1
|
Nishio H, Cano-Ramirez DL, Muranaka T, de Barros Dantas LL, Honjo MN, Sugisaka J, Kudoh H, Dodd AN. Circadian and environmental signal integration in a natural population of Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2402697121. [PMID: 39172785 PMCID: PMC11363283 DOI: 10.1073/pnas.2402697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Shiga522-8522, Japan
| | - Dora L. Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi464-0814, Japan
| | | | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| |
Collapse
|
2
|
Wu XX, Mu WH, Li F, Sun SY, Cui CJ, Kim C, Zhou F, Zhang Y. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1127-1144.e21. [PMID: 38428393 DOI: 10.1016/j.cell.2024.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.
Collapse
Affiliation(s)
- Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Mu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Fan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Yi Sun
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Jun Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
3
|
Qin H, Sun M, Guo W, He Y, Yao Y, Resco de Dios V. Time-dependent regulation of respiration is widespread across plant evolution. PLANT, CELL & ENVIRONMENT 2024; 47:408-415. [PMID: 37927244 DOI: 10.1111/pce.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Establishing the temperature dependence of respiration is critical for accurate predictions of the global carbon cycle under climate change. Diurnal temperature fluctuations, or changes in substrate availability, lead to variations in leaf respiration. Additionally, recent studies hint that the thermal sensitivity of respiration could be time-dependent. However, the role for endogenous processes, independent from substrate availability, as drivers of temporal changes in the sensitivity of respiration to temperature across phylogenies has not yet been addressed. Here, we examined the diurnal variation in the response of respiration to temperatures (R-T relationship) for different lycophyte, fern, gymnosperm and angiosperm species. We tested whether time-dependent changes in the R-T relationship would impact leaf level respiration modelling. We hypothesized that interactions between endogenous processes, like the circadian clock, and leaf respiration would be independent from changes in substrate availability. Overall, we observed a time-dependent sensitivity in the R-T relationship across phylogenies, independent of temperature, that affected modelling parameters. These results are compatible with circadian gating of respiration, but further studies should analyse the possible involvement of the clock. Our results indicate time-dependent regulation of respiration might be widespread across phylogenies, and that endogenous regulation of respiration is likely affecting leaf-level respiration fluxes.
Collapse
Affiliation(s)
- Haiyan Qin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mengqi Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Weizhou Guo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yingpeng He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lérida, Spain
- JRU CTFC-AGROTECNIO-CERCA Centre, Lérida, Spain
| |
Collapse
|
4
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Tiwari LD, Bdolach E, Prusty MR, Bodenheimer S, Be'ery A, Faigenboim-Doron A, Yamamoto E, Panzarová K, Kashkush K, Shental N, Fridman E. Cytonuclear interactions modulate the plasticity of photosynthetic rhythmicity and growth in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14192. [PMID: 38351880 DOI: 10.1111/ppl.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Schewach Bodenheimer
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avital Be'ery
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana, Israel
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
6
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
7
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
8
|
Kobayashi Y, Komatsuya K, Imamura S, Nozaki T, Watanabe YI, Sato S, Dodd AN, Kita K, Tanaka K. Coordination of apicoplast transcription in a malaria parasite by internal and host cues. Proc Natl Acad Sci U S A 2023; 120:e2214765120. [PMID: 37406097 PMCID: PMC10334805 DOI: 10.1073/pnas.2214765120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo156-8506, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo180-8585, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yoh-ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shigeharu Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah88400, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah88400, Malaysia
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki852-8523, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki852-8523, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| |
Collapse
|
9
|
Siqueira JA, Batista-Silva W, Zsögön A, Fernie AR, Araújo WL, Nunes-Nesi A. Plant domestication: setting biological clocks. TRENDS IN PLANT SCIENCE 2023; 28:597-608. [PMID: 36822959 DOI: 10.1016/j.tplants.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 05/22/2023]
Abstract
Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Willian Batista-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
10
|
Cano-Ramirez DL, Panter PE, Takemura T, de Fraine TS, de Barros Dantas LL, Dekeya R, Barros-Galvão T, Paajanen P, Bellandi A, Batstone T, Manley BF, Tanaka K, Imamura S, Franklin KA, Knight H, Dodd AN. Low-temperature and circadian signals are integrated by the sigma factor SIG5. NATURE PLANTS 2023; 9:661-672. [PMID: 36997687 PMCID: PMC10119024 DOI: 10.1038/s41477-023-01377-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts are a common feature of plant cells and aspects of their metabolism, including photosynthesis, are influenced by low-temperature conditions. Chloroplasts contain a small circular genome that encodes essential components of the photosynthetic apparatus and chloroplast transcription/translation machinery. Here, we show that in Arabidopsis, a nuclear-encoded sigma factor that controls chloroplast transcription (SIGMA FACTOR5) contributes to adaptation to low-temperature conditions. This process involves the regulation of SIGMA FACTOR5 expression in response to cold by the bZIP transcription factors ELONGATED HYPOCOTYL5 and ELONGATED HYPOCOTYL5 HOMOLOG. The response of this pathway to cold is gated by the circadian clock, and it enhances photosynthetic efficiency during long-term cold and freezing exposure. We identify a process that integrates low-temperature and circadian signals, and modulates the response of chloroplasts to low-temperature conditions.
Collapse
Affiliation(s)
- Dora L Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | - Annalisa Bellandi
- John Innes Centre, Norwich, UK
- Laboratoire de Reproduction et Développement des Plantes, ENS de Lyon, Université de Lyon, UCBL, INRAE, CNRS, Lyon, France
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Bethan F Manley
- School of Biological Sciences, University of Bristol, Bristol, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Japan
| | - Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Heather Knight
- Department of Biosciences, Durham University, Durham, UK
| | | |
Collapse
|
11
|
Hwang Y, Han S, Yoo CY, Hong L, You C, Le BH, Shi H, Zhong S, Hoecker U, Chen X, Chen M. Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes. Nat Commun 2022; 13:7440. [PMID: 36460634 PMCID: PMC9718756 DOI: 10.1038/s41467-022-35080-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Light initiates chloroplast biogenesis in Arabidopsis by eliminating PHYTOCHROME-INTERACTING transcription FACTORs (PIFs), which in turn de-represses nuclear photosynthesis genes, and synchronously, generates a nucleus-to-plastid (anterograde) signal that activates the plastid-encoded bacterial-type RNA polymerase (PEP) to transcribe plastid photosynthesis genes. However, the identity of the anterograde signal remains frustratingly elusive. The main challenge has been the difficulty to distinguish regulators from the plethora of necessary components for plastid transcription and other essential chloroplast functions, such as photosynthesis. Here, we show that the genome-wide induction of nuclear photosynthesis genes is insufficient to activate the PEP. PEP inhibition is imposed redundantly by multiple PIFs and requires PIF3's activator activity. Among the nuclear-encoded components of the PEP holoenzyme, we identify four light-inducible, PIF-repressed sigma factors as anterograde signals. Together, our results elucidate that light-dependent inhibition of PIFs activates plastid photosynthesis genes via sigma factors as anterograde signals in parallel with the induction of nuclear photosynthesis genes.
Collapse
Affiliation(s)
- Youra Hwang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Soeun Han
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
- School of Biological Sciences, University of Utah, Salt Lake City, 84112, UT, USA
| | - Liu Hong
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Brandon H Le
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Hui Shi
- College of Life Sciences, Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA.
| |
Collapse
|
12
|
Chen CQ, Tian XY, Li J, Bai S, Zhang ZY, Li Y, Cao HR, Chen ZC. Two central circadian oscillators OsPRR59 and OsPRR95 modulate magnesium homeostasis and carbon fixation in rice. MOLECULAR PLANT 2022; 15:1602-1614. [PMID: 36114668 DOI: 10.1016/j.molp.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis, which provides oxygen and energy for all living organisms, is circadian regulated. Photosynthesis-associated metabolism must tightly coordinate with the circadian clock to maximize the efficiency of the light-energy capture and carbon fixation. However, the molecular basis for the interplay of photosynthesis and the circadian clock is not fully understood, particularly in crop plants. Here, we report two central oscillator genes of circadian clock, OsPRR95 and OsPRR59 in rice, which function as transcriptional repressors to negatively regulate the rhythmic expression of OsMGT3 encoding a chloroplast-localized Mg2+ transporter. OsMGT3-dependent rhythmic Mg fluctuations modulate carbon fixation and consequent sugar output in rice chloroplasts. Furthermore, sugar triggers the increase of superoxide, which may act as a feedback signal to positively regulate the expression of OsPRR95 and OsPRR59. Taken together, our results reveal a negative-feedback loop that strengthens the crosstalk between photosynthetic carbon fixation and the circadian clock, which may improve plan adaptation and performance in fluctuating environments.
Collapse
Affiliation(s)
- Chun-Qu Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin-Yue Tian
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian Li
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Shuang Bai
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuo-Yan Zhang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong-Rui Cao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Rees H, Rusholme-Pilcher R, Bailey P, Colmer J, White B, Reynolds C, Ward SJ, Coombes B, Graham CA, de Barros Dantas LL, Dodd AN, Hall A. Circadian regulation of the transcriptome in a complex polyploid crop. PLoS Biol 2022; 20:e3001802. [PMID: 36227835 PMCID: PMC9560141 DOI: 10.1371/journal.pbio.3001802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.
Collapse
Affiliation(s)
- Hannah Rees
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Paul Bailey
- Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
| | - Joshua Colmer
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Benjamen White
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Connor Reynolds
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Calum A. Graham
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Hashida Y, Tezuka A, Nomura Y, Kamitani M, Kashima M, Kurita Y, Nagano AJ. Fillable and unfillable gaps in plant transcriptome under field and controlled environments. PLANT, CELL & ENVIRONMENT 2022; 45:2410-2427. [PMID: 35610174 PMCID: PMC9544781 DOI: 10.1111/pce.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The differences between plants grown in field and in controlled environments have long been recognized. However, few studies have addressed the underlying molecular mechanisms. To evaluate plant responses to fluctuating environments using laboratory equipment, we developed SmartGC, a high-performance growth chamber that reproduces the fluctuating irradiance, temperature and humidity of field environments. We analysed massive transcriptome data of rice plants grown under field and SmartGC conditions to clarify the differences in plant responses to field and controlled environments. Rice transcriptome dynamics in SmartGC mimicked those in the field, particularly during the morning and evening but those in conventional growth chamber conditions did not. Further analysis revealed that fluctuation of irradiance affects transcriptome dynamics in the morning and evening, while fluctuation of temperature affects transcriptome dynamics only in the morning. We found upregulation of genes related to biotic and abiotic stress, and their expression was affected by environmental factors that cannot be mimicked by SmartGC. Our results reveal fillable and unfillable gaps in the transcriptomes of rice grown in field and controlled environments and can accelerate the understanding of plant responses to field environments for both basic biology and agricultural applications.
Collapse
Affiliation(s)
- Yoichi Hashida
- Faculty of AgricultureTakasaki University of Health and WelfareTakasakiGunmaJapan
| | - Ayumi Tezuka
- Research Institute for Food and AgricultureRyukoku UniversityOtsuShigaJapan
| | - Yasuyuki Nomura
- Research Institute for Food and AgricultureRyukoku UniversityOtsuShigaJapan
| | - Mari Kamitani
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
| | - Makoto Kashima
- Research Institute for Food and AgricultureRyukoku UniversityOtsuShigaJapan
- College of Science and EngineeringAoyama Gakuin UniversitySagamiharaKanagawaJapan
| | - Yuko Kurita
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
| | - Atsushi J. Nagano
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
| |
Collapse
|
16
|
Cuitun‐Coronado D, Rees H, Colmer J, Hall A, de Barros Dantas LL, Dodd AN. Circadian and diel regulation of photosynthesis in the bryophyte Marchantia polymorpha. PLANT, CELL & ENVIRONMENT 2022; 45:2381-2394. [PMID: 35611455 PMCID: PMC9546472 DOI: 10.1111/pce.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Circadian rhythms are 24-h biological cycles that align metabolism, physiology, and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and some cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to aspects of photosynthesis in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of photosynthetic biochemistry, measured using two approaches (delayed fluorescence, pulse amplitude modulation fluorescence). Second, we identified that light-dark cycles synchronize the phase of 24 h cycles of photosynthesis in M. polymorpha, whereas the phases of different thalli desynchronize under free-running conditions. This might also be due to the masking of the underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light-harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis is well-conserved amongst terrestrial plants.
Collapse
Affiliation(s)
- David Cuitun‐Coronado
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | | | | | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| |
Collapse
|
17
|
Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophys Rev 2022; 14:779-803. [PMID: 36124269 PMCID: PMC9481803 DOI: 10.1007/s12551-022-00985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Light provides energy for photosynthesis and also acts as an important environmental signal. During their evolution, plants acquired sophisticated sensory systems for light perception and light-dependent regulation of their growth and development in accordance with the local light environment. Under natural conditions, plants adapted by using their light sensors to finely distinguish direct sunlight and dark in the soil, deep grey shade under the upper soil layer or litter, green shade under the canopy and even lateral green reflectance from neighbours. Light perception also allows plants to evaluate in detail the weather, time of day, day length and thus the season. However, in artificial lighting conditions, plants are confronted with fundamentally different lighting conditions. The advent of new light sources - light-emitting diodes (LEDs), which emit narrow-band light - allows growing plants with light of different spectral bands or their combinations. This sets the task of finding out how light of different quality affects the development and functioning of plants, and in particular, their photosynthetic apparatus (PSA), which is one of the basic processes determining plant yield. In this review, we briefly describe how plants perceive environment light signals by their five families of photoreceptors and by the PSA as a particular light sensor, and how they use this information to form their PSA under artificial narrow-band LED-based lighting of different spectral composition. We consider light regulation of the biosynthesis of photosynthetic pigments, photosynthetic complexes and chloroplast ATP synthase function, PSA photoprotection mechanisms, carbon assimilation reactions and stomatal development and function.
Collapse
|
18
|
Li J, Kim YJ, Zhang D. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development. Genes (Basel) 2022; 13:1323. [PMID: 35893060 PMCID: PMC9329892 DOI: 10.3390/genes13081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Sucrose is produced in leaf mesophyll cells via photosynthesis and exported to non-photosynthetic sink tissues through the phloem. The molecular basis of source-to-sink long-distance transport in cereal crop plants is of importance due to its direct influence on grain yield-pollen grains, essential for male fertility, are filled with sugary starch, and rely on long-distance sugar transport from source leaves. Here, we overview sugar partitioning via phloem transport in rice, especially where relevant for male reproductive development. Phloem loading and unloading in source leaves and sink tissues uses a combination of the symplastic, apoplastic, and/or polymer trapping pathways. The symplastic and polymer trapping pathways are passive processes, correlated with source activity and sugar gradients. In contrast, apoplastic phloem loading/unloading involves active processes and several proteins, including SUcrose Transporters (SUTs), Sugars Will Eventually be Exported Transporters (SWEETs), Invertases (INVs), and MonoSaccharide Transporters (MSTs). Numerous transcription factors combine to create a complex network, such as DNA binding with One Finger 11 (DOF11), Carbon Starved Anther (CSA), and CSA2, which regulates sugar metabolism in normal male reproductive development and in response to changes in environmental signals, such as photoperiod.
Collapse
Affiliation(s)
- Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 50463, Korea;
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
19
|
Mazzoccoli G. Chronobiology Meets Quantum Biology: A New Paradigm Overlooking the Horizon? Front Physiol 2022; 13:892582. [PMID: 35874510 PMCID: PMC9296773 DOI: 10.3389/fphys.2022.892582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Biological processes and physiological functions in living beings are featured by oscillations with a period of about 24 h (circadian) or cycle at the second and third harmonic (ultradian) of the basic frequency, driven by the biological clock. This molecular mechanism, common to all kingdoms of life, comprising animals, plants, fungi, bacteria, and protists, represents an undoubted adaptive advantage allowing anticipation of predictable changes in the environmental niche or of the interior milieu. Biological rhythms are the field of study of Chronobiology. In the last decade, growing evidence hints that molecular platforms holding up non-trivial quantum phenomena, including entanglement, coherence, superposition and tunnelling, bona fide evolved in biosystems. Quantum effects have been mainly implicated in processes related to electromagnetic radiation in the spectrum of visible light and ultraviolet rays, such as photosynthesis, photoreception, magnetoreception, DNA mutation, and not light related such as mitochondrial respiration and enzymatic activity. Quantum effects in biological systems are the field of study of Quantum Biology. Rhythmic changes at the level of gene expression, as well as protein quantity and subcellular distribution, confer temporal features to the molecular platform hosting electrochemical processes and non-trivial quantum phenomena. Precisely, a huge amount of molecules plying scaffold to quantum effects show rhythmic level fluctuations and this biophysical model implies that timescales of biomolecular dynamics could impinge on quantum mechanics biofunctional role. The study of quantum phenomena in biological cycles proposes a profitable “entanglement” between the areas of interest of these seemingly distant scientific disciplines to enlighten functional roles for quantum effects in rhythmic biosystems.
Collapse
|
20
|
Kay H, Grünewald E, Feord HK, Gil S, Peak-Chew SY, Stangherlin A, O'Neill JS, van Ooijen G. Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms. Commun Biol 2021; 4:1147. [PMID: 34593975 PMCID: PMC8484446 DOI: 10.1038/s42003-021-02680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels. Holly Kay, Ellen Grünewald, et al. provide an in-depth examination of the proteome in the eukaryotic green alga, Ostreococcus tauri, under circadian constant light or cycling diurnal light-dark conditions. They observe that there is little overlap between mRNA and protein expression rhythms, or the diurnal and circadian proteome, suggesting that the cellular spatiotemporal proteome is shaped through rhythmic regulation at multiple stages of transcription and translation.
Collapse
Affiliation(s)
- Holly Kay
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Helen K Feord
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sergio Gil
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
21
|
Andreeva AA, Kudryakova NV, Kuznetsov VV, Kusnetsov VV. Ontogenetic, Light, and Circadian Regulation of PAP Protein Genes during Seed Germination of Arabidopsis thaliana. DOKL BIOCHEM BIOPHYS 2021; 500:312-316. [PMID: 34697734 DOI: 10.1134/s1607672921050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022]
Abstract
The expression profiles of the PAP genes, encoding proteins associated with plastid multisubunit RNA polymerase, were studied in dry seeds, during germination, and at the early stages of Arabidopsis thaliana seedling formation. A detailed analysis of the PAP transcript levels by RT-PCR showed that the transition of seeds from dormancy to active growth is accompanied by a drastic increase in the transcript accumulation of all studied genes on the first day of germination, both in the light and in the dark. Further changes in transcript levels differed among PAP genes and were apparently determined by their functional specificity. It was established for the first time that the expression of individual PAP genes is regulated by circadian rhythms, in addition to factors of ontogenetic and light nature.
Collapse
Affiliation(s)
- A A Andreeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - N V Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - V V Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Zupok A, Kozul D, Schöttler MA, Niehörster J, Garbsch F, Liere K, Fischer A, Zoschke R, Malinova I, Bock R, Greiner S. A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. THE PLANT CELL 2021; 33:2583-2601. [PMID: 34048579 PMCID: PMC8408503 DOI: 10.1093/plcell/koab155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/27/2021] [Indexed: 05/09/2023]
Abstract
Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This usually manifests in bleached plants, more rarely in hybrid sterility or embryonic lethality. Hence, most of these incompatibilities affect photosynthetic capability, a trait that is under selection in changing environments. Here we show that light-dependent misregulation of the plastid psbB operon, which encodes core subunits of photosystem II and the cytochrome b6f complex, can lead to hybrid incompatibility, and this ultimately drives speciation. This misregulation causes an impaired light acclimation response in incompatible plants. Moreover, as a result of their different chloroplast genotypes, the parental lines differ in photosynthesis performance upon exposure to different light conditions. Significantly, the incompatible chloroplast genome is naturally found in xeric habitats with high light intensities, whereas the compatible one is limited to mesic habitats. Consequently, our data raise the possibility that the hybridization barrier evolved as a result of adaptation to specific climatic conditions.
Collapse
Affiliation(s)
| | | | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Julia Niehörster
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Frauke Garbsch
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Karsten Liere
- Institut für Biologie/Molekulare Genetik, Humboldt-Universität zu Berlin, Berlin, D-10115, Germany
| | - Axel Fischer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Irina Malinova
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | | |
Collapse
|
23
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
24
|
Liu Z, Meng M, Zhang S, Qiu H, Liu Z, Huang M. Rhythmic Component Analysis Tool (RCAT): A Precise, Efficient and User-Friendly Tool for Circadian Clock Genes Analysis. Interdiscip Sci 2021; 14:269-278. [PMID: 34374039 DOI: 10.1007/s12539-021-00471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022]
Abstract
High-throughput next-generation sequencing (NGS) technologies and real-time circadian dynamics reporting systems produce large amounts of experimental data on RNA and protein levels in the field of circadian rhythm and therefore require statistical knowledge and computational skills for quantitative analysis. Although there are many software applications that can process these data, they are often difficult to use and computationally inefficient. Hence, a convenient, user-friendly tool that can accurately acquire rhythmic components (period, amplitude, and phase) of circadian clock genes is necessary. Here, we develop a new analysis tool named rhythmic component analysis tool (RCAT), which has an easily understood interface featuring a one-button operation, that presents all results as tables and images and automatically saves them as CSV files. We use the relative amplitude error (RAE), widely-adopted criteria on the circadian research field to estimate the quality of results. To illustrate the analytical ability of the RCAT under different situations, we generate four groups of time-series data by CircaInSilico (a web server for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms) with different collection intervals and amplitude ranges and use RCAT to analyze them. To demonstrate the effectiveness of RCAT, we analyze two sets of case studies with time-series data: one set uses microarray and RNA-Seq data from the gene expression omnibus (GEO) repository to identify core clock genes (CCGs) with significant periodicity in the liver, and the other set uses real-time fluorescence reporting data collected by Lumicycle® (a commonly-used luminometer) to calculate the precise period, amplitude and phase. In these examples, most cycling samples are successfully detected by the RCAT within a short collection time, and accurate rhythmic components are also successfully computed. These results indicate that RCAT improves flexibility and convenience in periodic oscillation data analysis. RCAT, is freely available at: https://github.com/lzbbest/Rhythmic-Component-Analysis-Tool/releases . It, as a cross-platform software, can be run not only on Linux, but also on Win10, Win8 and Win7.
Collapse
Affiliation(s)
- Zhibo Liu
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China
| | - Meng Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shufan Zhang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China
| | - Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, 215123, China
| | - Moli Huang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China.
| |
Collapse
|
25
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany
| | - Gerhard Link
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany.
| |
Collapse
|
26
|
Han T, Wang F, Song Q, Ye W, Liu T, Wang L, Chen ZJ. An epigenetic basis of inbreeding depression in maize. SCIENCE ADVANCES 2021; 7:7/35/eabg5442. [PMID: 34452913 PMCID: PMC8397266 DOI: 10.1126/sciadv.abg5442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/07/2021] [Indexed: 05/12/2023]
Abstract
Inbreeding depression is widespread across plant and animal kingdoms and may arise from the exposure of deleterious alleles and/or loss of overdominant alleles resulting from increased homozygosity, but these genetic models cannot fully explain the phenomenon. Here, we report epigenetic links to inbreeding depression in maize. Teosinte branched1/cycloidea/proliferating cell factor (TCP) transcription factors control plant development. During successive inbreeding among inbred lines, thousands of genomic regions across TCP-binding sites (TBS) are hypermethylated through the H3K9me2-mediated pathway. These hypermethylated regions are accompanied by decreased chromatin accessibility, increased levels of the repressive histone marks H3K27me2 and H3K27me3, and reduced binding affinity of maize TCP-proteins to TBS. Consequently, hundreds of TCP-target genes involved in mitochondrion, chloroplast, and ribosome functions are down-regulated, leading to reduced growth vigor. Conversely, random mating can reverse corresponding hypermethylation sites and TCP-target gene expression, restoring growth vigor. These results support a unique role of reversible epigenetic modifications in inbreeding depression.
Collapse
Affiliation(s)
- Tongwen Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Phytochrome A elevates plant circadian-clock components to suppress shade avoidance in deep-canopy shade. Proc Natl Acad Sci U S A 2021; 118:2108176118. [PMID: 34187900 DOI: 10.1073/pnas.2108176118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shade-avoiding plants can detect the presence of neighboring vegetation and evoke escape responses before canopy cover limits photosynthesis. Rapid stem elongation facilitates light foraging and enables plants to overtop competitors. A major regulator of this response is the phytochrome B photoreceptor, which becomes inactivated in light environments with a low ratio of red to far-red light (low R:FR), characteristic of vegetational shade. Although shade avoidance can provide plants with a competitive advantage in fast-growing stands, excessive stem elongation can be detrimental to plant survival. As such, plants have evolved multiple feedback mechanisms to attenuate shade-avoidance signaling. The very low R:FR and reduced levels of photosynthetically active radiation (PAR) present in deep canopy shade can, together, trigger phytochrome A (phyA) signaling, inhibiting shade avoidance and promoting plant survival when resources are severely limited. The molecular mechanisms underlying this response have not been fully elucidated. Here, we show that Arabidopsis thaliana phyA elevates early-evening expression of the central circadian-clock components TIMING OF CAB EXPRESSION 1 (TOC1), PSEUDO RESPONSE REGULATOR 7 (PRR7), EARLY FLOWERING 3 (ELF3), and ELF4 in photocycles of low R:FR and low PAR. These collectively suppress stem elongation, antagonizing shade avoidance in deep canopy shade.
Collapse
|
28
|
Hong J, Gunasekara C, He C, Liu S, Huang J, Wei H. Identification of biological pathway and process regulators using sparse partial least squares and triple-gene mutual interaction. Sci Rep 2021; 11:13174. [PMID: 34162988 PMCID: PMC8222328 DOI: 10.1038/s41598-021-92610-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of biological process- and pathway-specific regulators is essential for advancing our understanding of regulation and formation of various phenotypic and complex traits. In this study, we applied two methods, triple-gene mutual interaction (TGMI) and Sparse Partial Least Squares (SPLS), to identify the regulators of multiple metabolic pathways in Arabidopsis thaliana and Populus trichocarpa using high-throughput gene expression data. We analyzed four pathways: (1) lignin biosynthesis pathway in A. thaliana and P. trichocarpa; (2) flavanones, flavonol and anthocyannin biosynthesis in A. thaliana; (3) light reaction pathway and Calvin cycle in A. thaliana. (4) light reaction pathway alone in A. thaliana. The efficiencies of two methods were evaluated by examining the positive known regulators captured, the receiver operating characteristic (ROC) curves and the area under ROC curves (AUROC). Our results showed that TGMI is in general more efficient than SPLS in identifying true pathway regulators and ranks them to the top of candidate regulatory gene lists, but the two methods are to some degree complementary because they could identify some different pathway regulators. This study identified many regulators that potentially regulate the above pathways in plants and are valuable for genetic engineering of these pathways.
Collapse
Affiliation(s)
- Junyan Hong
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China.,State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China
| | - Chathura Gunasekara
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianqin Huang
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China.,State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
29
|
Michel EJS, Ponnala L, van Wijk KJ. Tissue-type specific accumulation of the plastoglobular proteome, transcriptional networks, and plastoglobular functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4663-4679. [PMID: 33884419 DOI: 10.1093/jxb/erab175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
Plastoglobules are dynamic protein-lipid microcompartments in plastids enriched for isoprenoid-derived metabolites. Chloroplast plastoglobules support formation, remodeling, and controlled dismantling of thylakoids during developmental transitions and environmental responses. However, the specific molecular functions of most plastoglobule proteins are still poorly understood. This review harnesses recent co-mRNA expression data from combined microarray and RNA-seq information in ATTED-II on an updated inventory of 34 PG proteins, as well as proteomics data across 30 Arabidopsis tissue types from ATHENA. Hierarchical clustering based on relative abundance for the plastoglobule proteins across non-photosynthetic and photosynthetic tissue types showed their coordinated protein accumulation across Arabidopsis parts, tissue types, development, and senescence. Evaluation of mRNA-based forced networks at different coefficient thresholds identified a central hub with seven plastoglobule proteins and four peripheral modules. Enrichment of specific nuclear transcription factors (e.g. Golden2-like) and support for crosstalk between plastoglobules and the plastid gene expression was observed, and specific ABC1 kinases appear part of a light signaling network. Examples of other specific findings are that FBN7b is involved with upstream steps of tetrapyrrole biosynthesis and that ABC1K9 is involved in starch metabolism. This review provides new insights into the functions of plastoglobule proteins and an improved framework for experimental studies.
Collapse
Affiliation(s)
- Elena J S Michel
- School of Integrative Plant Sciences (SIPS), Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Klaas J van Wijk
- School of Integrative Plant Sciences (SIPS), Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Paajanen P, Lane de Barros Dantas L, Dodd AN. Layers of crosstalk between circadian regulation and environmental signalling in plants. Curr Biol 2021; 31:R399-R413. [PMID: 33905701 DOI: 10.1016/j.cub.2021.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Circadian regulation has a pervasive influence upon plant development, physiology and metabolism, impacting upon components of fitness and traits of agricultural importance. Circadian regulation is inextricably connected to the responses of plants to their abiotic environments, from the cellular to whole plant scales. Here, we review the crosstalk that occurs between circadian regulation and responses to the abiotic environment from the intracellular scale through to naturally fluctuating environments. We examine the spatial crosstalk that forms part of plant circadian regulation, at the subcellular, tissue, organ and whole-plant scales. This includes a focus on chloroplast and mitochondrial signalling, alternative splicing, long-distance circadian signalling and circadian regulation within natural environments. We also consider mathematical models for plant circadian regulation, to suggest future areas for advancing understanding of roles for circadian regulation in plant responses to environmental cues.
Collapse
Affiliation(s)
- Pirita Paajanen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
32
|
Kayanja GE, Ibrahim IM, Puthiyaveetil S. Regulation of Phaeodactylum plastid gene transcription by redox, light, and circadian signals. PHOTOSYNTHESIS RESEARCH 2021; 147:317-328. [PMID: 33387192 DOI: 10.1007/s11120-020-00811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Diatoms are a diverse group of photosynthetic unicellular algae with a plastid of red-algal origin. As prolific primary producers in the ocean, diatoms fix as much carbon as all rainforests combined. The molecular mechanisms that contribute to the high photosynthetic productivity and ecological success of diatoms are however not yet fully understood. Using the model diatom Phaeodactylum tricornutum, here we show rhythmic transcript accumulation of plastid psaA, psbA, petB, and atpB genes as driven by a free running circadian clock. Treatment with the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea overrides the circadian signal by markedly downregulating transcription of psaA, petB, and atpB genes but not the psbA gene. Changes in light quantity produce little change in plastid gene transcription while the effect of light quality seems modest with only the psaA gene responding in a pattern that is dependent on the redox state of the plastoquinone pool. The significance of these plastid transcriptional responses and the identity of the underlying genetic control systems are discussed with relevance to diatom photosynthetic acclimation.
Collapse
Affiliation(s)
- Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
33
|
Puthiyaveetil S, McKenzie SD, Kayanja GE, Ibrahim IM. Transcription initiation as a control point in plastid gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194689. [PMID: 33561560 DOI: 10.1016/j.bbagrm.2021.194689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
The extensive processing and protein-assisted stabilization of transcripts have been taken as evidence for a viewpoint that the control of gene expression had shifted entirely in evolution from transcriptional in the bacterial endosymbiont to posttranscriptional in the plastid. This suggestion is however at odds with many observations on plastid gene transcription. Chloroplasts of flowering plants and mosses contain two or more RNA polymerases with distinct promoter preference and division of labor for the coordinated synthesis of plastid RNAs. Plant and algal plastids further possess multiple nonredundant sigma factors that function as transcription initiation factors. The controlled accumulation of plastid sigma factors and modification of their activity by sigma-binding proteins and phosphorylation constitute additional transcriptional regulatory strategies. Plant and algal plastids also contain dedicated one- or two-component transcriptional regulators. Transcription initiation thus continues to form a critical control point at which varied developmental and environmental signals intersect with plastid gene expression.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| | - Steven D McKenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Du Y, Mo W, Ma T, Tang W, Tian L, Lin R. A pentatricopeptide repeat protein DUA1 interacts with sigma factor 1 to regulate chloroplast gene expression in Rice. PHOTOSYNTHESIS RESEARCH 2021; 147:131-143. [PMID: 33164144 DOI: 10.1007/s11120-020-00793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Chloroplast gene expression is controlled by both plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase and is crucial for chloroplast development and photosynthesis. Environmental factors such as light and temperature can influence transcription in chloroplasts. In this study, we showed that mutation in DUA1, which encodes a pentatricopeptide repeat (PPR) protein in rice (Oryza sativa), led to deficiency in chloroplast development and chlorophyll biosynthesis, impaired photosystems, and reduced expression of PEP-dependent transcripts at low temperature especially under low-light conditions. Furthermore, we demonstrated that sigma factor OsSIG1 interacted with DUA1 in vitro and in vivo. Moreover, the levels of chlorophyll and PEP-dependent gene expression were significantly decreased in the Ossig1 mutants at low-temperature and low-light conditions. Our study reveals that the PPR protein DUA1 plays an important role in regulating PEP-mediated chloroplast gene expression through interacting with OsSIG1, thus modulates chloroplast development in response to environmental signals.
Collapse
Affiliation(s)
- Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiping Mo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Cervela-Cardona L, Yoshida T, Zhang Y, Okada M, Fernie A, Mas P. Circadian Control of Metabolism by the Clock Component TOC1. FRONTIERS IN PLANT SCIENCE 2021; 12:683516. [PMID: 34194455 PMCID: PMC8238050 DOI: 10.3389/fpls.2021.683516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 05/11/2023]
Abstract
Photosynthesis in chloroplasts during the day and mitochondrial respiration during the night execute nearly opposing reactions that are coordinated with the internal cellular status and the external conditions. Here, we describe a mechanism by which the Arabidopsis clock component TIMING OF CAB EXPRESSION1 (TOC1) contributes to the diurnal regulation of metabolism. Proper expression of TOC1 is important for sustaining cellular energy and for the diel and circadian oscillations of sugars, amino acids and tricarboxylic acid (TCA) cycle intermediates. TOC1 binds to the promoter of the TCA-related gene FUMARASE 2 to repress its expression at night, which results in decreased fumarate accumulation in TOC1 over-expressing plants and increased in toc1-2 mutant. Genetic interaction studies confirmed that over-expression of FUMARASE 2 in TOC1 over-expressing plants alleviates the molecular and physiological energy-deprivation phenotypes of TOC1 over-expressing plants. Thus, we propose that the tandem TOC1-FUMARASE 2 is one of the mechanisms that contribute to the regulation of plant metabolism during the day and night.
Collapse
Affiliation(s)
- Luis Cervela-Cardona
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Plant Biotechnology, Plovdiv, Bulgaria
| | - Masaaki Okada
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Plant Biotechnology, Plovdiv, Bulgaria
| | - Paloma Mas
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- *Correspondence: Paloma Mas,
| |
Collapse
|
36
|
The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. Int J Mol Sci 2020; 21:ijms21176082. [PMID: 32846932 PMCID: PMC7503970 DOI: 10.3390/ijms21176082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts are plant organelles that carry out photosynthesis, produce various metabolites, and sense changes in the external environment. Given their endosymbiotic origin, chloroplasts have retained independent genomes and gene-expression machinery. Most genes from the prokaryotic ancestors of chloroplasts were transferred into the nucleus over the course of evolution. However, the importance of chloroplast gene expression in environmental stress responses have recently become more apparent. Here, we discuss the emerging roles of the distinct chloroplast gene expression processes in plant responses to environmental stresses. For example, the transcription and translation of psbA play an important role in high-light stress responses. A better understanding of the connection between chloroplast gene expression and environmental stress responses is crucial for breeding stress-tolerant crops better able to cope with the rapidly changing environment.
Collapse
|
37
|
Martí Ruiz MC, Jung HJ, Webb AAR. Circadian gating of dark-induced increases in chloroplast- and cytosolic-free calcium in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1993-2005. [PMID: 31644821 PMCID: PMC7028143 DOI: 10.1111/nph.16280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/11/2019] [Indexed: 05/22/2023]
Abstract
Changes in the spatiotemporal concentration of free Ca2+ ([Ca2+ ]) in different organelles of the cell contribute to responses of plants to physiological and environmental stimuli. One example are [Ca2+ ] increases in the stroma of chloroplasts during light-to-dark transitions; however, the function and mechanisms responsible are unknown, in part because there is a disagreement in the literature concerning whether corresponding dark-induced changes in cytosolic [Ca2+ ] ([Ca2+ ]cyt ) can be detected. We have measured changes in [Ca2+ ]cyt upon darkness in addition to the already known dark-induced increases in [Ca2+ ]stroma in the aerial part of the Arabidopsis thaliana plant. These [Ca2+ ]cyt transients depend on the photoperiod and time of day, peaking at anticipated dusk, and are superimposed on daily 24 h oscillations in [Ca2+ ]cyt . We also find that the magnitude of the dark-induced increases in Ca2+ in both the cytosol and chloroplasts are gated by the nuclear circadian oscillator. The modulation of the magnitude of dark-induced increases in [Ca2+ ]stroma and [Ca2+ ]cyt by transcriptional regulators in the nucleus that are part of the circadian oscillator demonstrates a new role for the circadian system in subcellular Ca2+ signalling, in addition to its role in driving circadian oscillations of [Ca2+ ] in the cytosol and chloroplasts.
Collapse
Affiliation(s)
- María Carmen Martí Ruiz
- Department of Stress Biology and Plant PathologyCEBAS‐CSICCampus Universitario de EspinardoMurcia30100Spain
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridge,CB2 3EAUK
| | - Hyun Ju Jung
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridge,CB2 3EAUK
| | - Alex A. R. Webb
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridge,CB2 3EAUK
| |
Collapse
|
38
|
Macadlo LA, Ibrahim IM, Puthiyaveetil S. Sigma factor 1 in chloroplast gene transcription and photosynthetic light acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1029-1038. [PMID: 31639823 PMCID: PMC6977190 DOI: 10.1093/jxb/erz464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 05/09/2023]
Abstract
Sigma factors are dissociable subunits of bacterial RNA polymerase that ensure efficient transcription initiation from gene promoters. Owing to their prokaryotic origin, chloroplasts possess a typical bacterial RNA polymerase together with its sigma factor subunit. The higher plant Arabidopsis thaliana contain as many as six sigma factors for the hundred or so of its chloroplast genes. The role of this relatively large number of transcription initiation factors for the miniature chloroplast genome, however, is not fully understood. Using two Arabidopsis T-DNA insertion mutants, we show that sigma factor 1 (SIG1) initiates transcription of a specific subset of chloroplast genes. We further show that the photosynthetic control of PSI reaction center gene transcription requires complementary regulation of the nuclear SIG1 gene at the transcriptional level. This SIG1 gene regulation is dependent on both a plastid redox signal and a light signal transduced by the phytochrome photoreceptor.
Collapse
Affiliation(s)
- Lauren A Macadlo
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47906, USA
| | - Iskander M Ibrahim
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47906, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
39
|
Nozoe M, Tsunoyama Y, Ishizaki Y, Nakahira Y, Shiina T. Selective Activation of Chloroplast psbD Light-Responsive Promoter and psaA/B Promoter in Transplastomic Tobacco Plants Overexpressing Arabidopsis Sigma Factor AtSIG5. Protein Pept Lett 2020; 27:168-175. [PMID: 31612816 DOI: 10.2174/0929866526666191014130605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/30/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plastid-encoded eubacterial-type RNA polymerase (PEP) plays a critical role in the transcription of photosynthesis genes in chloroplasts. Notably, some of the reaction center genes, including psaA, psaB, psbA, and psbD genes, are differentially transcribed by PEP in mature chloroplasts. However, the molecular mechanism of promoter selection in the reaction center gene transcription by PEP is not well understood. OBJECTIVE Sigma factor proteins direct promoter selection by a core PEP in chloroplasts as well as bacteria. AtSIG5 is a unique chloroplast sigma factor essential for psbD light-responsive promoter (psbD LRP) activity. To analyze the role of AtSIG5 in chloroplast transcription in more detail, we assessed the effect of AtSIG5 hyper-expression on the transcription of plastid-encoded genes in chloroplast transgenic plants. RESULTS The chloroplast transgenic tobacco (CpOX-AtSIG5) accumulates AtSIG5 protein at extremely high levels in chloroplasts. Due to the extremely high-level expression of recombinant AtSIG5, most PEP holoenzymes are most likely to include the recombinant AtSIG5 in the CpOXAtSIG5 chloroplasts. Thus, we can assess the promoter preference of AtSIG5 in vivo. The overexpression of AtSIG5 significantly increased the expression of psbD LRP transcripts encoding PSII reaction center D2 protein and psaA/B operon transcripts encoding PSI core proteins. Furthermore, run-on transcription analyses revealed that AtSIG5 preferentially recognizes the psaA/B promoter, as well as the psbD LRP. Moreover, we found that psbD LRP is constitutively active in CpOX-AtSIG5 plants irrespective of light and dark. CONCLUSION AtSIG5 probably plays a significant role in differential transcription of reaction center genes in mature chloroplasts.
Collapse
Affiliation(s)
- Mikio Nozoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| | - Yuichi Tsunoyama
- Radioisotope Research Center, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502,Japan
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
- College of Agriculture, Ibaraki University, Ami, Inashiki 300-0393, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| |
Collapse
|
40
|
Ait-Mohamed O, Novák Vanclová AMG, Joli N, Liang Y, Zhao X, Genovesio A, Tirichine L, Bowler C, Dorrell RG. PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:590949. [PMID: 33178253 PMCID: PMC7596299 DOI: 10.3389/fpls.2020.590949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
Transcriptional coordination is a fundamental component of prokaryotic and eukaryotic cell biology, underpinning the cell cycle, physiological transitions, and facilitating holistic responses to environmental stress, but its overall dynamics in eukaryotic algae remain poorly understood. Better understanding of transcriptional partitioning may provide key insights into the primary metabolism pathways of eukaryotic algae, which frequently depend on intricate metabolic associations between the chloroplasts and mitochondria that are not found in plants. Here, we exploit 187 publically available RNAseq datasets generated under varying nitrogen, iron and phosphate growth conditions to understand the co-regulatory principles underpinning transcription in the model diatom Phaeodactylum tricornutum. Using WGCNA (Weighted Gene Correlation Network Analysis), we identify 28 merged modules of co-expressed genes in the P. tricornutum genome, which show high connectivity and correlate well with previous microarray-based surveys of gene co-regulation in this species. We use combined functional, subcellular localization and evolutionary annotations to reveal the fundamental principles underpinning the transcriptional co-regulation of genes implicated in P. tricornutum chloroplast and mitochondrial metabolism, as well as the functions of diverse transcription factors underpinning this co-regulation. The resource is publically available as PhaeoNet, an advanced tool to understand diatom gene co-regulation.
Collapse
Affiliation(s)
- Ouardia Ait-Mohamed
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anna M. G. Novák Vanclová
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nathalie Joli
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Xue Zhao
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
| | - Auguste Genovesio
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Tirichine
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
- *Correspondence: Leila Tirichine,
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Chris Bowler,
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
41
|
Tanaka K, Ishikawa M, Kaneko M, Kamiya K, Kato S, Nakanishi S. The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942. PHOTOSYNTHESIS RESEARCH 2019; 142:203-210. [PMID: 31485868 DOI: 10.1007/s11120-019-00667-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The intracellular redox and the circadian clock in photosynthetic organisms are two major regulators globally affecting various biological functions. Both of the global control systems have evolved as systems to adapt to regularly or irregularly changing light environments. Here, we report that the two global regulators mutually interact in cyanobacterium Synechococcus elongatus PCC7942, a model photosynthetic organism whose clock molecular mechanism is well known. Electrochemical assay using a transmembrane electron mediator revealed that intracellular redox of S. elongatus PCC7942 cell exhibited circadian rhythms under constant light conditions. The redox rhythm disappeared when transcription/translation of clock genes is defunctionalized, indicating that the transcription/translation controlled by a core KaiABC oscillator generates the circadian redox rhythm. Importantly, the amplitude of the redox rhythm at a constant light condition was large enough to affect the KaiABC oscillator. The findings indicated that the intracellular redox state is actively controlled to change in a 24-h cycle under constant light conditions by the circadian clock system.
Collapse
Affiliation(s)
- Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Masahito Ishikawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masahiro Kaneko
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhide Kamiya
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Souichiro Kato
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan.
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan.
| |
Collapse
|
42
|
Yu Y, Zhou Z, Pu H, Wang B, Zhang Y, Yang B, Zhao T, Xu D. OsSIG2A is required for chloroplast development in rice (Oryza sativa L.) at low temperature by regulating plastid genes expression. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:766-776. [PMID: 31046902 DOI: 10.1071/fp18254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast is an essential photosynthetic apparatus that is more sensitive to low temperatures than other organelles. Sigma factors were revealed regulating specific gene expression for maintaining photosynthetic efficiency and adapting to physiological and environmental conditions. However, the regulatory mechanisms of SIG genes supporting chloroplast development under low temperature in rice have not yet been reported. Here, we uncovered the essential role of OsSIG2A in rice chloroplast development at low temperatures by a newly reported thermo-sensitive chlorophyll deficient 12 (tcd12) mutant, which exhibited albino leaves with decreased chlorophyll content and malformed chloroplasts at seedling stage under low temperature. OsSIG2A is a typical chloroplast-localised RNA polymerase sigma factor, and constitutively expresses in different rice tissues, especially for young leaves and stems. Moreover, the transcription level of both PEP- and NEP- dependent genes, which are necessary for chloroplast development at early leaf development stage, was greatly affected in the tcd12 mutant under low temperature. Taken together, our findings indicate that OsSIG2A is required for early chloroplast differentiation under low temperatures by regulating plastid genes expression.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhenling Zhou
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222234, China
| | - Hanchun Pu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222234, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222234, China
| | - Yunhui Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bo Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222234, China
| | - Tongli Zhao
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222234, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222234, China; and Corresponding author.
| |
Collapse
|
43
|
Toda Y, Kudo T, Kinoshita T, Nakamichi N. Evolutionary Insight into the Clock-Associated PRR5 Transcriptional Network of Flowering Plants. Sci Rep 2019; 9:2983. [PMID: 30814643 PMCID: PMC6393427 DOI: 10.1038/s41598-019-39720-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Circadian clocks regulate the daily timing of metabolic, physiological, and behavioral activities to adapt organisms to day-night cycles. In the model plant Arabidopsis thaliana, transcript-translational feedback loops (TTFL) constitute the circadian clock, which is conserved among flowering plants. Arabidopsis TTFL directly regulates key genes in the clock-output pathways, whereas the pathways for clock-output control in other plants is largely unknown. Here, we propose that the transcriptional networks of clock-associated pseudo-response regulators (PRRs) are conserved among flowering plants. Most PRR genes from Arabidopsis, poplar, and rice encode potential transcriptional repressors. The PRR5-target-like gene group includes genes that encode key transcription factors for flowering time regulation, cell elongation, and chloroplast gene expression. The 5'-upstream regions of PRR5-target-like genes from poplar and rice tend to contain G-box-like elements that are potentially recognized by PRRs in vivo as has been shown in Arabidopsis. Expression of PRR5-target-like genes from poplar and rice tends to decrease when PRRs are expressed, possibly suggesting that the transcriptional network of PRRs is evolutionarily conserved in these plants.
Collapse
Affiliation(s)
- Yosuke Toda
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0022, Japan
- Institute of Transformative Bio-molecules, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| | - Toru Kudo
- Metabologenomics, Inc., 246-2 Mizukami Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-molecules, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| | - Norihito Nakamichi
- Institute of Transformative Bio-molecules, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
44
|
|
45
|
Johansson M, Köster T. On the move through time - a historical review of plant clock research. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:13-20. [PMID: 29607587 DOI: 10.1111/plb.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock is an important regulator of growth and development that has evolved to help organisms to anticipate the predictably occurring events on the planet, such as light-dark transitions, and adapt growth and development to these. This review looks back in history on how knowledge about the endogenous biological clock has been acquired over the centuries, with a focus on discoveries in plants. Key findings at the physiological, genetic and molecular level are described and the role of the circadian clock in important molecular processes is reviewed.
Collapse
Affiliation(s)
- M Johansson
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - T Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
46
|
Cano-Ramirez DL, Dodd AN. New connections between circadian rhythms, photosynthesis, and environmental adaptation. PLANT, CELL & ENVIRONMENT 2018; 41:2515-2517. [PMID: 29785736 DOI: 10.1111/pce.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
This article comments on: Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms.
Collapse
Affiliation(s)
- Dora L Cano-Ramirez
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Antony N Dodd
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
47
|
Yarkhunova Y, Guadagno CR, Rubin MJ, Davis SJ, Ewers BE, Weinig C. Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:2518-2529. [PMID: 29664141 DOI: 10.1111/pce.13216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock regulates many aspects of leaf gas supply and biochemical demand for CO2 , and is hypothesized to improve plant performance. Yet the extent to which the clock may regulate the efficiency of photosystem II (PSII) and photoprotective mechanisms such as heat dissipation is less explored. Based on measurements of chlorophyll a fluorescence, we estimated the maximum efficiency of PSII in light (Fv'/Fm') and heat dissipation by nonphotochemical quenching (NPQ). We further dissected total NPQ into its main components, qE (pH-dependent quenching), qT (state-transition quenching), and qI (quenching related to photoinhibition), in clock mutant genotypes of Arabidopsis thaliana, the cognate wild-type genotypes, and a panel of recombinant inbred lines expressing quantitative variation in clock period. Compared with mutants with altered clock function, we observed that wild-type genotypes with clock period lengths of approximately 24 hr had both higher levels of Fv'/Fm', indicative of improved PSII function, and reduced NPQ, suggestive of lower stress on PSII light harvesting complexes. In the recombinant inbred lines, genetic variances were significant for Fv'/Fm' and all 3 components of NPQ, with qE explaining the greatest proportion of NPQ. Bivariate tests of association and structural equation models of hierarchical trait relationships showed that quantitative clock variation was empirically associated with Fv'/Fm' and NPQ, with qE mediating the relationship with gas exchange. The results demonstrate significant segregating variation for all photoprotective components, and suggest the adaptive significance of the clock may partly derive from its regulation of the light reactions of photosynthesis and of photoprotective mechanisms.
Collapse
Affiliation(s)
- Yulia Yarkhunova
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Carmela R Guadagno
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Seth J Davis
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Cynthia Weinig
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
48
|
Belbin FE, Dodd AN. ABA signalling is regulated by the circadian clock component LHY. THE NEW PHYTOLOGIST 2018; 220:661-663. [PMID: 30324736 DOI: 10.1111/nph.15473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Fiona E Belbin
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| | - Antony N Dodd
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| |
Collapse
|
49
|
Frank A, Matiolli CC, Viana AJC, Hearn TJ, Kusakina J, Belbin FE, Wells Newman D, Yochikawa A, Cano-Ramirez DL, Chembath A, Cragg-Barber K, Haydon MJ, Hotta CT, Vincentz M, Webb AAR, Dodd AN. Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63. Curr Biol 2018; 28:2597-2606.e6. [PMID: 30078562 PMCID: PMC6108399 DOI: 10.1016/j.cub.2018.05.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Synchronization of circadian clocks to the day-night cycle ensures the correct timing of biological events. This entrainment process is essential to ensure that the phase of the circadian oscillator is synchronized with daily events within the environment [1], to permit accurate anticipation of environmental changes [2, 3]. Entrainment in plants requires phase changes in the circadian oscillator, through unidentified pathways, which alter circadian oscillator gene expression in response to light, temperature, and sugars [4, 5, 6]. To determine how circadian clocks respond to metabolic rhythms, we investigated the mechanisms by which sugars adjust the circadian phase in Arabidopsis [5]. We focused upon metabolic regulation because interactions occur between circadian oscillators and metabolism in several experimental systems [5, 7, 8, 9], but the molecular mechanisms are unidentified. Here, we demonstrate that the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) regulates the circadian oscillator gene PSEUDO RESPONSE REGULATOR7 (PRR7) to change the circadian phase in response to sugars. We find that SnRK1, a sugar-sensing kinase that regulates bZIP63 activity and circadian period [10, 11, 12, 13, 14] is required for sucrose-induced changes in circadian phase. Furthermore, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1), which synthesizes the signaling sugar trehalose-6-phosphate, is required for circadian phase adjustment in response to sucrose. We demonstrate that daily rhythms of energy availability can entrain the circadian oscillator through the function of bZIP63, TPS1, and the KIN10 subunit of the SnRK1 energy sensor. This identifies a molecular mechanism that adjusts the circadian phase in response to sugars. The transcription factor bZIP63 binds and regulates the circadian clock gene PRR7 bZIP63 is required for adjustment of circadian period by sugars Trehalose-6-phosphate metabolism and KIN10 signaling regulate circadian period Sugar signals establish the correct circadian phase in light and dark cycles
Collapse
Affiliation(s)
- Alexander Frank
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Cleverson C Matiolli
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Américo J C Viana
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jelena Kusakina
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Fiona E Belbin
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - David Wells Newman
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Aline Yochikawa
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; Universidade Estadual de Campinas, Barão Geraldo, Campinas, São Paulo, Brazil
| | | | - Anupama Chembath
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Michael J Haydon
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Carlos T Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | - Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
50
|
Danilova MN, Kudryakova NV, Andreeva AA, Doroshenko AS, Pojidaeva ES, Kusnetsov VV. Differential impact of heat stress on the expression of chloroplast-encoded genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:90-100. [PMID: 29852366 DOI: 10.1016/j.plaphy.2018.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 05/12/2023]
Abstract
Heat shock is one of the major abiotic factors that causes severe retardation in plant growth and development. To dissect the principal effects of hyperthermia on chloroplast gene expression, we studied the temporal dynamics of transcript accumulation for chloroplast-encoded genes in Arabidopsis thaliana and genes for the chloroplast transcription machinery against a background of changes in physiological parameters. A marked reduction in the transcript amounts of the majority of the genes at the early phases of heat shock (HS) was followed by a return to the baseline levels of rbcL and the housekeeping genes clpP, accD, rps14 and rrn16. The decline in the mRNA levels of trnE (for tRNAglu) and the PSI genes psaA and psaB was opposed by the transient increase in the transcript accumulation of ndhF and the PSII genes psbA, psbD, and psbN and their subsequent reduction with the development of stress. However, the up-regulation of PSII genes in response to elevated temperature was absent in the heat stress-sensitive mutants abi1 and abi2 with the impaired degradation of D2 protein. The expression of rpoA and rpoB, which encode subunits of PEP, was strongly down-regulated throughout the duration of the heat treatment. In addition, heat stress-induced PEP deficiency caused the compensatory up-regulation of the genes for the nuclear-encoded RNA polymerases RPOTp and RPOTmp, the PEP-associated proteins PAP6 and PAP8, the Ser/Thr protein kinase cPCK2, and the stress-inducible sigma factor gene SIG5. Thus, heat stress differentially modulates the transcript accumulation of plastid-encoded genes in A. thaliana at least in part via the expression of HS-responsive nuclear genes for the plastid transcription machinery.
Collapse
Affiliation(s)
- Maria N Danilova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Botanicheskaya St. 35, Russia
| | - Natalia V Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Botanicheskaya St. 35, Russia.
| | | | - Anastasia S Doroshenko
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Botanicheskaya St. 35, Russia
| | - Elena S Pojidaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Botanicheskaya St. 35, Russia
| | - Victor V Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Botanicheskaya St. 35, Russia
| |
Collapse
|