1
|
Chen H, Hong Q, Wang Z, Wang C, Zeng X, Zhang J. Memristive Circuit Implementation of Caenorhabditis Elegans Mechanism for Neuromorphic Computing. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:12015-12026. [PMID: 37028291 DOI: 10.1109/tnnls.2023.3250655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To overcome the energy efficiency bottleneck of the von Neumann architecture and scaling limit of silicon transistors, an emerging but promising solution is neuromorphic computing, a new computing paradigm inspired by how biological neural networks handle the massive amount of information in a parallel and efficient way. Recently, there is a surge of interest in the nematode worm Caenorhabditis elegans (C. elegans), an ideal model organism to probe the mechanisms of biological neural networks. In this article, we propose a neuron model for C. elegans with leaky integrate-and-fire (LIF) dynamics and adjustable integration time. We utilize these neurons to build the C. elegans neural network according to their neural physiology, which comprises: 1) sensory modules; 2) interneuron modules; and 3) motoneuron modules. Leveraging these block designs, we develop a serpentine robot system, which mimics the locomotion behavior of C. elegans upon external stimulus. Moreover, experimental results of C. elegans neurons presented in this article reveals the robustness (1% error w.r.t. 10% random noise) and flexibility of our design in term of parameter setting. The work paves the way for future intelligent systems by mimicking the C. elegans neural system.
Collapse
|
2
|
Liu B, Wang T, Kerimoglu D, Kojouharov V, Hammond FL, Goldman DI. Robust self-propulsion in sand using simply controlled vibrating cubes. Front Robot AI 2024; 11:1298676. [PMID: 39282249 PMCID: PMC11393480 DOI: 10.3389/frobt.2024.1298676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/11/2024] [Indexed: 09/19/2024] Open
Abstract
Much of the Earth and many surfaces of extraterrestrial bodies are composed of non-cohesive particulate matter. Locomoting on such granular terrain is challenging for common robotic devices, either wheeled or legged. In this work, we discover a robust alternative locomotion mechanism on granular media-generating movement via self-vibration. To demonstrate the effectiveness of this locomotion mechanism, we develop a cube-shaped robot with an embedded vibratory motor and conduct systematic experiments on granular terrains of various particle properties and slopes. We investigate how locomotion changes as a function of vibration frequency/intensity on such granular terrains. Compared to hard surfaces, we find such a vibratory locomotion mechanism enables the robot to move faster, and more stably on granular surfaces, facilitated by the interaction between the body and surrounding grains. We develop a numerical simulation of a vibrating single cube on granular media, enabling us to justify our hypothesis that the cube achieves locomotion through the oscillations excited at a distance from the cube's center of mass. The simplicity in structural design and controls of this robotic system indicates that vibratory locomotion can be a valuable alternative way to produce robust locomotion on granular terrains. We further demonstrate that such cube-shaped robots can be used as modular units for vibratory robots with capabilities of maneuverable forward and turning motions, showing potential practical scenarios for robotic systems.
Collapse
Affiliation(s)
- Bangyuan Liu
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tianyu Wang
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Deniz Kerimoglu
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Velin Kojouharov
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Frank L Hammond
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Daniel I Goldman
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Janzen G, Matoz-Fernandez DA. Density and inertia effects on two-dimensional active semiflexible filament suspensions. SOFT MATTER 2024; 20:6618-6626. [PMID: 39108173 DOI: 10.1039/d4sm00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We examine the influence of density on the transition between chain and spiral structures in planar assemblies of active semiflexible filaments, utilizing detailed numerical simulations. We focus on how increased density, and higher Péclet numbers, affect the activity-induced transition spiral state in a semiflexible, self-avoiding active chain. Our findings show that increasing the density causes the spiral state to break up, reverting to a motile chain-like shape. This results in a density-dependent reentrant phase transition from spirals back to open chains. We attribute this phenomenon to an inertial effect observed at the single polymer level, where increased persistence length due to inertia has been shown in recent three-dimensional studies to cause polymers to open up. Our two-dimensional simulations further reveal that a reduction in the damping coefficient leads to partial unwinding of the spirals, forming longer arms. In suspension, interactions among these extended arms can trigger a complete unwinding of the spirals, driven by the combined effects of density and inertia.
Collapse
Affiliation(s)
- Giulia Janzen
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| | - D A Matoz-Fernandez
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Karan C, Chaudhuri A, Chaudhuri D. Inertia and activity: spiral transitions in semi-flexible, self-avoiding polymers. SOFT MATTER 2024; 20:6221-6230. [PMID: 39049672 DOI: 10.1039/d4sm00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We consider a two-dimensional, tangentially active, semi-flexible, self-avoiding polymer to find a dynamical re-entrant transition between motile open chains and spinning achiral spirals with increasing activity. Utilizing probability distributions of the turning number, we ascertain the comparative stability of the spiral structure and present a detailed phase diagram within the activity inertia plane. The onset of spiral formation at low activity levels is governed by a torque balance and is independent of inertia. At higher activities, however, inertial effects lead to spiral destabilization, an effect absent in the overdamped limit. We further delineate alterations in size and shape by analyzing the end-to-end distance distribution and the radius of gyration tensor. The Kullback-Leibler divergence from equilibrium distributions exhibits a non-monotonic relationship with activity, reaching a peak at the most compact spirals characterized by the most persistent spinning. As inertia increases, this divergence from equilibrium diminishes.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, PO 140306, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Zhang M, Fan X, Dong L, Jiang C, Weeger O, Zhou K, Wang D. Voxel Design of Grayscale DLP 3D-Printed Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309932. [PMID: 38769665 PMCID: PMC11267290 DOI: 10.1002/advs.202309932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 05/22/2024]
Abstract
Grayscale digital light processing (DLP) printing is a simple yet effective way to realize the variation of material properties by tuning the grayscale value. However, there is a lack of available design methods for grayscale DLP 3D-printed structures due to the complexities arising from the voxel-level grayscale distribution, nonlinear material properties, and intricate structures. Inspired by the dexterous motions of natural organisms, a design and fabrication framework for grayscale DLP-printed soft robots is developed by combining a grayscale-dependent hyperelastic constitutive model and a voxel-based finite-element model. The constitutive model establishes the relationship between the projected grayscale value and the nonlinear mechanical properties, while the voxel-based finite-element model enables fast and efficient calculation of the mechanical performances with arbitrarily distributed material properties. A multiphysics modeling and experimental method is developed to validate the homogenization assumption of the degree of conversion (DoC) variation in a single voxel. The design framework is used to design structures with reduced stress concentration and programmable multimodal motions. This work paves the way for integrated design and fabrication of functional structures using grayscale DLP 3D printing.
Collapse
Affiliation(s)
- Mengjie Zhang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Xiru Fan
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Le Dong
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Chengru Jiang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Oliver Weeger
- Cyber‐Physical Simulation Group & Additive Manufacturing CenterDepartment of Mechanical EngineeringTechnical University of DarmstadtDolivostr. 15, Darmstadt64293HessenGermany
| | - Kun Zhou
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Dong Wang
- State Key Laboratory of Mechanical System and VibrationSchool of Mechanical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Meta Robotics InstituteShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
6
|
Rieser JM, Chong B, Gong C, Astley HC, Schiebel PE, Diaz K, Pierce CJ, Lu H, Hatton RL, Choset H, Goldman DI. Geometric phase predicts locomotion performance in undulating living systems across scales. Proc Natl Acad Sci U S A 2024; 121:e2320517121. [PMID: 38848301 PMCID: PMC11181092 DOI: 10.1073/pnas.2320517121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/09/2024] Open
Abstract
Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.
Collapse
Affiliation(s)
- Jennifer M. Rieser
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Department of Physics, Emory University, Atlanta, GA30322
| | - Baxi Chong
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| | | | | | - Perrin E. Schiebel
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT59717
| | - Kelimar Diaz
- Physics Department, Oglethorpe University, Brookhaven, GA, 202919
| | | | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Ross L. Hatton
- Collaborative Robotics and Intelligent Systems Institute (CoRIS), Oregon State University, Corvallis, OR97331
| | - Howie Choset
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA15213
| | - Daniel I. Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
7
|
Dikici Y, Daltorio K, Akkus O. Nodes for modes: nodal honeycomb metamaterial enables a soft robot with multimodal locomotion. BIOINSPIRATION & BIOMIMETICS 2024; 19:046002. [PMID: 38631362 DOI: 10.1088/1748-3190/ad3ff8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Soft-bodied animals, such as worms and snakes, use many muscles in different ways to traverse unstructured environments and inspire tools for accessing confined spaces. They demonstrate versatility of locomotion which is essential for adaptation to changing terrain conditions. However, replicating such versatility in untethered soft-bodied robots with multimodal locomotion capabilities have been challenging due to complex fabrication processes and limitations of soft body structures to accommodate hardware such as actuators, batteries and circuit boards. Here, we present MetaCrawler, a 3D printed metamaterial soft robot designed for multimodal and omnidirectional locomotion. Our design approach facilitated an easy fabrication process through a discrete assembly of a modular nodal honeycomb lattice with soft and hard components. A crucial benefit of the nodal honeycomb architecture is the ability of its hard components, nodes, to accommodate a distributed actuation system, comprising servomotors, control circuits, and batteries. Enabled by this distributed actuation, MetaCrawler achieves five locomotion modes: peristalsis, sidewinding, sideways translation, turn-in-place, and anguilliform. Demonstrations showcase MetaCrawler's adaptability in confined channel navigation, vertical traversing, and maze exploration. This soft robotic system holds the potential to offer easy-to-fabricate and accessible solutions for multimodal locomotion in applications such as search and rescue, pipeline inspection, and space missions.
Collapse
Affiliation(s)
- Yusuf Dikici
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Mechanical Engineering, Bartın University, Bartın, Turkey
| | - Kathryn Daltorio
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Orthopedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
8
|
Ren Z, Ucak K, Yan Y, Sitti M. Undulatory Propulsion at Milliscale on Water Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309807. [PMID: 38483259 PMCID: PMC11109636 DOI: 10.1002/advs.202309807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Indexed: 05/23/2024]
Abstract
The oscillatory pitch motion at the leading edge of a millimeter-scale flexible sheet on the water surface can generate undulatory locomotion for swimming, similar to a honeybee vibrating its wings for propulsion. The influence of various parameters on such swimming strategy remains unexplored. This study uses magnetic milliswimmers to probe the propulsion mechanics and impact of different parameters. It is found that this undulatory propulsion is driven by capillary forces and added mass effects related to undulatory waves of the milliswimmers, along with radiation stress stemming from capillary waves at the interface. Modifying the parameters such as actuation frequency, pitch amplitude, bending stiffness, and hydrofoil length alters the body waveform, thus, affecting the propulsion speed and energy efficiency. Although undulatory motion is not a prerequisite for water surface propulsion, optimizing body stiffness to achieve a proper undulatory waveform is crucial for efficient swimming, balancing energy consumption, and speed. The study also reveals that the induced water flow is confined near the water surface, and the flow structures evolve with varying factors. These discoveries advance the understanding of undulatory water surface propulsion and have implications for the optimal design of small-scale swimming soft robots in the future.
Collapse
Affiliation(s)
- Ziyu Ren
- School of Mechanical Engineering and AutomationBeihang UniversityBeijing100191China
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Kagan Ucak
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Yingbo Yan
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Laboratory for Multiscale Mechanics and Medical ScienceSV LABSchool of AerospaceXi'an Jiaotong UniversityXi'an710049China
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
9
|
Zhu G, Gao L, Sun Y, Wei W, Yan LT. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:054601. [PMID: 38608453 DOI: 10.1088/1361-6633/ad3e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.
Collapse
Affiliation(s)
- Guolong Zhu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yihang Sun
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
10
|
Tingle JL, Garner KL, Astley HC. Functional diversity of snake locomotor behaviors: A review of the biological literature for bioinspiration. Ann N Y Acad Sci 2024; 1533:16-37. [PMID: 38367220 DOI: 10.1111/nyas.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Organismal solutions to natural challenges can spark creative engineering applications. However, most engineers are not experts in organismal biology, creating a potential barrier to maximally effective bioinspired design. In this review, we aim to reduce that barrier with respect to a group of organisms that hold particular promise for a variety of applications: snakes. Representing >10% of tetrapod vertebrates, snakes inhabit nearly every imaginable terrestrial environment, moving with ease under many conditions that would thwart other animals. To do so, they employ over a dozen different types of locomotion (perhaps well over). Lacking limbs, they have evolved axial musculoskeletal features that enable their vast functional diversity, which can vary across species. Different species also have various skin features that provide numerous functional benefits, including frictional anisotropy or isotropy (as their locomotor habits demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and wear resistance. Snakes clearly have much to offer to the fields of robotics and materials science. We aim for this review to increase knowledge of snake functional diversity by facilitating access to the relevant literature.
Collapse
Affiliation(s)
| | - Kelsey L Garner
- Department of Biology, University of Akron, Akron, Ohio, USA
| | - Henry C Astley
- Department of Biology, University of Akron, Akron, Ohio, USA
| |
Collapse
|
11
|
Melo K, Horvat T, Ijspeert AJ. Animal robots in the African wilderness: Lessons learned and outlook for field robotics. Sci Robot 2023; 8:eadd8662. [PMID: 38055805 DOI: 10.1126/scirobotics.add8662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
In early 2016, we had the opportunity to test a pair of sprawling posture robots, one designed to mimic a crocodile and another designed to mimic a monitor lizard, along the banks of the Nile River in Uganda, Africa. These robots were developed uniquely for a documentary by the BBC called Spy in the Wild and fell at the intersection of our interests in developing robots to study animals and robots for disaster response and other missions in challenging environments. The documentary required that these robots not only walk and swim in the same harsh, natural environments as the animals that they were modeled on and film up close but also move and even look exactly like the real animals from an aesthetic perspective. This pushed us to take a fundamentally different approach to the design and building of biorobots compared with our typical laboratory-residing robots, in addition to collaborating with sculpting artists to enhance our robots' aesthetics. The robots needed to be designed on the basis of a systematic study of data on the model specimens, be fabricated rapidly, and be reliable and robust enough to handle what the wild would throw at them. Here, we share the research efforts of this collaboration, the design specifications of the robots' hardware and software, the lessons learned from testing these robots in the field first hand, and how the eye-opening experience shaped our subsequent work on disaster response robotics and biorobotics for challenging amphibious scenarios.
Collapse
Affiliation(s)
- Kamilo Melo
- KM-RoBoTa Sàrl, Renens, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tomislav Horvat
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Verity AG, Zurich, Switzerland
| | - Auke J Ijspeert
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Tingle JL, Sherman BM, Garland T. Locomotor kinematics on sand versus vinyl flooring in the sidewinder rattlesnake Crotalus cerastes. Biol Open 2023; 12:bio060146. [PMID: 37909760 PMCID: PMC10660788 DOI: 10.1242/bio.060146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
For terrestrial locomotion of animals and machines, physical characteristics of the substrate can strongly impact kinematics and performance. Snakes are an especially interesting system for studying substrate effects because their gait depends more on the environment than on their speed. We tested sidewinder rattlesnakes (Crotalus cerastes) on two surfaces: sand collected from their natural environment and vinyl tile flooring, an artificial surface often used to elicit sidewinding in laboratory settings. Of ten kinematic variables examined, two differed significantly between the substrates: the body's waveform had an average of ∼17% longer wavelength on vinyl flooring (measured in body lengths), and snakes lifted their bodies an average of ∼40% higher on sand (measured in body lengths). Sidewinding may also differ among substrates in ways we did not measure (e.g. ground reaction forces and energetics), leaving open clear directions for future study.
Collapse
Affiliation(s)
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside 92521, USA
| |
Collapse
|
13
|
Desatnik R, Patterson ZJ, Gorzelak P, Zamora S, LeDuc P, Majidi C. Soft robotics informs how an early echinoderm moved. Proc Natl Acad Sci U S A 2023; 120:e2306580120. [PMID: 37931097 PMCID: PMC10655572 DOI: 10.1073/pnas.2306580120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/03/2023] [Indexed: 11/08/2023] Open
Abstract
The transition from sessile suspension to active mobile detritus feeding in early echinoderms (c.a. 500 Mya) required sophisticated locomotion strategies. However, understanding locomotion adopted by extinct animals in the absence of trace fossils and modern analogues is extremely challenging. Here, we develop a biomimetic soft robot testbed with accompanying computational simulation to understand fundamental principles of locomotion in one of the most enigmatic mobile groups of early stalked echinoderms-pleurocystitids. We show that these Paleozoic echinoderms were likely able to move over the sea bottom by means of a muscular stem that pushed the animal forward (anteriorly). We also demonstrate that wide, sweeping gaits could have been the most effective for these echinoderms and that increasing stem length might have significantly increased velocity with minimal additional energy cost. The overall approach followed here, which we call "Paleobionics," is a nascent but rapidly developing research agenda in which robots are designed based on extinct organisms to generate insights in engineering and evolution.
Collapse
Affiliation(s)
- Richard Desatnik
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Zach J. Patterson
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Samuel Zamora
- Instituto Geológico y Minero de España - Consejo Superior de Investigaciones Científicas, Residencia, Campus Aula Dei, Zaragoza50059, Spain
| | - Philip LeDuc
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
- Biological Sciences, Carnegie Mellon University, Pittsburgh, PA15213
- Computational Biology, Carnegie Mellon University, Pittsburgh, PA15213
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Carmel Majidi
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA15213
| |
Collapse
|
14
|
Kim S, Treers LK, Huh TM, Stuart HS. Efficient reciprocating burrowing with anisotropic origami feet. Front Robot AI 2023; 10:1214160. [PMID: 37600474 PMCID: PMC10433778 DOI: 10.3389/frobt.2023.1214160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Origami folding is an ancient art which holds promise for creating compliant and adaptable mechanisms, but has yet to be extensively studied for granular environments. At the same time, biological systems exploit anisotropic body forces for locomotion, such as the frictional anisotropy of a snake's skin. In this work, we explore how foldable origami feet can be used to passively induce anisotropic force response in granular media, through varying their resistive plane. We present a reciprocating burrower which transfers pure symmetric linear motion into directed burrowing motion using a pair of deployable origami feet on either end. We also present an application of the reduced order model granular Resistive Force Theory to inform the design of deformable structures, and compare results with those from experiments and Discrete Element Method simulations. Through a single actuator, and without the use of advanced controllers or sensors, these origami feet enable burrowing locomotion. In this paper, we achieve burrowing translation ratios-net forward motion to overall linear actuation-over 46% by changing foot design without altering overall foot size. Specifically, anisotropic folding foot parameters should be tuned for optimal performance given a linear actuator's stroke length.
Collapse
Affiliation(s)
- Sareum Kim
- Embodied Dexterity Group, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Laura K. Treers
- Embodied Dexterity Group, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Tae Myung Huh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Hannah S. Stuart
- Embodied Dexterity Group, Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
Fazelzadeh M, Irani E, Mokhtari Z, Jabbari-Farouji S. Effects of inertia on conformation and dynamics of tangentially driven active filaments. Phys Rev E 2023; 108:024606. [PMID: 37723735 DOI: 10.1103/physreve.108.024606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Active filamentlike systems propelling along their backbone exist across scales ranging from motor-driven biofilaments to worms and robotic chains. In macroscopic active filaments such as a chain of robots, in contrast to their microscopic counterparts, inertial effects on their motion cannot be ignored. Nonetheless, the consequences of the interplay between inertia and flexibility on the shape and dynamics of active filaments remain unexplored. Here we examine inertial effects on a flexible tangentially driven active polymer model pertinent to the above examples and we determine the conditions under which inertia becomes important. Performing Langevin dynamics simulations of active polymers with underdamped and overdamped dynamics for a wide range of contour lengths and activities, we uncover striking inertial effects on conformation and dynamics for high levels of activities. Inertial collisions increase the persistence length of active polymers and remarkably alter their scaling behavior. In stark contrast to passive polymers, inertia leaves its fingerprint at long times by an enhanced diffusion of the center of mass. We rationalize inertia-induced enhanced dynamics by analytical calculations of center-of-mass velocity correlations, applicable to any active polymer model, which reveal significant contributions from active force fluctuations convoluted by inertial relaxation.
Collapse
Affiliation(s)
- Mohammad Fazelzadeh
- Institute of Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
| | - Ehsan Irani
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Zahra Mokhtari
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Sara Jabbari-Farouji
- Institute of Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fu Q, Li C. Contact feedback helps snake robots propel against uneven terrain using vertical bending. BIOINSPIRATION & BIOMIMETICS 2023; 18:056002. [PMID: 37433307 DOI: 10.1088/1748-3190/ace672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Snakes can bend their elongate bodies in various forms to traverse various environments. We understand well how snakes use lateral body bending to push against asperities on flat ground for propulsion, and snake robots can do so effectively. However, snakes can also use vertical bending to push against uneven terrain of large height variation for propulsion, and they can adjust this bending to adapt to novel terrain presumably using mechano-sensing feedback control. Although some snake robots can traverse uneven terrain, few have used vertical bending for propulsion, and how to control this process in novel environments is poorly understood. Here we systematically studied a snake robot with force sensors pushing against large bumps using vertical bending to understand the role of sensory feedback control. We compared a feedforward controller and four feedback controllers that use different sensory information and generate distinct bending patterns and body-terrain interaction. We challenged the robot with increasing backward load and novel terrain geometry that break its contact with the terrain. We further varied how much the feedback control modulated body bending to conform to or push against the terrain to test their effects. Feedforward propagation of vertical bending generated large propulsion when the bending shape matched terrain geometry. However, when perturbations caused loss of contact, the robot easily lost propulsion or had motor overload. Contact feedback control resolved these issues by helping the robot regain contact. Yet excessive conformation interrupted shape propagation and excessive pushing stalled motors frequently. Unlike that using lateral bending, for propulsion generation using vertical bending, body weight that can help maintain contact with the environment but may also overload motors. Our results will help snake robots better traverse uneven terrain with large height variation and can inform how snakes use sensory feedback to control vertical body bending for propulsion.
Collapse
Affiliation(s)
- Qiyuan Fu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America
| |
Collapse
|
17
|
Cohen AE, Hastewell AD, Pradhan S, Flavell SW, Dunkel J. Schrödinger Dynamics and Berry Phase of Undulatory Locomotion. PHYSICAL REVIEW LETTERS 2023; 130:258402. [PMID: 37418715 DOI: 10.1103/physrevlett.130.258402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/30/2023] [Indexed: 07/09/2023]
Abstract
Spectral mode representations play an essential role in various areas of physics, from quantum mechanics to fluid turbulence, but they are not yet extensively used to characterize and describe the behavioral dynamics of living systems. Here, we show that mode-based linear models inferred from experimental live-imaging data can provide an accurate low-dimensional description of undulatory locomotion in worms, centipedes, robots, and snakes. By incorporating physical symmetries and known biological constraints into the dynamical model, we find that the shape dynamics are generically governed by Schrödinger equations in mode space. The eigenstates of the effective biophysical Hamiltonians and their adiabatic variations enable the efficient classification and differentiation of locomotion behaviors in natural, simulated, and robotic organisms using Grassmann distances and Berry phases. While our analysis focuses on a widely studied class of biophysical locomotion phenomena, the underlying approach generalizes to other physical or living systems that permit a mode representation subject to geometric shape constraints.
Collapse
Affiliation(s)
- Alexander E Cohen
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, Massachusetts 02142, USA
| | - Alasdair D Hastewell
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Sreeparna Pradhan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, Massachusetts 02139, USA
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, Massachusetts 02139, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Godon S, Kruusmaa M, Ristolainen A. Maneuvering on non-Newtonian fluidic terrain: a survey of animal and bio-inspired robot locomotion techniques on soft yielding grounds. Front Robot AI 2023; 10:1113881. [PMID: 37346053 PMCID: PMC10279858 DOI: 10.3389/frobt.2023.1113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Frictionally yielding media are a particular type of non-Newtonian fluids that significantly deform under stress and do not recover their original shape. For example, mud, snow, soil, leaf litters, or sand are such substrates because they flow when stress is applied but do not bounce back when released. Some robots have been designed to move on those substrates. However, compared to moving on solid ground, significantly fewer prototypes have been developed and only a few prototypes have been demonstrated outside of the research laboratory. This paper surveys the existing biology and robotics literature to analyze principles of physics facilitating motion on yielding substrates. We categorize animal and robot locomotion based on the mechanical principles and then further on the nature of the contact: discrete contact, continuous contact above the material, or through the medium. Then, we extract different hardware solutions and motion strategies enabling different robots and animals to progress. The result reveals which design principles are more widely used and which may represent research gaps for robotics. We also discuss that higher level of abstraction helps transferring the solutions to the robotics domain also when the robot is not explicitly meant to be bio-inspired. The contribution of this paper is a review of the biology and robotics literature for identifying locomotion principles that can be applied for future robot design in yielding environments, as well as a catalog of existing solutions either in nature or man-made, to enable locomotion on yielding grounds.
Collapse
|
19
|
Van Stratum B, Clark J, Shoele K. Effect of internal damping on locomotion in frictional environments. Phys Rev E 2023; 107:054406. [PMID: 37329083 DOI: 10.1103/physreve.107.054406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/25/2023] [Indexed: 06/18/2023]
Abstract
The gaits of undulating animals arise from a complex interaction of their central nervous system, muscle, connective tissue, bone, and environment. As a simplifying assumption, many previous studies have often assumed that sufficient internal force is available to produce observed kinematics, thus not focusing on quantifying the interconnection between muscle effort, body shape, and external reaction forces. This interplay, however, is critical to locomotion performance in crawling animals, especially when accompanied by body viscoelasticity. Moreover, in bioinspired robotic applications, the body's internal damping is indeed a parameter that the designer can tune. Still, the effect of internal damping is not well understood. This study explores how internal damping affects the locomotion performance of a crawler with a continuous, viscoelastic, nonlinear beam model. Crawler muscle actuation is modeled as a traveling wave of bending moment propagating posteriorly along the body. Consistent with the friction properties of the scales of snakes and limbless lizards, environmental forces are modeled using anisotropic Coulomb friction. It is found that by varying the crawler body's internal damping, the crawler's performance can be altered, and distinct gaits could be achieved, including changing the net locomotion direction from forward to back. We will discuss this forward and backward control and identify the optimal internal damping for peak crawling speed.
Collapse
Affiliation(s)
- Brian Van Stratum
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Jonathan Clark
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Kourosh Shoele
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| |
Collapse
|
20
|
Tang C, Sun L, Zhou G, Shu X, Tang H, Wu H. Gait Generation Method of Snake Robot Based on Main Characteristic Curve Fitting. Biomimetics (Basel) 2023; 8:biomimetics8010105. [PMID: 36975335 PMCID: PMC10046623 DOI: 10.3390/biomimetics8010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Gait generation method is one of the important contents of snake robot motion control. Different gait generation methods produce completely different forms of control functions, so snake robots need more complicated programming logic and processes to realize various gaits and their transformation. Therefore, we propose a new unified expression of gait method, The MCC (main characteristics control) method simplifies and unifies the control functions of different snake robots gaits by extracting the main features of the backbone curves of snake robots gaits. Since all periodic curves that meet the Dirichlet conditions can be formed by superposition of sinusoidal curves, taking the “lowest frequency” part that reflects the main characteristics of the curve as the target configuration can simplify the motion control function of snake robots’ gaits. Based on the MCC method, some snake robot gaits are reconstructed, including serpentine gait, rolling gait, helix rolling gait, and crawler gait. In addition, based on MCC method, an AEH-sidewinding gait control method is proposed. The backbone of the AEH-sidewinding gait is closer to the ideal elliptic helix, thus improving the accuracy of its kinematics modeling of snake robot sidewinding gait. Finally, the validity of this gait is verified by experiments. This unified gait expression of snake robots will be helpful to realize smooth gait switching between different gaits of snake robots.
Collapse
|
21
|
Bagheri H, Jayanetti V, Burch HR, Brenner CE, Bethke BR, Marvi H. Mechanics of bipedal and quadrupedal locomotion on dry and wet granular media. J FIELD ROBOT 2023. [DOI: 10.1002/rob.22121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hosain Bagheri
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Vidu Jayanetti
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Hailey R. Burch
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Clayton E. Brenner
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Benjamin R. Bethke
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Hamidreza Marvi
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
22
|
Dorfman A, Subach A, Scharf I. Snakes on a slope: strong anti-gravitactic responses and differential habitat use in the Saharan horned viper ( Cerastes cerastes) in the Negev desert. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221652. [PMID: 36968240 PMCID: PMC10031405 DOI: 10.1098/rsos.221652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The way species use their habitat dictates their intra- and interspecific interactions. We studied the effects of the microhabitat type and slope on the movement behaviour of the Saharan horned viper (Cerastes cerastes) in its natural habitat. This viper occurs in sand dunes and moves mostly by sidewinding. Additionally, we studied the microhabitat preference of desert rodents-the vipers' main prey. We placed the vipers on different natural dune slopes and recorded their behaviour. We found a strong anti-gravitactic response: vipers moved more frequently towards the top of the dune than in any other direction, despite a decrease in stride length with increasing slope. The foraging-related behaviour of the vipers was concentrated in the dune semi-stable areas rather than its stable or shifting sand areas. We measured rodent activity by placing seed trays in the dune allowing the rodents to collect seeds. Rodent activity was the highest in the shifting sands, closely followed by the semi-stable microhabitat. These results suggest the vipers use the semi-stable microhabitat mainly for foraging and may use the shifting sand areas as commuting routes between such areas. This study may be of use for conservation efforts of psammophilic species in desert dunes.
Collapse
Affiliation(s)
- Arik Dorfman
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aziz Subach
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inon Scharf
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Dorgan KM, Daltorio KA. Fundamentals of burrowing in soft animals and robots. Front Robot AI 2023; 10:1057876. [PMID: 36793873 PMCID: PMC9923007 DOI: 10.3389/frobt.2023.1057876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Creating burrows through natural soils and sediments is a problem that evolution has solved numerous times, yet burrowing locomotion is challenging for biomimetic robots. As for every type of locomotion, forward thrust must overcome resistance forces. In burrowing, these forces will depend on the sediment mechanical properties that can vary with grain size and packing density, water saturation, organic matter and depth. The burrower typically cannot change these environmental properties, but can employ common strategies to move through a range of sediments. Here we propose four challenges for burrowers to solve. First, the burrower has to create space in a solid substrate, overcoming resistance by e.g., excavation, fracture, compression, or fluidization. Second, the burrower needs to locomote into the confined space. A compliant body helps fit into the possibly irregular space, but reaching the new space requires non-rigid kinematics such as longitudinal extension through peristalsis, unbending, or eversion. Third, to generate the required thrust to overcome resistance, the burrower needs to anchor within the burrow. Anchoring can be achieved through anisotropic friction or radial expansion, or both. Fourth, the burrower must sense and navigate to adapt the burrow shape to avoid or access different parts of the environment. Our hope is that by breaking the complexity of burrowing into these component challenges, engineers will be better able to learn from biology, since animal performance tends to exceed that of their robotic counterparts. Since body size strongly affects space creation, scaling may be a limiting factor for burrowing robotics, which are typically built at larger scales. Small robots are becoming increasingly feasible, and larger robots with non-biologically-inspired anteriors (or that traverse pre-existing tunnels) can benefit from a deeper understanding of the breadth of biological solutions in current literature and to be explored by continued research.
Collapse
Affiliation(s)
- Kelly M. Dorgan
- Dauphin Island Sea Lab, Dauphin Island, AL, United States,School of Marine & Environmental Sciences, University of South Alabama, Mobile, AL, United States,*Correspondence: Kelly M. Dorgan,
| | - Kathryn A. Daltorio
- Mechanical Engineering Department, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Choi S, Ji G, Park J, Kim H, Mun J, Lee JH, Hwangbo J. Learning quadrupedal locomotion on deformable terrain. Sci Robot 2023; 8:eade2256. [PMID: 36696473 DOI: 10.1126/scirobotics.ade2256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
Simulation-based reinforcement learning approaches are leading the next innovations in legged robot control. However, the resulting control policies are still not applicable on soft and deformable terrains, especially at high speed. The primary reason is that reinforcement learning approaches, in general, are not effective beyond the data distribution: The agent cannot perform well in environments that it has not experienced. To this end, we introduce a versatile and computationally efficient granular media model for reinforcement learning. Our model can be parameterized to represent diverse types of terrain from very soft beach sand to hard asphalt. In addition, we introduce an adaptive control architecture that can implicitly identify the terrain properties as the robot feels the terrain. The identified parameters are then used to boost the locomotion performance of the legged robot. We applied our techniques to the Raibo robot, a dynamic quadrupedal robot developed in-house. The trained networks demonstrated high-speed locomotion capabilities on deformable terrains: The robot was able to run on soft beach sand at 3.03 meters per second although the feet were completely buried in the sand during the stance phase. We also demonstrate its ability to generalize to different terrains by presenting running experiments on vinyl tile flooring, athletic track, grass, and a soft air mattress.
Collapse
Affiliation(s)
- Suyoung Choi
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| | - Gwanghyeon Ji
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| | - Jeongsoo Park
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| | - Hyeongjun Kim
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| | - Juhyeok Mun
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| | - Jeong Hyun Lee
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| | - Jemin Hwangbo
- Robotics & Artificial Intelligence Lab, KAIST, Daejeon, Korea
| |
Collapse
|
25
|
Torres-Pardo A, Pinto-Fernández D, Garabini M, Angelini F, Rodriguez-Cianca D, Massardi S, Tornero J, Moreno JC, Torricelli D. Legged locomotion over irregular terrains: state of the art of human and robot performance. BIOINSPIRATION & BIOMIMETICS 2022; 17:061002. [PMID: 36113448 DOI: 10.1088/1748-3190/ac92b3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedures that will boost not only the scientific development of better bioinspired solutions, but also their market uptake.
Collapse
Affiliation(s)
- Adriana Torres-Pardo
- Neural Rehabilitation Group (NRG), Spanish National Research Council (CSIC), Madrid, Spain
| | - David Pinto-Fernández
- Neural Rehabilitation Group (NRG), Spanish National Research Council (CSIC), Madrid, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Manolo Garabini
- Centro di Ricerca 'Enrico Piaggio', Università di Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa, Italy
| | - Franco Angelini
- Centro di Ricerca 'Enrico Piaggio', Università di Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa, Italy
| | - David Rodriguez-Cianca
- Neural Rehabilitation Group (NRG), Spanish National Research Council (CSIC), Madrid, Spain
| | - Stefano Massardi
- Neural Rehabilitation Group (NRG), Spanish National Research Council (CSIC), Madrid, Spain
- Dipartimento di Ingegneria Meccanica, Università di Brescia, Brescia, Italy
| | - Jesús Tornero
- Center for Clinical Neuroscience, Hospital Los Madroños, Madrid, Spain
| | - Juan C Moreno
- Neural Rehabilitation Group (NRG), Spanish National Research Council (CSIC), Madrid, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group (NRG), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
26
|
Abstract
We optimize three-dimensional snake kinematics for locomotor efficiency. We assume a general space-curve representation of the snake backbone with small-to-moderate lifting off the ground and negligible body inertia. The cost of locomotion includes work against friction and internal viscous dissipation. When restricted to planar kinematics, our population-based optimization method finds the same types of optima as a previous Newton-based method. With lifting, a few types of optimal motions prevail. We have an s-shaped body with alternating lifting of the middle and ends at small-to-moderate transverse friction. With large transverse friction, curling and sliding motions are typical at small viscous dissipation, replaced by large-amplitude bending at large viscous dissipation. With small viscous dissipation, we find local optima that resemble sidewinding motions across friction coefficient space. They are always suboptimal to alternating lifting motions, with average input power 10–100% higher.
Collapse
Affiliation(s)
- S. Alben
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Cao Z, Zhang D, Zhou M. Direction Control and Adaptive Path Following of 3-D Snake-Like Robot Motion. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:10980-10987. [PMID: 33784629 DOI: 10.1109/tcyb.2021.3055519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work investigates direction control and path following of a 3-D snake-like robot. In order to control such robots accurately, this work researches the relationships between its phase offsets of pitch joints and directions. A new direction control method is proposed for the robot based on these relationships. An adaptive path-following algorithm based on the line-of-sight guidance law is proposed and combined with the direction control method to steer the robot to move forward and along desired paths. Simulation and experimental results are presented to demonstrate the performances of the proposed 3-D model and control methods. They well outperform the classical and commonly used path-following method.
Collapse
|
28
|
Earnst A, Alben S. Efficient sliding locomotion of three-link bodies with inertia. Phys Rev E 2022; 106:044404. [PMID: 36397486 DOI: 10.1103/physreve.106.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Many previous studies of sliding locomotion have assumed that body inertia is negligible. Here we optimize the kinematics of a three-link body for efficient locomotion and include among the kinematic parameters the temporal period of locomotion, or equivalently, the body inertia. The optimal inertia is nonnegligible when the coefficient of friction for sliding transverse to the body axis is small. Inertia is also significant in a few cases with relatively large coefficients of friction for transverse and backward sliding, and here the optimal motions are less sensitive to the inertia parameter. The optimal motions seem to converge as the number of frequencies used is increased from one to four. For some of the optimal motions with significant inertia we find dramatic reductions in efficiency when the inertia parameter is decreased to zero. For the motions that are optimal with zero inertia, the efficiency decreases more gradually when we raise the inertia to moderate and large values.
Collapse
Affiliation(s)
- Adam Earnst
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Silas Alben
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
29
|
Wan Z, Sun Y, Qin Y, Skorina EH, Gasoto R, Luo M, Fu J, Onal CD. Design, Analysis, and Real-Time Simulation of a 3D Soft Robotic Snake. Soft Robot 2022; 10:258-268. [PMID: 35976088 DOI: 10.1089/soro.2021.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Snakes are a remarkable source of inspiration for mobile search-and-rescue robots. Their unique slender body structure and multiple modes of locomotion are well-suited to movement in narrow passages and other difficult terrain. The design, manufacturing, modeling, and control techniques of soft robotics make it possible to imitate the structure, mechanical properties, and locomotion gaits of snakes, opening up new possibilities in robotics research. Building on our track record of contributions in this area, this article presents a soft robotic snake made of modules that can actively deform in three-dimensional (3D) and rigorously studies its performance under a range of conditions, including gait parameters, number of modules, and differences in the environment. A soft 3D-printed wave spring sheath is developed to support the robot modules, increasing the snake's performance in climbing steps threefold. Finally, we introduce a simulator and a numerical model to provide a real-time simulation of the soft robotic snake. With the help of the real-time simulator, it is possible to develop and test new locomotion gaits for the soft robotic snake within a short period of time, compared with experimental trial and error. As a result, the soft robotic snake presented in this article is able to locomote on different surfaces, perform different bioinspired and custom gaits, and climb over steps.
Collapse
Affiliation(s)
- Zhenyu Wan
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Yinan Sun
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Yun Qin
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Erik H Skorina
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Renato Gasoto
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Ming Luo
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jie Fu
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Cagdas D Onal
- Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
30
|
Synthetic growth by self-lubricated photopolymerization and extrusion inspired by plants and fungi. Proc Natl Acad Sci U S A 2022; 119:e2201776119. [PMID: 35943987 PMCID: PMC9388119 DOI: 10.1073/pnas.2201776119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Growth in nature often couples material generation and actuation, offering an intriguing paradigm for the marriage of materials science and robotics. Inspired by the growth of plants and fungi, a new approach for synthetic materials growth was developed based on simultaneous self-lubricated photopolymerization and extrusion. This strategy enables a new continuous method for light-based fabrication of profiled parts not possible with state-of-the-art three-dimensional (3D) printing or other methods. We exploit this materials growth paradigm to produce a soft robot capable of rapid continuous growth, thereby addressing major limitations of growing soft robots that stem from limited extensibility, lack of permanent structure, and inability to negotiate torturous paths, demonstrating the potential of growth to provide new capabilities in manufacturing and soft robotics. Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.
Collapse
|
31
|
Schulz AK, Shriver C, Aubuchon C, Weigel EG, Kolar M, Mendelson JR, Hu DL. A Guide for Successful Research Collaborations between Zoos and Universities. Integr Comp Biol 2022; 62:icac096. [PMID: 35771995 DOI: 10.1093/icb/icac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zoos offer university researchers unique opportunities to study animals that would be difficult or impractical to find in the wild. However, the different cultures, goals, and priorities of these institutions can be a source of conflict. How can researchers build mutually beneficial collaborations with their local zoo? In this article, we present the results of a survey of 117 personnel from 59 zoos around the United States, where we highlight best practices spanning all phases of collaboration, from planning to working alongside the zoo and maintaining contact afterward. Collaborations were not possible if university personnel did not appreciate the zoo staff's time constraints as well as the differences between zoo animals and laboratory animals. We include a vision for how to improve zoo collaborations, along with a history of our own decade-long collaborations with Zoo Atlanta. A central theme is the long-term establishment of trust between institutions.
Collapse
Affiliation(s)
- Andrew K Schulz
- Schools of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cassie Shriver
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Emily G Weigel
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Joseph R Mendelson
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Zoo Atlanta, Atlanta, GA 30315, USA
| | - David L Hu
- Schools of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
32
|
Chong B, O Aydin Y, Rieser JM, Sartoretti G, Wang T, Whitman J, Kaba A, Aydin E, McFarland C, Diaz Cruz K, Rankin JW, Michel KB, Nicieza A, Hutchinson JR, Choset H, Goldman DI. A general locomotion control framework for multi-legged locomotors. BIOINSPIRATION & BIOMIMETICS 2022; 17:046015. [PMID: 35533656 DOI: 10.1088/1748-3190/ac6e1b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Serially connected robots are promising candidates for performing tasks in confined spaces such as search and rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimensional redundant modules in a way that improves mobility. Here we develop a general framework to discover templates to control serially connected multi-legged robots. Specifically, we combine two approaches to build a general shape control scheme which can provide baseline patterns of self-deformation ('gaits') for effective locomotion in diverse robot morphologies. First, we take inspiration from a dimensionality reduction and a biological gait classification scheme to generate cyclic patterns of body deformation and foot lifting/lowering, which facilitate the generation of arbitrary substrate contact patterns. Second, we extend geometric mechanics, which was originally introduced to study swimming at low Reynolds numbers, to frictional environments, allowing the identification of optimal body-leg coordination in this common terradynamic regime. Our scheme allows the development of effective gaits on flat terrain with diverse numbers of limbs (4, 6, 16, and even 0 limbs) and backbone actuation. By properly coordinating the body undulation and leg placement, our framework combines the advantages of both limbless robots (modularity and narrow profile) and legged robots (mobility). Our framework can provide general control schemes for the rapid deployment of general multi-legged robots, paving the way toward machines that can traverse complex environments. In addition, we show that our framework can also offer insights into body-leg coordination in living systems, such as salamanders and centipedes, from a biomechanical perspective.
Collapse
Affiliation(s)
- Baxi Chong
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| | - Yasemin O Aydin
- University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jennifer M Rieser
- Emory University, 201 Dowman Dr, Atlanta, GA 30322, United States of America
| | | | - Tianyu Wang
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| | - Julian Whitman
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Abdul Kaba
- Morehouse College, 830 Westview Dr SW, Atlanta, GA 30314, United States of America
| | - Enes Aydin
- University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Ciera McFarland
- University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Kelimar Diaz Cruz
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| | - Jeffery W Rankin
- Rancho Research Institute, 7601 Imperial Hwy, Downey, CA 90242, United States of America
| | - Krijn B Michel
- Royal Veterinary College, 4 Royal College St, London NW1 0TU, United Kingdom
| | - Alfredo Nicieza
- Biodiversity Research Institute (IMIB), University of Oviedo-Principality of Asturias-CSIC, 33600 Mieres, Spain
| | - John R Hutchinson
- Royal Veterinary College, 4 Royal College St, London NW1 0TU, United Kingdom
| | - Howie Choset
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Daniel I Goldman
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| |
Collapse
|
33
|
Twisting for soft intelligent autonomous robot in unstructured environments. Proc Natl Acad Sci U S A 2022; 119:e2200265119. [PMID: 35605115 DOI: 10.1073/pnas.2200265119] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SignificanceAutonomy is crucial for soft robotics that are constructed of soft materials. It remains challenging to create autonomous soft robots that can intelligently interact with and adapt to changing environments without external controls. To do so, it often requires an analogical soft "brain" that integrates on-board sensing, control, computation, and decision-making. Here, we report an autonomous soft robot embodied with physical intelligence for decision-making via adaptive soft body-environment interactions and snap-through instability, without integrated sensing and external controls. This study harnesses physical intelligence as a new paradigm for designing autonomous soft robots that can interact intelligently with their environments, thus potentially reducing the burdens on the conventional integrated sensing, control, computations, and decision-making systems in designing intelligent soft robots.
Collapse
|
34
|
Vilhena JG, Pawlak R, D'Astolfo P, Liu X, Gnecco E, Kisiel M, Glatzel T, Pérez R, Häner R, Decurtins S, Baratoff A, Prampolini G, Liu SX, Meyer E. Flexible Superlubricity Unveiled in Sidewinding Motion of Individual Polymeric Chains. PHYSICAL REVIEW LETTERS 2022; 128:216102. [PMID: 35687435 DOI: 10.1103/physrevlett.128.216102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
A combination of low temperature atomic force microcopy and molecular dynamic simulations is used to demonstrate that soft designer molecules realize a sidewinding motion when dragged over a gold surface. Exploiting their longitudinal flexibility, pyrenylene chains are indeed able to lower diffusion energy barriers via on-surface directional locking and molecular strain. The resulting ultralow friction reaches values on the order of tens of pN reported so far only for rigid chains sliding on an incommensurate surface. Therefore, we demonstrate how molecular flexibility can be harnessed to realize complex nanomotion while retaining a superlubric character. This is in contrast with the paradigm guiding the design of most superlubric nanocontacts (mismatched rigid contacting surfaces).
Collapse
Affiliation(s)
- J G Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Philipp D'Astolfo
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Xunshan Liu
- Department of Chemistry, Zhejiang Sci-tech University, 314423 Hangzhou, China
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Enrico Gnecco
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Marcin Kisiel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Rúben Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Alexis Baratoff
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 56124 Pisa, Italy
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Abstract
Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i²Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards.
Collapse
|
36
|
Zhou W, Peralta JD, Hao Z, Gravish N. Lateral contact yields longitudinal cohesion in active undulatory systems. Phys Rev E 2022; 105:054604. [PMID: 35706245 DOI: 10.1103/physreve.105.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Many animals and robots move using undulatory motion of their bodies. When the bodies are in close proximity undulatory motion can lead to novel collective behavior such as gait synchronization, spatial reconfiguration, and clustering. Here we study the role of contact interactions between model undulatory swimmers: three-link robots in experiment and multilink swimmers in simulation. The undulatory gait of each swimmer is generated through a time-dependent sinusoidal-like waveform which has a fixed phase offset, ϕ. By varying the phase relationship between neighboring swimmers we seek to study how contact forces and planar configurations are governed by the phase difference between neighboring swimmers. We find that undulatory actuation in close proximity drives neighboring swimmers into planar equilibrium configurations that depend on the actuation phase difference. We propose a model for stable planar configurations of nearest-neighbor undulatory swimmers which we call the gait compatibility condition, which is the set of planar and phase configurations in which no collisions occur. Robotic experiments with two, three, and four swimmers exhibit good agreement with the compatibility model. To study the contact forces and the time-averaged equilibrium between undulatory systems we perform simulations. To probe the interaction potential between undulatory swimmers we apply a small force to each swimmer longitudinally to separate them from the compatible configuration and we measure their steady-state displacement. These studies reveal that undulatory swimmers in close proximity exhibit attractive longitudinal interaction forces that drive the swimmers from incompatible to compatible configurations. This system of undulatory swimmers provides new insight into active-matter systems which move through body undulation. In addition to the importance of velocity and orientation coherence in active-matter swarms, we demonstrate that undulatory phase coherence is also important for generating stable, cohesive group configurations.
Collapse
Affiliation(s)
- Wei Zhou
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Jaquelin Dezha Peralta
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Zhuonan Hao
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
37
|
Fu Q, Astley HC, Li C. Snakes combine vertical and lateral bending to traverse uneven terrain. BIOINSPIRATION & BIOMIMETICS 2022; 17:036009. [PMID: 35235918 DOI: 10.1088/1748-3190/ac59c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Terrestrial locomotion requires generating appropriate ground reaction forces which depend on substrate geometry and physical properties. The richness of positions and orientations of terrain features in the 3D world gives limbless animals like snakes that can bend their body versatility to generate forces from different contact areas for propulsion. Despite many previous studies of how snakes use lateral body bending for propulsion on relatively flat surfaces with lateral contact points, little is known about whether and how much snakes use vertical body bending in combination with lateral bending in 3D terrain. This lack had contributed to snake robots being inferior to animals in stability, efficiency, and versatility when traversing complex 3D environments. Here, to begin to elucidate this, we studied how the generalist corn snake traversed an uneven arena of blocks of random height variation five times its body height. The animal traversed the uneven terrain with perfect stability by propagating 3D bending down its body with little transverse motion (11° slip angle). Although the animal preferred moving through valleys with higher neighboring blocks, it did not prefer lateral bending. Among body-terrain contact regions that potentially provide propulsion, 52% were formed by vertical body bending and 48% by lateral bending. The combination of vertical and lateral bending may dramatically expand the sources of propulsive forces available to limbless locomotors by utilizing various asperities available in 3D terrain. Direct measurements of contact forces are necessary to further understand how snakes coordinate 3D bending along the entire body via sensory feedback to propel through 3D terrain. These studies will open a path to new propulsive mechanisms for snake robots, potentially increasing the performance and versatility in 3D terrain.
Collapse
Affiliation(s)
- Qiyuan Fu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Henry C Astley
- Department of Biology, University of Akron, Akron, OH 44325, United States of America
| | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America
| |
Collapse
|
38
|
Lauder GV. Robotics as a Comparative Method in Ecology and Evolutionary Biology. Integr Comp Biol 2022; 62:icac016. [PMID: 35435223 DOI: 10.1093/icb/icac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Comparative biologists have typically used one or more of the following methods to assist in evaluating the proposed functional and performance significance of individual traits: comparative phylogenetic analysis, direct interspecific comparison among species, genetic modification, experimental alteration of morphology (for example by surgically modifying traits), and ecological manipulation where individual organisms are transplanted to a different environment. But comparing organisms as the endpoints of an evolutionary process involves the ceteris paribus assumption: that all traits other than the one(s) of interest are held constant. In a properly controlled experimental study, only the variable of interest changes among the groups being compared. The theme of this paper is that the use of robotic or mechanical models offers an additional tool in comparative biology that helps to minimize the effect of uncontrolled variables by allowing direct manipulation of the trait of interest against a constant background. The structure and movement pattern of mechanical devices can be altered in ways not possible in studies of living animals, facilitating testing hypotheses of the functional and performance significant of individual traits. Robotic models of organismal design are particularly useful in three arenas: (1) controlling variation to allow modification only of the trait of interest, (2) the direct measurement of energetic costs of individual traits, and (3) quantification of the performance landscape. Obtaining data in these three areas is extremely difficult through the study of living organisms alone, and the use of robotic models can reveal unexpected effects. Controlling for all variables except for the length of a swimming flexible object reveals substantial non-linear effects that vary with stiffness. Quantification of the swimming performance surface reveals that there are two peaks with comparable efficiency, greatly complicating the inference of performance from morphology alone. Organisms and their ecological interactions are complex, and dissecting this complexity to understand the effects of individual traits is a grand challenge in ecology and evolutionary biology. Robotics has great promise as a "comparative method," allowing better-controlled comparative studies to analyze the many interacting elements that make up complex behaviors, ecological interactions, and evolutionary histories.
Collapse
Affiliation(s)
- George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
39
|
ARCSnake: Reconfigurable Snakelike Robot With Archimedean Screw Propulsion for Multidomain Mobility. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Tingle JL, Sherman BM, Garland T. Scaling and relations of morphology with locomotor kinematics in the sidewinder rattlesnake Crotalus cerastes. J Exp Biol 2022; 225:jeb243817. [PMID: 35438776 PMCID: PMC9080748 DOI: 10.1242/jeb.243817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 01/22/2023]
Abstract
The movement of limbless terrestrial animals differs fundamentally from that of limbed animals, yet few scaling studies of their locomotor kinematics and morphology are available. We examined scaling and relations of morphology and locomotion in sidewinder rattlesnakes (Crotalus cerastes). During sidewinding locomotion, a snake lifts sections of its body up and forward while other sections maintain static ground contact. We used high-speed video to quantify whole-animal speed and acceleration; the height to which body sections are lifted; and the frequency, wavelength, amplitude and skew angle (degree of tilting) of the body wave. Kinematic variables were not sexually dimorphic, and most did not deviate from isometry, except wave amplitude. Larger sidewinders were not faster, contrary to many results from limbed terrestrial animals. Free from the need to maintain dynamic similarity (because their locomotion is dominated by friction rather than inertia), limbless species may have greater freedom to modulate speed independently of body size. Path analysis supported: (1) a hypothesized relationship between body width and wavelength, indicating that stouter sidewinders form looser curves; (2) a strong relationship between cycle frequency and whole-animal speed; and (3) weaker effects of wavelength (positive) and amplitude (negative) on speed. We suggest that sidewinding snakes may face a limit on stride length (to which amplitude and wavelength both contribute), beyond which they sacrifice stability. Thus, increasing frequency may be the best way to increase speed. Finally, frequency and skew angle were correlated, a result that deserves future study from the standpoint of both kinematics and physiology.
Collapse
|
41
|
|
42
|
Jia S, Santos VJ. Tactile Perception for Teleoperated Robotic Exploration within Granular Media. ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION 2021. [DOI: 10.1145/3459996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The sense of touch is essential for locating buried objects when vision-based approaches are limited. We present an approach for tactile perception when sensorized robot fingertips are used to directly interact with granular media particles in teleoperated systems. We evaluate the effects of linear and nonlinear classifier model architectures and three tactile sensor modalities (vibration, internal fluid pressure, fingerpad deformation) on the accuracy of estimates of fingertip contact state. We propose an architecture called the Sparse-Fusion Recurrent Neural Network (SF-RNN) in which sparse features are autonomously extracted prior to fusing multimodal tactile data in a fully connected RNN input layer. The multimodal SF-RNN model achieved 98.7% test accuracy and was robust to modest variations in granular media type and particle size, fingertip orientation, fingertip speed, and object location. Fingerpad deformation was the most informative modality for haptic exploration within granular media while vibration and internal fluid pressure provided additional information with appropriate signal processing. We introduce a real-time visualization of tactile percepts for remote exploration by constructing a belief map that combines probabilistic contact state estimates and fingertip location. The belief map visualizes the probability of an object being buried in the search region and could be used for planning.
Collapse
Affiliation(s)
- Shengxin Jia
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles
| | - Veronica J. Santos
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles
| |
Collapse
|
43
|
Ozkan-Aydin Y, Liu B, Ferrero AC, Seidel M, Hammond FL, Goldman DI. Lateral bending and buckling aids biological and robotic earthworm anchoring and locomotion. BIOINSPIRATION & BIOMIMETICS 2021; 17:016001. [PMID: 34496355 DOI: 10.1088/1748-3190/ac24bf] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Earthworms (Lumbricus terrestris) are characterized by soft, highly flexible and extensible bodies, and are capable of locomoting in most terrestrial environments. Previous studies of earthworm movement focused on the use of retrograde peristaltic gaits in which controlled contraction of longitudinal and circular muscles results in waves of shortening/thickening and thinning/lengthening of the hydrostatic skeleton. These waves can propel the animal across ground as well as into soil. However, worms benefit from axial body bends during locomotion. Such lateral bending and buckling dynamics can aid locomotor function via hooking/anchoring (to provide propulsion), modify travel orientation (to avoid obstacles and generate turns) and even generate snake-like undulatory locomotion in environments where peristaltic locomotion results in poor performance. To the best of our knowledge, lateral bending and buckling of an earthworm's body has not yet been systematically investigated. In this study, we observed that within confined environments, worms use lateral bending and buckling to anchor their body to the walls of their burrows and tip (anterior end) bending to search the environment. This locomotion strategy improved the performance of our soft-bodied robophysical model of the earthworm both in a confined (in an acrylic tube) and above-ground heterogeneous environment (rigid pegs), where present peristaltic robots are relatively limited in terradynamic capabilities. In summary, lateral bending and buckling facilitates the mobility of earthworm locomotion in diverse terrain and can play an important role in the creation of low cost soft robotic devices capable of traversing a variety of environments.
Collapse
Affiliation(s)
- Yasemin Ozkan-Aydin
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, United States of America
| | - Bangyuan Liu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | | | - Max Seidel
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States of America
| | - Frank L Hammond
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
44
|
Zhang X, Naughton N, Parthasarathy T, Gazzola M. Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains. Nat Commun 2021; 12:6076. [PMID: 34667170 PMCID: PMC8526626 DOI: 10.1038/s41467-021-26276-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Motivated by a possible convergence of terrestrial limbless locomotion strategies ultimately determined by interfacial effects, we show how both 3D gait alterations and locomotory adaptations to heterogeneous terrains can be understood through the lens of local friction modulation. Via an effective-friction modeling approach, compounded by 3D simulations, the emergence and disappearance of a range of locomotory behaviors observed in nature is systematically explained in relation to inhabited environments. Our approach also simplifies the treatment of terrain heterogeneity, whereby even solid obstacles may be seen as high friction regions, which we confirm against experiments of snakes ‘diffracting’ while traversing rows of posts, similar to optical waves. We further this optic analogy by illustrating snake refraction, reflection and lens focusing. We use these insights to engineer surface friction patterns and demonstrate passive snake navigation in complex topographies. Overall, our study outlines a unified view that connects active and passive 3D mechanics with heterogeneous interfacial effects to explain a broad set of biological observations, and potentially inspire engineering design. A long puzzle in snake’s locomotion, sidewinding allows them to travel at an angle and reorient in some environments without loss of speed. Here, authors provide a mathematical argument to the evolution of sidewinding gaits and reinforce an analogy between limbless terrestrial locomotion and optics.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Chmpaign, Urbana, IL, 61801, USA
| | - Noel Naughton
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Chmpaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tejaswin Parthasarathy
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Chmpaign, Urbana, IL, 61801, USA
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Chmpaign, Urbana, IL, 61801, USA. .,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Schwaner MJ, Hsieh ST, Braasch I, Bradley S, Campos CB, Collins CE, Donatelli CM, Fish FE, Fitch OE, Flammang BE, Jackson BE, Jusufi A, Mekdara PJ, Patel A, Swalla BJ, Vickaryous M, McGowan CP. Future Tail Tales: A Forward-Looking, Integrative Perspective on Tail Research. Integr Comp Biol 2021; 61:521-537. [PMID: 33999184 PMCID: PMC8680820 DOI: 10.1093/icb/icab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis Tails are a defining characteristic of chordates and show enormous diversity in function and shape. Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in morphology and function. For example, tails can be short or long, thin or thick, and feathered or spiked, and they can be used for propulsion, communication, or balancing, and they mediate in predator-prey outcomes. Depending on the species of animal the tail is attached to, it can have extraordinarily multi-functional purposes. Despite its morphological diversity and broad functional roles, tails have not received similar scientific attention as, for example, the paired appendages such as legs or fins. This forward-looking review article is a first step toward interdisciplinary scientific synthesis in tail research. We discuss the importance of tail research in relation to five topics: (1) evolution and development, (2) regeneration, (3) functional morphology, (4) sensorimotor control, and (5) computational and physical models. Within each of these areas, we highlight areas of research and combinations of long-standing and new experimental approaches to move the field of tail research forward. To best advance a holistic understanding of tail evolution and function, it is imperative to embrace an interdisciplinary approach, re-integrating traditionally siloed fields around discussions on tail-related research.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S T Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - I Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - S Bradley
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C B Campos
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C E Collins
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - F E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - O E Fitch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - B E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - B E Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909, USA
| | - A Jusufi
- Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - P J Mekdara
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Patel
- Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa
| | - B J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - M Vickaryous
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C P McGowan
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
46
|
Chong B, Wang T, Rieser JM, Lin B, Kaba A, Blekherman G, Choset H, Goldman DI. Frequency modulation of body waves to improve performance of sidewinding robots. Int J Rob Res 2021. [DOI: 10.1177/02783649211037715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the direction of sidewinding with respect to the body frame while the vertical traveling wave largely determines the contact pattern between the body and the environment. When the locomotor’s center of mass leaves the supporting polygon formed by the contact pattern, undesirable locomotor behaviors (such as unwanted turning or unstable oscillation of the body) can occur. In this article, we develop an approach to generate desired translation and turning by modulating the vertical wave. These modulations alter the distribution of body–environment contact patches and can stabilize configurations that were previously statically unstable. The approach first identifies the spatial frequency of the vertical wave that statically stabilizes the locomotor for a given horizontal wave. Then, using geometric mechanics tools, we design the coordination between body waves that produces the desired translation or rotation. We demonstrate the effectiveness of our technique in numerical simulations and on experiments with a 16-joint limbless robot locomoting on flat hard ground. Our scheme broadens the range of movements and behaviors accessible to sidewinding locomotors at low speeds, which can lead to limbless systems capable of traversing diverse terrain stably and/or rapidly.
Collapse
Affiliation(s)
- Baxi Chong
- Georgia Institute of Technology, Atlanta, GA, USA
| | - Tianyu Wang
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Bo Lin
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
47
|
Jurestovsky DJ, Usher LR, Astley HC. Generation of propulsive force via vertical undulations in snakes. J Exp Biol 2021; 224:270817. [PMID: 34151369 PMCID: PMC8278011 DOI: 10.1242/jeb.239020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Lateral undulation is the most widespread mode of terrestrial vertebrate limbless locomotion, in which posteriorly propagating horizontal waves press against environmental asperities (e.g. grass, rocks) and generate propulsive reaction forces. We hypothesized that snakes can generate propulsion using a similar mechanism of posteriorly propagating vertical waves pressing against suitably oriented environmental asperities. Using an array of horizontally oriented cylinders, one of which was equipped with force sensors, and a motion capture system, we found snakes generated substantial propulsive force and propulsive impulse with minimal contribution from lateral undulation. Additional tests showed that snakes could propel themselves via vertical undulations from a single suitable contact point, and this mechanism was replicated in a robotic model. Vertical undulations can provide snakes with a valuable locomotor tool for taking advantage of vertical asperities in a variety of habitats, potentially in combination with lateral undulation, to fully exploit the 3D structure of the habitat. Summary: Snakes are capable of generating propulsion via vertical undulations, which allows them to exploit their environment in 3D and allows more effective use of previously overlooked surfaces in cluttered habitats.
Collapse
Affiliation(s)
- Derek J Jurestovsky
- Department of Biology, University of Akron, 302 E. Buchtel Avenue, Akron, OH 44325, USA
| | - Logan R Usher
- Department of Biology, University of Akron, 302 E. Buchtel Avenue, Akron, OH 44325, USA
| | - Henry C Astley
- Department of Biology, University of Akron, 302 E. Buchtel Avenue, Akron, OH 44325, USA
| |
Collapse
|
48
|
Martinez A, Nguyen D, Basson MS, Medina J, Irschick DJ, Baeckens S. Quantifying surface topography of biological systems from 3D scans. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alejandro Martinez
- Department of Civil and Environmental Engineering University of California Davis Davis CA USA
| | - Damon Nguyen
- Department of Civil and Environmental Engineering University of California Davis Davis CA USA
| | - Mandeep S. Basson
- Department of Civil and Environmental Engineering University of California Davis Davis CA USA
| | - Josh Medina
- Department of Biology University of Massachusetts Amherst MA USA
| | | | - Simon Baeckens
- Functional Morphology Lab Department of Biology University of Antwerp Wilrijk Belgium
| |
Collapse
|
49
|
Li D, Huang S, Tang Y, Marvi H, Tao J, Aukes DM. Compliant Fins for Locomotion in Granular Media. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3084877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Functional consequences of convergently evolved microscopic skin features on snake locomotion. Proc Natl Acad Sci U S A 2021; 118:2018264118. [PMID: 33547241 DOI: 10.1073/pnas.2018264118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small structures that decorate biological surfaces can significantly affect behavior, yet the diversity of animal-environment interactions essential for survival makes ascribing functions to structures challenging. Microscopic skin textures may be particularly important for snakes and other limbless locomotors, where substrate interactions are mediated solely through body contact. While previous studies have characterized ventral surface features of some snake species, the functional consequences of these textures are not fully understood. Here, we perform a comparative study, combining atomic force microscopy measurements with mathematical modeling to generate predictions that link microscopic textures to locomotor performance. We discover an evolutionary convergence in the ventral skin structures of a few sidewinding specialist vipers that inhabit sandy deserts-an isotropic texture that is distinct from the head-to-tail-oriented, micrometer-sized spikes observed on a phylogenetically broad sampling of nonsidewinding vipers and other snakes from diverse habitats and wide geographic range. A mathematical model that relates structural directionality to frictional anisotropy reveals that isotropy enhances movement during sidewinding, whereas anisotropy improves movement during slithering via lateral undulation of the body. Our results highlight how an integrated approach can provide quantitative predictions for structure-function relationships and insights into behavioral and evolutionary adaptations in biological systems.
Collapse
|