1
|
Karimi S, Yin J, Forrest JA. Two Relaxation Mechanisms for Rejuvenation of Stable Polystyrene Glass. J Phys Chem B 2025. [PMID: 40304731 DOI: 10.1021/acs.jpcb.5c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We report on the rejuvenation of thin films of polystyrene (PS) as they are heated from stable glassy states, prepared either through vapor deposition or physical aging. For films with thicknesses h ≳ 200 nm and h ≲ 50 nm, the rejuvenation of vapor-deposited stable PS glass films is quantitatively described with zero free parameters by simulations using parameters previously obtained from isothermal rejuvenation measurements in the same material. For films with thickness h ∼ 140 nm, the behavior of the vapor-deposited films becomes more complicated and exhibits significant deviations from model predictions. After rejuvenation and physical aging, such films are then described by a single free parameter. The results of these studies suggest a new distinct mechanism that can result in rejuvenation of glassy PS, and hence two distinct relaxation processes that can couple to the material density.
Collapse
Affiliation(s)
- Saba Karimi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Junjie Yin
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James A Forrest
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Yu J, Gao Y, Yao F, Li J, Zhang H. Dewetting of thin polymer films reveals non-equilibrium conformational difference between substrate and air sides. J Colloid Interface Sci 2025; 682:275-280. [PMID: 39626571 DOI: 10.1016/j.jcis.2024.11.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 11/15/2024] [Indexed: 01/15/2025]
Abstract
The anomalous dynamics of thin polymer films, often attributed to geometrical confinement and interfacial interaction, have aroused considerable interest, particularly with regard to the inherent and processing-induced chain conformation changes. Here, the capillary peeling method is employed to obtain reattached thin polystyrene films with either the substrate or the air side beneath. Compared to traditional dewetting experiments solely conducted on the substrate side of as-cast films, the difference in dewetting behavior between the two sides of films is demonstrated, with the air side showing a faster dewetting velocity in the early stage and a larger apparent residual stress. Through this method, the non-equilibrium conformation of polymer chains that used to be located on the air side due to spin-casting can be thoroughly investigated without any interference from free surface effects. Our findings offer evidence of the difference in interfacial chain entanglement density, which determines variations in the performance on relaxation of residual stress within the thin films. This work is an improved method to study polymer dynamics through dewetting and gives insight into chain conformation at interfaces during processing.
Collapse
Affiliation(s)
- Jiajun Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yi Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; School of Chemical Engineering and Technology and Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; School of Chemical Engineering and Technology and Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300350, China.
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; School of Chemical Engineering and Technology and Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300350, China.
| |
Collapse
|
3
|
Kim M, Park M, Seon H, Choi S, Kim HJ, Kim S. Tailoring dual cross-linked polymer-ionic liquid composites by blending co-crystallizable polymers for stretchable electronics. RSC Adv 2024; 14:36022-36030. [PMID: 39529745 PMCID: PMC11552274 DOI: 10.1039/d4ra05968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Facile adjustment of the behavior of dual cross-linked polymer-ionic liquid composites (PICs) for stretchable electronics was achieved via solution blending of two copolymers having the same monomer pairs. Two poly(docosyl acrylate-r-tert-butyl acrylate) (poly(A22-r-tBA)) copolymers with different molar ratios were synthesized and solution-cast with ionic liquids (ILs) to fabricate ternary PICs. The phase behavior and the thermal and structural properties of the composites were investigated by varying the mixing ratio, providing insights into the cross-linking mechanisms. The observed changes enabled systematic modulation of the stretchability, thermal stability, and self-healing capability of PICs, which are crucial attributes of wearable devices. Mechanically tough and conductive PICs were utilized in fabricating strain sensors capable of detecting human motion.
Collapse
Affiliation(s)
- Minjun Kim
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University Incheon 22212 Republic of Korea
| | - Moonsung Park
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University Incheon 22212 Republic of Korea
| | - Hobin Seon
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University Incheon 22212 Republic of Korea
| | - Sohyun Choi
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University Incheon 22212 Republic of Korea
| | - Hee Joong Kim
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University Incheon 22212 Republic of Korea
| | - Sangwon Kim
- Department of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
4
|
Madhusudanan M, Chowdhury M. Advancements in Novel Mechano-Rheological Probes for Studying Glassy Dynamics in Nanoconfined Thin Polymer Films. ACS POLYMERS AU 2024; 4:342-391. [PMID: 39399890 PMCID: PMC11468511 DOI: 10.1021/acspolymersau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 10/15/2024]
Abstract
The nanoconfinement effects of glassy polymer thin films on their thermal and mechanical properties have been investigated thoroughly, especially with an emphasis on its altered glass transition behavior compared to bulk polymer, which has been known for almost three decades. While research in this direction is still evolving, reaching new heights to unravel the underlying physics of phenomena observed in confined thin polymer films, we have a much clearer picture now. This, in turn, has promoted their application in miniaturized and functional applications. To extract the full potential of such confined films, starting from their fabrication, function, and various applications, we must realize the necessity to have an understanding and availability of robust characterization protocols that specifically target thin film thermo-mechanical stability. Being nanometer-sized in thickness, often atop a solid substrate, direct mechanical testing on such films becomes extremely challenging and often encounters serious complexity from the dominating effect of the substrate. In this review, we have compiled together a few important novel and promising techniques for mechano-rheological characterization of glassy polymer thin films. The conceptual background involved in each technique, constitutive equations, methodology, and current status of research are touched upon following a pedagogical tutorial approach. Further, we discussed each technique's success and limitations, carefully covering the puzzling or contradicting observations reported within the broad nexus of glass transition temperature-viscosity-modulus-molecular mobility (including diffusion and relaxation).
Collapse
Affiliation(s)
- Mithun Madhusudanan
- Metallurgical
Engineering and Materials Science, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Mithun Chowdhury
- Metallurgical
Engineering and Materials Science, Indian
Institute of Technology Bombay, Mumbai 400076, India
- Center
for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Liu J, Lin H, Li X. GMXPolymer: a generated polymerization algorithm based on GROMACS. J Mol Model 2024; 30:320. [PMID: 39223357 DOI: 10.1007/s00894-024-06119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT This work introduces a method for generating generalized structures of amorphous polymers using simulated polymerization and molecular dynamics equilibration, with a particular focus on amorphous polymers. The techniques and algorithms used in this method are described in the main text, and example input scripts are provided for the GMXPolymer code, which is based on the GROMACS molecular dynamics package. To demonstrate the efficacy of our method, we apply it to different glassy polymers exhibiting varying degrees of functionality, polarity, and rigidity. The reliability of the method is validated by comparing simulation results with experimental data in various structural and thermal properties, both of which show excellent agreement. METHODS This work implements the GMXPolymer simulated polymerization algorithm on the GROMACS program. GMXPolymer code controls the main polymerization loop. The energy minimizations and molecular dynamics simulations use the GROMACS program called by the GMXPolymer code. A new ITP file is generated when a new bond is formed, and the necessary additions to the ITP file are made to include new bonds, angles, and dihedrals. In preparing the ITP file of the monomer, the charge of the reactive atom must be modified before the code runs so that it is a correct value after bonding.
Collapse
Affiliation(s)
- Jianchuan Liu
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China
| | - Haiyan Lin
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China
| | - Xun Li
- Institute of Linguistics, Shanghai International Studies University, Shanghai, 200000, China.
| |
Collapse
|
6
|
Tian H, Luo J, Tang Q, Zha H, Priestley RD, Hu W, Zuo B. Intramolecular dynamic coupling slows surface relaxation of polymer glasses. Nat Commun 2024; 15:6082. [PMID: 39030198 PMCID: PMC11271542 DOI: 10.1038/s41467-024-50398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Over the past three decades, studies have indicated a mobile surface layer with steep gradients on glass surfaces. Among various glasses, polymers are unique because intramolecular interactions - combined with chain connectivity - can alter surface dynamics, but their fundamental role has remained elusive. By devising polymer surfaces occupied by chain loops of various penetration depths, combined with surface dissipation experiments and Monte Carlo simulations, we demonstrate that the intramolecular dynamic coupling along surface chains causes the sluggish bulk polymers to suppress the fast surface dynamics. Such effect leads to that accelerated segmental relaxation on polymer glass surfaces markedly slows when the surface polymers extend chain loops deeper into the film interior. The surface mobility suppression due to the intramolecular coupling reduces the magnitude of the reduction in glass transition temperature commonly observed in thin films, enabling new opportunities for tailoring polymer properties at interfaces and under confinement and producing glasses with enhanced thermal stability.
Collapse
Affiliation(s)
- Houkuan Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jintian Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiyun Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China.
| | - Hao Zha
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ, 08544, USA.
| | - Wenbing Hu
- Department of Polymer Science, School of Chemistry and Chemical Engineering, State Key Lab of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| | - Biao Zuo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou, 312400, China.
| |
Collapse
|
7
|
Tamnanloo J, Tsige M. All-atom molecular dynamics simulation of solvent diffusion in an unentangled polystyrene film. SOFT MATTER 2024; 20:5195-5202. [PMID: 38895847 DOI: 10.1039/d4sm00641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The diffusion behavior of low molecular weight solvents within an unentangled polystyrene film below and above its glass transition temperature is investigated. The diffusion behavior in the glassy state exhibits a distinct behavior known as case II or class II diffusion, noticeably diverging from conventional Fickian diffusion observed above the glass transition temperature of the polymer film. In the context of case II diffusion, the primary experimental observation entails the emergence of a well-defined concentration front moving at a constant speed, delineating a swollen, rubbery region from a glassy region within the polymer system. Despite the prevalence of this phenomenon in experimental settings, simulating case II diffusion has posed a significant challenge, primarily due to the computationally intensive nature of the diffusion process. To address this, we have developed an all-atom molecular dynamics simulation approach for the observation of case II diffusion in glassy polymers. This method aims to unravel the intricacies of the diffusion process, providing valuable insights into the dynamic interactions between solvents and the polymer matrix.
Collapse
Affiliation(s)
- Javad Tamnanloo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
8
|
Zhai Q, Gao XY, Lee CS, Ong CY, Yan K, Deng HY, Yang S, Lam CH. Surface mobility gradient and emergent facilitation in glassy films. SOFT MATTER 2024; 20:4389-4394. [PMID: 38757511 DOI: 10.1039/d4sm00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Confining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films. The film mobility measurements reported by Yang et al., Science, 2010, 328, 1676 are successfully reproduced. The flow exhibits a crossover from a simple viscous flow to a surface-dominated regime as the temperature decreases. The propagation of a highly mobile front induced by the free surface is visualized in real space. Our approach provides a microscopic treatment of the observed glassy phenomena.
Collapse
Affiliation(s)
- Qiang Zhai
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an, Shaanxi, 710049, China.
| | - Xin-Yuan Gao
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chun-Shing Lee
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chin-Yuan Ong
- School of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Ke Yan
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hai-Yao Deng
- School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, Wales, UK.
| | - Sen Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an, Shaanxi, 710049, China.
| | - Chi-Hang Lam
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
9
|
Luo P, Wolf SE, Govind S, Stephens RB, Kim DH, Chen CY, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z. High-density stable glasses formed on soft substrates. NATURE MATERIALS 2024; 23:688-694. [PMID: 38413812 DOI: 10.1038/s41563-024-01828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Enabled by surface-mediated equilibration, physical vapour deposition can create high-density stable glasses comparable with liquid-quenched glasses aged for millions of years. Deposition is often performed at various rates and temperatures on rigid substrates to control the glass properties. Here we demonstrate that on soft, rubbery substrates, surface-mediated equilibration is enhanced up to 170 nm away from the interface, forming stable glasses with densities up to 2.5% higher than liquid-quenched glasses within 2.5 h of deposition. Gaining similar properties on rigid substrates would require 10 million times slower deposition, taking ~3,000 years. Controlling the modulus of the rubbery substrate provides control over the glass structure and density at constant deposition conditions. These results underscore the significance of substrate elasticity in manipulating the properties of the mobile surface layer and thus the glass structure and properties, allowing access to deeper states of the energy landscape without prohibitively slow deposition rates.
Collapse
Affiliation(s)
- Peng Luo
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Wolf
- Department of Chemistry, State University of New York Cortland, Cortland, NY, USA
| | - Shivajee Govind
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard B Stephens
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Hyup Kim
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Cindy Y Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Truc Nguyen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Patryk Wąsik
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Brandon Mcclimon
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Zhou X, Zong Y, Wang Y, Sun M, Shi D, Wang W, Du G, Xie Y. Nanofluidic memristor based on the elastic deformation of nanopores with nanoparticle adsorption. Natl Sci Rev 2024; 11:nwad216. [PMID: 38487493 PMCID: PMC10939365 DOI: 10.1093/nsr/nwad216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 03/17/2024] Open
Abstract
The memristor is the building block of neuromorphic computing. We report a new type of nanofluidic memristor based on the principle of elastic strain on polymer nanopores. With nanoparticles absorbed at the wall of a single conical polymer nanopore, we find a pinched hysteresis of the current within a scanning frequency range of 0.01-0.1 Hz, switching to a diode below 0.01 Hz and a resistor above 0.1 Hz. We attribute the current hysteresis to the elastic strain at the tip side of the nanopore, caused by electrical force on the particles adsorbed at the inner wall surface. Our simulation and analytical equations match well with experimental results, with a phase diagram for predicting the system transitions. We demonstrate the plasticity of our nanofluidic memristor to be similar to a biological synapse. Our findings pave a new way for ionic neuromorphic computing using nanofluidic memristors.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuanyuan Zong
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongchang Wang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Miao Sun
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Deli Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Wang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Guanghua Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanbo Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
11
|
Cheng S, Kogut D, Zheng J, Patil S, Yang F, Lu W. Dynamics of polylactic acid under ultrafine nanoconfinement: The collective interface effect and the spatial gradient. J Chem Phys 2024; 160:114904. [PMID: 38506298 DOI: 10.1063/5.0189762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Polymers under nanoconfinement can exhibit large alterations in dynamics from their bulk values due to an interface effect. However, understanding the interface effect remains a challenge, especially in the ultrafine nanoconfinement region. In this work, we prepare new geometries with ultrafine nanoconfinement ∼10nm through controlled distributions of the crystalline phases and the amorphous phases of a model semi-crystalline polymer, i.e., the polylactic acid. The broadband dielectric spectroscopy measurements show that ultrafine nanoconfinement leads to a large elevation in the glass transition temperature and a strong increment in the polymer fragility index. Moreover, new relaxation time profile analyses demonstrate a spatial gradient that can be well described by either a single-exponential decay or a double-exponential decay functional form near the middle of the film with a collective interface effect. However, the dynamics at the 1-2 nm vicinity of the interface exhibit a power-law decay that is different from the single-exponential decay or double-exponential decay functional forms as predicted by theories. Thus, these results call for further investigations of the interface effect on polymer dynamics, especially for interfaces with perturbed chain packing.
Collapse
Affiliation(s)
- Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Kogut
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Juncheng Zheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fuming Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Weiyi Lu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
12
|
Zhang Q, Li W, Qiao K, Han Y. Surface premelting and melting of colloidal glasses. SCIENCE ADVANCES 2023; 9:eadf1101. [PMID: 36930717 PMCID: PMC10022898 DOI: 10.1126/sciadv.adf1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The nature of liquid-to-glass transition is a major puzzle in science. A similar challenge exists in glass-to-liquid transition, i.e., glass melting, especially for the poorly investigated surface effects. Here, we assemble colloidal glasses by vapor deposition and melt them by tuning particle attractions. The structural and dynamic parameters saturate at different depths, which define a surface liquid layer and an intermediate glassy layer. The power-law growth of both layers and melting front behaviors at different heating rates are similar to crystal premelting and melting, suggesting that premelting and melting can be generalized to amorphous solids. The measured single-particle kinetics reveal various features and confirm theoretical predictions for glass surface layer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kaiyao Qiao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
13
|
Yin J, Pedersen C, Thees MF, Carlson A, Salez T, Forrest JA. Surface and bulk relaxation of vapor-deposited polystyrene glasses. J Chem Phys 2023; 158:094901. [PMID: 36889949 DOI: 10.1063/5.0133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
We have studied the liquid-like response of the surface of vapor-deposited glassy films of polystyrene to the introduction of gold nanoparticles on the surface. The build-up of polymer material was measured as a function of time and temperature for both as-deposited films, as well as films that have been rejuvenated to become normal glasses cooled from the equilibrium liquid. The temporal evolution of the surface profile is well described by the characteristic power law of capillary-driven surface flows. In all cases, the surface evolution of the as-deposited films and the rejuvenated films is enhanced compared to bulk and is not easily distinguishable from each other. The temperature dependence of the measured relaxation times determined from the surface evolution is found to be quantitatively comparable to similar studies for high molecular weight spincast polystyrene. Comparisons to numerical solutions of the glassy thin film equation provide quantitative estimates of the surface mobility. For temperatures sufficiently close to the glass-transition temperature, particle embedding is also measured and used as a probe of bulk dynamics, and, in particular, bulk viscosity.
Collapse
Affiliation(s)
- Junjie Yin
- Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Christian Pedersen
- Mechanics Division, Department of Mathematics, University of Oslo, 0316 Oslo, Norway
| | - Michael F Thees
- Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Andreas Carlson
- Mechanics Division, Department of Mathematics, University of Oslo, 0316 Oslo, Norway
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - James A Forrest
- Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Bonneau H, Arutkin M, Chen R, Forrest JA, Raphaël E, Salez T. On the bridge hypothesis in the glass transition of freestanding polymer films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:8. [PMID: 36856883 DOI: 10.1140/epje/s10189-023-00272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Freestanding thin polymer films with high molecular weights exhibit an anomalous decrease in the glass-transition temperature with film thickness. Specifically, in such materials, the measured glass-transition temperature evolves in an affine way with the film thickness, with a slope that weakly depends on the molecular weight. De Gennes proposed a sliding mechanism as the hypothetical dominant relaxation process in these systems, where stress kinks could propagate in a reptation-like fashion through so-called bridges, i.e. from one free interface to the other along the backbones of polymer macromolecules. Here, by considering the exact statistics of finite-sized random walks within a confined box, we investigate in details the bridge hypothesis. We show that the sliding mechanism cannot reproduce the basic features appearing in the experiments, and we exhibit the fundamental reasons behind such a fact.
Collapse
Affiliation(s)
- Haggai Bonneau
- Gulliver, CNRS UMR 7083, ESPCI Paris, Univ. PSL, 75005, Paris, France
| | - Maxence Arutkin
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Rainni Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - James A Forrest
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Elie Raphaël
- Gulliver, CNRS UMR 7083, ESPCI Paris, Univ. PSL, 75005, Paris, France
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France.
| |
Collapse
|
15
|
Tarnacka M, Kamińska E, Paluch M, Kamiński K. New Insights from Nonequilibrium Kinetics Studies on Highly Polar S-Methoxy-PC Infiltrated into Pores. J Phys Chem Lett 2022; 13:10464-10470. [PMID: 36326602 PMCID: PMC9661534 DOI: 10.1021/acs.jpclett.2c02672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Herein, the annealing of highly polar (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (S-methoxy-PC) within alumina and silica porous membranes characterized by different pore diameters was studied by means of dielectric spectroscopy. We found a significant slowing down of the structural dynamics of confined S-methoxy-PC with annealing time below and, surprisingly, also above the glass transition temperatures of the interfacial layer, Tg,interfacial. Furthermore, unexpectedly, a change in the slope of temperature dependencies of the characteristic time scale of this process τanneal, at Tg,interfacial for all confined samples, was reported. By modeling τanneal(T), we noted that the observed enormous variation of τanneal results from a decrease of the pore radius due to the vitrification of the interfacial molecules. This indicates that the enhanced dynamics of confined materials upon cooling is mainly controlled by the interfacial molecules.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, Jagiellońska 4, 41-200Sosnowiec, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| | - Kamil Kamiński
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| |
Collapse
|
16
|
Xing Z, Zhu N, Yang Y, Wang X, Zuo B. Alternating chain sequence weakening of interfacial molecular interactions enhances the Tg confinement effect of polymers. Polym J 2022. [DOI: 10.1038/s41428-022-00672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Zhang H, Chang T, Zhang S, Zhou K, Zhang W, Hu Z. Effects of chain ends and densities on the glass transition of polymer thin films probed by linear and cyclic polystyrene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos MA, Rodriguez-Viejo J. Ultrastable glasses: new perspectives for an old problem. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:325-406. [DOI: 10.1007/s40766-022-00029-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2025]
Abstract
AbstractUltrastable glasses (mostly prepared from the vapor phase under optimized deposition conditions) represent a unique class of materials with low enthalpies and high kinetic stabilities. These highly stable and dense glasses show unique physicochemical properties, such as high thermal stability, improved mechanical properties or anomalous transitions into the supercooled liquid, offering unprecedented opportunities to understand many aspects of the glassy state. Their improved properties with respect to liquid-cooled glasses also open new prospects to their use in applications where liquid-cooled glasses failed or where not considered as usable materials. In this review article we summarize the state of the art of vapor-deposited (and other) ultrastable glasses with a focus on the mechanism of equilibration, the transformation to the liquid state and the low temperature properties. The review contains information on organic, metallic, polymeric and chalcogenide glasses and an updated list with relevant properties of all materials known today to form a stable glass.
Collapse
|
19
|
Liu J, Hwu E, Bannow J, Grohganz H, Rades T. Impact of Molecular Surface Diffusion on the Physical Stability of Co-Amorphous Systems. Mol Pharm 2022; 19:1183-1190. [PMID: 35230110 DOI: 10.1021/acs.molpharmaceut.1c00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, surface diffusion of l-aspartic acid-carvedilol (ASP-CAR) co-amorphous systems at different ASP concentrations is measured and correlated with their physical stability. ASP-CAR films at ASP concentrations of 1-5% (w/w) were prepared by a newly developed method based on a vacuum compression molding process. Surface diffusion measurements were conducted on these systems based on the surface grating decay method using atomic force microscopy (AFM). The results demonstrate that a small amount of ASP (i.e., ≤ 5% w/w) in the co-amorphous systems could significantly slow down the grating decay process compared with that of pure amorphous CAR, indicating a reduced surface diffusion of CAR molecules. The decay time gradually increased in co-amorphous systems with increasing ASP concentration from 1 to 5% (w/w), with the longest observed decay time of around 800 h for the 5%ASP-CAR system, which was more than 200 times longer compared to the decay time of pure amorphous CAR (approximately 3 h). A good correlation between the decay constants of the pure amorphous CAR and co-amorphous films at ASP concentrations of 1-5% (w/w) and the physical stability of corresponding amorphous powder samples was found. Overall, this study provides a new method to prepare co-amorphous films for surface property measurements and reveals the impact of surface diffusion on the physical stability of co-amorphous systems.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - EnTe Hwu
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jacob Bannow
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Li Y, Annamareddy A, Morgan D, Yu Z, Wang B, Cao C, Perepezko JH, Ediger MD, Voyles PM, Yu L. Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. PHYSICAL REVIEW LETTERS 2022; 128:075501. [PMID: 35244425 DOI: 10.1103/physrevlett.128.075501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Surface diffusion is vastly faster than bulk diffusion in some glasses, but only moderately enhanced in others. We show that this variation is closely linked to bulk fragility, a common measure of how quickly dynamics is excited when a glass is heated to become a liquid. In fragile molecular glasses, surface diffusion can be a factor of 10^{8} faster than bulk diffusion at the glass transition temperature, while in the strong system SiO_{2}, the enhancement is a factor of 10. Between these two extremes lie systems of intermediate fragility, including metallic glasses and amorphous selenium and silicon. This indicates that stronger liquids have greater resistance to dynamic excitation from bulk to surface and enables prediction of surface diffusion, surface crystallization, and formation of stable glasses by vapor deposition.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ajay Annamareddy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dane Morgan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zheng Yu
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bu Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chengrong Cao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John H Perepezko
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
21
|
Liu S, Lv M, Li H, Wang S, Feng C, Wang X, Hu W, Wang W. Optical Imaging of the Molecular Mobility of Single Polystyrene Nanospheres. J Am Chem Soc 2022; 144:1267-1273. [PMID: 35014804 DOI: 10.1021/jacs.1c10575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrathin surface layer with extraordinary molecular mobility has been discovered and intensively investigated on thin-film polymer materials for decades. However, because of the lack of suitable characterization techniques, it remains largely unexplored whether such a surface mobile layer also exists on individual polymeric nanospheres. Here, we propose a thermal-optical imaging technique to determine the glass transition (Tg) and rubber-fluid transition (Tf) temperatures of single isolated polystyrene nanospheres (PSNS) in a high-throughput and nonintrusive manner for the first time. Two distinct steps, corresponding to the glass transition and rubber-fluid transition, respectively, were clearly observed in the optical trace of single PSNS during temperature ramping. Because the transition temperature and size of the same individuals were both determined, single nanoparticle measurements revealed the reduced apparent Tf and increased Tg of single PSNS on the gold substrate with a decreasing radius from 130 to 70 nm. Further experiments revealed that the substrate effect played an important role in the increased Tg. More importantly, a gradual decrease in the optical signal was detected prior to the glass transition, which was consistent with a surface layer with enhanced molecular mobility. Quantitative analysis further revealed the thickness of this layer to be ∼8 nm. This work not only uncovered the existence and thickness of a surface mobile layer in single isolated nanospheres but also demonstrated a general bottom-up strategy to investigate the structure-property relationship of polymeric nanomaterials by correlating the thermal property (Tg and Tf) and structural features (size) at single nanoparticle level.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengqi Lv
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sa Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengdong Feng
- State Key Lab of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoliang Wang
- State Key Lab of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenbing Hu
- State Key Lab of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Ezazi M, Shrestha B, Maharjan A, Kwon G. Water-Responsive Self-Repairing Superomniphobic Surfaces via Regeneration of Hierarchical Topography. ACS MATERIALS AU 2021; 2:55-62. [PMID: 36855698 PMCID: PMC9888626 DOI: 10.1021/acsmaterialsau.1c00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superomniphobic surfaces that can self-repair physical damage are desirable for sustainable performance over time in many practical applications that include self-cleaning, corrosion resistance, and protective gears. However, fabricating such self-repairing superomniphobic surfaces has thus far been a challenge because it necessitates the regeneration of both low-surface-energy materials and hierarchical topography. Herein, a water-responsive self-repairing superomniphobic film is reported by utilizing cross-linked hydroxypropyl cellulose (HPC) composited with silica (SiO2) nanoparticles (HPC-SiO2) that is treated with a low-surface-energy perfluorosilane. The film can repair physical damage (e.g., a scratch) in approximately 10 s by regenerating its hierarchical topography and low-surface-energy material upon the application of water vapor. The repaired region shows an almost complete recovery of its inherent superomniphobic wettability and mechanical hardness. The repairing process is driven by the reversible hydrogen bond between the hydroxyl (-OH) groups which can be dissociated upon exposure to water vapor. This results in a viscous flow of the HPC-SiO2 film into the damaged region. A mathematical model composed of viscosity and surface tension of the HPC-SiO2 film can describe the experimentally measured viscous flow with reasonable accuracy. Finally, we demonstrate that the superomniphobic HPC-SiO2 film can repair physical damage by a water droplet pinned on a damaged area or by sequential rolling water droplets.
Collapse
|
23
|
Shi Q, Li F, Xu J, Wu L, Xin J, Chen H, Ling B. Bubble-induced fast crystal growth of indomethacin polymorphs in a supercooled liquid. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721007068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Physical stability is one of the main challenges when developing robust amorphous pharmaceutical formulations. This article reports fast crystal growth behaviors of the γ and α forms of indomethacin (IMC) initiated by bubbles in the interior of a supercooled liquid. Bubble-induced crystal growth of γ-IMC exhibits approximately the same kinetics as its surface crystal growth, supporting the view that bubble-induced crystal growth is a surface-facilitated process. In contrast, the rates of bubble-induced crystal growth of α-IMC are much faster than those of its surface crystal growth. These results indicate that the bubble-induced crystal growth not only depends on the interface created by the bubble but also strongly correlates with the true cavitation of the bubble. Moreover, bubble-induced fast crystal growth of γ- and α-IMC can be terminated at different temperatures by cooling. These outcomes are meaningful for the in-depth understanding of physical stability and pre-formulation study of amorphous pharmaceutical solids showing surface-facilitated crystal growth.
Collapse
|
24
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Ediger MD, Gruebele M, Lubchenko V, Wolynes PG. Glass Dynamics Deep in the Energy Landscape. J Phys Chem B 2021; 125:9052-9068. [PMID: 34357766 DOI: 10.1021/acs.jpcb.1c01739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When a liquid is cooled, progress down the energy landscape is arrested near the glass transition temperature Tg. In principle, lower energy states can be accessed by waiting for further equilibration, but the rough energy landscape of glasses quickly leads to kinetics on geologically slow time scales below Tg. Over the past decade, progress has been made probing deeper into the energy landscape via several techniques. By looking at bulk and surface diffusion, using layered deposition that promotes equilibration, imaging glass surfaces with faster dynamics below Tg, and optically exciting glasses, experiments have moved into a regime of ultrastable, low energy glasses that was difficult to access in the past. At the same time, both simulations and energy landscape theory based on a random first order transition (RFOT) have tackled systems that include surfaces, optical excitation, and interfacial dynamics. Here we review some of the recent experimental work, and how energy landscape theory illuminates glassy dynamics well below the glass transition temperature by making direct connections between configurational entropy, energy landscape barriers, and the resulting dynamics.
Collapse
Affiliation(s)
- Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department of Chemistry, Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Vassiliy Lubchenko
- Departments of Chemistry and Physics, and the Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Peter G Wolynes
- Departments of Chemistry, Physics and Astronomy, Biosciences, Materials Science and Nanoengineering, and the Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
26
|
Hao Z, Ghanekarade A, Zhu N, Randazzo K, Kawaguchi D, Tanaka K, Wang X, Simmons DS, Priestley RD, Zuo B. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature 2021; 596:372-376. [PMID: 34408328 DOI: 10.1038/s41586-021-03733-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3-5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale-the size of the polymer chain-as well as the length scale of the interfacial mobility gradient6-9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time-temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, China
| | - Asieh Ghanekarade
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Ningtao Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, China
| | - Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, Japan
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, China
| | - David S Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ, USA.
| | - Biao Zuo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
27
|
Rahman T, Simmons DS. Near-Substrate Gradients in Chain Relaxation and Viscosity in a Model Low-Molecular Weight Polymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamanna Rahman
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - David S. Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
28
|
Zuo B, Li C, Xu Q, Randazzo K, Jiang N, Wang X, Priestley RD. Ultrastable Glassy Polymer Films with an Ultradense Brush Morphology. ACS NANO 2021; 15:9568-9576. [PMID: 34032418 DOI: 10.1021/acsnano.0c09631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glassy polymer films with extreme stability could enable major advancements in a range of fields that require the use of polymers in confined environments. Yet, from a materials design perspective, we now know that the glass transition temperature (Tg) and thermal expansion of polymer thin films can be dramatically different from those characteristics of the bulk, i.e., exhibiting confinement-induced diminished thermal stability. Here, we demonstrate that polymer brushes with an ultrahigh grafting density, i.e., an ultradense brush morphology, exhibit a significant enhancement in thermal stability, as manifested by an exceptionally high Tg and low expansivity. For instance, a 5 nm thick polystyrene brush film exhibits an ∼75 K increase in Tg and ∼90% reduction in expansivity compared to a spin-cast film of similar thickness. Our results establish how morphology can overcome confinement and interfacial effects in controlling thin-film material properties and how this can be achieved by the dense packing and molecular ordering in the amorphous state of ultradense brushes prepared by surface-initiated atom transfer radical polymerization in combination with a self-assembled monolayer of initiators.
Collapse
Affiliation(s)
| | | | - Quanyin Xu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Zhang S, Ji Z, Du G, Liu J, Zhou X, Xie Y. Temperature Induced Dimensional Tuning and Anomalous Deformation of Micro/Nanopores. NANO LETTERS 2021; 21:2766-2772. [PMID: 33710895 DOI: 10.1021/acs.nanolett.0c04708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial nanopores have become a common toolbox in nanotechnologies, with dimension and geometry as predominant factors. Most fabrication technologies determine the pore size beforehand, but few exist that enable size-tuning post-manufacturing. In this work, we reported a type of ion track etched micro/nanopores on uniaxially drawn PET foils that enable irreversible thermal shrinkage, thus tuning the pore dimensions by increasing ambient temperatures. Importantly, we found a complex pore deformation process, which for a specific range of pore sizes and temperatures resulted in a peculiar "eye"-shaped appearance of the pore openings. We analyzed the mechanical stresses and theoretically illustrated the complex deformation process by a phase diagram. Temperature-induced dimensional tuning nanopores reduced maximally over 98% of ionic conduction in a single nanopore and 99% of pressure-driven flow in a pore-array membrane within few seconds at 90 °C, which is useful for temperature-modulated mass transport in nanotechnology and energy applications.
Collapse
Affiliation(s)
- Shusong Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenming Ji
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guanghua Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xi Zhou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanbo Xie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
30
|
Hashizume M, Hirashima M. Preparation of Polymer-Immobilized Polyimide Films Using Hot Pressing and Titania Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4403-4410. [PMID: 33789424 PMCID: PMC8154877 DOI: 10.1021/acs.langmuir.1c00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have revealed that polymer molecules at film surfaces exhibit unique physical properties compared to those in bulk. On the other hand, such a topic has not been extensively focused for the cases of rigid polymers such as polyimide (PI). This study investigated whether hot pressing could induce the immobilization of other polymers, poly(4-vinylphenol) (PVP), on PI film surfaces. Results supported the immobilization of PVP on the PI film surfaces, and the increase of hot-press temperature resulted in the increase of the immobilization amount of PVP. The mechanism of immobilization is discussed considering the effects of hot pressing on the interactions between PVP and PI at the interfaces of their films. Sol-gel titania coatings were further conducted to the obtained PVP-immobilized PI films. The effect of PVP immobilization on formability and the adhesion of titania layers on the film surfaces were evaluated. These results demonstrate that hot pressing of other polymers is a useful approach for the surface modification of PI films, particularly introducing certain functional groups, and indicate that the polymer immobilization mechanism might be correlated with the surface physical properties of PI films.
Collapse
Affiliation(s)
- Mineo Hashizume
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
- Graduate
School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Michihisa Hirashima
- Graduate
School of Chemical Sciences and Technology, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| |
Collapse
|
31
|
Barták J, Málek J, Bagchi K, Ediger MD, Li Y, Yu L. Surface mobility in amorphous selenium and comparison with organic molecular glasses. J Chem Phys 2021; 154:074703. [DOI: 10.1063/5.0041273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jaroslav Barták
- Department of Physical Chemistry, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Jirí Málek
- Department of Physical Chemistry, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Kushal Bagchi
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Yuhui Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
32
|
Zha H, Wang Q, Wang X, Cangialosi D, Zuo B. Enhanced Free Surface Mobility Facilitates the Release of Free-Volume Holes in Thin-Film Polymer Glasses. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Zha
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Daniele Cangialosi
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, San Sebastian 20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, San Sebastian 20018, Spain
| | - Biao Zuo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
33
|
Schwartzkopf M, Wöhnert SJ, Waclawek V, Carstens N, Rothkirch A, Rubeck J, Gensch M, Drewes J, Polonskyi O, Strunskus T, Hinz AM, Schaper SJ, Körstgens V, Müller-Buschbaum P, Faupel F, Roth SV. Real-time insight into nanostructure evolution during the rapid formation of ultra-thin gold layers on polymers. NANOSCALE HORIZONS 2021; 6:132-138. [PMID: 33290482 DOI: 10.1039/d0nh00538j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.5 ms the temporal evolution of interfacial morphology during the rapid formation of ultra-thin gold layers on thin polystyrene films. We monitor average non-equilibrium cluster geometries, transient interface morphologies and the effective near-surface gold diffusion. At 1 s sputter deposition, the polymer matrix has already been enriched with 1% gold and an intermixing layer has formed with a depth of over 3.5 nm. Furthermore, we experimentally observe unexpected changes in aspect ratios of ultra-small gold clusters growing in the vicinity of polymer chains. For the first time, this approach enables four-dimensional insights at atomic scales during the gold growth under non-equilibrium conditions.
Collapse
Affiliation(s)
- Matthias Schwartzkopf
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhou C, Zhao X, Zhao X, Li H, Zhang S, Feng W, Zhang Y. Low Ice Adhesion Surfaces Based on Flexible Fluorinated Polymers with a Polynorbornene Backbone. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53494-53502. [PMID: 33196187 DOI: 10.1021/acsami.0c15627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Realizing icephobic surfaces with low ice adhesion and durability continues to be fascinating as well as challenging. Herein, a norbornene-based fluorinated polymer (NFP) with high flexibility and high tensile strength is designed and fabricated using a fluorinated side chain and a norbornene backbone, displaying low ice shear strength less than 20 kPa and excellent durability. Experimental and theoretical analyses show that the flexibility of the polymer chains and the synergistic macromolecular aggregation of the fluorinated side groups and the norbornene backbone play key roles in the excellent surface icephobic properties of the NFP films. Moreover, we also develop a facile approach to the design of durable icephobic slippery surfaces, which possess remarkable icephobic performance. This study not only sheds light on the relationship between the polymer molecular structure and surface icephobic properties but also provides a new avenue to conveniently realize anti-icing coatings.
Collapse
Affiliation(s)
- Cuiping Zhou
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Xuan Zhao
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Xiaoyun Zhao
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Shuxiang Zhang
- School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membranes Materials, Shandong Dongyue Polymer Material Co., Ltd., Zibo 255000, China
| | - Yongming Zhang
- State Key Laboratory of Fluorinated Functional Membranes Materials, Shandong Dongyue Polymer Material Co., Ltd., Zibo 255000, China
| |
Collapse
|
35
|
Storey AN, Zhang W, Douglas JF, Starr FW. How Does Monomer Structure Affect the Interfacial Dynamics of Supported Ultrathin Polymer Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber N. Storey
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| | - Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| |
Collapse
|
36
|
Xu J, Lv C, Du B, Wang X, Tsui OKC. Effective Viscosity of Unentangled Random Copolymer Films of Styrene and 4-Methoxystyrene with Different Copolymer Compositions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianquan Xu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ophelia K. C. Tsui
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
37
|
Li Y, Zhang W, Bishop C, Huang C, Ediger MD, Yu L. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. SOFT MATTER 2020; 16:5062-5070. [PMID: 32453335 DOI: 10.1039/d0sm00353k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature Tg. Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulk where mobility is low. For molecular glasses without extensive hydrogen bonds, we find that the surface diffusion coefficient at Tg decreases smoothly with the penetration depth of surface molecules and the trend has the double-exponential form for the surface mobility gradient observed in simulations. This supports the view that these molecular glasses have a similar mobility vs. depth profile and their different surface diffusion rates arise simply from the different depths at which molecules are anchored. Our results also provide support for a previously observed correlation between the rate of surface diffusion and the fragility of the bulk liquid.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Interfacial ion specificity modulates hydrophobic interaction. J Colloid Interface Sci 2020; 578:135-145. [PMID: 32521353 DOI: 10.1016/j.jcis.2020.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Ion specificity is crucial in assembly and aggregation of polymers in water driven by hydrophobic interaction. An increasing number of studies have suggested that specific ion adsorption and consequent impact on interfacial water molecules should play an important role in modulating hydrophobic interaction. EXPERIMENTS Here, bubble probe atomic force microscopy (AFM) combined with theoretical modeling analysis was applied to quantify hydrophobic interactions involving three model polymers in solutions containing different ions. FINDINGS For polystyrene, the hydrophobic interaction's decay length D0 was reduced from 0.75 nm to 0.60 nm by introducing weakly hydrated cations (e.g., K+ and NH4+), while varying anion type had little effect. For poly(methyl methacrylate) and polydimethylsiloxane, anion specificity was demonstrated more evident in shortening the hydrophobic interaction range, with D0 decreasing from 0.63 nm to 0.50 nm and from 0.72 nm to 0.58 nm respectively when strongly hydrated F- or Cl- was replaced by weakly hydrated I-. Such results could arise from specific ion adsorption at water/polymer interface which disrupts the water structuring effect. From the nanomechanical perspective, this work has revealed the importance of interfacial ion specificity in modulating hydrophobic interaction, which offers novel implications for tuning assembly behavior of macromolecules in relevant engineering applications such as micelle formation and foam stabilization.
Collapse
|
39
|
Hajduk B, Bednarski H, Trzebicka B. Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. J Phys Chem B 2020; 124:3229-3251. [PMID: 32275433 PMCID: PMC7590969 DOI: 10.1021/acs.jpcb.9b11863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Indexed: 12/03/2022]
Abstract
Thin polymer films have found many important applications in organic electronics, such as active layers, protective layers, or antistatic layers. Among the various experimental methods suitable for studying the thermo-optical properties of thin polymer films, temperature-dependent spectroscopic ellipsometry plays a special role as a nondestructive and very sensitive optical technique. In this Review Article, issues related to the physical origin of the dependence of ellipsometric angles on temperature are surveyed. In addition, the Review Article discusses the use of temperature-dependent spectroscopic ellipsometry for studying phase transitions in thin polymer films. The benefits of studying thermal transitions using different cooling/heating speeds are also discussed. Furthermore, it is shown how the analysis and modeling of raw ellipsometric data can be used to determine the thermal properties of thin polymer films.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Henryk Bednarski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
40
|
Arutkin M, Raphaël E, Forrest JA, Salez T. Cooperative strings and glassy dynamics in various confined geometries. Phys Rev E 2020; 101:032122. [PMID: 32289913 DOI: 10.1103/physreve.101.032122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 11/07/2022]
Abstract
Previously, we developed a minimal model based on random cooperative strings for the relaxation of supercooled liquids in the bulk and near free interfaces, and we recovered some key experimental observations. In this article, after recalling the main ingredients of the cooperative string model, we study the effective glass transition and surface mobility of various experimentally relevant confined geometries: freestanding films, supported films, spherical particles, and cylindrical particles, with free interfaces and/or passive substrates. Finally, by canceling and restarting any cooperative-chain realization reaching the boundary with a smaller number of steps than the bulk cooperativity, we account for a purely attractive substrate, and explore the impact of the latter in the previous geometries.
Collapse
Affiliation(s)
- Maxence Arutkin
- Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario, Canada N2L 2Y5.,UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Elie Raphaël
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - James A Forrest
- Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario, Canada N2L 2Y5.,UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.,Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Thomas Salez
- Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario, Canada N2L 2Y5.,Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
41
|
Bannow J, Karl M, Larsen PE, Hwu ET, Rades T. Direct Measurement of Lateral Molecular Diffusivity on the Surface of Supersaturated Amorphous Solid Dispersions by Atomic Force Microscopy. Mol Pharm 2020; 17:1715-1722. [PMID: 32207959 DOI: 10.1021/acs.molpharmaceut.0c00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantifying molecular surface diffusivity is of broad interest in many different fields of science and technology. In this study, the method of surface grating decay is utilized to investigate the surface diffusion of practical relevant amorphous solid dispersions of indomethacin and the polymeric excipient Soluplus (a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) at various polymer concentrations (1-20% w/w). The study confirms that measuring surface diffusivity below the system's glass transition temperature is possible with a simplified atomic force microscopy setup. Results highlight a striking polymer influence on the surface diffusivity of drug molecules at low polymer concentrations and a turnover point to a polymer dominated diffusion at around three percent (w/w) polymer concentration. The surface diffusion measurements further correlate well with the observed increase in physical stability of the system as measured by X-ray powder diffraction. These findings are of vital interest in both the applied use and fundamental understanding of amorphous solid dispersions.
Collapse
Affiliation(s)
- Jacob Bannow
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Maximilian Karl
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Peter Emil Larsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - En Te Hwu
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| |
Collapse
|
42
|
Cheng S, Sokolov AP. Correlation between the temperature evolution of the interfacial region and the growing dynamic cooperativity length scale. J Chem Phys 2020; 152:094904. [PMID: 33480747 DOI: 10.1063/1.5143360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
43
|
Hornat CC, Urban MW. Entropy and interfacial energy driven self-healable polymers. Nat Commun 2020; 11:1028. [PMID: 32098954 PMCID: PMC7042321 DOI: 10.1038/s41467-020-14911-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Although significant advances have been achieved in dynamic reversible covalent and non-covalent bonding chemistries for self-healing polymers, an ultimate goal is to create high strength and stiffness commodity materials capable of repair without intervention under ambient conditions. Here we report the development of mechanically robust thermoplastic polyurethane fibers and films capable of autonomous self-healing under ambient conditions. Two mechanisms of self-healing are identified: viscoelastic shape memory (VESM) driven by conformational entropic energy stored during mechanical damage, and surface energy/tension that drives the reduction of newly generated surface areas created upon damage by shallowing and widening wounds until healed. The type of self-healing mechanism is molecular weight dependent. To the best of our knowledge these materials represent the strongest (Sf = 21 mN/tex, or σf ≈ 22 MPa) and stiffest (J = 300 mN/tex, or E ≈ 320 MPa) self-healing polymers able to repair under typical ambient conditions without intervention. Since two autonomous self-healing mechanisms result from viscoelastic behavior not specific to a particular polymer chemistry, they may serve as general approaches to design of other self-repairing commodity polymers.
Collapse
Affiliation(s)
- Chris C Hornat
- Department of Materials Science and Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
44
|
Ma MC, Guo YL. Physical Properties of Polymers Under Soft and Hard Nanoconfinement: A Review. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2380-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Chai Y, Salez T, Forrest JA. Using Mw Dependence of Surface Dynamics of Glassy Polymers to Probe the Length Scale of Free-Surface Mobility. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yu Chai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - James A. Forrest
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
46
|
Bussonnière A, Shabalina E, Ah-Thon X, Le Fur M, Cantat I. Dynamical Coupling between Connected Foam Films: Interface Transfer across the Menisci. PHYSICAL REVIEW LETTERS 2020; 124:018001. [PMID: 31976710 DOI: 10.1103/physrevlett.124.018001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The highly confined flow of the liquid phase, trapped between the gas bubbles, is at the origin of the large effective viscosity of the liquid foams. Despite the industrial relevance of this complex fluid, the foam viscosity remains difficult to predict because of the lack of flow characterization at the bubble scale. Using an original deformable frame, we provide the first experimental evidence of the interface transfer between a compressed film (or a stretched film) and its first neighbor, across their common meniscus. We measure this transfer velocity, which is a key boundary condition for local flows in foams. We also show the dramatic film thickness variation induced by this interface transfer, which may play an important role in the film thickness distribution of a 3D foam sample.
Collapse
Affiliation(s)
- Adrien Bussonnière
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Evgenia Shabalina
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Xavier Ah-Thon
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Mickaël Le Fur
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Isabelle Cantat
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| |
Collapse
|
47
|
Schweizer KS, Simmons DS. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J Chem Phys 2019; 151:240901. [PMID: 31893888 DOI: 10.1063/1.5129405] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nature of alterations to dynamics and vitrification in the nanoscale vicinity of interfaces-commonly referred to as "nanoconfinement" effects on the glass transition-has been an open question for a quarter century. We first analyze experimental and simulation results over the last decade to construct an overall phenomenological picture. Key features include the following: after a metrology- and chemistry-dependent onset, near-interface relaxation times obey a fractional power law decoupling relation with bulk relaxation; relaxation times vary in a double-exponential manner with distance from the interface, with an intrinsic dynamical length scale appearing to saturate at low temperatures; the activation barrier and vitrification temperature Tg approach bulk behavior in a spatially exponential manner; and all these behaviors depend quantitatively on the nature of the interface. We demonstrate that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discrimination between different theories, and thus we assess their merits based on the above dynamical gradient properties. Entropy-based theories appear to exhibit significant inconsistencies with the phenomenology. Diverse free-volume-motivated theories vary in their agreement with observations, with approaches invoking cooperative motion exhibiting the most promise. The elastically cooperative nonlinear Langevin equation theory appears to capture the largest portion of the phenomenology, although important aspects remain to be addressed. A full theoretical understanding requires improved confrontation with simulations and experiments that probe spatially heterogeneous dynamics within the accessible 1-ps to 1-year time window, minimal use of adjustable parameters, and recognition of the rich quantitative dependence on chemistry and interface.
Collapse
Affiliation(s)
- Kenneth S Schweizer
- Departments of Materials Science, Chemistry and Chemical & Biomolecular Engineering, Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - David S Simmons
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
48
|
Ma J, Yang C, Liu X, Shang B, He Q, Li F, Wang T, Wei D, Liang X, Wu X, Wang Y, Gong F, Guan P, Wang W, Yang Y. Fast surface dynamics enabled cold joining of metallic glasses. SCIENCE ADVANCES 2019; 5:eaax7256. [PMID: 31803833 PMCID: PMC6874482 DOI: 10.1126/sciadv.aax7256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Design of bulk metallic glasses (BMGs) with excellent properties has been a long-sought goal in materials science and engineering. The grand challenge has been scaling up the size and improving the properties of metallic glasses of technological importance. In this work, we demonstrate a facile, flexible route to synthesize BMGs and metallic glass-glass composites out of metallic-glass ribbons. By fully activating atomic-scale stress relaxation within an ultrathin surface layer under ultrasonic vibrations, we accelerate the formation of atomic bonding between ribbons at a temperature far below the glass transition point. In principle, our approach overcomes the size and compositional limitations facing traditional methods, leading to the rapid bonding of metallic glasses of distinct physical properties without causing crystallization. The outcome of our current research opens up a window not only to synthesize BMGs of extended compositions, but also toward the discovery of multifunctional glass-glass composites, which have never been reported before.
Collapse
Affiliation(s)
- Jiang Ma
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Can Yang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaodi Liu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Baoshuang Shang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Quanfeng He
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Fucheng Li
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Tianyu Wang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Dan Wei
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiong Liang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Wu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunjiang Wang
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Gong
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pengfei Guan
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Weihua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
49
|
Karan K. Interesting Facets of Surface, Interfacial, and Bulk Characteristics of Perfluorinated Ionomer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13489-13520. [PMID: 30753782 DOI: 10.1021/acs.langmuir.8b03721] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ion-containing perfluorinated polymers possess unique viscoelastic properties, excellent proton conductivity, and nanophase-segregated structure all arising from the clustering of hydrophilic sulfonic acid groups within a matrix of hydrophobic fluorocarbons. When these ionomers are confined to nanothin films, a broad swathe of structural organization imparting a rich variety of surface, interfacial, and bulk characteristics can be expected. However, our understanding of perfluorinated ionomer thin film behavior is still in a rudimentary stage, and much of the research focus to date has been on its hydration-related structure and properties pertinent to electrochemical applications. Thus, many hidden gems-their interesting surface and interfacial properties-have been overlooked. In this Invited Feature Article, which is a summary of the key contributions by the author's group, including several collaborative publications on ionomer thin films, we unravel many of these facets. In addition, the article attempts to integrate knowledge acquired from a variety of investigations of different aspects of the ionomer thin films to refine and develop a consistent picture of their structure and behavior. First, we focus on the self-assembly of ionomers and show that dispersion media and hydrophobicity/hydrophilicity of the substrate can result in partial or even no coverage of substrates, shedding light on the complexity of polymer-substrate, polymer-solvent, and polymer-polymer interactions, an insight completely obscured when the spin-coating method is adopted for film creation. We demonstrate that the same ionomer can be used to create a variety of surfaces ranging from superhydrophilic to highly hydrophobic by controlling the film thickness or through the choice of substrate material. The ultrathin, hydrophilic surfaces of self-assembled Nafion ionomer films exhibit wettability switching behavior which opens the door to creating stimuli-responsive smart surfaces. The thermoresponsive behavior of the films is discussed in the context of surface (wettability) and bulk (thermal expansion) characteristics as well as a newly discovered vibrational mode. The substrate- and film thickness-dependent thermal expansion coefficients reinforce the importance of interfacial interactions and confinement on the structure/properties of these films. They also open up the potential of tuning ionomer bulk properties via substrate chemistry. The discovery of a vibrational mode that becomes thermally activated at high temperature has provided new insights into the origins of the molecular motions responsible for the α-relaxation of the Nafion ionomer as well as the underlying reason for wettability switching. Our recent neutron reflectometry study of different ionomers varying in side-chain composition/length on a platinum substrate shows that the interfacial hydration level is correlated to the side-chain length, which opens up the possibility of the controlling the interfacial electrochemistry. Finally, a systematic analysis of factors affecting proton conduction is presented to elucidate the yet-unresolved origins of the suppressed conduction of nanothin ionomer films compared to that of the bulk membrane. By revealing these interesting yet poorly understood facets of ionomer thin films, the article aims to stimulate further scientific pursuit on this topic.
Collapse
Affiliation(s)
- Kunal Karan
- Department of Chemical & Petroleum Engineering , The University of Calgary , Calgary , Alberta T2N1N4 , Canada
| |
Collapse
|
50
|
Tanis I, Karatasos K, Salez T. Molecular Dynamics Simulation of the Capillary Leveling of a Glass-Forming Liquid. J Phys Chem B 2019; 123:8543-8549. [PMID: 31532672 DOI: 10.1021/acs.jpcb.9b05909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motivated by recent experimental studies probing (i) the existence of a mobile layer at the free surface of glasses and (ii) the capillary leveling of polymer nanofilms, we study the evolution of square-wave patterns at the free surface of a generic glass-forming binary Lennard-Jones mixture over a wide temperature range, by means of molecular dynamics simulations. The pattern's amplitude is monitored, and the associated decay rate is extracted. The evolution of the latter as a function of temperature exhibits a crossover between two distinct behaviors, over a temperature range typically bounded by the glass-transition temperature and the mode-coupling critical temperature. Layer-resolved analysis of the film particles' mean-squared displacements further shows that diffusion at the surface is considerably faster than in the bulk, below the glass-transition temperature. The diffusion coefficient of the surface particles is larger than its bulk counterpart by a factor that reaches 105 at the lowest temperature studied. This factor decreases upon heating, in agreement with recent experimental studies.
Collapse
Affiliation(s)
- Ioannis Tanis
- Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University , 75005 Paris , France
| | - Kostas Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece.,Institute of Electronic Structure and Laser , Foundation for Research and Technology - Hellas , P.O. Box 1527, 711 10 Heraklion Crete , Greece
| | - Thomas Salez
- Université de Bordeaux, CNRS, LOMA, UMR 5798 , F-33405 Talence , France.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education , Hokkaido University , Sapporo , Hokkaido 060-0808 , Japan
| |
Collapse
|