1
|
Lömker P, Degerman D, Goodwin CM, Shipilin M, Amann P, Rodrigues GLS, Garcia-Martinez F, Rameshan R, Gladh J, Wang HY, Soldemo M, Holm A, Tober S, Schober JC, Jacobse L, Vonk V, Gleißner R, Noei H, Hegedues Z, Stierle A, Schlueter C, Nilsson A. In-situ probing of the Fischer-Tropsch reaction on Co single crystal surfaces up to 1 bar. Nat Commun 2025; 16:1005. [PMID: 39856064 PMCID: PMC11761050 DOI: 10.1038/s41467-025-56082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The surface chemistry of the Fischer-Tropsch catalytic reaction over Co has still several unknows. Here, we report an in-situ X-ray photoelectron spectroscopy study of Co0001 and Co( 10 1 ¯ 4 ), and in-situ high energy surface X-ray diffraction of Co0001 , during the Fischer-Tropsch reaction at 0.15 bar - 1 bar and 406 K - 548 K in a H2/CO gas mixture. We find that these Co surfaces remain metallic under all conditions and that the coverage of chemisorbed species ranges from 0.4-1.7 monolayers depending on pressure and temperature. The adsorbates include CO on-top, C/-CxHy and various longer hydrocarbon molecules, indicating a rate-limiting direct CO dissociation pathway and that only hydrocarbon species participate in the chain growth. The accumulation of hydrocarbon species points to the termination step being rate-limiting also. Furthermore, we demonstrate that the intermediate surface species are highly dynamic, appearing and disappearing with time delays after rapid changes in the reactants' composition.
Collapse
Affiliation(s)
- Patrick Lömker
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Stockholm University, 114 28, Stockholm, Sweden.
- Photon Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.
| | - David Degerman
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
| | - Christopher M Goodwin
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
| | - Peter Amann
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287, Darmstadt, Germany
| | | | | | - Raffael Rameshan
- Lehrstuhl für Physikalische Chemie, Montanuniversität Leoben, 8700, Leoben, Austria
| | - Jörgen Gladh
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, 94305, California, CA, USA
| | - Hsin-Yi Wang
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
| | - Markus Soldemo
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
| | - Alexander Holm
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, 94305, California, CA, USA
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174, Norrköping, Sweden
| | - Steffen Tober
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
- Physics Department, University of Hamburg, 20148, Hamburg, Germany
| | - Jan-Christian Schober
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Leon Jacobse
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 141 95, Berlin, Germany
| | - Vedran Vonk
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Robert Gleißner
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Heshmat Noei
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Zoltan Hegedues
- Photon Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Andreas Stierle
- Centre for X-Ray and Nanoscience CXNS, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
- Physics Department, University of Hamburg, 20148, Hamburg, Germany
| | - Christoph Schlueter
- Photon Science, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Anders Nilsson
- Department of Physics, Stockholm University, 10691, Stockholm, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Stockholm University, 114 28, Stockholm, Sweden.
| |
Collapse
|
2
|
Oppliger J, Küspert J, Dippel AC, v. Zimmermann M, Gutowski O, Ren X, Zhou X, Zhu Z, Frison R, Wang Q, Martinelli L, Biało I, Chang J. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO 2+x. COMMUNICATIONS MATERIALS 2025; 6:3. [PMID: 39780911 PMCID: PMC11703755 DOI: 10.1038/s43246-024-00729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO2+x (x ≈ 0) induces a giant superlattice structure. The annealing effect has a maximum well above room temperature. By covering a large scattering volume, we show a rare period-six in-plane (bi-axial) symmetry and a period-four symmetry in the out-of-plane direction. This giant unit-cell superstructure-likely stemming from ordering of diffusive oxygen-persists over a large temperature range and can be quenched. As such, the stability and controlled annealing process leading to the formation of this superlattice structure provides a pathway for novel nickelate chemistry.
Collapse
Affiliation(s)
- Jens Oppliger
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - Julia Küspert
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | | | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Xiaolin Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruggero Frison
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - Qisi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong China
| | | | - Izabela Biało
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - Johan Chang
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Wang Z, Xu L, Zhou Y, Liang Y, Yang J, Wu D, Zhang S, Han X, Shi X, Li J, Yuan Y, Deng P, Tian X. Stabilizing the oxidation state of catalysts for effective electrochemical carbon dioxide conversion. Chem Soc Rev 2024; 53:6295-6321. [PMID: 38722208 DOI: 10.1039/d3cs00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.
Collapse
Affiliation(s)
- Zhitong Wang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Lizhi Xu
- Hainan Provincial Ecological and Environmental Monitoring Centre, Haikou 571126, China
| | - Yansong Zhou
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ying Liang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jinlin Yang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shuyu Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xiaodong Shi
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuliang Yuan
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Thum L, Arztmann M, Zizak I, Grüneberger R, Steigert A, Grimm N, Wallacher D, Schlatmann R, Amkreutz D, Gili A. In situ cell for grazing-incidence x-ray diffraction on thin films in thermal catalysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033904. [PMID: 38446003 DOI: 10.1063/5.0179989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
A cell for synchrotron-based grazing-incidence x-ray diffraction at ambient pressures and moderate temperatures in a controlled gas atmosphere is presented. The cell is suited for the in situ study of thin film samples under catalytically relevant conditions. To some extent, in addition to diffraction, the cell can be simultaneously applied for x-ray reflectometry and fluorescence studies. Different domes enclosing the sample have been studied and selected to ensure minimum contribution to the diffraction patterns. The applicability of the cell is demonstrated using synchrotron radiation by monitoring structural changes of a 3 nm Pd thin film upon interaction with gas-phase hydrogen and during acetylene semihydrogenation at 150 °C. The cell allows investigation of very thin films under catalytically relevant conditions.
Collapse
Affiliation(s)
- Lukas Thum
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Manuela Arztmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - René Grüneberger
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Alexander Steigert
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Nico Grimm
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- HTW Berlin-University of Applied Sciences, 12459 Berlin, Germany
| | - Daniel Amkreutz
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Albert Gili
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
5
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Pfaff S, Larsson A, Orlov D, Rämisch L, Gericke SM, Lundgren E, Zetterberg J. A Polycrystalline Pd Surface Studied by Two-Dimensional Surface Optical Reflectance during CO Oxidation: Bridging the Materials Gap. ACS APPLIED MATERIALS & INTERFACES 2024; 16:444-453. [PMID: 38109219 PMCID: PMC10788831 DOI: 10.1021/acsami.3c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Industrial catalysts are complex materials systems operating in harsh environments. The active parts of the catalysts are nanoparticles that expose different facets with different surface orientations at which the catalytic reactions occur. However, these facets are close to impossible to study in detail under industrially relevant operating conditions. Instead, simpler model systems, such as single crystals with a well-defined surface orientation, have been successfully used to study gas-surface interactions such as adsorption and desorption, surface oxidation, and oxidation/reduction reactions. To more closely mimic the many facets exhibited by nanoparticles and thereby close the so-called materials gap, there has also been a recent move toward using polycrystalline surfaces and curved crystals. However, these studies are limited either by the pressure or spatial resolution at realistic pressures or by the number of surfaces studied simultaneously. In this work, we demonstrate the use of reflectance microscopy to study a vast number of catalytically active surfaces simultaneously under realistic and identical reaction conditions. As a proof of concept, we have conducted an operando experiment to study CO oxidation over a Pd polycrystal, where the polycrystalline surface acts as a collection of many single-crystal surfaces. Finally, we visualized the resulting data by plotting the reflectivity as a function of surface orientation. We think the techniques and visualization methods introduced in this work will be key toward bridging the materials gap in catalysis.
Collapse
Affiliation(s)
- Sebastian Pfaff
- Combustion
Research Facility, Sandia National Laboratories, 7011 East Ave, Livermore, California 94550, United States
| | - Alfred Larsson
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Dmytro Orlov
- Division
of Mechanics, Materials and Component Design, Lund University, Ole
Römers väg 1, S-22363 Lund, Sweden
| | - Lisa Rämisch
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Sabrina M. Gericke
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, Sölvegatan 14, S-22363 Lund, Sweden
| | - Johan Zetterberg
- Combustion
Physics, Lund University, Sölvegatan 14, S-22363 Lund, Sweden
| |
Collapse
|
7
|
Mehar V, Edström H, Shipilin M, Hejral U, Wu C, Kadiri A, Albertin S, Hagman B, von Allmen K, Wiegmann T, Pfaff S, Drnec J, Zetterberg J, Lundgren E, Merte LR, Gustafson J, Weaver JF. Formation of Epitaxial PdO(100) During the Oxidation of Pd(100). J Phys Chem Lett 2023; 14:8493-8499. [PMID: 37721973 DOI: 10.1021/acs.jpclett.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The catalytic oxidation of CO and CH4 can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O2-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide. We present evidence that this change in the oxidation behavior is caused by a temperature-induced change in the stability of small PdO domains that initiate oxidation. Our discovery of the epitaxial PdO(100) structure may be significant for developing relationships among oxide structure, catalytic activity, and reaction conditions for applications of oxidation catalysis.
Collapse
Affiliation(s)
- Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Helen Edström
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Mikhail Shipilin
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Uta Hejral
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chengjun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Aravind Kadiri
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Stefano Albertin
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Benjamin Hagman
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Kim von Allmen
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Tim Wiegmann
- Institute of Experimental and Applied Physics, Kiel University, D-24098 Kiel, Germany
| | - Sebastian Pfaff
- Division of Combustion Physics, Lund University, SE-221 00 Lund, Sweden
| | - Jakub Drnec
- Experimental Division, ESRF, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Johan Zetterberg
- Division of Combustion Physics, Lund University, SE-221 00 Lund, Sweden
| | - Edvin Lundgren
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Lindsay R Merte
- Materials Science and Applied Mathematics, Malmö University, SE-204 06 Malmö, Sweden
| | - Johan Gustafson
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Fuchs T, Briega-Martos V, Drnec J, Stubb N, Martens I, Calle-Vallejo F, Harrington DA, Cherevko S, Magnussen OM. Anodic and Cathodic Platinum Dissolution Processes Involve Different Oxide Species. Angew Chem Int Ed Engl 2023; 62:e202304293. [PMID: 37341165 DOI: 10.1002/anie.202304293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The degradation of Pt-containing oxygen reduction catalysts for fuel cell applications is strongly linked to the electrochemical surface oxidation and reduction of Pt. Here, we study the surface restructuring and Pt dissolution mechanisms during oxidation/reduction for the case of Pt(100) in 0.1 M HClO4 by combining operando high-energy surface X-ray diffraction, online mass spectrometry, and density functional theory. Our atomic-scale structural studies reveal that anodic dissolution, detected during oxidation, and cathodic dissolution, observed during the subsequent reduction, are linked to two different oxide phases. Anodic dissolution occurs predominantly during nucleation and growth of the first, stripe-like oxide. Cathodic dissolution is linked to a second, amorphous Pt oxide phase that resembles bulk PtO2 and starts to grow when the coverage of the stripe-like oxide saturates. In addition, we find the amount of surface restructuring after an oxidation/reduction cycle to be potential-independent after the stripe-like oxide has reached its saturation coverage.
Collapse
Affiliation(s)
- Timo Fuchs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Valentín Briega-Martos
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058, Erlangen, Germany
| | - Jakub Drnec
- Experimental division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Natalie Stubb
- Chemistry Department, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - Isaac Martens
- Experimental division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, 20018, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009, Bilbao, Spain
| | - David A Harrington
- Chemistry Department, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058, Erlangen, Germany
| | - Olaf M Magnussen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| |
Collapse
|
9
|
Fuchs T, Briega-Martos V, Fehrs JO, Qiu C, Mirolo M, Yuan C, Cherevko S, Drnec J, Magnussen OM, Harrington DA. Driving Force of the Initial Step in Electrochemical Pt(111) Oxidation. J Phys Chem Lett 2023; 14:3589-3593. [PMID: 37018542 DOI: 10.1021/acs.jpclett.3c00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step of electrochemical surface oxidation is extraction of a metal atom from its lattice site to a location in a growing oxide. Here we show by fast simultaneous electrochemical and in situ high-energy surface X-ray diffraction measurements that the initial extraction of Pt atoms from Pt(111) is a fast, potential-driven process, whereas charge transfer for the related formation of adsorbed oxygen-containing species occurs on a much slower time scale and is evidently uncoupled from the extraction process. It is concluded that potential plays a key independent role in electrochemical surface oxidation.
Collapse
Affiliation(s)
- Timo Fuchs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Valentín Briega-Martos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen 91058, Germany
| | - Jan O Fehrs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Canrong Qiu
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Marta Mirolo
- Experimental Division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Chentian Yuan
- Chemistry Department, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen 91058, Germany
| | - Jakub Drnec
- Experimental Division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olaf M Magnussen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - David A Harrington
- Chemistry Department, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
10
|
Harlow GS, Pfaff S, Abbondanza G, Hegedüs Z, Lienert U, Lundgren E. HAT: a high-energy surface X-ray diffraction analysis toolkit. J Appl Crystallogr 2023; 56:312-321. [PMID: 36777142 PMCID: PMC9901923 DOI: 10.1107/s1600576723000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
This work introduces the high-energy surface X-ray diffraction analysis toolkit (HAT), an open-source cross-platform software package written in Python to allow the extraction and processing of high-energy surface X-ray diffraction (HESXRD) data sets. Thousands of large-area detector images are collected in a single HESXRD scan, corresponding to billions of pixels and hence reciprocal space positions. HAT is an optimized reciprocal space binner that implements a graphical user interface to allow the easy and interactive exploration of HESXRD data sets. Regions of reciprocal space can be selected with movable and resizable masks in multiple views and are projected onto different axes to allow the creation of reciprocal space maps and the extraction of crystal truncation rods. Current and future versions of HAT can be downloaded and used free of charge.
Collapse
Affiliation(s)
- Gary S. Harlow
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR 97403, USA,Division of Synchrotron Radiation Research, Lund University, Lund SE-22100, Sweden,Correspondence e-mail:
| | - Sebastian Pfaff
- Division of Combustion Physics, Lund University, Lund SE-22100, Sweden
| | - Giuseppe Abbondanza
- Division of Synchrotron Radiation Research, Lund University, Lund SE-22100, Sweden
| | - Zoltan Hegedüs
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Ulrich Lienert
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, Lund SE-22100, Sweden
| |
Collapse
|
11
|
Feng Y, Schaefer A, Hellman A, Di M, Härelind H, Bauer M, Carlsson PA. Synthesis and Characterization of Catalytically Active Au Core─Pd Shell Nanoparticles Supported on Alumina. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12859-12870. [PMID: 36221959 PMCID: PMC9609311 DOI: 10.1021/acs.langmuir.2c01834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A two-step seeded-growth method was refined to synthesize Au@Pd core@shell nanoparticles with thin Pd shells, which were then deposited onto alumina to obtain a supported Au@Pd/Al2O3 catalyst active for prototypical CO oxidation. By the strict control of temperature and Pd/Au molar ratio and the use of l-ascorbic acid for making both Au cores and Pd shells, a 1.5 nm Pd layer is formed around the Au core, as evidenced by transmission electron microscopy and energy-dispersive spectroscopy. The core@shell structure and the Pd shell remain intact upon deposition onto alumina and after being used for CO oxidation, as revealed by additional X-ray diffraction and X-ray photoemission spectroscopy before and after the reaction. The Pd shell surface was characterized with in situ infrared (IR) spectroscopy using CO as a chemical probe during CO adsorption-desorption. The IR bands for CO ad-species on the Pd shell suggest that the shell exposes mostly low-index surfaces, likely Pd(111) as the majority facet. Generally, the IR bands are blue-shifted as compared to conventional Pd/alumina catalysts, which may be due to the different support materials for Pd, Au versus Al2O3, and/or less strain of the Pd shell. Frequencies obtained from density functional calculations suggest the latter to be significant. Further, the catalytic CO oxidation ignition-extinction processes were followed by in situ IR, which shows the common CO poisoning and kinetic behavior associated with competitive adsorption of CO and O2 that is typically observed for noble metal catalysts.
Collapse
Affiliation(s)
- Yanyue Feng
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96Gothenburg, Sweden
| | - Andreas Schaefer
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96Gothenburg, Sweden
| | - Anders Hellman
- Department
of Physics, Chalmers University of Technology, SE-412 96Gothenburg, Sweden
| | - Mengqiao Di
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96Gothenburg, Sweden
| | - Hanna Härelind
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96Gothenburg, Sweden
| | - Matthias Bauer
- Department
of Chemistry, Paderborn University, 33098Paderborn, Germany
| | - Per-Anders Carlsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96Gothenburg, Sweden
| |
Collapse
|
12
|
Harouna-Mayer SY, Tao S, Gong Z, v. Zimmermann M, Koziej D, Dippel AC, Billinge SJL. Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film. IUCRJ 2022; 9:594-603. [PMID: 36071809 PMCID: PMC9438495 DOI: 10.1107/s2052252522006674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 05/25/2023]
Abstract
An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018 ▸). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general.
Collapse
Affiliation(s)
- Sani Y. Harouna-Mayer
- Center for Hybrid Nanostructures (CHyN), Institute for Nanostructure and Solid-State Physics, University of Hamburg, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Hamburg, Germany
| | - Songsheng Tao
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA
| | - ZiZhou Gong
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA
| | | | - Dorota Koziej
- Center for Hybrid Nanostructures (CHyN), Institute for Nanostructure and Solid-State Physics, University of Hamburg, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Hamburg, Germany
| | | | - Simon J. L. Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
13
|
Shipilin M, Degerman D, Lömker P, Goodwin CM, Rodrigues GLS, Wagstaffe M, Gladh J, Wang HY, Stierle A, Schlueter C, Pettersson LGM, Nilsson A, Amann P. In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer-Tropsch Synthesis. ACS Catal 2022; 12:7609-7621. [PMID: 35815066 PMCID: PMC9254136 DOI: 10.1021/acscatal.2c00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Carbide formation on iron-based catalysts is an integral and, arguably, the most important part of the Fischer-Tropsch synthesis process, converting CO and H2 into synthetic fuels and numerous valuable chemicals. Here, we report an in situ surface-sensitive study of the effect of pressure, temperature, time, and gas feed composition on the growth dynamics of two distinct iron-carbon phases with the octahedral and trigonal prismatic coordination of carbon sites on an Fe(110) single crystal acting as a model catalyst. Using a combination of state-of-the-art X-ray photoelectron spectroscopy at an unprecedentedly high pressure, high-energy surface X-ray diffraction, mass spectrometry, and theoretical calculations, we reveal the details of iron surface carburization and product formation under semirealistic conditions. We provide a detailed insight into the state of the catalyst's surface in relation to the reaction.
Collapse
Affiliation(s)
- Mikhail Shipilin
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - David Degerman
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Patrick Lömker
- Photon
Science, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | | | - Michael Wagstaffe
- DESY
NanoLab, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - Jörgen Gladh
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, 94305 California, United States
| | - Hsin-Yi Wang
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Stierle
- DESY
NanoLab, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Physics
Department, University of Hamburg, 20148 Hamburg, Germany
| | - Christoph Schlueter
- Photon
Science, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | - Anders Nilsson
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Peter Amann
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
14
|
Jacobse L, Schuster R, Pfrommer J, Deng X, Dolling S, Weber T, Gutowski O, Dippel AC, Brummel O, Lykhach Y, Over H, Libuda J, Vonk V, Stierle A. A combined rotating disk electrode-surface x-ray diffraction setup for surface structure characterization in electrocatalysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:065111. [PMID: 35777992 DOI: 10.1063/5.0087864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Characterizing electrode surface structures under operando conditions is essential for fully understanding structure-activity relationships in electrocatalysis. Here, we combine in a single experiment high-energy surface x-ray diffraction as a characterizing technique with a rotating disk electrode to provide steady state kinetics under electrocatalytic conditions. Using Pt(111) and Pt(100) model electrodes, we show that full crystal truncation rod measurements are readily possible up to rotation rates of 1200 rpm. Furthermore, we discuss possibilities for both potentiostatic as well as potentiodynamic measurements, demonstrating the versatility of this technique. These different modes of operation, combined with the relatively simple experimental setup, make the combined rotating disk electrode-surface x-ray diffraction experiment a powerful technique for studying surface structures under operando electrocatalytic conditions.
Collapse
Affiliation(s)
- Leon Jacobse
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ralf Schuster
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Johannes Pfrommer
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Xin Deng
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Silvan Dolling
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Tim Weber
- Institute of Physical Chemistry and Center for Materials Research, Justus Liebig Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Olaf Brummel
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Yaroslava Lykhach
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Herbert Over
- Institute of Physical Chemistry and Center for Materials Research, Justus Liebig Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Vedran Vonk
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andreas Stierle
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
15
|
Pfaff S, Rämisch L, Gericke SM, Larsson A, Lundgren E, Zetterberg J. Visualizing the Gas Diffusion Induced Ignition of a Catalytic Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Pfaff
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| | - Lisa Rämisch
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| | - Sabrina M. Gericke
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| | - Alfred Larsson
- Lund University, Division of Synchrotron Radiation Research, Sölvegatan 14, S-22363 Lund, Sweden
| | - Edvin Lundgren
- Lund University, Division of Synchrotron Radiation Research, Sölvegatan 14, S-22363 Lund, Sweden
| | - Johan Zetterberg
- Lund University, Combustion Physics, Sölvegatan 14, S-22363 Lund, Sweden
| |
Collapse
|
16
|
Jacobse L, Vonk V, McCrum IT, Seitz C, Koper MT, Rost MJ, Stierle A. Electrochemical oxidation of Pt(111) beyond the place-exchange model. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging. Nat Commun 2021; 12:6117. [PMID: 34675205 PMCID: PMC8531341 DOI: 10.1038/s41467-021-26372-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts’ action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide. To follow in situ and in real time how catalyst surfaces respond to gas composition changes is a challenge. This study reports on an eventaveraging method, based on cyclic gas pulsing and software-based image recognition, that overcomes the challenge for large photoelectron spectroscopy datasets.
Collapse
|
18
|
Weber T, Vonk V, Escalera-López D, Abbondanza G, Larsson A, Koller V, Abb MJ, Hegedüs Z, Bäcker T, Lienert U, Harlow GS, Stierle A, Cherevko S, Lundgren E, Over H. Operando Stability Studies of Ultrathin Single-Crystalline IrO 2(110) Films under Acidic Oxygen Evolution Reaction Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tim Weber
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| | - Vedran Vonk
- Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Daniel Escalera-López
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, Erlangen 91058, Germany
| | | | - Alfred Larsson
- Synchrotron Radiation Research, Lund University, Lund 22100, Sweden
| | - Volkmar Koller
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| | - Marcel J.S. Abb
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| | - Zoltan Hegedüs
- Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Thomas Bäcker
- Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Ulrich Lienert
- Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Gary S. Harlow
- Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Andreas Stierle
- Deutsches Elektronensynchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
- Fachbereich Physik, University Hamburg, Hamburg 20355, Germany
| | - Serhiy Cherevko
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, Erlangen 91058, Germany
| | - Edvin Lundgren
- Synchrotron Radiation Research, Lund University, Lund 22100, Sweden
| | - Herbert Over
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| |
Collapse
|
19
|
Chung S, Schober JC, Tober S, Schmidt D, Khadiev A, Novikov DV, Vonk V, Stierle A. Epitaxy and Shape Heterogeneity of a Nanoparticle Ensemble during Redox Cycles. ACS NANO 2021; 15:13267-13278. [PMID: 34350766 DOI: 10.1021/acsnano.1c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of metal-support epitaxy on shape and size heterogeneity of nanoparticles and their response to gas atmospheres is not very well explored. Here we show that an ensemble of Pd nanoparticles, grown on MgO(001) by deposition under ultrahigh vacuum, mostly consists of two distinctly epitaxially oriented particles, each having a different structural response to redox cycles. X-ray reciprocal space patterns were acquired in situ under oxidizing and reducing environments. Each type of nanoparticle has a truncated octahedral shape, whereby the majority grows with a cube-on-cube epitaxy on the substrate. Less frequently occurring and larger particles have their principal crystal axes rotated ±3.7° with respect to the substrate's. Upon oxidation, the top (001) facets of both types of particles shrink. The relative change of the rotated particles' top facets is much more pronounced. This finding indicates that a larger mass transfer is involved for the rotated particles and that a larger portion of high-index facets forms. On the main facets of the cube-on-cube particles, the oxidation process results in a considerable strain, as concluded from the evolution to largely asymmetric facet scattering signals. The shape and strain responses are reversible upon reduction, either by annealing to 973 K in vacuum or by reducing with hydrogen. The presented results are important for unraveling different elements of heterogeneity and their effect on the performance of real polycrystalline catalysts. It is shown that a correlation can exist between the particle-support epitaxy and redox-cycling-induced shape changes.
Collapse
Affiliation(s)
- Simon Chung
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan-Christian Schober
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Steffen Tober
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Daniel Schmidt
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri V Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Vedran Vonk
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andreas Stierle
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| |
Collapse
|
20
|
Blomberg S, Hejral U, Shipilin M, Albertin S, Karlsson H, Hulteberg C, Lömker P, Goodwin C, Degerman D, Gustafson J, Schlueter C, Nilsson A, Lundgren E, Amann P. Bridging the Pressure Gap in CO Oxidation. ACS Catal 2021; 11:9128-9135. [PMID: 34476111 PMCID: PMC8397290 DOI: 10.1021/acscatal.1c00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Performing fundamental operando catalysis studies under realistic conditions is a key to further develop and increase the efficiency of industrial catalysts. Operando X-ray photoelectron spectroscopy (XPS) experiments have been limited to pressures, and the relevance for industrial applications has been questioned. Herein, we report on the CO oxidation experiment on Pd(100) performed at a total pressure of 1 bar using XPS. We investigate the light-off regime and the surface chemical composition at the atomistic level in the highly active phase. Furthermore, the observed gas-phase photoemission peaks of CO2, CO, and O2 indicate that the kinetics of the reaction during the light-off regime can be followed operando, and by studying the reaction rate of the reaction, the activation energy is calculated. The reaction was preceded by an in situ oxidation study in 7% O2 in He and a total pressure of 70 mbar to confirm the surface sensitivity and assignment of the oxygen-induced photoemission peaks. However, oxygen-induced photoemission peaks were not observed during the reaction studies, but instead, a metallic Pd phase is present in the highly active regime under the conditions applied. The novel XPS setup utilizes hard X-rays to enable high-pressure studies, combined with a grazing incident angle to increase the surface sensitivity of the measurement. Our findings demonstrate the possibilities of achieving chemical information of the catalyst, operando, on an atomistic level, under industrially relevant conditions.
Collapse
Affiliation(s)
- Sara Blomberg
- Department of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Uta Hejral
- Department of Physics, Lund University, Lund 221 00, Sweden
| | - Mikhail Shipilin
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | | | - Hanna Karlsson
- Department of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | | | - Patrick Lömker
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Christopher Goodwin
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | - David Degerman
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | | | - Christoph Schlueter
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | - Edvin Lundgren
- Department of Physics, Lund University, Lund 221 00, Sweden
| | - Peter Amann
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
21
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Goodwin CM, Shipilin M, Albertin S, Hejral U, Lömker P, Wang HY, Blomberg S, Degerman D, Schlueter C, Nilsson A, Lundgren E, Amann P. The Structure of the Active Pd State During Catalytic Carbon Monoxide Oxidization. J Phys Chem Lett 2021; 12:4461-4465. [PMID: 33955763 PMCID: PMC8279738 DOI: 10.1021/acs.jpclett.1c00620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Using grazing incidence X-rays and X-ray photoelectron spectroscopy during the mass transfer limited catalytic oxidation of CO, the long-range surface structure of Pd(100) was investigated. Under the reaction conditions of 50:4 O2 to CO, 300 mbar pressure, and temperatures between 200 and 450 °C, the surface structure resulting from oxidation and the subsequent oxide reduction was elucidated. The reduction cycle was halted, and while under reaction conditions, angle-dependent X-ray photoelectron spectroscopy close to the critical angle of Pd and modeling of the data was performed. Two proposed models for the system were compared. The suggestion with the metallic islands formed on top of the oxide island was shown to be consistent with the data.
Collapse
Affiliation(s)
| | - Mikhail Shipilin
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Stefano Albertin
- Synchrotron
Radiation Research, Lund University, 22100 Lund, Sweden
| | - Uta Hejral
- Synchrotron
Radiation Research, Lund University, 22100 Lund, Sweden
| | - Patrick Lömker
- Photon
Science, Deutsches Elektronen-Synchrotron
(DESY), 22607 Hamburg, Germany
| | - Hsin-Yi Wang
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Sara Blomberg
- Department
of Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - David Degerman
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Christoph Schlueter
- Photon
Science, Deutsches Elektronen-Synchrotron
(DESY), 22607 Hamburg, Germany
| | - Anders Nilsson
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Edvin Lundgren
- Synchrotron
Radiation Research, Lund University, 22100 Lund, Sweden
| | - Peter Amann
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
23
|
Hejral U, Shipilin M, Gustafson J, Stierle A, Lundgren E. High energy surface x-ray diffraction applied to model catalyst surfaces at work. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:073001. [PMID: 33690191 DOI: 10.1088/1361-648x/abb17c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.
Collapse
Affiliation(s)
- Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
24
|
Schuster R, Bertram M, Runge H, Geile S, Chung S, Vonk V, Noei H, Poulain A, Lykhach Y, Stierle A, Libuda J. Metastability of palladium carbide nanoparticles during hydrogen release from liquid organic hydrogen carriers. Phys Chem Chem Phys 2021; 23:1371-1380. [PMID: 33393575 DOI: 10.1039/d0cp05606e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient hydrogen release from liquid organic hydrogen carriers (LOHCs) requires a high level of control over the catalytic properties of supported noble metal nanoparticles. Here, the formation of carbon-containing phases under operation conditions has a direct influence on the activity and selectivity of the catalyst. We studied the formation and stability of carbide phases using well-defined Pd/α-Al2O3(0001) model catalysts during dehydrogenation of a model LOHC, methylcyclohexane, in a flow reactor by in situ high-energy grazing incidence X-ray diffraction. The phase composition of supported Pd nanoparticles was investigated as a function of particle size and reaction conditions. Under operating conditions, we detected the formation of a PdxC phase followed by its conversion to Pd6C. The dynamic stability of the Pd6C phase results from the balance between uptake and release of carbon by the supported Pd nanoparticles in combination with the thermodynamically favorable growth of carbon deposits in the form of graphene. For small Pd nanoparticles (6 nm), the Pd6C phase is dynamically stable under low flow rate of reactants. At the high reactant flow, the Pd6C phase decomposes shortly after its formation due to the growth of graphene. Structural analysis of larger Pd nanoparticles (15 nm) reveals the formation and simultaneous presence of two types of carbides, PdxC and Pd6C. Formation and decomposition of Pd6C proceeds via a PdxC phase. After an incubation period, growth of graphene triggers the decomposition of carbides. The process is accompanied by segregation of carbon from the bulk of the nanoparticles to the graphene phase. Notably, nucleation of graphene is more favorable on bigger Pd nanoparticles. Our studies demonstrate that metastability of palladium carbides associated with dynamic formation and decomposition of the Pd6C and PdxC phases is an intrinsic phenomenon in LOHC dehydrogenation on Pd-based catalysts and strongly depends on particle size and reaction conditions.
Collapse
Affiliation(s)
- Ralf Schuster
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Manon Bertram
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Henning Runge
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany and Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Simon Geile
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Simon Chung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Vedran Vonk
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Heshmat Noei
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Agnieszka Poulain
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yaroslava Lykhach
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany and Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
25
|
Toyoshima R, Amemiya K, Mase K, Kondoh H. Orientation-Dependent Hindrance to the Oxidation of Pd-Au Alloy Surfaces. J Phys Chem Lett 2020; 11:9249-9254. [PMID: 33073999 DOI: 10.1021/acs.jpclett.0c02645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidation of monometallic Pd and bimetallic Pd3Au alloy surfaces are observed by in situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at an elevated pressure (100 mTorr O2 ambient). It is directly evidenced that the alloying with Au hinders the surface oxidation of Pd3Au surfaces compared with monometallic Pd surfaces. Remarkably, the oxidation behavior is clearly different between Pd3Au(111) and (100) surfaces. The (100) surface has a relatively Pd-rich surface composition, and the surface oxide layer is formed, whereas the (111) surface has a Au-rich composition, and the surface oxidation is quite limited. A combined approach of experimental and theoretical techniques reveals that Pd/Au surface composition and atomic arrangement are key factors determining the oxidation behavior.
Collapse
Affiliation(s)
- Ryo Toyoshima
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kenta Amemiya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Ibaraki 305-0801, Japan
| | - Kazuhiko Mase
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroshi Kondoh
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
26
|
Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-0497-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Linpé W, Harlow GS, Larsson A, Abbondanza G, Rämisch L, Pfaff S, Zetterberg J, Evertsson J, Lundgren E. An electrochemical cell for 2-dimensional surface optical reflectance during anodization and cyclic voltammetry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:044101. [PMID: 32357721 DOI: 10.1063/1.5133905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
We have developed an electrochemical cell for in situ 2-Dimensional Surface Optical Reflectance (2D-SOR) studies during anodization and cyclic voltammetry. The 2D-SOR signal was recorded from electrodes made of polycrystalline Al, Au(111), and Pt(100) single crystals. The changes can be followed at a video rate acquisition frequency of 200 Hz and demonstrate a strong contrast between oxidizing and reducing conditions. Good correlation between the 2D-SOR signal and the anodization conditions or the cyclic voltammetry current is also observed. The power of this approach is discussed, with a focus on applications in various fields of electrochemistry. The combination of 2D-SOR with other techniques, as well as its spatial resolution and sensitivity, has also been discussed.
Collapse
Affiliation(s)
- W Linpé
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - G S Harlow
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - A Larsson
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - G Abbondanza
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - L Rämisch
- Division of Combustion Physics, Lund University, SE-22100 Lund, Sweden
| | - S Pfaff
- Division of Combustion Physics, Lund University, SE-22100 Lund, Sweden
| | - J Zetterberg
- Division of Combustion Physics, Lund University, SE-22100 Lund, Sweden
| | - J Evertsson
- Hydro Extruded Solutions AB Innovation & Technology, Finspång, Sweden
| | - E Lundgren
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
28
|
Inverse temperature hysteresis and self-sustained oscillations in CO oxidation over Pd at elevated pressures of reaction mixture: Experiment and mathematical modeling. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Liu J, Jia E, Wang L, Stoerzinger KA, Zhou H, Tang CS, Yin X, He X, Bousquet E, Bowden ME, Wee ATS, Chambers SA, Du Y. Tuning the Electronic Structure of LaNiO 3 through Alloying with Strontium to Enhance Oxygen Evolution Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901073. [PMID: 31592141 PMCID: PMC6774028 DOI: 10.1002/advs.201901073] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Indexed: 05/21/2023]
Abstract
The perovskite oxide LaNiO3 is a promising oxygen electrocatalyst for renewable energy storage and conversion technologies. Here, it is shown that strontium substitution for lanthanum in coherently strained, epitaxial LaNiO3 films (La1- x Sr x NiO3) significantly enhances the oxygen evolution reaction (OER) activity, resulting in performance at x = 0.5 comparable to the state-of-the-art catalyst Ba0.5Sr0.5Co0.8Fe0.2O3- δ . By combining X-ray photoemission and X-ray absorption spectroscopies with density functional theory, it is shown that an upward energy shift of the O 2p band relative to the Fermi level occurs with increasing x in La1- x Sr x NiO3. This alloying step strengthens Ni 3d-O 2p hybridization and decreases the charge transfer energy, which in turn accounts for the enhanced OER activity.
Collapse
Affiliation(s)
- Jishan Liu
- State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center for Excellence in Superconducting ElectronicsChinese Academy of SciencesShanghai200050China
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Endong Jia
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
- The Key Laboratory of Solar Thermal Energy and Photovoltaic SystemInstitute of Electrical EngineeringChinese Academy of SciencesBeijing100190China
- Department of PhysicsUniversity of Chinese Academy of SciencesBeijing100190China
| | - Le Wang
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Kelsey A. Stoerzinger
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
- School of ChemicalBiological and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Hua Zhou
- X‐Ray Science DivisionAdvanced Photon SourceArgonne National LaboratoryLemontIL60439USA
| | - Chi Sin Tang
- Department of PhysicsFaculty of ScienceNational University of SingaporeSingapore117542Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117456Singapore
| | - Xinmao Yin
- Department of PhysicsFaculty of ScienceNational University of SingaporeSingapore117542Singapore
| | - Xu He
- Theoretical Materials PhysicsQ‐MATCesamUniversity of LiègeB‐4000LiègeBelgium
| | - Eric Bousquet
- Theoretical Materials PhysicsQ‐MATCesamUniversity of LiègeB‐4000LiègeBelgium
| | - Mark E. Bowden
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWA99354USA
| | - Andrew T. S. Wee
- Department of PhysicsFaculty of ScienceNational University of SingaporeSingapore117542Singapore
| | - Scott A. Chambers
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Yingge Du
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| |
Collapse
|
30
|
Real-time Observation of Interface Atomic Structures by an Energy-Dispersive Surface X-ray Diffraction. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2019. [DOI: 10.1380/ejssnt.2019.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Combining Planar Laser-Induced Fluorescence with Stagnation Point Flows for Small Single-Crystal Model Catalysts: CO Oxidation on a Pd(100). Catalysts 2019. [DOI: 10.3390/catal9050484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A stagnation flow reactor has been designed and characterized for both experimental and modeling studies of single-crystal model catalysts in heterogeneous catalysis. Using CO oxidation over a Pd(100) single crystal as a showcase, we have employed planar laser-induced fluorescence (PLIF) to visualize the CO2 distribution over the catalyst under reaction conditions and subsequently used the 2D spatially resolved gas phase data to characterize the stagnation flow reactor. From a comparison of the experimental data and the stagnation flow model, it was found that characteristic stagnation flow can be achieved with the reactor. Furthermore, the combined stagnation flow/PLIF/modeling approach makes it possible to estimate the turnover frequency (TOF) of the catalytic surface from the measured CO2 concentration profiles above the surface and to predict the CO2, CO and O2 concentrations at the surface under reaction conditions.
Collapse
|
32
|
Saint-Lager MC, Languille MA, Aires FJCS, Bailly A, Garaudée S, Ehret E, Robach O. Carbon Monoxide Oxidation Promoted by a Highly Active Strained PdO Layer at the Surface of Au30Pd70(110). ACS Catal 2019. [DOI: 10.1021/acscatal.8b04190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Marie-Angélique Languille
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON − UMR 5256, 69626 Villeurbanne, France
| | - Francisco J. Cadete Santos Aires
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON − UMR 5256, 69626 Villeurbanne, France
- Laboratory for Catalytic Research, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Aude Bailly
- CNRS Institut Néel and Université Grenoble Alpes, 38000 Grenoble, France
| | - Stéphanie Garaudée
- CNRS Institut Néel and Université Grenoble Alpes, 38000 Grenoble, France
| | - Eric Ehret
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON − UMR 5256, 69626 Villeurbanne, France
| | - Odile Robach
- Université Grenoble Alpes, CEA, INAC-MEM, 38000 Grenoble, France
| |
Collapse
|
33
|
Pfaff S, Zhou J, Hejral U, Gustafson J, Shipilin M, Albertin S, Blomberg S, Gutowski O, Dippel A, Lundgren E, Zetterberg J. Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for operando catalyst surface characterization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033703. [PMID: 30927778 DOI: 10.1063/1.5086925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
We have combined three techniques, High Energy Surface X-Ray Diffraction (HESXRD), Surface Optical Reflectance, and Planar Laser Induced Fluorescence in an operando study of CO oxidation over a Pd(100) catalyst. We show that these techniques provide useful new insights such as the ability to verify that the finite region being probed by techniques such as HESXRD is representative of the sample surface as a whole. The combination is also suitable to determine when changes in gas composition or surface structure and/or morphology occur and to subsequently correlate them with high temporal resolution. In the study, we confirm previous results which show that the Pd(100) surface reaches high activity before an oxide can be detected. Furthermore, we show that the single crystal catalyst surface does not behave homogeneously, which we attribute to the surface being exposed to inhomogeneous gas conditions in mass transfer limited scenarios.
Collapse
Affiliation(s)
- S Pfaff
- Combustion Physics, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - J Zhou
- Combustion Physics, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - U Hejral
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - J Gustafson
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - M Shipilin
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - S Albertin
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - S Blomberg
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - O Gutowski
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - A Dippel
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - E Lundgren
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - J Zetterberg
- Combustion Physics, Lund University, P.O. Box 118, Lund 22100, Sweden
| |
Collapse
|
34
|
Dippel AC, Roelsgaard M, Boettger U, Schneller T, Gutowski O, Ruett U. Local atomic structure of thin and ultrathin films via rapid high-energy X-ray total scattering at grazing incidence. IUCRJ 2019; 6:290-298. [PMID: 30867926 PMCID: PMC6400183 DOI: 10.1107/s2052252519000514] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
Atomic pair distribution function (PDF) analysis is the most powerful technique to study the structure of condensed matter on the length scale from short- to long-range order. Today, the PDF approach is an integral part of research on amorphous, nanocrystalline and disordered materials from bulk to nanoparticle size. Thin films, however, demand specific experimental strategies for enhanced surface sensitivity and sophisticated data treatment to obtain high-quality PDF data. The approach described here is based on the surface high-energy X-ray diffraction technique applying photon energies above 60 keV at grazing incidence. In this way, reliable PDFs were extracted from films of thicknesses down to a few nanometres. Compared with recently published reports on thin-film PDF analysis from both transmission and grazing-incidence geometries, this work brought the minimum detectable film thickness down by about a factor of ten. Depending on the scattering power of the sample, the data acquisition on such ultrathin films can be completed within fractions of a second. Hence, the rapid-acquisition grazing-incidence PDF method is a major advancement in thin-film technology that opens unprecedented possibilities for in situ and operando PDF studies in complex sample environments. By uncovering how the structure of a layered material on a substrate evolves and transforms in terms of local and average ordering, this technique offers new opportunities for understanding processes such as nucleation, growth, morphology evolution, crystallization and the related kinetics on the atomic level and in real time.
Collapse
Affiliation(s)
- Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Martin Roelsgaard
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Ulrich Boettger
- Institute for Materials in Electrical Engineering (IWE-2), RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Theodor Schneller
- Institute for Materials in Electrical Engineering (IWE-2), RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Uta Ruett
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
35
|
Kowarik S, Bogula L, Boitano S, Carlà F, Pithan H, Schäfer P, Wilming H, Zykov A, Pithan L. A novel 3D printed radial collimator for x-ray diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:035102. [PMID: 30927801 DOI: 10.1063/1.5063520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall signal to background ratio of up to 100 and a suppression of more than a factor 3 · 105 for undesirable Bragg reflections generated by the X-ray "transparent" windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector's dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer.
Collapse
Affiliation(s)
- S Kowarik
- Bundesanstalt für Materialforschung und -Prüfung, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - L Bogula
- Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - S Boitano
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - F Carlà
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - H Pithan
- Petrinum Brilon, Zur Jakobuslinde 2, 59929 Brilon, Germany
| | - P Schäfer
- Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - H Wilming
- Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
| | - A Zykov
- Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - L Pithan
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
36
|
Ma S, Brown AJ, Yan R, Davidchack RL, Howes PB, Nicklin C, Zhai Q, Jing T, Dong H. Atomistics of pre-nucleation layering of liquid metals at the interface with poor nucleants. Commun Chem 2019. [DOI: 10.1038/s42004-018-0104-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
37
|
Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites. Nat Commun 2018; 9:5220. [PMID: 30523251 PMCID: PMC6283878 DOI: 10.1038/s41467-018-07665-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022] Open
Abstract
Octahedral tilts are the most ubiquitous distortions in perovskite-related structures that can dramatically influence ferroelectric, magnetic, and electronic properties; yet the paradigm of tilt epitaxy in thin films is barely explored. Non-destructively characterizing such epitaxy in three-dimensions for low symmetry complex tilt systems composed of light anions is a formidable challenge. Here we demonstrate that the interfacial tilt epitaxy can transform ultrathin calcium titanate, a non-polar earth-abundant mineral, into high-temperature polar oxides that last above 900 K. The comprehensive picture of octahedral tilts and polar distortions is revealed by reconstructing the three-dimensional electron density maps across film-substrate interfaces with atomic resolution using coherent Bragg rod analysis. The results are complemented with aberration-corrected transmission electron microscopy, film superstructure reflections, and are in excellent agreement with density functional theory. The study could serve as a broader template for non-destructive, three-dimensional atomic resolution probing of complex low symmetry functional interfaces. In complex oxides, oxygen octahedra are major structural motifs and their tilts sensitively determine the material’s physical properties. Exploiting Coherent Bragg Rod Analysis enables 3D mapping of complex tilt patterns and reveals the means to control polarization through them in CaTiO3 thin films.
Collapse
|
38
|
Kondoh H, Toyoshima R, Shirahata N, Hoda A, Yoshida M, Amemiya K, Mase K, Mun BS. Element selective oxidation on Rh-Pd bimetallic alloy surfaces. Phys Chem Chem Phys 2018; 20:28419-28424. [PMID: 30403236 DOI: 10.1039/c8cp05998e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between oxygen and Rh-Pd bimetallic alloy surfaces were investigated using surface sensitive experimental techniques and density functional theory calculations. The alloy surfaces were oxidized under 10-5 Torr and 100 mTorr oxygen upon heating above 250 °C. A thin Rh oxide layer was preferentially formed on a Rh1Pd9(100) surface, while a thin Pd oxide layer was formed on a Rh1Pd9(111) surface, though the Rh oxide is thermodynamically more stable irrespective of the surface orientation. Chemical analyses revealed that the initial Rh fraction for the (111) surface was significantly lower than that for the (100) surface, which suggests that the oxidized element on the surface is kinetically selected depending on the near surface initial composition.
Collapse
Affiliation(s)
- Hiroshi Kondoh
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Schiller F, Ilyn M, Pérez-Dieste V, Escudero C, Huck-Iriart C, Ruiz del Arbol N, Hagman B, Merte LR, Bertram F, Shipilin M, Blomberg S, Gustafson J, Lundgren E, Ortega JE. Catalytic Oxidation of Carbon Monoxide on a Curved Pd Crystal: Spatial Variation of Active and Poisoning Phases in Stationary Conditions. J Am Chem Soc 2018; 140:16245-16252. [DOI: 10.1021/jacs.8b09428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederik Schiller
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, 20018-San Sebastian, Spain
| | - Max Ilyn
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, 20018-San Sebastian, Spain
- Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018-San Sebastian, Spain
| | - Virginia Pérez-Dieste
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Carlos Escudero
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Cristián Huck-Iriart
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | | - Sara Blomberg
- Department of Physics, Lund University, Lund 221 00, Sweden
| | | | - Edvin Lundgren
- Department of Physics, Lund University, Lund 221 00, Sweden
| | - J. Enrique Ortega
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, 20018-San Sebastian, Spain
- Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018-San Sebastian, Spain
- Departamento Física Aplicada I, Universidad del País Vasco, 20018-San Sebastian, Spain
| |
Collapse
|
40
|
Blomberg S, Zetterberg J, Gustafson J, Zhou J, Shipilin M, Pfaff S, Hejral U, Carlsson PA, Gutowski O, Bertram F, Lundgren E. Combining synchrotron light with laser technology in catalysis research. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1389-1394. [PMID: 30179177 PMCID: PMC6140392 DOI: 10.1107/s1600577518010597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
High-energy surface X-ray diffraction (HESXRD) provides surface structural information with high temporal resolution, facilitating the understanding of the surface dynamics and structure of the active phase of catalytic surfaces. The surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface, and the catalytic activity of the sample itself may affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, planar laser-induced fluorescence (PLIF) and HESXRD have been combined during the oxidation of CO over a Pd(100) crystal. PLIF complements the structural studies with an instantaneous two-dimensional image of the CO2 gas phase in the vicinity of the active model catalyst. Here the combined HESXRD and PLIF operando measurements of CO oxidation over Pd(100) are presented, allowing for an improved assignment of the correlation between sample structure and the CO2 distribution above the sample surface with sub-second time resolution.
Collapse
Affiliation(s)
- Sara Blomberg
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| | - Johan Zetterberg
- Combustion Physics, Lund University, Box 118, Lund 22100, Sweden
| | - Johan Gustafson
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| | - Jianfeng Zhou
- Combustion Physics, Lund University, Box 118, Lund 22100, Sweden
| | - Mikhail Shipilin
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| | - Sebastian Pfaff
- Combustion Physics, Lund University, Box 118, Lund 22100, Sweden
| | - Uta Hejral
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| | - Per-Anders Carlsson
- Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Olof Gutowski
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Florian Bertram
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Edvin Lundgren
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| |
Collapse
|
41
|
Mehar V, Kim M, Shipilin M, Van den Bossche M, Gustafson J, Merte LR, Hejral U, Grönbeck H, Lundgren E, Asthagiri A, Weaver JF. Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100). ACS Catal 2018. [DOI: 10.1021/acscatal.8b02191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Minkyu Kim
- William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mikhail Shipilin
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Maxime Van den Bossche
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Lindsay R. Merte
- Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden
| | - Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Aravind Asthagiri
- William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
42
|
Hejral U, Franz D, Volkov S, Francoual S, Strempfer J, Stierle A. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions. PHYSICAL REVIEW LETTERS 2018; 120:126101. [PMID: 29694082 DOI: 10.1103/physrevlett.120.126101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.
Collapse
Affiliation(s)
- U Hejral
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
- Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden
| | - D Franz
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - S Volkov
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - S Francoual
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - J Strempfer
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - A Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| |
Collapse
|
43
|
Evertsson J, Vinogradov NA, Harlow GS, Carlà F, McKibbin SR, Rullik L, Linpé W, Felici R, Lundgren E. Self-organization of porous anodic alumina films studied in situ by grazing-incidence transmission small-angle X-ray scattering. RSC Adv 2018; 8:18980-18991. [PMID: 35539633 PMCID: PMC9080605 DOI: 10.1039/c8ra02913j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022] Open
Abstract
Self-ordered porous anodic alumina (PAA) films are studied extensively due to a large number of possible applications in nanotechnology and low cost of production. Whereas empirical relationships between growth conditions and produced oxides have been established, fundamental aspects regarding pore formation and self-organization are still under debate. We present in situ structural studies of PAA films using grazing-incidence transmission small-angle X-ray scattering. We have considered the two most used recipes where the pores self-organize: 0.3 M H2SO4 at 25 V and 0.3 M C2H2O4 at 40 V. During anodization we have followed the evolution of the structural parameters: average interpore distance, length of ordered pores domains, and thickness of the porous oxide layer. Compared to the extensively used ex situ investigations, our approach gives an unprecedented temporal accuracy in determination of the parameters. By using of Al(100), Al(110) and Al(111) surfaces, the influence of surface orientation on the structural evolution was studied, and no significant differences in the interpore distance and domain length could be observed. However, the rate of oxide growth in 0.3 M C2H2O4 at 40 V was significantly influenced by the surface orientation, where the slowest growth occurs for Al(111). In 0.3 M H2SO4 at 25 V, the growth rates were higher, but the influence of surface orientation was not obvious. The structural evolution was also studied on pre-patterned aluminum surfaces. These studies show that although the initial structures of the oxides are governed by pre-patterning geometry, the final structures are dictated by the anodization conditions. Growth of porous anodic alumina films studied in situ under electrochemical anodization conditions by grazing-incidence transmission small-angle X-ray scattering.![]()
Collapse
Affiliation(s)
- Jonas Evertsson
- Division of Synchrotron Radiation Research
- Lund University
- SE-22100 Lund
- Sweden
| | | | - Gary S. Harlow
- Division of Synchrotron Radiation Research
- Lund University
- SE-22100 Lund
- Sweden
| | | | - Sarah R. McKibbin
- Division of Synchrotron Radiation Research
- Lund University
- SE-22100 Lund
- Sweden
| | - Lisa Rullik
- Division of Synchrotron Radiation Research
- Lund University
- SE-22100 Lund
- Sweden
| | - Weronica Linpé
- Division of Synchrotron Radiation Research
- Lund University
- SE-22100 Lund
- Sweden
| | - Roberto Felici
- ESRF – The European Synchrotron
- 38000 Grenoble
- France
- SPIN-CNR
- c/o DICII-University of Rome Tor Vergata
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research
- Lund University
- SE-22100 Lund
- Sweden
| |
Collapse
|
44
|
Weaver JF, Choi J, Mehar V, Wu C. Kinetic Coupling among Metal and Oxide Phases during CO Oxidation on Partially Reduced PdO(101): Influence of Gas-Phase Composition. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02570] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Juhee Choi
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chengjun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
45
|
Lundgren E, Zhang C, Merte LR, Shipilin M, Blomberg S, Hejral U, Zhou J, Zetterberg J, Gustafson J. Novel in Situ Techniques for Studies of Model Catalysts. Acc Chem Res 2017; 50:2326-2333. [PMID: 28880530 DOI: 10.1021/acs.accounts.7b00281] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Motivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures. To this end, a significant amount of effort over the years has been used to develop methods to investigate catalysts at more realistic conditions under operating conditions. One result from this effort is a vivid and sometimes heated discussion concerning the active phase for the seemingly simple CO oxidation reaction over the Pt-group metals in the literature. In recent years, we have explored the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures and temperatures. In this contribution, results from catalytic CO oxidation over a Pd(100) single crystal surface using Near Ambient Pressure X-ray Photo emission Spectroscopy (NAPXPS), Planar Laser-Induced Fluorescence (PLIF), and High Energy Surface X-ray Diffraction (HESXRD) are presented, and the strengths and weaknesses of the experimental techniques are discussed. Armed with structural knowledge from ultrahigh vacuum experiments, the presence of adsorbed molecules and gas-phase induced surface structures can be identified and related to changes in the reactivity or to reaction induced gas-flow limitations. In particular, the application of PLIF to catalysis allows one to visualize how the catalyst itself changes the gas composition close to the model catalyst surface upon ignition, and relate this to the observed surface structures. The effect obscures a straightforward relation between the active phase and the activity, since in the case of CO oxidation, the gas-phase close to the model catalyst surface is shown to be significantly more oxidizing than far away from the catalyst. We show that surface structural knowledge from UHV experiments and the composition of the gas phase close to the catalyst surface are crucial to understand structure-function relationships at semirealistic conditions. In the particular case of Pd, we argue that the surface structure of the PdO(101) has a significant influence on the activity, due to the presence of Coordinatively Unsaturated Sites (CUS) Pd atoms, similar to undercoordinated Ru and Ir atoms found for RuO2(110) and IrO2(110), respectively.
Collapse
Affiliation(s)
- Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Chu Zhang
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Lindsay R. Merte
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Mikhail Shipilin
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Sara Blomberg
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Jianfeng Zhou
- Division of Combustion Physics, Lund University, Box 118, Lund S-221 00, Sweden
| | - Johan Zetterberg
- Division of Combustion Physics, Lund University, Box 118, Lund S-221 00, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| |
Collapse
|
46
|
Evertsson J, Bertram F, Rullik L, Harlow G, Lundgren E. Anodization of Al(100), Al(111) and Al Alloy 6063 studied in situ with X-ray reflectivity and electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Onderwaater W, Taranovskyy A, van Baarle GC, Frenken JWM, Groot IMN. In Situ Optical Reflectance Difference Observations of CO Oxidation over Pd(100). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:11407-11415. [PMID: 28603579 PMCID: PMC5462488 DOI: 10.1021/acs.jpcc.7b02054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Using a home-built reflectometer, we have investigated the changes in the optical reflectivity of a Pd(100) model catalyst during CO oxidation under high-pressure, high-temperature conditions. We observe changes in optical contrast when exposing the surface to CO oxidation conditions at 200 mbar from room temperature up to 400 °C. These changes in reflectivity are a result both of the formation of a surface oxide layer and of a change in surface roughness because of gas exposure. However, the reflectivity is more sensitive to the presence of a thin, flat oxide layer than to surface roughness. CO oxidation plays an important role in the decrease of the reflectivity. Since adding a reducing agent to the gas mixture renders it unlikely that the oxide thickness increases, we conclude that the observed decrease in reflectivity is dominated by increased surface roughness because of the catalytic reaction. We contribute this observed surface roughening to a Mars-van Krevelen-type reaction mechanism.
Collapse
Affiliation(s)
- Willem
G. Onderwaater
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
- European
Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex 9, France
| | - Andriy Taranovskyy
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | - Joost W. M. Frenken
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Irene M. N. Groot
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
48
|
Reikowski F, Wiegmann T, Stettner J, Drnec J, Honkimäki V, Maroun F, Allongue P, Magnussen OM. Transmission Surface Diffraction for Operando Studies of Heterogeneous Interfaces. J Phys Chem Lett 2017; 8:1067-1071. [PMID: 28201875 DOI: 10.1021/acs.jpclett.7b00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Processes at material interfaces to liquids or to high-pressure gases often involve structural changes that are heterogeneous on the micrometer scale. We present a novel in situ X-ray scattering technique that uses high-energy photons and a transmission geometry for atomic-scale studies under these conditions. Transmission surface diffraction gives access to a large fraction of reciprocal space in a single acquisition, allowing direct imaging of the in-plane atomic arrangement at the interface. Experiments with focused X-ray beams enable mapping of these structural properties with micrometer spatial resolution. The potential of this new technique is illustrated by in situ studies of electrochemical surface phase transitions and deposition processes.
Collapse
Affiliation(s)
- Finn Reikowski
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| | - Tim Wiegmann
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| | - Jochim Stettner
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| | - Jakub Drnec
- Experimental Division, ESRF , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Veijo Honkimäki
- Experimental Division, ESRF , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Fouad Maroun
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Philippe Allongue
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Olaf M Magnussen
- Institute of Experimental and Applied Physics, Kiel University , 24098 Kiel, Germany
| |
Collapse
|
49
|
Time Resolved Operando X-ray Techniques in Catalysis, a Case Study: CO Oxidation by O2 over Pt Surfaces and Alumina Supported Pt Catalysts. Catalysts 2017. [DOI: 10.3390/catal7020058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Onderwaater WG, Taranovskyy A, Bremmer GM, van Baarle GC, Frenken JWM, Groot IMN. From dull to shiny: A novel setup for reflectance difference analysis under catalytic conditions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:023704. [PMID: 28249468 DOI: 10.1063/1.4975930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have developed an experimental setup for optically monitoring a catalytically active surface under reaction conditions. A flow reactor with optical access allows us to image the behavior of an active catalyst surface down to the millimeter length scale. We use reflectance difference measurements with 625 nm light to investigate CO oxidation on Pd(100) at 300 mbar and 320 °C. We conclude that the changes in visible contrast result from the formation of an oxide layer after surface oxidation.
Collapse
Affiliation(s)
- Willem G Onderwaater
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Andriy Taranovskyy
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - G Marien Bremmer
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | - Joost W M Frenken
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Irene M N Groot
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|