development. Among the conserved properties of germ granules is their association with the nuclear membrane. Recent studies demonstrated that LOTUS domain proteins, EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2 respectively), promote the formation of perinuclear germ granules in C. elegans. This finding presents a unique opportunity to evaluate the significance of perinuclear localization of germ granules. Here we show that loss of eggd-1 causes the coalescence of germ granules and formation of abnormal cytoplasmic aggregates. Impairment of perinuclear granules affects certain germline classes of small RNAs including Piwi-interacting RNAs. Transcriptome profiling reveals overexpression of spermatogenic and cuticle-related genes in eggd-1 hermaphrodites. We further demonstrate that disruption of germ granules activates HLH-30-mediated transcriptional program in somatic tissues. Collectively, our findings underscore the essential role of EGGD-1 in germ granule organization and reveal an unexpected germ granule-to-soma communication.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian A Wagner
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
van Wolfswinkel JC. Insights in piRNA targeting rules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1811. [PMID: 37632327 PMCID: PMC10895071 DOI: 10.1002/wrna.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Center for Stem Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for RNA Biology and Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Brown JS, Zhang D, Gaylord O, Chen W, Lee HC. Sensitized piRNA reporter identifies multiple RNA processing factors involved in piRNA-mediated gene silencing. Genetics 2023; 224:iyad095. [PMID: 37210214 PMCID: PMC10691750 DOI: 10.1093/genetics/iyad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
Metazoans guard their germlines against transposons and other foreign transcripts with PIWI-interacting RNAs (piRNAs). Due to the robust heritability of the silencing initiated by piRNAs in Caenorhabditis elegans (C. elegans), previous screens using C. elegans were strongly biased to uncover members of this pathway in the maintenance process but not in the initiation process. To identify novel piRNA pathway members, we have utilized a sensitized reporter strain which detects defects in initiation, amplification, or regulation of piRNA silencing. Using our reporter, we have identified Integrator complex subunits, nuclear pore components, protein import components, and pre-mRNA splicing factors as essential for piRNA-mediated gene silencing. We found the small nuclear processing cellular machine termed the Integrator complex is required for both type I and type II piRNA production. Notably, we identified a role for nuclear pore and nucleolar components NPP-1/Nup54, NPP-6/Nup160, NPP-7/Nup153, and FIB-1 in promoting the perinuclear localization of anti-silencing CSR-1 Argonaute, as well as a role for Importin factor IMA-3 in nuclear localization of silencing Argonaute HRDE-1. Together, we have shown that piRNA silencing in C. elegans is dependent on evolutionarily ancient RNA processing machinery that has been co-opted to function in the piRNA-mediated genome surveillance pathway.
Collapse
Affiliation(s)
- Jordan S Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Olivia Gaylord
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wenjun Chen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province 510000, China
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
24
|
Uebel CJ, Rajeev S, Phillips CM. Caenorhabditis elegans germ granules are present in distinct configurations that differentially associate with RNAi-targeted RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542330. [PMID: 37292702 PMCID: PMC10246010 DOI: 10.1101/2023.05.25.542330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA silencing pathways are complex, highly conserved, and perform widespread, critical regulatory roles. In C. elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments-P granules, Z granules, SIMR foci, and Mutator foci-multiple of which form via phase separation and exhibit liquid-like properties. The functions of individual proteins within germ granules are well-studied, but the spatial organization, physical interaction, and coordination of biomolecule exchange between compartments within germ granule "nuage" is less understood. Here we find that key proteins are sufficient for compartment separation, and that the boundary between compartments can be reestablished after perturbation. Using super-resolution microscopy, we discover a toroidal P granule morphology which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization. Combined with findings that nuclear pores primarily interact with P granules, this nuage compartment organization has broad implications for the trajectory of an RNA as it exits the nucleus and enters small RNA pathway compartments. Furthermore, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Together, our work creates a more spatially and compositionally accurate model of C. elegans nuage which informs the conceptualization of RNA silencing through different germ granule compartments.
Collapse
Affiliation(s)
- Celja J. Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Present address: Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford CA, 94305
| | - Sanjana Rajeev
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M. Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
25
|
Wu WS, Brown JS, Shiue SC, Chung CJ, Lee DE, Zhang D, Lee HC. Transcriptome-wide analyses of piRNA binding sites suggest distinct mechanisms regulate piRNA binding and silencing in C. elegans. RNA (NEW YORK, N.Y.) 2023; 29:557-569. [PMID: 36737102 PMCID: PMC10158993 DOI: 10.1261/rna.079441.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/25/2022] [Indexed: 05/06/2023]
Abstract
PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposon mRNAs and some endogenous mRNAs in various animals. However, C. elegans piRNAs only trigger gene silencing at select predicted targeting sites, suggesting additional cellular mechanisms regulate piRNA silencing. To gain insight into possible mechanisms, we compared the transcriptome-wide predicted piRNA targeting sites to the in vivo piRNA binding sites. Surprisingly, while sequence-based predicted piRNA targeting sites are enriched in 3' UTRs, we found that C. elegans piRNAs preferentially bind to coding regions (CDS) of target mRNAs, leading to preferential production of secondary silencing small RNAs in the CDS. However, our analyses suggest that this CDS binding preference cannot be explained by the action of antisilencing Argonaute CSR-1. Instead, our analyses imply that CSR-1 protects mRNAs from piRNA silencing through two distinct mechanisms-by inhibiting piRNA binding across the entire CSR-1 targeted transcript, and by inhibiting secondary silencing small RNA production locally at CSR-1 bound sites. Together, our work identifies the CDS as the critical region that is uniquely competent for piRNA binding in C. elegans. We speculate the CDS binding preference may have evolved to allow the piRNA pathway to maintain robust recognition of RNA targets in spite of genetic drift. Together, our analyses revealed that distinct mechanisms are responsible for restricting piRNA binding and silencing to achieve proper transcriptome surveillance.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jordan S Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Sheng-Cian Shiue
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Jung Chung
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Dong-En Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
26
|
Seroussi U, Lugowski A, Wadi L, Lao RX, Willis AR, Zhao W, Sundby AE, Charlesworth AG, Reinke AW, Claycomb JM. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. eLife 2023; 12:e83853. [PMID: 36790166 PMCID: PMC10101689 DOI: 10.7554/elife.83853] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Argonaute (AGO) proteins associate with small RNAs to direct their effector function on complementary transcripts. The nematode Caenorhabditis elegans contains an expanded family of 19 functional AGO proteins, many of which have not been fully characterized. In this work, we systematically analyzed every C. elegans AGO using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG tags. We have characterized the expression patterns of each AGO throughout development, identified small RNA binding complements, and determined the effects of ago loss on small RNA populations and developmental phenotypes. Our analysis indicates stratification of subsets of AGOs into distinct regulatory modules, and integration of our data led us to uncover novel stress-induced fertility and pathogen response phenotypes due to ago loss.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Andrew Lugowski
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Lina Wadi
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Robert X Lao
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Winnie Zhao
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Adam E Sundby
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Aaron W Reinke
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
27
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
28
|
Brown J, Zhang D, Chen W, Lee HC. Sensitized piRNA reporter identifies multiple RNA processing factors involved in piRNA-mediated gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525052. [PMID: 36712000 PMCID: PMC9882300 DOI: 10.1101/2023.01.22.525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metazoans guard their germlines against transposons and other foreign transcripts with PIWI-interacting RNAs (piRNAs). Due to the robust heritability of the silencing initiated by piRNAs in C.elegans , previous screens using Caenorhabditis elegans were strongly biased to uncover members of this pathway in the maintenance process but not in the initiation process. To identify novel piRNA pathway members, we have utilized a sensitized reporter strain which detects defects in initiation, amplification, or regulation of piRNA silencing. Using our reporter, we have identified Integrator complex subunits, nuclear pore components, protein import components, and pre-mRNA splicing factors as essential for piRNA-mediated gene silencing. We found the snRNA processing cellular machine termed the Integrator complex is required for both type I and type II piRNA production. Notably, we identified a role for nuclear pore and nucleolar components in promoting the perinuclear localization of anti-silencing CSR-1 Argonaute, as well as a role for Importin factor IMA-3 in nuclear localization of silencing Argonaute HRDE-1. Together, we have shown that piRNA silencing is dependent on evolutionarily ancient RNA processing machinery that has been co-opted to function in the piRNA mediated genome surveillance pathway.
Collapse
Affiliation(s)
- Jordan Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wenjun Chen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Present address: Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Karin O, Miska EA, Simons BD. Epigenetic inheritance of gene silencing is maintained by a self-tuning mechanism based on resource competition. Cell Syst 2023; 14:24-40.e11. [PMID: 36657390 PMCID: PMC7614883 DOI: 10.1016/j.cels.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Biological systems can maintain memories over long timescales, with examples including memories in the brain and immune system. It is unknown how functional properties of memory systems, such as memory persistence, can be established by biological circuits. To address this question, we focus on transgenerational epigenetic inheritance in Caenorhabditis elegans. In response to a trigger, worms silence a target gene for multiple generations, resisting strong dilution due to growth and reproduction. Silencing may also be maintained indefinitely upon selection according to silencing levels. We show that these properties imply the fine-tuning of biochemical rates in which the silencing system is positioned near the transition to bistability. We demonstrate that this behavior is consistent with a generic mechanism based on competition for synthesis resources, which leads to self-organization around a critical state with broad silencing timescales. The theory makes distinct predictions and offers insights into the design principles of long-term memory systems.
Collapse
Affiliation(s)
- Omer Karin
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| | - Eric A Miska
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
30
|
Shi C, Murphy CT. piRNAs regulate a Hedgehog germline-to-soma pro-aging signal. NATURE AGING 2023; 3:47-63. [PMID: 37118518 PMCID: PMC10154208 DOI: 10.1038/s43587-022-00329-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2022] [Indexed: 04/30/2023]
Abstract
The reproductive system regulates somatic aging through competing anti- and pro-aging signals. Germline removal extends somatic lifespan through conserved pathways including insulin and mammalian target-of-rapamycin signaling, while germline hyperactivity shortens lifespan through unknown mechanisms. Here we show that mating-induced germline hyperactivity downregulates piRNAs, in turn desilencing their targets, including the Hedgehog-like ligand-encoding genes wrt-1 and wrt-10, ultimately causing somatic collapse and death. Germline-produced Hedgehog signals require PTR-6 and PTR-16 receptors for mating-induced shrinking and death. Our results reveal an unconventional role of the piRNA pathway in transcriptional regulation of Hedgehog signaling and a new role of Hedgehog signaling in the regulation of longevity and somatic maintenance: Hedgehog signaling is controlled by the tunable piRNA pathway to encode the previously unknown germline-to-soma pro-aging signal. Mating-induced piRNA downregulation in the germline and subsequent Hedgehog signaling to the soma enable the animal to tune somatic resource allocation to germline needs, optimizing reproductive timing and survival.
Collapse
Affiliation(s)
- Cheng Shi
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| | - Coleen T Murphy
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
31
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|
32
|
Priyadarshini M, AlHarbi S, Frøkjær-Jensen C. Acute and inherited piRNA-mediated silencing in a rde-3 ribonucleotidyltransferase mutant. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000638. [PMID: 36188099 PMCID: PMC9520340 DOI: 10.17912/micropub.biology.000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
We recently developed a piRNA-based silencing assay (piRNAi) to study small-RNA mediated epigenetic silencing: acute gene silencing is induced by synthetic piRNAs expressed from extra-chromosomal array and transgenerational inheritance can be quantified after array loss. The assay allows inheritance assays by injecting piRNAs directly into mutant animals and targeting endogenous genes ( e.g. , him-5 and him-8 ) with obvious phenotypes (increased male frequency). Here we demonstrate the piRNAi assay by quantifying acute and inherited silencing in the ribonucleotidyltransferase rde-3 (ne3370) mutant. In the absence of rde-3, acute silencing was reduced but still detectable, whereas inherited silencing was abolished.
Collapse
Affiliation(s)
- Monika Priyadarshini
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
,
Current address: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah AlHarbi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
,
Correspondence to: Christian Frøkjær-Jensen (
)
| |
Collapse
|
33
|
Marnik EA, Almeida MV, Cipriani PG, Chung G, Caspani E, Karaulanov E, Gan HH, Zinno J, Isolehto IJ, Kielisch F, Butter F, Sharp CS, Flanagan RM, Bonnet FX, Piano F, Ketting RF, Gunsalus KC, Updike DL. The Caenorhabditis elegans TDRD5/7-like protein, LOTR-1, interacts with the helicase ZNFX-1 to balance epigenetic signals in the germline. PLoS Genet 2022; 18:e1010245. [PMID: 35657999 PMCID: PMC9200344 DOI: 10.1371/journal.pgen.1010245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/15/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize the Vasa helicase to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis. Until now, proteins containing both LOTUS and Tudor domains in Caenorhabditis elegans have remained elusive. Here we describe LOTR-1 (D1081.7), which derives its name from its LOTUS and Tudor domains. Interestingly, LOTR-1 docks next to P granules to colocalize with the broadly conserved Z-granule helicase, ZNFX-1. The Tudor domain of LOTR-1 is required for its Z-granule retention. Like znfx-1 mutants, lotr-1 mutants lose small RNAs from the 3' ends of WAGO and mutator targets, reminiscent of the loss of piRNAs from the 3' ends of piRNA precursor transcripts in mouse Tdrd5 mutants. Our work shows that LOTR-1 acts with ZNFX-1 to bring small RNA amplifying mechanisms towards the 3' ends of its RNA templates.
Collapse
Affiliation(s)
- Elisabeth A. Marnik
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
- Husson University, Bangor, Maine, United States of America
| | - Miguel V. Almeida
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - P. Giselle Cipriani
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - George Chung
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Edoardo Caspani
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Hin Hark Gan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - John Zinno
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Ida J. Isolehto
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Catherine S. Sharp
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Roisin M. Flanagan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Frederic X. Bonnet
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Kristin C. Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dustin L. Updike
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
34
|
Davis MB, Jash E, Chawla B, Haines RA, Tushman LE, Troll R, Csankovszki G. Dual roles for nuclear RNAi Argonautes in Caenorhabditis elegans dosage compensation. Genetics 2022; 221:iyac033. [PMID: 35234908 PMCID: PMC9071528 DOI: 10.1093/genetics/iyac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in Caenorhabditis elegans. Dosage compensation in C. elegans hermaphrodites is initiated by the silencing of xol-1 and subsequent activation of the dosage compensation complex which binds to both hermaphrodite X chromosomes and reduces transcriptional output by half. A hallmark phenotype of dosage compensation mutants is decondensation of the X chromosomes. We characterized this phenotype in Argonaute mutants using X chromosome paint probes and fluorescence microscopy. We found that while nuclear Argonaute mutants hrde-1 and nrde-3, as well as mutants for the piRNA Argonaute prg-1, exhibit derepression of xol-1 transcripts, they also affect X chromosome condensation in a xol-1-independent manner. We also characterized the physiological contribution of Argonaute genes to dosage compensation using genetic assays and found that hrde-1 and nrde-3 contribute to healthy dosage compensation both upstream and downstream of xol-1.
Collapse
Affiliation(s)
- Michael B Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bahaar Chawla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lillian E Tushman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Troll
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Quarato P, Singh M, Bourdon L, Cecere G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022; 44:e2100284. [PMID: 35338497 DOI: 10.1002/bies.202100284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Meetali Singh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Loan Bourdon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Germano Cecere
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| |
Collapse
|
36
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y, Yan Z, Felici MD, Shen W, Cao H. Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Front Cell Dev Biol 2022; 10:819044. [PMID: 35359444 PMCID: PMC8964082 DOI: 10.3389/fcell.2022.819044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.
Collapse
Affiliation(s)
- Yuguang Chang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tingting Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zafir Muhammad
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zihui Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| |
Collapse
|
38
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|
39
|
McEnany J, Meir Y, Wingreen NS. piRNAs of Caenorhabditis elegans broadly silence nonself sequences through functionally random targeting. Nucleic Acids Res 2022; 50:1416-1429. [PMID: 35037068 PMCID: PMC8860604 DOI: 10.1093/nar/gkab1290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/07/2021] [Accepted: 12/18/2021] [Indexed: 01/22/2023] Open
Abstract
Small noncoding RNAs such as piRNAs are guides for Argonaute proteins, enabling sequence-specific, post-transcriptional regulation of gene expression. The piRNAs of Caenorhabditis elegans have been observed to bind targets with high mismatch tolerance and appear to lack specific transposon targets, unlike piRNAs in Drosophila melanogaster and other organisms. These observations support a model in which C. elegans piRNAs provide a broad, indiscriminate net of silencing, competing with siRNAs associated with the CSR-1 Argonaute that specifically protect self-genes from silencing. However, the breadth of piRNA targeting has not been subject to in-depth quantitative analysis, nor has it been explained how piRNAs are distributed across sequence space to achieve complete coverage. Through a bioinformatic analysis of piRNA sequences, incorporating an original data-based metric of piRNA-target distance, we demonstrate that C. elegans piRNAs are functionally random, in that their coverage of sequence space is comparable to that of random sequences. By possessing a sufficient number of distinct, essentially random piRNAs, C. elegans is able to target arbitrary nonself sequences with high probability. We extend this approach to a selection of other nematodes, finding results which elucidate the mechanism by which nonself mRNAs are silenced, and have implications for piRNA evolution and biogenesis.
Collapse
Affiliation(s)
- John McEnany
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben-Gurion University, Be’er Sheva, 84105, Israel
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Zagoskin MV, Wang J, Neff AT, Veronezi GMB, Davis RE. Small RNA pathways in the nematode Ascaris in the absence of piRNAs. Nat Commun 2022; 13:837. [PMID: 35149688 PMCID: PMC8837657 DOI: 10.1038/s41467-022-28482-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Small RNA pathways play key and diverse regulatory roles in C. elegans, but our understanding of their conservation and contributions in other nematodes is limited. We analyzed small RNA pathways in the divergent parasitic nematode Ascaris. Ascaris has ten Argonautes with five worm-specific Argonautes (WAGOs) that associate with secondary 5’-triphosphate 22-24G-RNAs. These small RNAs target repetitive sequences or mature mRNAs and are similar to the C. elegans mutator, nuclear, and CSR-1 small RNA pathways. Even in the absence of a piRNA pathway, Ascaris CSR-1 may still function to “license” as well as fine-tune or repress gene expression. Ascaris ALG-4 and its associated 26G-RNAs target and likely repress specific mRNAs during testis meiosis. Ascaris WAGO small RNAs demonstrate target plasticity changing their targets between repeats and mRNAs during development. We provide a unique and comprehensive view of mRNA and small RNA expression throughout spermatogenesis. Overall, our study illustrates the conservation, divergence, dynamics, and flexibility of small RNA pathways in nematodes. The parasitic nematode Ascaris lacks piRNAs. Here the authors compare Argonaute proteins and small RNAs from C. elegans and Ascaris, expanding our understanding of the conservation, divergence, and flexibility of Argonautes and small RNA pathways in nematodes.
Collapse
Affiliation(s)
- Maxim V Zagoskin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.
| | - Ashley T Neff
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
41
|
Reprogramming the piRNA pathway for multiplexed and transgenerational gene silencing in C. elegans. Nat Methods 2022; 19:187-194. [PMID: 35115715 PMCID: PMC9798472 DOI: 10.1038/s41592-021-01369-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023]
Abstract
Single-guide RNAs can target exogenous CRISPR-Cas proteins to unique DNA locations, enabling genetic tools that are efficient, specific and scalable. Here we show that short synthetic guide Piwi-interacting RNAs (piRNAs) (21-nucleotide sg-piRNAs) expressed from extrachromosomal transgenes can, analogously, reprogram the endogenous piRNA pathway for gene-specific silencing in the hermaphrodite germline, sperm and embryos of Caenorhabditis elegans. piRNA-mediated interference ('piRNAi') is more efficient than RNAi and can be multiplexed, and auxin-mediated degradation of the piRNA-specific Argonaute PRG-1 allows conditional gene silencing. Target-specific silencing results in decreased messenger RNA levels, amplification of secondary small interfering RNAs and repressive chromatin modifications. Short (300 base pairs) piRNAi transgenes amplified from arrayed oligonucleotide pools also induce silencing, potentially making piRNAi highly scalable. We show that piRNAi can induce transgenerational epigenetic silencing of two endogenous genes (him-5 and him-8). Silencing is inherited for four to six generations after target-specific sg-piRNAs are lost, whereas depleting PRG-1 leads to essentially permanent epigenetic silencing.
Collapse
|
42
|
Membrane-associated cytoplasmic granules carrying the Argonaute protein WAGO-3 enable paternal epigenetic inheritance in Caenorhabditis elegans. Nat Cell Biol 2022; 24:217-229. [PMID: 35132225 PMCID: PMC9973253 DOI: 10.1038/s41556-021-00827-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Epigenetic inheritance describes the transmission of gene regulatory information across generations without altering DNA sequences, enabling offspring to adapt to environmental conditions. Small RNAs have been implicated in this, through both the oocyte and the sperm. However, as much of the cellular content is extruded during spermatogenesis, it is unclear whether cytoplasmic small RNAs can contribute to epigenetic inheritance through sperm. Here we identify a sperm-specific germ granule, termed the paternal epigenetic inheritance (PEI) granule, that mediates paternal epigenetic inheritance by retaining the cytoplasmic Argonaute protein WAGO-3 during spermatogenesis in Caenorhabditis elegans. We identify the PEI granule proteins PEI-1 and PEI-2, which have distinct functions in this process: granule formation, Argonaute selectivity and subcellular localization. We show that PEI granule segregation is coupled to the transport of sperm-specific secretory vesicles through PEI-2 in an S-palmitoylation-dependent manner. PEI-like proteins are found in humans, suggesting that the identified mechanism may be conserved.
Collapse
|
43
|
Cornes E, Bourdon L, Singh M, Mueller F, Quarato P, Wernersson E, Bienko M, Li B, Cecere G. piRNAs initiate transcriptional silencing of spermatogenic genes during C. elegans germline development. Dev Cell 2022; 57:180-196.e7. [PMID: 34921763 PMCID: PMC8796119 DOI: 10.1016/j.devcel.2021.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022]
Abstract
Eukaryotic genomes harbor invading transposable elements that are silenced by PIWI-interacting RNAs (piRNAs) to maintain genome integrity in animal germ cells. However, whether piRNAs also regulate endogenous gene expression programs remains unclear. Here, we show that C. elegans piRNAs trigger the transcriptional silencing of hundreds of spermatogenic genes during spermatogenesis, promoting sperm differentiation and function. This silencing signal requires piRNA-dependent small RNA biogenesis and loading into downstream nuclear effectors, which correlates with the dynamic reorganization of two distinct perinuclear biomolecular condensates present in germ cells. In addition, the silencing capacity of piRNAs is temporally counteracted by the Argonaute CSR-1, which targets and licenses spermatogenic gene transcription. The spatial and temporal overlap between these opposing small RNA pathways contributes to setting up the timing of the spermatogenic differentiation program. Thus, our work identifies a prominent role for piRNAs as direct regulators of endogenous transcriptional programs during germline development and gamete differentiation.
Collapse
Affiliation(s)
- Eric Cornes
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Loan Bourdon
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Meetali Singh
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, Paris, France
| | - Piergiuseppe Quarato
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Erik Wernersson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, Stockholm 17165, Sweden
| | - Magda Bienko
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, Stockholm 17165, Sweden
| | - Blaise Li
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756, CNRS, Paris 75015, France
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France.
| |
Collapse
|
44
|
Pastore B, Hertz HL, Tang W. Comparative analysis of piRNA sequences, targets and functions in nematodes. RNA Biol 2022; 19:1276-1292. [PMID: 36412988 PMCID: PMC9683057 DOI: 10.1080/15476286.2022.2149170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) are best known for their roles in suppressing transposons and promoting fertility. Yet piRNA biogenesis and its mechanisms of action differ widely between distantly related species. To better understand the evolution of piRNAs, we characterized the piRNA pathway in C. briggsae, a sibling species of the model organism C. elegans. Our analyses define 25,883 piRNA producing-loci in C. briggsae. piRNA sequences in C. briggsae are extremely divergent from their counterparts in C. elegans, yet both species adopt similar genomic organization that drive piRNA expression. By examining production of Piwi-mediated secondary small RNAs, we identified a set of protein-coding genes that are evolutionarily conserved piRNA targets. In contrast to C. elegans, small RNAs targeting ribosomal RNAs or histone transcripts are not hyper-accumulated in C. briggsae Piwi mutants. Instead, we found that transcripts with few introns are prone to small RNA overamplification. Together our work highlights evolutionary conservation and divergence of the nematode piRNA pathway and provides insights into its role in endogenous gene regulation.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA,Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Hannah L. Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA,CONTACT Wen Tang Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
45
|
Ouyang JPT, Seydoux G. Nuage condensates: accelerators or circuit breakers for sRNA silencing pathways? RNA (NEW YORK, N.Y.) 2022; 28:58-66. [PMID: 34772788 PMCID: PMC8675287 DOI: 10.1261/rna.079003.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nuage are RNA-rich condensates that assemble around the nuclei of developing germ cells. Many proteins required for the biogenesis and function of silencing small RNAs (sRNAs) enrich in nuage, and it is often assumed that nuage is the cellular site where sRNAs are synthesized and encounter target transcripts for silencing. Using C. elegans as a model, we examine the complex multicondensate architecture of nuage and review evidence for compartmentalization of silencing pathways. We consider the possibility that nuage condensates balance the activity of competing sRNA pathways and serve to limit, rather than enhance, sRNA amplification to protect transcripts from dangerous runaway silencing.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
46
|
Montgomery BE, Vijayasarathy T, Marks TN, Cialek CA, Reed KJ, Montgomery TA. Dual roles for piRNAs in promoting and preventing gene silencing in C. elegans. Cell Rep 2021; 37:110101. [PMID: 34879267 PMCID: PMC8730336 DOI: 10.1016/j.celrep.2021.110101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) regulate many biological processes through mechanisms that are not fully understood. In Caenorhabditis elegans, piRNAs intersect the endogenous RNA interference (RNAi) pathway, involving a distinct class of small RNAs called 22G-RNAs, to regulate gene expression in the germline. In the absence of piRNAs, 22G-RNA production from many genes is reduced, pointing to a role for piRNAs in facilitating endogenous RNAi. Here, however, we show that many genes gain, rather than lose, 22G-RNAs in the absence of piRNAs, which is in some instances coincident with RNA silencing. Aberrant 22G-RNA production is somewhat stochastic but once established can occur within a population for at least 50 generations. Thus, piRNAs both promote and suppress 22G-RNA production and gene silencing. rRNAs and histones are hypersusceptible to aberrant silencing, but we do not find evidence that their misexpression is the primary cause of the transgenerational sterility observed in piRNA-defective mutants. Montgomery et al. show that piRNAs both promote and suppress siRNA production and RNA silencing in C. elegans. Gain or loss of siRNAs occurs somewhat stochastically in piRNA-defective mutants but once established, it occurs across numerous generations.
Collapse
Affiliation(s)
- Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tarah Vijayasarathy
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor N Marks
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charlotte A Cialek
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Kailee J Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
47
|
Wang J, Shi Y, Zhou H, Zhang P, Song T, Ying Z, Yu H, Li Y, Zhao Y, Zeng X, He S, Chen R. piRBase: integrating piRNA annotation in all aspects. Nucleic Acids Res 2021; 50:D265-D272. [PMID: 34871445 PMCID: PMC8728152 DOI: 10.1093/nar/gkab1012] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Piwi-interacting RNAs are a type of small noncoding RNA that have various functions. piRBase is a manually curated resource focused on assisting piRNA functional analysis. piRBase release v3.0 is committed to providing more comprehensive piRNA related information. The latest release covers >181 million unique piRNA sequences, including 440 datasets from 44 species. More disease-related piRNAs and piRNA targets have been collected and displayed. The regulatory relationships between piRNAs and targets have been visualized. In addition to the reuse and expansion of the content in the previous version, the latest version has additional new content, including gold standard piRNA sets, piRNA clusters, piRNA variants, splicing-junction piRNAs, and piRNA expression data. In addition, the entire web interface has been redesigned to provide a better experience for users. piRBase release v3.0 is free to access, browse, search, and download at http://bigdata.ibp.ac.cn/piRBase.
Collapse
Affiliation(s)
- Jiajia Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Zhou
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,National Genomics Data Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingrui Song
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Yanyan Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhao
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Shunmin He
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,National Genomics Data Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Med-X Center for Informatics, Sichuan University, Chengdu 610041, China.,Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,National Genomics Data Center, Chinese Academy of Sciences, Beijing 100101, China.,Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan 528316, China
| |
Collapse
|
48
|
Abstract
DNA is central to the propagation and evolution of most living organisms due to the essential process of its self-replication. Yet it also encodes factors that permit epigenetic (not included in DNA sequence) flow of information from parents to their offspring and beyond. The known mechanisms of epigenetic inheritance include chemical modifications of DNA and chromatin, as well as regulatory RNAs. All these factors can modulate gene expression programs in the ensuing generations. The nematode Caenorhabditis elegans is recognized as a pioneer organism in transgenerational epigenetic inheritance research. Recent advances in C. elegans epigenetics include the discoveries of control mechanisms that limit the duration of RNA-based epigenetic inheritance, periodic DNA motifs that counteract epigenetic silencing establishment, new mechanistic insights into epigenetic inheritance carried by sperm, and the tantalizing examples of inheritance of sensory experiences. This review aims to highlight new findings in epigenetics research in C. elegans with the main focus on transgenerational epigenetic phenomena dependent on small RNAs.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry, BU Genome Science Institute, Boston University School of Medicine, 72 E. Concord St. K422, Boston, MA 02118, USA
| |
Collapse
|
49
|
Shukla A, Perales R, Kennedy S. piRNAs coordinate poly(UG) tailing to prevent aberrant and perpetual gene silencing. Curr Biol 2021; 31:4473-4485.e3. [PMID: 34428467 DOI: 10.1016/j.cub.2021.07.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Noncoding RNAs have emerged as mediators of transgenerational epigenetic inheritance (TEI) in a number of organisms. A robust example of such RNA-directed TEI is the inheritance of gene-silencing states following RNA interference (RNAi) in the metazoan C. elegans. During RNAi inheritance, gene silencing is transmitted by a self-perpetuating cascade of siRNA-directed poly(UG) tailing of mRNA fragments (pUGylation), followed by siRNA synthesis from poly(UG)-tailed mRNA templates (termed pUG RNA/siRNA cycling). Despite the self-perpetuating nature of pUG RNA/siRNA cycling, RNAi inheritance is finite, suggesting that systems likely exist to prevent indefinite RNAi-triggered gene silencing. Here we show that, in the absence of Piwi-interacting RNAs (piRNAs), an animal-specific class of small noncoding RNA, RNAi-based gene silencing can become essentially permanent, lasting at near 100% penetrance for more than 5 years and hundreds of generations. This perpetual gene silencing is mediated by continuous pUG RNA/siRNA cycling. Further, we find that piRNAs coordinate endogenous RNAi pathways to prevent germline-expressed genes, which are not normally subjected to TEI, from entering a state of continual and irreversible epigenetic silencing also mediated by continuous maintenance of pUG RNA/siRNA cycling. Together, our results show that one function of C. elegans piRNAs is to insulate germline-expressed genes from aberrant and runaway inactivation by the pUG RNA/siRNA epigenetic inheritance system.
Collapse
Affiliation(s)
- Aditi Shukla
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Roberto Perales
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Shape Therapeutics, Seattle, WA 98109, USA
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|