1
|
Xing ZX, Chen SS, Huang HM. Catalytic Aldehyde-Alkyne Couplings Triggered by Ketyl Radicals. Org Lett 2024. [PMID: 39515987 DOI: 10.1021/acs.orglett.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A general and flexible platform for catalytic aldehyde-alkyne couplings triggered by ketyl radicals is described. This open-shell strategy necessitates only a catalytic quantity of a photoredox catalyst, along with Hünig's base (DIPEA) as a halogen atom transfer reagent. The reaction proceeds through sequential steps involving activation, halogen atom transfer, and radical addition. This carbonyl-alkyne coupling exhibits a wide substrate scope and functional group compatibility and has been successfully applied to the late-stage modification of complex architectures.
Collapse
Affiliation(s)
- Zhi-Xi Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Lan XC, Huang XJ, Meng YS, Li XT. Copper-Catalyzed Asymmetric Radical Oxysulfonylation of 2-Vinylbenzoic Acids to Access Chiral Sulfonyl Phthalides. Org Lett 2024. [PMID: 39510811 DOI: 10.1021/acs.orglett.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
This study presents the development of a radical enantioselective alkene oxysulfonylation approach for the synthesis of enantioenriched sulfonyl phthalides via a catalyst system consisting of a copper salt and an OPPA ligand. The reaction proceeded under mild conditions with a wide range of substrates, good yields, and excellent enantioselectivities. Mechanistic studies suggested that the reaction proceeded through a radical-mediated process. Scalable synthesis and transformation experiments also demonstrated the applicable potential of this method.
Collapse
Affiliation(s)
- Xiao-Cui Lan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xue-Juan Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - You-Shuai Meng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xi-Tao Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Shen Y, Jiang HJ, Yu J, Gong LZ. Asymmetric Bromination/Semipinacol Rearrangement Enabled by Brønsted Acids of Stereogenic-at-Cobalt(III) Complexes. J Org Chem 2024; 89:15341-15351. [PMID: 39361833 DOI: 10.1021/acs.joc.4c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
On the basis of the chiral ion pair between catalytic anionic stereogenic-at-cobalt(III) complexes and halonium ion intermediates, an asymmetric halogenation/semipinacol rearrangement reaction has been established using N-bromosuccinimide as the halogen source. This protocol provides an alternative approach for accessing a diverse set of chiral β-bromocycloketones in good yields with high enantioselectivities (≤96% yield, 95.5:4.5 er).
Collapse
Affiliation(s)
- Yue Shen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Lu JM, Wang HF, Guo QH, Wang JW, Li TT, Chen KX, Zhang MT, Chen JB, Shi QN, Huang Y, Shi SW, Chen GY, Pan JZ, Lu Z, Fang Q. Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day. Nat Commun 2024; 15:8826. [PMID: 39396057 PMCID: PMC11470948 DOI: 10.1038/s41467-024-53204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The current throughput of conventional organic chemical synthesis is usually a few experiments for each operator per day. We develop a robotic system for ultra-high-throughput chemical synthesis, online characterization, and large-scale condition screening of photocatalytic reactions, based on the liquid-core waveguide, microfluidic liquid-handling, and artificial intelligence techniques. The system is capable of performing automated reactant mixture preparation, changing, introduction, ultra-fast photocatalytic reactions in seconds, online spectroscopic detection of the reaction product, and screening of different reaction conditions. We apply the system in large-scale screening of 12,000 reaction conditions of a photocatalytic [2 + 2] cycloaddition reaction including multiple continuous and discrete variables, reaching an ultra-high throughput up to 10,000 reaction conditions per day. Based on the data, AI-assisted cross-substrate/photocatalyst prediction is conducted.
Collapse
Affiliation(s)
- Jia-Min Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Hui-Feng Wang
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Qi-Hang Guo
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jian-Wei Wang
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Tong-Tong Li
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Ke-Xin Chen
- The Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Meng-Ting Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jian-Bo Chen
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qian-Nuan Shi
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yi Huang
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Shao-Wen Shi
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Guang-Yong Chen
- The Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, China.
| | - Jian-Zhang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Qun Fang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- Institute of Intelligent Chemical Manufacturing and iChemFoundry Platform, Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Li XL, Deng JL, Long J, Fu YF, Zheng YQ, Liu WB. Access to Alkenyl Cyclobutanols by Ni-Catalyzed Regio- and Enantio-Selective syn-Hydrometalative 4-exo-trig Cyclization of Alkynones. Angew Chem Int Ed Engl 2024:e202415164. [PMID: 39394042 DOI: 10.1002/anie.202415164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
Enantioselective synthesis of (spiro)cyclobutane derivatives poses significant challenges yet holds promising applications for both synthetic and medicinal chemistry. We report here a nickel-catalyzed asymmetric syn-hydrometalative 4-exo-trig cyclization of 1,4-alkynones to synthesize alkenyl cyclobutanols with a tetrasubstituted stereocenter. This strategy features a broad substrate scope, delivering a variety of trifluoromethyl-containing rigid (spiro)carbocycle skeletons in good yields with high enantioselectivities (up to 84 % yield and 98.5 : 1.5 er). The synthetic utility is demonstrated through stereospecific transformations into fused spiro molecules. Experimental and computational mechanistic studies indicate that the reaction is initiated by an active Ni-H species, with carbonyl-directed hydrometalation as the key for regioselective control. This catalytic method provides a general solution for regioselective hydrofunctionalization of alkynes and represents an efficient reaction pattern for assembling highly strained enantioenriched bioisosteres.
Collapse
Affiliation(s)
- Xiao-Lin Li
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
| | - Jiang-Lian Deng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
| | - Jian Long
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
| | - Yi-Fan Fu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
| | - Yu-Qing Zheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
| |
Collapse
|
6
|
El-Arid S, Lenihan JM, Beeler AB, Grinstaff MW. Truxinates and truxillates: building blocks for architecturally complex polymers and advanced materials. Polym Chem 2024; 15:3935-3953. [PMID: 39310896 PMCID: PMC11414186 DOI: 10.1039/d4py00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Significant advancements in the syntheses of cyclobutane containing small molecules and polymers are described in the last 15 years. Small molecule cyclobutanes are under investigation for their diverse pharmacological activities, while polymers with cyclobutane backbones are emerging as novel mechanophores, stress-responsive materials, and sustainable plastics. Within these chemistries, [2 + 2] photocycloadditions to yield truxinates and truxillates are highly efficient offering a versatile strategy to access complex scaffolds. This article provides a comprehensive review on the synthetic methodologies, properties, and applications of polymer truxinates and truxillates, providing the background necessary to understand current developments and envision future applications. Additionally, we highlight the links between the development, discoveries, and synthetic methodologies of small molecules and cyclobutane polymers. We emphasize structure property relationships and discuss methods to control composition and structure for desired applications. We begin with a discussion of synthetic techniques for small molecule and polymer cyclobutanes followed by their greater applications, including pharmacological and material properties with examples including sustainable plastics and stimuli-responsive systems.
Collapse
Affiliation(s)
- Sara El-Arid
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Jason M Lenihan
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Aaron B Beeler
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
- Department of Biomedical Engineering, Boston University Boston Massachusetts 02215 USA
| |
Collapse
|
7
|
Shimose A, Ishigaki S, Sato Y, Nogami J, Toriumi N, Uchiyama M, Tanaka K, Nagashima Y. Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Angew Chem Int Ed Engl 2024; 63:e202403461. [PMID: 38803130 DOI: 10.1002/anie.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition. Detailed mechanistic studies revealed that the photoexcited borate complex, generated from quinoline, organolithium, and HB(pin), accelerates the cycloaddition and suppresses the rearomatization that usually occurs in conventional photocycloaddition. Based on our mechanistic analysis, we also developed further photoinduced cycloadditions affording other types of 2D/3D frameworks from isoquinoline and phenanthrene.
Collapse
Affiliation(s)
- Asuha Shimose
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Li Z, Tate JA, Noble A. Aldehyde-Olefin Couplings Via Sulfoxylate-Mediated Oxidative Generation of Ketyl Radical Anions. J Am Chem Soc 2024; 146:26616-26621. [PMID: 39303271 PMCID: PMC11450749 DOI: 10.1021/jacs.4c10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Ketyl radicals are valuable reactive intermediates because they allow carbonyl chemistry to be extended beyond traditional electrophilic reactivity through simple single-electron reduction to a nucleophilic radical. However, this pathway is challenging due to the large negative reduction potentials of carbonyls, thus requiring highly reducing conditions. Herein, we describe the development of an alternative strategy to access ketyl radicals from aldehydes, which avoids the reduction pathway by instead proceeding via single-electron oxidation and desulfination of α-hydroxy sulfinates. These redox-active aldehyde adducts are generated in situ through the addition of sulfoxylate (SO22-) to aldehydes and possess low oxidation potentials, thereby facilitating ketyl radical formation and circumventing the need for strongly reducing conditions. We demonstrate the application of this sulfoxylate-mediated ketyl radical formation in ketyl-olefin coupling reactions.
Collapse
Affiliation(s)
- Zhihang Li
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Joseph A. Tate
- Syngenta,
Jealott’s Hill International Research Centre, Bracknell RG42 6EY, U.K.
| | - Adam Noble
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
9
|
Kano R, Oohora K, Hayashi T. Photo-induced imine reduction by a photoredox biocatalyst consisting of a pentapeptide and a Ru bipyridine terpyridine complex. J Inorg Biochem 2024; 259:112657. [PMID: 38981409 DOI: 10.1016/j.jinorgbio.2024.112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Imine reduction is a useful reaction in the preparation of amine derivatives. Various catalysts have been reported to promote this reaction and photoredox catalysts are promising candidates for sustainable amine synthesis. Improvement of this reaction using biomolecule-based reaction scaffolds is expected to increase the utility of the reaction. In this context, we have recently investigated photoredox Ru complexes with pentapeptide scaffolds via coordination bonds as catalysts for photoreduction of dihydroisoquinoline derivatives. First, Ru bipyridine terpyridine complexes coordinated with five different pentapeptides (XVHVV: X = V, F, W, Y, C) were prepared and characterized by mass spectrometry. Catalytic activities of the Ru complexes with XVHVV were evaluated for photoreduction of dihydroisoquinoline derivatives in the presence of ascorbate and thiol compounds as sacrificial reagents and hydrogen sources. Interestingly, the turnover number of the Ru complex with VVHVV is 531, which is two-fold higher than that of a simple Ru complex with an imidazole ligand. The detailed emission lifetime measurements indicate that the enhanced catalytic activity provided by the peptide scaffold is caused by an efficient reaction with the thiol derivative to accelerate reductive quenching of Ru complex. The quenching behavior suggests formation of an active species such as a Ru(I) complex. These findings reveal that the simple pentapeptide serves as an effective scaffold to enhance the photocatalytic activity of a photoactive Ru complex.
Collapse
Affiliation(s)
- Ryusei Kano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Yamada S, Honda Y. Solid-state [2+2] photodimerization of eniminium salts: stereoselective syntheses of 1,3-diacetylcyclobutanes. Chem Commun (Camb) 2024; 60:9821-9824. [PMID: 39171390 DOI: 10.1039/d4cc03691c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-state [2+2] photodimerization of eniminium ions oriented in a head-to-tail manner controlled by cation-π interactions produced synHT dimers in high yields. As the resulting dimer is readily converted to 1,3-diacetylcyclobutane, the iminium serves as a removable orientation-controlling group for the conjugated ketones.
Collapse
Affiliation(s)
- Shinji Yamada
- Professional University of Beauty & Wellness, 3-9-3 Ushikubo, Tsuzuki-ku, Yokohama 224-0012, Japan.
| | - Yuka Honda
- Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
11
|
Wang Y, Das S, Aboulhosn K, Champagne SE, Gemmel PM, Skinner KC, Ragsdale SW, Zimmerman PM, Narayan ARH. Nature-Inspired Radical Pyridoxal-Mediated C-C Bond Formation. J Am Chem Soc 2024; 146:23321-23329. [PMID: 39106078 DOI: 10.1021/jacs.4c05997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Pyridoxal-5'-phosphate (PLP) and derivatives of this cofactor enable a plethora of reactions in both enzyme-mediated and free-in-solution transformations. With few exceptions in each category, such chemistry has predominantly involved two-electron processes. This sometimes poses a significant challenge for using PLP to build tetrasubstituted carbon centers, especially when the reaction is reversible. The ability to access radical pathways is paramount to broadening the scope of reactions catalyzed by this coenzyme. In this study, we demonstrate the ability to access a radical PLP-based intermediate and engage this radical intermediate in a number of C-C bond-forming reactions. By selection of an appropriate oxidant, single-electron oxidation of the quinonoid intermediate can be achieved, which can subsequently be applied to C-C bond-forming reactions. Through this radical reaction pathway, we synthesized a series of α-tertiary amino acids and esters to investigate the substrate scope and identify nonproductive reaction pathways. Beyond the amino acid model system, we demonstrate that other classes of amine substrates can be applied in this reaction and that a range of small molecule reagents can serve as coupling partners to the semiquinone radical. We anticipate that this versatile semiquinone radical species will be central to the development of a range of novel reactions.
Collapse
Affiliation(s)
- Ye Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kareem Aboulhosn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah E Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Philipp M Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin C Skinner
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Lu F, Kitanosono T, Yamashita Y, Kobayashi S. Small-Molecule-Based Strategy for Mitigating Deactivation of Chiral Lewis Acid Catalysis. J Am Chem Soc 2024; 146:22918-22922. [PMID: 39106440 DOI: 10.1021/jacs.4c07449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Chiral Lewis acid catalysts are widely used in organic synthesis due to their diverse applications. However, their high Lewis acidity makes them susceptible to deactivation by basic Lewis reagents and water. Here, we present a novel strategy for mitigating this deactivation using small molecules. By incorporating weakly coordinating anions into the secondary coordination sphere of the metal center, we designed a highly reusable chiral Lewis acid complex. This complex exhibits excellent thermal stability and allows for the use of electron-poor nucleophiles in the reactions. Spectroscopic and titration studies confirmed the robustness of the optimized complex. This work provides valuable insights for overcoming the limitations of chiral Lewis acids in Lewis basic environments, expanding their potential for chemical synthesis.
Collapse
Affiliation(s)
- Fangqiu Lu
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Pasca F, Gelato Y, Andresini M, Romanazzi G, Degennaro L, Colella M, Luisi R. Synthesis of alcohols: streamlined C1 to C n hydroxyalkylation through photoredox catalysis. Chem Sci 2024; 15:11337-11346. [PMID: 39055000 PMCID: PMC11268494 DOI: 10.1039/d4sc02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Naturally occurring and readily available α-hydroxy carboxylic acids (AHAs) are utilized as platforms for visible light-mediated oxidative CO2-extrusion furnishing α-hydroxy radicals proved to be versatile C1 to Cn hydroxyalkylating agents. The direct decarboxylative Giese reaction (DDGR) is operationally simple, not requiring activator or sacrificial oxidants, and enables the synthesis of a diverse range of hydroxylated products, introducing connectivity typically precluded from conventional polar domains. Notably, the methodology has been extended to widely used glycolic acid resulting in a highly efficient and unprecedented C1 hydroxyhomologation tactic. The use of flow technology further facilitates scalability and adds green credentials to this synthetic methodology.
Collapse
Affiliation(s)
- Francesco Pasca
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Yuri Gelato
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Michael Andresini
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | | | - Leonardo Degennaro
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
14
|
Wei W, Li C, Fan Y, Chen X, Zhao X, Qiao B, Jiang Z. Catalytic Asymmetric Redox-Neutral [3+2] Photocycloadditions of Cyclopropyl Ketones with Vinylazaarenes Enabled by Consecutive Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202406845. [PMID: 38687326 DOI: 10.1002/anie.202406845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.
Collapse
Affiliation(s)
- Wenhui Wei
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Chunyang Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yifan Fan
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Chen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Baokun Qiao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhiyong Jiang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
15
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
16
|
Hao Y, Lu YL, Jiao Z, Su CY. Photocatalysis Meets Confinement: An Emerging Opportunity for Photoinduced Organic Transformations. Angew Chem Int Ed Engl 2024; 63:e202317808. [PMID: 38238997 DOI: 10.1002/anie.202317808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/04/2024]
Abstract
The self-assembled metal-organic cages (MOCs) have been evolved as a paradigm of enzyme-mimic catalysts since they are able to synergize multifunctionalities inherent in metal and organic components and constitute microenvironments characteristic of enzymatic spatial confinement and versatile host-guest interactions, thus facilitating unconventional organic transformations via unique driving-forces such as weak noncovalent binding and electron/energy transfer. Recently, MOC-based photoreactors emerged as a burgeoning platform of supramolecular photocatalysis, displaying anomalous reactivities and selectivities distinct from bulk solution. This perspective recaps two decades journey of the photoinduced radical reactions by using photoactive metal-organic cages (PMOCs) as artificial reactors, outlining how the cage-confined photocatalysis was evolved from stoichiometric photoreactions to photocatalytic turnover, from high-energy UV-irradiation to sustainable visible-light photoactivation, and from simple radical reactions to multi-level chemo- and stereoselectivities. We will focus on PMOCs that merge structural and functional biomimicry into a single-cage to behave as multi-role photoreactors, emphasizing their potentials in tackling current challenges in organic transformations through single-electron transfer (SET) or energy transfer (EnT) pathways in a simple, green while feasible manner.
Collapse
Affiliation(s)
- Yanke Hao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiwei Jiao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
17
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
18
|
Xu H, Wang DS, Zhu Z, Deb A, Zhang XP. New Mode of Asymmetric Induction for Enantioselective Radical N-Heterobicyclization via Kinetically Stable Chiral Radical Center. Chem 2024; 10:283-298. [PMID: 38313041 PMCID: PMC10836202 DOI: 10.1016/j.chempr.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Enantioselective radical N-heterobicyclization of N-allylsulfamoyl azides have been developed via metalloradical catalysis (MRC). The Co(II)-based catalytic system can homolytically activate the organic azides with varied electronic and steric properties for asymmetric radical N-heterobicyclization under mild conditions without the need of oxidants, allowing for stereoselective construction of chiral [3.1.0]-bicyclic sulfamoyl aziridines in excellent yields with high diastereoselectivities and enantioselectivities. The key to achieving the enantioselective radical process relies on catalyst development through ligand design. We demonstrate that the use of new-generation D2-symmetric chiral bridged amidoporphyrin ligand HuPhyrin with judicious variation of the alkyl bridge length can dictate both reactivity and selectivity of Co(II)-based MRC. We present both experimental and computational studies that shed light on the working details of the unprecedented mode of asymmetric induction consisting of enantioface-selective radical addition and stereospecific radical substitution. We showcase the synthetic applications of the resulting enantioenriched bicyclic aziridines through a number of stereospecific transformations.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zhenyu Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arghya Deb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
19
|
Hai H, Qin S, Zhang Y, Liu W, Feng J, Guo H, Kühn FE, Liu Y. Visible Light-Induced Regioselective Intermolecular [2 + 2]-Cycloaddition of Alkyne and 2(1 H)-Quinolone Derivatives. J Org Chem 2024. [PMID: 38190649 DOI: 10.1021/acs.joc.3c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We have developed a visible light-induced intermolecular [2 + 2]-cycloaddition reaction between alkenes and alkynes using thioxanthone and Cu(OTf)2 as cocatalysts. Various quinolin-2(1H)-ones, featuring diverse substituted groups, were successfully employed in this reaction, resulting in the synthesis of a series of 4,8b-dihydrocyclobuta[c]quinolin-3(2aH)-ones. Our methodology presents a novel synthetic approach for alkene-alkyne [2 + 2]-cycloaddition, delivering cyclobutene derivatives with exceptional regioselectivity.
Collapse
Affiliation(s)
- Hao Hai
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Shaoheng Qin
- Molecular Catalysis, Department of Chemistry and Catalysis Research Center, School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747 Garching bei München, Germany
| | - Yanzhi Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Wangsheng Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Jin Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Hao Guo
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fritz E Kühn
- Molecular Catalysis, Department of Chemistry and Catalysis Research Center, School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747 Garching bei München, Germany
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
20
|
Lei T, Graf S, Schöll C, Krätzschmar F, Gregori B, Appleson T, Breder A. Asymmetric Photoaerobic Lactonization and Aza-Wacker Cyclization of Alkenes Enabled by Ternary Selenium-Sulfur Multicatalysis. ACS Catal 2023; 13:16240-16248. [PMID: 38125978 PMCID: PMC10729055 DOI: 10.1021/acscatal.3c04443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
An adaptable, sulfur-accelerated photoaerobic selenium-π-acid ternary catalyst system for the enantioselective allylic redox functionalization of simple, nondirecting alkenes is reported. In contrast to related photoredox catalytic methods, which largely depend on olefinic substrates with heteroatomic directing groups to unfold high degrees of stereoinduction, the current protocol relies on chiral, spirocyclic selenium-π-acids that covalently bind to the alkene moiety. The performance of this ternary catalytic method is demonstrated in the asymmetric, photoaerobic lactonization and cycloamination of enoic acids and unsaturated sulfonamides, respectively, leading to an averaged enantiomeric ratio (er) of 92:8. Notably, this protocol provides for the first time an asymmetric, catalytic entryway to pharmaceutically relevant 3-pyrroline motifs, which was used as a platform to access a 3,4-dihydroxyproline derivative in only seven steps with a 92:8 er.
Collapse
Affiliation(s)
| | | | - Christopher Schöll
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Felix Krätzschmar
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Bernhard Gregori
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Theresa Appleson
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Alexander Breder
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Uchikura T, Takahashi K, Oishi T, Akiyama T. Visible-light-driven enantioselective intermolecular [2 + 2] photocyclization utilizing bathochromic excitation mediated by a chiral phosphoric acid. Org Biomol Chem 2023; 21:9138-9142. [PMID: 37975203 DOI: 10.1039/d3ob01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We report herein an enantioselective intermolecular [2 + 2] photocyclization of alkenyl 2-pyrrolyl ketones using the bathochromic shift mediated by a chiral phosphoric acid. This synthetic method provides access to cyclobutanes with up to 98% ee. According to the UV-Vis spectra, the bathochromic effect was observed by mixing alkenyl 2-pyrrolyl ketones and a chiral phosphoric acid. A non-linear correlation was observed between the ee of the catalyst and the ee of the cycloadduct, suggesting that both substrates bind to the chiral phosphoric acid and form a dimer complex before photocycloaddition.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Kazuki Takahashi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Tatsushi Oishi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| |
Collapse
|
22
|
Yuan X, Zhang Y, Li Y, Yin J, Wang S, Xiong T, Zhang Q. Asymmetric Radical Oxyboration of β-Substituted Styrenes via Late-Stage Stereomutation. Angew Chem Int Ed Engl 2023; 62:e202313770. [PMID: 37819256 DOI: 10.1002/anie.202313770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Herein, we report an unprecedented copper-catalyzed highly enantio- and diastereoselective radical oxyboration of β-substituted styrenes. The lynchpin of success is ascribed to the development of a late-stage stereomutation strategy, which enables enantioenriched cis-isomers among a couple of early-generated diastereomers to be converted into trans-isomer counterparts, thus fulfilling high diastereocontrol; while the degree of enantio-differentiation is determined by the borocupration process of the C=C bond. This reaction provides an efficient protocol to access enantioenriched trans-1,2- dioxygenation products. The value of this method has further been highlighted in a diversity of follow-up stereospecific transformations and further modifying complex molecules.
Collapse
Affiliation(s)
- Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yiliang Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- Department State Key Laboratory of Organometallic Chemistry, Institution Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
23
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Mondal S, Chatterjee N, Maity S. Recent Developments on Photochemical Synthesis of 1,n-Dicarbonyls. Chemistry 2023; 29:e202301147. [PMID: 37335758 DOI: 10.1002/chem.202301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
1,n-dicarbonyls are one of the most fascinating chemical feedstocks finding abundant usage in the field of pharmaceuticals. Besides, they are utilized in a plethora of synthesis in general synthetic organic chemistry. A number of 'conventional' methods are available for their synthesis, such as the Stetter reaction, Baker-Venkatraman rearrangement, oxidation of vicinal diols, and oxidation of deoxybenzoins, synonymous with unfriendly reagents and conditions. In the last 15 years or so, photocatalysis has taken the world of synthetic organic chemistry by a remarkable renaissance. It is fair to say now that everybody loves the light and photoredox chemistry has opened a new gateway to organic chemists towards milder, more simpler alternatives to the previously available methods, allowing access to many sensitive reactions and products. In this review, we present the readers with the photochemical synthesis of a variety of 1,n-dicarbonyls. Diverse photocatalytic pathways to these fascinating molecules have been discussed, placing special emphasis on the mechanisms, giving the reader an opportunity to find all these significant developments in one place.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 Parganas, 743145, West Bengal, India
| | - Soumitra Maity
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
25
|
Onneken C, Morack T, Soika J, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 2023; 621:753-759. [PMID: 37612509 PMCID: PMC10533403 DOI: 10.1038/s41586-023-06407-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.
Collapse
Affiliation(s)
- Carina Onneken
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Tobias Morack
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Julia Soika
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Olga Sokolova
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Niklas Niemeyer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Johannes Neugebauer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| | - Ryan Gilmour
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
26
|
Mishra K, Guyon D, San Martin J, Yan Y. Chiral Perovskite Nanocrystals for Asymmetric Reactions: A Highly Enantioselective Strategy for Photocatalytic Synthesis of N-C Axially Chiral Heterocycles. J Am Chem Soc 2023; 145:17242-17252. [PMID: 37499231 PMCID: PMC10926773 DOI: 10.1021/jacs.3c04593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Catalytic approaches to generate enantiospecific chiral centers are the major premise of modern organic chemistry. Heterogeneous catalysis is responsible for the vast majority of chemical transformations, yet the direct employment of chiral solid catalysts for asymmetric synthesis is mostly overlooked. Here, we demonstrated that a heterogeneous metal-halide perovskite nanocrystal (NC) catalyst is active for asymmetric organic synthesis under visible-light activation. Chiral 1-phenylethylamine (PEA)-hybridized perovskite PEA/CsPbBr3 NC photocatalysts exhibit an enantioselective (up to 99% enantiomer excess, ee) avenue to produce N-C axially chiral N-heterocycles, i.e., N-arylindoles from N-arylamine photo-oxidation. Mechanistic investigation indicated a discriminated prochiral binding of the N-arylamine substrates onto the chiral-NC surface with ca. -2.4 kcal/mol enantiodifferentiation. Our perovskite NC heterogeneous catalytic system not only demonstrates a promising strategy to address the long-term challenges in atroposelective pharmaceutical scaffold synthesis but also paves the road to directly employ chiral solids for asymmetric synthesis.
Collapse
Affiliation(s)
- Kanchan Mishra
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Dylana Guyon
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
27
|
Yu P, Zhang W, Lin S. Enantioselective radical cascade cyclization via Ti-catalyzed redox relay. Tetrahedron Lett 2023; 125:154617. [PMID: 37449084 PMCID: PMC10338015 DOI: 10.1016/j.tetlet.2023.154617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Radical cascade cyclization reactions provide an efficient method for the construction of polycyclic architectures with multiple stereogenic centers. However, achieving enantioselectivity control of this type of reaction is a challenging task. Here, we report an enantioselective cyclization of polyfunctional aryl cyclopropyl ketone and alkyne units, wherein the stereochemical outcome is directed by a chiral Ti(salen) catalyst. This transformation was proposed to proceed via a radical cascade process involving the reductive ring-opening of the cyclopropyl ketone followed by two annulation events entailing cyclization of the ensuing alkyl radical onto the alkyne and subsequent addition of the incipient vinyl radical to the Ti(IV)-enolate.
Collapse
Affiliation(s)
- Peng Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Ohmura S, Katagiri K, Kato H, Horibe T, Miyakawa S, Hasegawa JY, Ishihara K. Highly Enantioselective Radical Cation [2 + 2] and [4 + 2] Cycloadditions by Chiral Iron(III) Photoredox Catalysis. J Am Chem Soc 2023. [PMID: 37406156 DOI: 10.1021/jacs.3c04010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Radical cations show a unique reactivity that is fundamentally different from that of conventional cations and have thus attracted considerable attention as alternative cationic intermediates for novel types of organic reactions. However, asymmetric catalysis to promote enantioselective radical cation reactions remains a major challenge in contemporary organic synthesis. Here, we report that the judicious design of an ion pair consisting of a radical cation and a chiral counteranion induces an excellent level of enantioselectivity. This strategy was applied to enantio-, diastereo-, and regioselective [2 + 2] cycloadditions, as well as enantio-, diastereo-, and regioselective [4 + 2] cycloadditions, by using chiral iron(III) photoredox catalysis. We anticipate that this strategy has the potential to expand the use of several mature chiral anions to develop numerous unprecedented enantioselective radical cation reactions.
Collapse
Affiliation(s)
- Shuhei Ohmura
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kei Katagiri
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Haruna Kato
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takahiro Horibe
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Sho Miyakawa
- Section of Theoretical Catalytic Chemistry, Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-Ya Hasegawa
- Section of Theoretical Catalytic Chemistry, Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
29
|
Chen JJ, Zhang JY, Fang JH, Du XY, Xia HD, Cheng B, Li N, Yu ZL, Bian JQ, Wang FL, Zheng JJ, Liu WL, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioconvergent Radical C(sp 3)-N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions. J Am Chem Soc 2023. [PMID: 37392183 DOI: 10.1021/jacs.3c02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.
Collapse
Affiliation(s)
- Ji-Jun Chen
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Yong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jia-Heng Fang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuan-Yi Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai-Dong Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Cheng
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Nan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhang-Long Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Li Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Jing Zheng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei-Long Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Liu HF, Long L, Zhu ZQ, Wu TF, Zhang YR, Pan HP, Ma AJ, Peng JB, Wang YH, Gao H, Zhang XZ. Enantioselective synthesis of α,α-diarylketones by sequential visible light photoactivation and phosphoric acid catalysis. SCIENCE ADVANCES 2023; 9:eadg7754. [PMID: 37327329 DOI: 10.1126/sciadv.adg7754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Chiral ketones and their derivatives are useful synthetic intermediates for the synthesis of biologically active natural products and medicinally relevant molecules. Nevertheless, general and broadly applicable methods for enantioenriched acyclic α,α-disubstituted ketones, especially α,α-diarylketones, remain largely underdeveloped, owing to the easy racemization. Here, we report a visible light photoactivation and phosphoric acid-catalyzed alkyne-carbonyl metathesis/transfer hydrogenation one-pot reaction using arylalkyne, benzoquinone, and Hantzsch ester for the expeditious synthesis of α,α-diarylketones with excellent yields and enantioselectivities. In the reaction, three chemical bonds, including C═O, C─C, and C─H, are formed, providing a de novo synthesis reaction for chiral α,α-diarylketones. Moreover, this protocol provides a convenient and practical method to synthesize or modify complex bioactive molecules, including efficient routes to florylpicoxamid and BRL-15572 analogs. Computational mechanistic studies revealed that C-H/π interactions, π-π interaction, and the substituents of Hantzsch ester all play crucial roles in the stereocontrol of the reaction.
Collapse
Affiliation(s)
- Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Liang Long
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Teng-Fei Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yi-Rui Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
31
|
Kelch RM, Whyte A, Lee E, Yoon TP. Investigating the Effect of Lewis Acid Co-catalysts on Photosensitized Visible-Light De Mayo Reactions. Org Lett 2023; 25:4098-4102. [PMID: 37223948 PMCID: PMC10311924 DOI: 10.1021/acs.orglett.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, we describe studies showing that Lewis acid co-catalysts can significantly broaden the scope of alkenes that can be incorporated into the photosensitized visible-light De Mayo reaction. Mechanistic studies suggest that the primary benefit of the Lewis acid is not on substrate sensitization but rather on bond-forming steps downstream of energy transfer, highlighting the diverse effects that Lewis acids can have on sensitized photoreactions.
Collapse
Affiliation(s)
- Riley M. Kelch
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew Whyte
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eunji Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Yavari I, Shaabanzadeh S. Migration from Photochemistry to Electrochemistry for [2 + 2] Cycloaddition Reaction. J Org Chem 2023. [PMID: 37289957 DOI: 10.1021/acs.joc.3c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyclobutane scaffolds are incorporated in several valuable natural and bioactive products. However, non-photochemical ways to synthesize cyclobutanes have scarcely been investigated. Herein, based on the principles of the electrosynthesis technique, we introduce a novel electrochemical approach for attaining cyclobutanes by a simple [2 + 2] cycloaddition of two electron-deficient olefins in the absence of photocatalysts or metal catalysts. This electrochemical strategy provides a suitable condition for synthesizing tetrasubstituted cyclobutanes with a variety of functional groups in good to excellent efficiency, compatible with gram-scale synthesis. In contrast to previous challenging methods, this approach strongly focuses on the convenient accessibility of the reaction instruments and starting materials for preparing cyclobutanes. Readily accessible and inexpensive electrode materials are firm evidence to prove the simplicity of this reaction. In addition, mechanistic insight into the reaction is obtained by investigation of the CV spectra of the reactants. Also, the structure of a product is identified by X-ray crystallography.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran 1411713116, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran 1411713116, Iran
| |
Collapse
|
33
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
34
|
Rolka AB, Archipowa N, Kutta RJ, König B, Toste FD. Hybrid Catalysts for Enantioselective Photo-Phosphoric Acid Catalysis. J Org Chem 2023; 88:6509-6522. [PMID: 37126846 PMCID: PMC10198958 DOI: 10.1021/acs.joc.3c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The syntheses of two novel, organic, and chiral photocatalysts are presented. By combining donor-acceptor cyanoarene-based photocatalysts with a chiral phosphoric acid, bifunctional catalysts have been designed. In preliminary proof-of-concept reactions, their use in both enantioselective energy transfer and photoredox catalysis is demonstrated.
Collapse
Affiliation(s)
- Alessa B Rolka
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93040 Regensburg, Germany
| | - Roger J Kutta
- Institute of Theoretical and Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Yang W, Chen Y, Mei M, Li W, Wang C, Yang Y, Liang J, Guo Z, Wu L, Chen X. Synergetic argentophilic and through space electronic interactions in a single-crystal-to-single-crystal photocycloaddition reaction: a mechanistic study. Phys Chem Chem Phys 2023; 25:12783-12790. [PMID: 37128988 DOI: 10.1039/d3cp00838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ag(I) is able to mediate single-crystal-to-single-crystal transformation through [2+2] photocycloaddition to prepare high-conductivity materials. However, the intrinsic mechanism of Ag(I) mediation, the detailed photophysical and photochemical processes as well as the origin of the enhanced conductivity of nanocrystals are still unclear. In this work, the comprehensive kinetic scheme and regulation mechanism are established by the accurate QM/MM calculations at the CASPT2//CASSCF/AMBER level of theory with consideration of the crystal environment. We find that the argentophilic interaction and through space electronic interaction are the key factors that promote Ag(I)-mediated [2+2] PCA reactions and may account for the enhancement of conductivity. These mechanistic insights into the Ag(I)-regulated photo-dimerization in the crystal surrounding are beneficial for the design of the structurally and electrically favorable skeletons of a metal-organic coordination polymer.
Collapse
Affiliation(s)
- Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Yonglin Chen
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Min Mei
- College of Science, Hunan College for Preschool Education, Changde, Hunan, 415000, P. R. China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Chu Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Yanting Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Jing Liang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.
| | - Liangliang Wu
- Laboratory of Beam Technology and Energy Materials, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 100875, P. R. China.
| |
Collapse
|
36
|
Cocrystals for photochemical solid-state reactions: An account on crystal engineering perspective. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
37
|
Li MX, Yan BC, Zhou M, Li XR, Li XN, He SJ, Sun HD, Puno PT. Cyclobutane-Containing Meroditerpenoids, (+)-Isoscopariusins B and C: Structure Elucidation and Biomimetic Synthesis. Org Lett 2023; 25:2981-2985. [PMID: 37083455 DOI: 10.1021/acs.orglett.3c00742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
(+)-Isoscopariusins B (1) and C (2), two meroditerpenoids containing a 6/6/4 tricyclic carbon skeleton and seven continuous stereocenters, were identified from Isodon scoparius. The structures were determined by nuclear magnetic resonance analysis and concise biomimetic syntheses from readily available alkene 5 in seven and six steps, respectively. An intermolecular [2+2] photocycloaddition with cooperative catalysis of a Lewis acid and an Ir photocatalyst was used to construct a cyclobutane core with four stereogenic centers.
Collapse
Affiliation(s)
- Ming-Xiang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
38
|
Zhou H, Fan LW, Ren YQ, Wang LL, Yang CJ, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Chemo- and Enantioselective Radical 1,2-Carbophosphonylation of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202218523. [PMID: 36722939 DOI: 10.1002/anie.202218523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
The copper-catalyzed enantioselective radical difunctionalization of alkenes from readily available alkyl halides and organophosphorus reagents possessing a P-H bond provides an appealing approach for the synthesis of α-chiral alkyl phosphorus compounds. The major challenge arises from the easy generation of a P-centered radical from the P-H-type reagent and its facile addition to the terminal side of alkenes, leading to reverse chemoselectivity. We herein disclose a radical 1,2-carbophosphonylation of styrenes in a highly chemo- and enantioselective manner. The key to the success lies in not only the implementation of dialkyl phosphites with a strong bond dissociation energy to promote the desired chemoselectivity but also the utilization of an anionic chiral N,N,N-ligand to forge the chiral C(sp3 )-P bond. The developed Cu/N,N,N-ligand catalyst has enriched our library of single-electron transfer catalysts in the enantioselective radical transformations.
Collapse
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang-Qing Ren
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
39
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
40
|
Liang Z, Wang L, Wang Y, Wang L, Chong Q, Meng F. Cobalt-Catalyzed Diastereo- and Enantioselective Carbon-Carbon Bond Forming Reactions of Cyclobutenes. J Am Chem Soc 2023; 145:3588-3598. [PMID: 36734874 DOI: 10.1021/jacs.2c12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Catalytic enantioselective functionalization of cyclobutenes constitutes a general and modular strategy for construction of enantioenriched complex cyclobutanes bearing multiple stereogenic centers, as chiral four-membered rings are common motifs in biologically active molecules and versatile intermediates in organic synthesis. However, enantioselective synthesis of cyclobutanes through such a strategy remained significantly limited. Herein, we report a series of unprecedented cobalt-catalyzed carbon-carbon bond forming reactions of cyclobutenes that are initiated through enantioselective carbometalation. The protocols feature diastereo- and enantioselective introduction of allyl, alkynyl, and functionalized alkyl groups. Mechanistic studies indicated an unusual 1,3-cobalt migration and subsequent β-carbon elimination cascade process occurred in the allyl addition. These new discoveries established a new elementary process for cobalt catalysis and an extension of diversity of nucleophiles for enantioselective transformations of cyclobutenes.
Collapse
Affiliation(s)
- Zhikun Liang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yu Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lifan Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032.,School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, 310024
| |
Collapse
|
41
|
Yan M, Zhou Q, Lu P. Collective Synthesis of Chiral Tetrasubstituted Cyclobutanes Enabled by Enantioconvergent Negishi Cross-Coupling of Cyclobutenones. Angew Chem Int Ed Engl 2023; 62:e202218008. [PMID: 36539352 DOI: 10.1002/anie.202218008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cyclobutenones provide a straightforward four-carbon ring platform for further structural elaborations in that every carbon atom of the ring could be potentially functionalized. We report here a nickel catalyzed enantioconvergent Negishi coupling of 4-iodocyclobutenones with an array of aryl or alkenyl zinc reagents to access enantioenriched 4-substituted cyclobutenones, from which a modular approach to the synthesis of 1,2,3,4-tetrasubstituted cyclobutanes was demonstrated.
Collapse
Affiliation(s)
- Min Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| | - Qiang Zhou
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| |
Collapse
|
42
|
Das S, Zhu C, Demirbas D, Bill E, De CK, List B. Asymmetric counteranion-directed photoredox catalysis. Science 2023; 379:494-499. [PMID: 36656920 DOI: 10.1126/science.ade8190] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Photoredox catalysis enables distinctive and broadly applicable chemical reactions, but controlling their selectivity has proven to be difficult. The pursuit of enantioselectivity is a particularly daunting challenge, arguably because of the high energy of the activated radical (ion) intermediates, and previous approaches have invariably required pairing of the photoredox catalytic cycle with an additional activation mode for asymmetric induction. A potential solution for photoredox reactions proceeding via radical ions would be catalytic pairing with enantiopure counterions. However, although attempts toward this approach have been described, high selectivity has not yet been accomplished. Here we report a potentially general solution to radical cation-based asymmetric photoredox catalysis. We describe organic salts, featuring confined imidodiphosphorimidate counteranions that catalyze highly enantioselective [2+2]-cross cycloadditions of styrenes.
Collapse
Affiliation(s)
- Sayantani Das
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Chendan Zhu
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Derya Demirbas
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim an der Ruhr, Germany
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Liu YT, Fan YH, Mei Y, Li DJ, Jiang Y, Yu WH, Pan F. Chromium-Catalyzed Defluorinative Reductive Coupling of Aldehydes with gem-Difluoroalkenes. Org Lett 2023; 25:549-554. [PMID: 36637443 DOI: 10.1021/acs.orglett.3c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, a mild and convenient defluorinative reductive cross coupling of gem-difluoroalkenes with aliphatic aldehydes has been developed to afford diverse silyl-protected β-fluorinated allylic alcohols. The reaction is operationally simple and shows good functional group tolerance with moderate to excellent yields. The utility of this method is demonstrated by converting the products into various bioactive fluorinated compounds, showing its potential applications in drug discovery and biochemistry.
Collapse
Affiliation(s)
- Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Hang Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
44
|
Golfmann M, Glagow L, Giakoumidakis A, Golz C, Walker JCL. Organophotocatalytic [2+2] Cycloaddition of Electron-Deficient Styrenes. Chemistry 2023; 29:e202202373. [PMID: 36282627 PMCID: PMC10100360 DOI: 10.1002/chem.202202373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/05/2022]
Abstract
A visible-light organophotocatalytic [2+2] cycloaddition of electron-deficient styrenes is described. Photocatalytic [2+2] cycloadditions are typically performed with electron-rich styrene derivatives or α,β-unsaturated carbonyl compounds, and with transition-metal-based catalysts. We have discovered that an organic cyanoarene photocatalyst is able to deliver high-value cyclobutane products bearing electron-deficient aryl substituents in good yields. A range of electron-deficient substituents are tolerated, and both homodimerisations and intramolecular [2+2] cycloadditions to fused bicyclic systems are available by using this methodology.
Collapse
Affiliation(s)
- Maxim Golfmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Louis Glagow
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Antonios Giakoumidakis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
45
|
Wang FL, Liu L, Yang CJ, Luan C, Yang J, Chen JJ, Gu QS, Li ZL, Liu XY. Synthesis of α-Quaternary β-Lactams via Copper-Catalyzed Enantioconvergent Radical C(sp 3 )-C(sp 2 ) Cross-Coupling with Organoboronate Esters. Angew Chem Int Ed Engl 2023; 62:e202214709. [PMID: 36357331 DOI: 10.1002/anie.202214709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/12/2022]
Abstract
The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-β-lactams with organoboronate esters could provide the synthetically valuable α-quaternary β-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Fu-Li Wang
- School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Liu
- School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
46
|
Jones B, Solon P, Popescu MV, Du JY, Paton R, Smith MD. Catalytic Enantioselective 6π Photocyclization of Acrylanilides. J Am Chem Soc 2022; 145:171-178. [PMID: 36571763 PMCID: PMC9837842 DOI: 10.1021/jacs.2c09267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling absolute stereochemistry in catalytic photochemical reactions is generally challenging owing to high rates of background reactivity. Successful strategies broadly rely on selective excitation of the reaction substrate when associated with a chiral catalyst. Recent studies have demonstrated that chiral Lewis acid complexes can enable selective energy transfer from a photosensitizer to facilitate enantioselective triplet state reactions. Here, we apply this approach to the enantioselective catalysis of a 6π photocyclization through the design of an iridium photosensitizer optimized to undergo energy transfer to a reaction substrate only in the presence of a chiral Lewis acid complex. Among a group of iridium(III) sensitizers, enantioselectivity and yield closely correlate with photocatalyst triplet energy within a narrow window enabled by a modest reduction in substrate triplet energy upon binding a scandium/ligand complex. These results demonstrate that photocatalyst tuning offers a means to suppress background reactivity and improve enantioselectivity in photochemical reactions.
Collapse
Affiliation(s)
- Benjamin
A. Jones
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Pearse Solon
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Mihai V. Popescu
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.,Department
of Chemistry, Colorado State University, 1301 Center Avenue, Ft. Collins, Colorado 80523-1872, United States
| | - Ji-Yuan Du
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Robert Paton
- Department
of Chemistry, Colorado State University, 1301 Center Avenue, Ft. Collins, Colorado 80523-1872, United States,
| | - Martin D. Smith
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.,
| |
Collapse
|
47
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
48
|
Hou L, Zhou Y, Yu H, Zhan T, Cao W, Feng X. Enantioselective Radical Addition to Ketones through Lewis Acid-Enabled Photoredox Catalysis. J Am Chem Soc 2022; 144:22140-22149. [PMID: 36414018 DOI: 10.1021/jacs.2c09691] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economic catalytic systems is the ideal pursuit for chemists. Herein, we report an enantioselective radical photoaddition to ketones through a Lewis acid-enabled photoredox catalysis wherein the in situ formed chiral N,N'-dioxide/Sc(III)-ketone complex serves as a temporary photocatalyst to trigger single-electron transfer oxidation of silanes for the generation of nucleophilic radical species, including primary, secondary, and tertiary alkyl radicals, giving various enantioenriched aza-heterocycle-based tertiary alcohols in good to excellent yields and enantioselectivities. The results of electron paramagnetic resonance (EPR) and high-resolution mass spectrum (HRMS) measurements provided favorable evidence for the stereocontrolled radical addition process involved in this reaction.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Verma R, Jindal P, Prasad J, Kothari SL, Lamba NP, Dandia A, Khangarot RK, Chauhan MS. Recent Trends in Photocatalytic Enantioselective Reactions. Top Curr Chem (Cham) 2022; 380:48. [DOI: 10.1007/s41061-022-00402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
|
50
|
Yang Y, Liu L, Fang WH, Shen L, Chen X. Theoretical Exploration of Energy Transfer and Single Electron Transfer Mechanisms to Understand the Generation of Triplet Nitrene and the C(sp 3)-H Amidation with Photocatalysts. JACS AU 2022; 2:2596-2606. [PMID: 36465545 PMCID: PMC9709952 DOI: 10.1021/jacsau.2c00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 05/20/2023]
Abstract
Mechanistic explorations and kinetic evaluations were performed based on electronic structure calculations at the CASPT2//CASSCF level of theory, the Fermi's golden rule combined with the Dexter model, and the Marcus theory to unveil the key factors regulating the processes of photocatalytic C(sp3)-H amidation starting from the newly emerged nitrene precursor of hydroxamates. The highly reactive nitrene was found to be generated efficiently via a triplet-triplet energy transfer process and to be benefited from the advantages of hydroxamates with long-range charge-transfer (CT) excitation from the N-centered lone pair to the 3,5-bis(trifluoromethyl)benzoyl group. The properties of the metal-to-ligand charge-transfer (MLCT) state of photocatalysts, the functionalization of chemical moieties for substrates involved in the charge-transfer (CT) excitation, such as the electron-withdrawing trifluoromethyl group, and the energetic levels of singlet and triplet reaction pathways may regulate the reaction yield of C(sp3)-H amidation. Kinetic evaluations show that the triplet-triplet energy transfer is the main driving force of the reaction rather than the single electron transfer process. The effects of electronic coupling, molecular rigidity, and excitation energies on the energy transfer efficiency were further discussed. Finally, we investigated the inverted behavior of single-electron transfer, which is correlated unfavorably to the catalytic efficiency and amidation reaction. All theoretical explorations allow us to better understand the generation of nitrene with visible-light photocatalysts, to expand highly efficient substrate sources, and to broaden our scope of available photosensitizers for various cross-coupling reactions and the construction of N-heterocycles.
Collapse
|