1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Mondal AK, Carrillo E, Jayaraman V, Twomey EC. Temperature Sensitive Glutamate Gating of AMPA-subtype iGluRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611422. [PMID: 39282358 PMCID: PMC11398517 DOI: 10.1101/2024.09.05.611422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that mediate the majority of excitatory neurotransmission1. iGluRs are gated by glutamate, where upon glutamate binding, they open their ion channels to enable cation influx into post-synaptic neurons, initiating signal transduction2. The structural mechanism of iGluR gating by glutamate has been extensively studied in the context of positive allosteric modulators (PAMs)3-15. A fundamental question has remained - are the PAM activated states of iGluRs representative of glutamate gating in the absence of PAMs? Here, using the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype iGluR (AMPAR) we show that glutamate gating is unique from gating in the presence of PAMs. We demonstrate that glutamate gating is temperature sensitive, and through temperature-resolved cryo-electron microscopy (cryo-EM), capture all major glutamate gating states. Physiological temperatures augment channel activation and conductance. Activation by glutamate initiates ion channel opening that involves all ion channel helices hinging away from the pores axis in a motif that is conserved across all iGluRs. Desensitization occurs when the local dimer pairs decouple and enables closure of the ion channel below through restoring the channel hinges and refolding the channel gate. Our findings define how glutamate gates iGluRs, provide foundations for therapeutic design, and point to iGluR gating being temperature sensitive.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Edward C. Twomey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70170, USA
| |
Collapse
|
4
|
Hale WD, Montaño Romero A, Gonzalez CU, Jayaraman V, Lau AY, Huganir RL, Twomey EC. Allosteric competition and inhibition in AMPA receptors. Nat Struct Mol Biol 2024:10.1038/s41594-024-01328-0. [PMID: 38834914 DOI: 10.1038/s41594-024-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation. We used cryo-electron microscopy to capture AMPARs bound to glutamate, while a negative allosteric modulator, GYKI-52466, and positive allosteric modulator, cyclothiazide, compete for control of the AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs by decoupling the ligand-binding domains from the ion channel. The rearrangement of the ligand-binding domains ruptures the cyclothiazide site, preventing positive modulation. Our data provide a framework for understanding allostery of AMPARs and for rational design of therapeutics targeting AMPARs in neurological diseases.
Collapse
Affiliation(s)
- W Dylan Hale
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandra Montaño Romero
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuauhtemoc U Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Edward C Twomey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| |
Collapse
|
5
|
Gangwar SP, Yelshanskaya MV, Nadezhdin KD, Yen LY, Newton TP, Aktolun M, Kurnikova MG, Sobolevsky AI. Kainate receptor channel opening and gating mechanism. Nature 2024; 630:762-768. [PMID: 38778115 PMCID: PMC11186766 DOI: 10.1038/s41586-024-07475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Kainate receptors, a subclass of ionotropic glutamate receptors, are tetrameric ligand-gated ion channels that mediate excitatory neurotransmission1-4. Kainate receptors modulate neuronal circuits and synaptic plasticity during the development and function of the central nervous system and are implicated in various neurological and psychiatric diseases, including epilepsy, depression, schizophrenia, anxiety and autism5-11. Although structures of kainate receptor domains and subunit assemblies are available12-18, the mechanism of kainate receptor gating remains poorly understood. Here we present cryo-electron microscopy structures of the kainate receptor GluK2 in the presence of the agonist glutamate and the positive allosteric modulators lectin concanavalin A and BPAM344. Concanavalin A and BPAM344 inhibit kainate receptor desensitization and prolong activation by acting as a spacer between the amino-terminal and ligand-binding domains and a stabilizer of the ligand-binding domain dimer interface, respectively. Channel opening involves the kinking of all four pore-forming M3 helices. Our structures reveal the molecular basis of kainate receptor gating, which could guide the development of drugs for treatment of neurological disorders.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas P Newton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Muhammed Aktolun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Gangwar SP, Yen LY, Yelshanskaya MV, Korman A, Jones DR, Sobolevsky AI. Modulation of GluA2-γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Nat Struct Mol Biol 2023; 30:1481-1494. [PMID: 37653241 PMCID: PMC10584687 DOI: 10.1038/s41594-023-01080-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Aryeh Korman
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Khau J, Nadezhdin KD, Khosrof LS, Krylov NA, Efremov RG, Sobolevsky AI. Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin. Nat Commun 2023; 14:4630. [PMID: 37532722 PMCID: PMC10397291 DOI: 10.1038/s41467-023-40362-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
The calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs. Here we report the structure of human TRPV6 in complex with tetrahydrocannabivarin (THCV), a natural cannabinoid inhibitor extracted from Cannabis sativa. We use cryo-electron microscopy combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to identify THCV binding sites in the portals that connect the membrane environment surrounding the protein to the central cavity of the channel pore and to characterize the allosteric mechanism of TRPV6 inhibition. We also propose the molecular pathway taken by THCV to reach its binding site. Our study provides a foundation for the development of new TRPV6-targeting drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jeffrey Khau
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lena S Khosrof
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Nadezhdin KD, Krylov NA, Efremov RG, Sobolevsky AI. Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat Commun 2023; 14:2659. [PMID: 37160865 PMCID: PMC10169861 DOI: 10.1038/s41467-023-38352-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun 2023; 14:2451. [PMID: 37117175 PMCID: PMC10147690 DOI: 10.1038/s41467-023-38162-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yury A Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Gangwar SP, Yen LY, Yelshanskaya MV, Sobolevsky AI. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel. Cell Rep 2023; 42:112124. [PMID: 36857176 PMCID: PMC10440371 DOI: 10.1016/j.celrep.2023.112124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Kainate receptors (KARs) are a subtype of ionotropic glutamate receptors that control synaptic transmission in the central nervous system and are implicated in neurological, psychiatric, and neurodevelopmental disorders. Understanding the regulation of KAR function by small molecules is essential for exploring these receptors as drug targets. Here, we present cryoelectron microscopy (cryo-EM) structures of KAR GluK2 in complex with the positive allosteric modulator BPAM344, competitive antagonist DNQX, and negative allosteric modulator, antiepileptic drug perampanel. Our structures show that two BPAM344 molecules bind per ligand-binding domain dimer interface. In the absence of an agonist or in the presence of DNQX, BPAM344 stabilizes GluK2 in the closed state. The closed state is also stabilized by perampanel, which binds to the ion channel extracellular collar sites located in two out of four GluK2 subunits. The molecular mechanisms of positive and negative allosteric modulation of KAR provide a guide for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, 630 West 168(th) Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
11
|
Mikhailova MM, Surin AM, Sobolevsky A, Yelshanskaya M, Bolshakov AP. Boris Izrailevich Khodorov: Scientist and Teacher. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Purification, characterization, and preliminary serial crystallography diffraction advances structure determination of full-length human particulate guanylyl cyclase A receptor. Sci Rep 2022; 12:11824. [PMID: 35821229 PMCID: PMC9276669 DOI: 10.1038/s41598-022-15798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Particulate Guanylyl Cyclase Receptor A (pGC-A) is a natriuretic peptide membrane receptor, playing a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop methods to regulate pGC-A, structural information on the full-length form is needed. However, structural data on the transmembrane and intracellular domains are lacking. This work presents expression and optimization using baculovirus, along with the first purification of functional full-length human pGC-A. In vitro assays revealed the pGC-A tetramer was functional in detergent micelle solution. Based on our purification results and previous findings that dimer formation is required for functionality, we propose a tetramer complex model with two functional subunits. Previous research suggested pGC-A signal transduction is an ATP-dependent, two-step mechanism. Our results show the binding ligand also moderately activates pGC-A, and ATP is not crucial for activation of guanylyl cyclase. Furthermore, crystallization of full-length pGC-A was achieved, toward determination of its structure. Needle-shaped crystals with 3 Å diffraction were observed by serial crystallography. This work paves the road for determination of the full-length pGC-A structure and provides new information on the signal transduction mechanism.
Collapse
|
13
|
Yelshanskaya MV, Singh AK, Narangoda C, Williams RSB, Kurnikova MG, Sobolevsky AI. Structural basis of AMPA receptor inhibition by trans-4-butylcyclohexane carboxylic acid. Br J Pharmacol 2022; 179:3628-3644. [PMID: 32959886 PMCID: PMC10693435 DOI: 10.1111/bph.15254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/29/2020] [Accepted: 08/29/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE AMPA receptors, which shape excitatory postsynaptic currents and are directly involved in overactivation of synaptic function during seizures, represent a well-accepted target for anti-epileptic drugs. Trans-4-butylcyclohexane carboxylic acid (4-BCCA) has emerged as a new promising anti-epileptic drug in several in vitro and in vivo seizure models, but the mechanism of its action remained unknown. The purpose of this study is to characterize structure and dynamics of 4-BCCA interaction with AMPA receptors. EXPERIMENTAL APPROACH We studied the molecular mechanism of AMPA receptor inhibition by 4-BCCA using a combination of X-ray crystallography, mutagenesis, electrophysiological assays, and molecular dynamics simulations. KEY RESULTS We identified 4-BCCA binding sites in the transmembrane domain (TMD) of AMPA receptor, at the lateral portals formed by transmembrane segments M1-M4. At this binding site, 4-BCCA is very dynamic, assumes multiple poses, and can enter the ion channel pore. CONCLUSION AND IMPLICATIONS 4-BCCA represents a low-affinity inhibitor of AMPA receptors that acts at the TMD sites distinct from non-competitive inhibitors, such as the anti-epileptic drug perampanel and the ion channel blockers. Further studies might examine the possibsility of synergistic use of these inhibitors in treatment of epilepsy and a wide range of neurological disorders and gliomas. LINKED ARTICLES This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Chamali Narangoda
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Yelshanskaya MV, Patel DS, Kottke CM, Kurnikova MG, Sobolevsky AI. Opening of glutamate receptor channel to subconductance levels. Nature 2022; 605:172-178. [PMID: 35444281 PMCID: PMC9068512 DOI: 10.1038/s41586-022-04637-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that open their pores in response to binding of the agonist glutamate1-3. An ionic current through a single iGluR channel shows up to four discrete conductance levels (O1-O4)4-6. Higher conductance levels have been associated with an increased number of agonist molecules bound to four individual ligand-binding domains (LBDs)6-10. Here we determine structures of a synaptic complex of AMPA-subtype iGluR and the auxiliary subunit γ2 in non-desensitizing conditions with various occupancy of the LBDs by glutamate. We show that glutamate binds to LBDs of subunits B and D only after it is already bound to at least the same number of LBDs that belong to subunits A and C. Our structures combined with single-channel recordings, molecular dynamics simulations and machine-learning analysis suggest that channel opening requires agonist binding to at least two LBDs. Conversely, agonist binding to all four LBDs does not guarantee maximal channel conductance and favours subconductance states O1 and O2, with O3 and O4 being rare and not captured structurally. The lack of subunit independence and low efficiency coupling of glutamate binding to channel opening underlie the gating of synaptic complexes to submaximal conductance levels, which provide a potential for upregulation of synaptic activity.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Hamanaka K, Miyoshi K, Sun JH, Hamada K, Komatsubara T, Saida K, Tsuchida N, Uchiyama Y, Fujita A, Mizuguchi T, Gerard B, Bayat A, Rinaldi B, Kato M, Tohyama J, Ogata K, Shi YS, Saito K, Miyatake S, Matsumoto N. Amelioration of a neurodevelopmental disorder by carbamazepine in a case having a gain-of-function GRIA3 variant. Hum Genet 2022; 141:283-293. [PMID: 35031858 DOI: 10.1007/s00439-021-02416-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keita Miyoshi
- Invertebrate Genetics Laboratory, Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan.,Division of Invertebrate Genetics, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takao Komatsubara
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Benedicte Gerard
- Laboratoires de Diagnostic Génétique, Institut Medical d'Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Niigata, Japan.,Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan.,Division of Invertebrate Genetics, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
16
|
Structure of ABCB1/P-Glycoprotein in the Presence of the CFTR Potentiator Ivacaftor. MEMBRANES 2021; 11:membranes11120923. [PMID: 34940424 PMCID: PMC8703531 DOI: 10.3390/membranes11120923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
ABCB1/P-glycoprotein is an ATP binding cassette transporter that is involved in the clearance of xenobiotics, and it affects the disposition of many drugs in the body. Conformational flexibility of the protein within the membrane is an intrinsic part of its mechanism of action, but this has made structural studies challenging. Here, we have studied different conformations of P-glycoprotein simultaneously in the presence of ivacaftor, a known competitive inhibitor. In order to conduct this, we used high contrast cryo-electron microscopy imaging with a Volta phase plate. We associate the presence of ivacaftor with the appearance of an additional density in one of the conformational states detected. The additional density is in the central aqueous cavity and is associated with a wider separation of the two halves of the transporter in the inward-facing state. Conformational changes to the nucleotide-binding domains are also observed and may help to explain the stimulation of ATPase activity that occurs when transported substrate is bound in many ATP binding cassette transporters.
Collapse
|
17
|
Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Mol Cell 2021; 81:4771-4783.e7. [PMID: 34678168 DOI: 10.1016/j.molcel.2021.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022]
Abstract
AMPA receptors (AMPARs) mediate the majority of excitatory neurotransmission. Their surface expression, trafficking, gating, and pharmacology are regulated by auxiliary subunits. Of the two types of TARP auxiliary subunits, type I TARPs assume activating roles, while type II TARPs serve suppressive functions. We present cryo-EM structures of GluA2 AMPAR in complex with type II TARP γ5, which reduces steady-state currents, increases single-channel conductance, and slows recovery from desensitization. Regulation of AMPAR function depends on its ligand-binding domain (LBD) interaction with the γ5 head domain. GluA2-γ5 complex shows maximum stoichiometry of two TARPs per AMPAR tetramer, being different from type I TARPs but reminiscent of the auxiliary subunit GSG1L. Desensitization of both GluA2-GSG1L and GluA2-γ5 complexes is accompanied by rupture of LBD dimer interface, while GluA2-γ5 but not GluA2-GSG1L LBD dimers remain two-fold symmetric. Different structural architectures and desensitization mechanisms of complexes with auxiliary subunits endow AMPARs with broad functional capabilities.
Collapse
|
18
|
Sania RE, Cardoso JCR, Louro B, Marquet N, Canário AVM. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role. Mol Ecol 2021; 30:6642-6658. [PMID: 34601781 DOI: 10.1111/mec.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Chemosensation is a critical signalling process in animals and especially important in sea cucumbers, a group of ecologically and economically important marine echinoderms (class Holothuroidea), which lack audio and visual organs and rely on chemical sensing for survival, feeding and reproduction. The ionotropic receptors are a recently identified family of chemosensory receptors in insects and other protostomes, related to the ionotropic glutamate receptor family (iGluR), a large family of membrane receptors in metazoan. Here we characterize the echinoderm iGluR subunits and consider their possible role in chemical communication in sea cucumbers. Sequence similarity searches revealed that sea cucumbers have in general a higher number of iGluR subunits when compared to other echinoderms. Phylogenetic analysis and sequence comparisons revealed GluH as a specific iGluR subfamily present in all echinoderms. Homologues of the vertebrate GluA (aka α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA), GluK (aka kainate) and GluD (aka delta) were also identified. The GluN (aka N-methyl-d-aspartate, NMDA) as well as the invertebrate deuterostome subfamily GluF (aka phi) are absent in echinoderms. The echinoderm GluH subfamily shares conserved structural protein organization with vertebrate iGluRs and the ligand binding domain (LBD) is the most conserved region; genome analysis indicates evolution via lineage and species-specific tandem gene duplications. GluH genes (named Grih) are the most highly expressed iGluRs subunit genes in tissues in the sea cucumber Holothuria arguinesis, with Griha1, Griha2 and Griha5 exclusively expressed in tentacles, making them candidates to have a chemosensory role in this species. The multiple GluH subunits may provide alternative receptor assembly combinations, thus expanding the functional possibilities and widening the range of compounds detected during aggregation and spawning in echinoderms.
Collapse
Affiliation(s)
- Rubaiyat E Sania
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Nathalie Marquet
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
19
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
20
|
Structural Arrangement Produced by Concanavalin A Binding to Homomeric GluK2 Receptors. MEMBRANES 2021; 11:membranes11080613. [PMID: 34436376 PMCID: PMC8401665 DOI: 10.3390/membranes11080613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Kainate receptors are members of the ionotropic glutamate receptor family. They form cation-specific transmembrane channels upon binding glutamate that desensitize in the continued presence of agonists. Concanavalin A (Con-A), a lectin, stabilizes the active open-channel state of the kainate receptor and reduces the extent of desensitization. In this study, we used single-molecule fluorescence resonance energy transfer (smFRET) to investigate the conformational changes underlying kainate receptor modulation by Con-A. These studies showed that Con-A binding to GluK2 homomeric kainate receptors resulted in closer proximity of the subunits at the dimer–dimer interface at the amino-terminal domain as well as between the subunits at the dimer interface at the agonist-binding domain. Additionally, the modulation of receptor functions by monovalent ions, which bind to the dimer interface at the agonist-binding domain, was not observed in the presence of Con-A. Based on these results, we conclude that Con-A modulation of kainate receptor function is mediated by a shift in the conformation of the kainate receptor toward a tightly packed extracellular domain.
Collapse
|
21
|
Benbow T, Cairns BE. Dysregulation of the peripheral glutamatergic system: A key player in migraine pathogenesis? Cephalalgia 2021; 41:1249-1261. [PMID: 34148407 PMCID: PMC8504403 DOI: 10.1177/03331024211017882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Although the role of glutamate in migraine pathogenesis remains uncertain, there has been significant interest in the development of drug candidates that target glutamate receptors. Activation of trigeminovascular afferent fibers is now recognized as a crucial step to the onset of a migraine episode. New evidence suggests a dysfunction in peripheral glutamate regulation may play a role in this process. Objective To provide a narrative review of the role of peripheral glutamate dysfunction in migraine. Method A review of recent literature from neurobiological, pharmacological and genomic studies was conducted to support peripheral glutamate dysfunction as a potential element in migraine pathogenesis. Results Studies in rats suggest that elevated blood glutamate mechanically sensitizes trigeminal afferent fibers and stimulates the release of calcitonin-gene related peptide and other neuropeptides to promote and maintain neurogenic inflammation. These effects may be driven by upregulation of glutamate receptors, and modifications to reuptake and metabolic pathways of glutamate. Furthermore, genome wide association studies have found polymorphisms in glutamate receptor and transporter genes that are associated with migraine. Conclusion The role of peripheral glutamate signalling in the onset and maintenance of migraine is not completely elucidated and future studies are still needed to confirm its role in migraine pathogenesis.
Collapse
Affiliation(s)
- Tarique Benbow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Khanra N, Brown PMGE, Perozzo AM, Bowie D, Meyerson JR. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. eLife 2021; 10:e66097. [PMID: 33724189 PMCID: PMC7997659 DOI: 10.7554/elife.66097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Kainate receptors (KARs) are L-glutamate-gated ion channels that regulate synaptic transmission and modulate neuronal circuits. KARs have strict assembly rules and primarily function as heteromeric receptors in the brain. A longstanding question is how KAR heteromer subunits organize and coordinate together to fulfill their signature physiological roles. Here we report structures of the GluK2/GluK5 heteromer in apo, antagonist-bound, and desensitized states. The receptor assembles with two copies of each subunit, ligand binding domains arranged as two heterodimers and GluK5 subunits proximal to the channel. Strikingly, during desensitization, GluK2, but not GluK5, subunits undergo major structural rearrangements to facilitate channel closure. We show how the large conformational differences between antagonist-bound and desensitized states are mediated by the linkers connecting the pore helices to the ligand binding domains. This work presents the first KAR heteromer structure, reveals how its subunits are organized, and resolves how the heteromer can accommodate functionally distinct closed channel structures.
Collapse
Affiliation(s)
- Nandish Khanra
- Department of Physiology and Biophysics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Patricia MGE Brown
- Department of Pharmacology and Therapeutics, McGill UniversityMontréalCanada
| | - Amanda M Perozzo
- Department of Pharmacology and Therapeutics, McGill UniversityMontréalCanada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill UniversityMontréalCanada
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
23
|
Tikhonov DB. Channel Blockers of Ionotropic Glutamate
Receptors. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Carrillo E, Shaikh SA, Berka V, Durham RJ, Litwin DB, Lee G, MacLean DM, Nowak LM, Jayaraman V. Mechanism of modulation of AMPA receptors by TARP-γ8. J Gen Physiol 2021; 152:jgp.201912451. [PMID: 31748249 PMCID: PMC7034100 DOI: 10.1085/jgp.201912451] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 01/24/2023] Open
Abstract
Using single-channel recordings and single-molecule FRET, Carrillo et al. show that resensitization of α-amino-5-methyl-3-hydroxy-4-isoxazole propionate receptors by the regulatory protein γ8 is characterized by transitions to high conductance levels associated with tighter conformational coupling similar to those seen in the presence of cyclothiazide. Fast excitatory synaptic transmission in the mammalian central nervous system is mediated by glutamate-activated α-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA) receptors. In neurons, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs). Assembly with TARP γ8 alters the biophysical properties of the receptor, producing resensitization currents in the continued presence of glutamate. Using single-channel recordings, we show that under resensitizing conditions, GluA2 AMPA receptors primarily transition to higher conductance levels, similar to activation of the receptors in the presence of cyclothiazide, which stabilizes the open state. To study the conformation associated with these states, we have used single-molecule FRET and show that this high-conductance state exhibits tighter coupling between subunits in the extracellular parts of the receptor. Furthermore, the dwell times for the transition from the tightly coupled state to the decoupled states correlate to longer open durations of the channels, thus correlating conformation and function at the single-molecule level.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,E. Carrillo and S.A. Shaikh contributed equally to this work and are listed in alphabetical order
| | - Sana A Shaikh
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,E. Carrillo and S.A. Shaikh contributed equally to this work and are listed in alphabetical order
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Garam Lee
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Linda M Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
25
|
Durham RJ, Latham DR, Sanabria H, Jayaraman V. Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophys J 2020; 119:1929-1936. [PMID: 33096078 PMCID: PMC7732771 DOI: 10.1016/j.bpj.2020.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for investigating the structural dynamics of biological macromolecules. smFRET reveals the conformational landscape and dynamic changes of proteins by building on the static structures found using cryo-electron microscopy, x-ray crystallography, and other methods. Combining smFRET with static structures allows for a direct correlation between dynamic conformation and function. Here, we discuss the different experimental setups, fluorescence detection schemes, and data analysis strategies that enable the study of structural dynamics of glutamate signaling across various timescales. We illustrate the versatility of smFRET by highlighting studies of a wide range of questions, including the mechanism of activation and transport, the role of intrinsically disordered segments, and allostery and cooperativity between subunits in biological systems responsible for glutamate signaling.
Collapse
Affiliation(s)
- Ryan J Durham
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | |
Collapse
|
26
|
Tikhonov DB, Zhorov BS. The pore domain in glutamate-gated ion channels: Structure, drug binding and similarity with potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183401. [PMID: 32562696 DOI: 10.1016/j.bbamem.2020.183401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors in the CNS excitatory synapses of vertebrates are involved in numerous physiological and pathological processes. Decades of intensive studies greatly advanced our understanding of molecular organization of these transmembrane proteins. Here we focus on the channel pore domain, its selectivity filter and the activation gate, and the pore block by organic ligands. We compare findings from indirect experimental approaches, including site-directed mutagenesis, with recent crystal and cryo-EM structures of different channels in different functional states and complexed with different ligands. We summarize remaining uncertainties and unresolved problems related to the channel structure, function and pharmacology.
Collapse
Affiliation(s)
- Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prospect, St. Petersburg 194223, Russia.
| | - Boris S Zhorov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prospect, St. Petersburg 194223, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 4K1, Canada
| |
Collapse
|
27
|
Krintel C, Dorosz J, Larsen AH, Thorsen TS, Venskutonytė R, Mirza O, Gajhede M, Boesen T, Kastrup JS. Binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2. FEBS J 2020; 288:995-1007. [PMID: 32543078 DOI: 10.1111/febs.15455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 11/26/2022]
Abstract
Ionotropic glutamate receptors are ligand-gated ion channels governing neurotransmission in the central nervous system. Three major types of antagonists are known for the AMPA-type receptor GluA2: competitive, noncompetitive (i.e., negative allosteric modulators; NAMs) used for treatment of epilepsy, and uncompetitive antagonists. We here report a 4.65 Å resolution X-ray structure of GluA2, revealing that four molecules of the competitive antagonist ZK200775 and four molecules of the NAM GYKI53655 are capable of binding at the same time. Using negative stain electron microscopy, we show that GYKI53655 alone or ZK200775/GYKI53655 in combination predominantly results in compact receptor forms. The agonist AMPA provides a mixed population of compact and bulgy shapes of GluA2 not impacted by addition of GYKI53655. Taken together, this suggests that the two different mechanisms of antagonism that lead to channel closure are independent and that the distribution between bulgy and compact receptors primarily depends on the ligand bound in the glutamate binding site. DATABASE: The atomic coordinates and structure factors from the crystal structure determination have been deposited in the Protein Data Bank under accession code https://doi.org/10.2210/pdb6RUQ/pdb. The electron microscopy 3D reconstruction volumes have been deposited in EMDB (EMD-4875: Apo; EMD-4920: ZK200775/GYKI53655; EMD-4921: AMPA compact; EMD-4922: AMPA/GYKI53655 bulgy; EMD-4923: GYKI53655; EMD-4924: AMPA bulgy; EMD-4925: AMPA/GYKI53655 compact).
Collapse
Affiliation(s)
- Christian Krintel
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jerzy Dorosz
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andreas Haahr Larsen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Raminta Venskutonytė
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Department of Experimental Medical Science, Lund University, Lund, 221 00, Sweden
| | - Osman Mirza
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michael Gajhede
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jette Sandholm Kastrup
- Research Cluster on Molecular Neuroprotection, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
28
|
Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J Physiol 2020; 598:3071-3083. [PMID: 32468591 DOI: 10.1113/jp278086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
29
|
Salazar H, Mischke S, Plested AJR. Measurements of the Timescale and Conformational Space of AMPA Receptor Desensitization. Biophys J 2020; 119:206-218. [PMID: 32559412 PMCID: PMC7335938 DOI: 10.1016/j.bpj.2020.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/06/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. Desensitization of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype after glutamate binding appears critical for brain function and involves rearrangement of the ligand binding domains (LBDs). Recently, several full-length structures of ionotropic glutamate receptors in putative desensitized states were published. These structures indicate movements of the LBDs that might be trapped by cysteine cross-links and metal bridges. We found that cysteine mutants at the interface between subunits A and C and lateral zinc bridges (between subunits C and D or A and B) can trap freely desensitizing receptors in a spectrum of states with different stabilities. Consistent with a close approach of subunits during desensitization processes, the introduction of bulky amino acids at the A-C interface produced a receptor with slow recovery from desensitization. Further, in wild-type GluA2 receptors, we detected the population of a stable desensitized state with a lifetime around 1 s. Using mutations that progressively stabilize deep desensitized states (E713T and Y768R), we were able to selectively protect receptors from cross-links at both the diagonal and lateral interfaces. Ultrafast perfusion enabled us to perform chemical modification in less than 10 ms, reporting movements associated to desensitization on this timescale within LBD dimers in resting receptors. These observations suggest that small disruptions of quaternary structure are sufficient for fast desensitization and that substantial rearrangements likely correspond to stable desensitized states that are adopted relatively slowly on a timescale much longer than physiological receptor activation.
Collapse
Affiliation(s)
- Hector Salazar
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Sabrina Mischke
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Andrew J R Plested
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.
| |
Collapse
|
30
|
Kamalova A, Nakagawa T. AMPA receptor structure and auxiliary subunits. J Physiol 2020; 599:453-469. [PMID: 32004381 DOI: 10.1113/jp278701] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
Fast excitatory synaptic transmission in the mammalian brain is largely mediated by AMPA-type ionotropic glutamate receptors (AMPARs), which are activated by the neurotransmitter glutamate. In synapses, the function of AMPARs is tuned by their auxiliary subunits, a diverse set of membrane proteins associated with the core pore-forming subunits of the AMPARs. Each auxiliary subunit provides distinct functional modulation of AMPARs, ranging from regulation of trafficking to shaping ion channel gating kinetics. Understanding the molecular mechanism of the function of these complexes is key to decoding synaptic modulation and their global roles in cognitive activities, such as learning and memory. Here, we review the structural and molecular complexity of AMPAR-auxiliary subunit complexes, as well as their functional diversity in different brain regions. We suggest that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR-auxiliary subunit complexes.
Collapse
Affiliation(s)
- Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
31
|
Litwin DB, Paudyal N, Carrillo E, Berka V, Jayaraman V. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183001. [PMID: 31194959 PMCID: PMC6899175 DOI: 10.1016/j.bbamem.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Kainate receptors, which are glutamate activated excitatory neurotransmitter receptors, predominantly exist as heteromers of GluK2 and GluK5 subunits in the mammalian central nervous system. There are currently no structures of the full-length heteromeric kainate receptors. Here, we have used single molecule FRET to determine the specific arrangement of the GluK2 and GluK5 subunits within the dimer of dimers configuration in a full-length receptor. Additionally, we have also studied the dynamics and conformational heterogeneity of the amino-terminal and agonist-binding domain interfaces associated with the resting and desensitized states of the full-length heteromeric kainate receptor using FRET-based methods. The smFRET data are compared to similar experiments performed on the homomeric kainate receptor to provide insight into the differences in conformational dynamics that distinguish the two functionally. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Nakagawa T. Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science 2019; 366:1259-1263. [PMID: 31806817 PMCID: PMC11533862 DOI: 10.1126/science.aay2783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/21/2019] [Indexed: 11/06/2024]
Abstract
In the brain, AMPA-type glutamate receptors (AMPARs) form complexes with their auxiliary subunits and mediate the majority of fast excitatory neurotransmission. Signals transduced by these complexes are critical for synaptic plasticity, learning, and memory. The two major categories of AMPAR auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs); these subunits share little homology and play distinct roles in controlling ion channel gating and trafficking of AMPAR. Here, I report high-resolution cryo-electron microscopy structures of AMPAR in complex with CNIH3. Contrary to its predicted membrane topology, CNIH3 lacks an extracellular domain and instead contains four membrane-spanning helices. The protein-protein interaction interface that dictates channel modulation and the lipids surrounding the complex are revealed. These structures provide insights into the molecular mechanism for ion channel modulation and assembly of AMPAR/CNIH3 complexes.
Collapse
Affiliation(s)
- T. Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
33
|
Stenum-Berg C, Musgaard M, Chavez-Abiega S, Thisted CL, Barrella L, Biggin PC, Kristensen AS. Mutational Analysis and Modeling of Negative Allosteric Modulator Binding Sites in AMPA Receptors. Mol Pharmacol 2019; 96:835-850. [PMID: 31582576 DOI: 10.1124/mol.119.116871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) constitute a subclass of the ionotropic glutamate receptor superfamily, which functions as glutamate-gated cation channels to mediate the majority of excitatory neurotransmission in the central nervous system. AMPARs are therapeutic targets in a range of brain disorders associated with abnormal glutamate hyperactivity. Multiple classes of AMPAR inhibitors have been developed during the past decades, including competitive antagonists, ion channel blockers, and negative allosteric modulators (NAMs). At present, the NAM is the only class of AMPAR ligands that have been developed into safe and useful drugs in humans in the form of perampanel (Fycompa), which was recently approved for treatment of epilepsy. Compared with the detailed understanding of other AMPAR ligand classes, surprisingly little information has been available regarding the molecular mechanism of perampanel and other classes of NAMs at AMPARs; including the location and structure of NAM binding pockets in the receptor complex. However, structures of the AMPAR GluA2 in complex with NAMs were recently reported that unambiguously identified the NAM binding sites. In parallel with this work, our aim with the present study was to identify specific residues involved in the formation of the NAM binding site for three prototypical AMPAR NAMs. Hence, we have performed a mutational analysis of the AMPAR region that links the four extracellular ligand-binding domains to the central ion channel in the transmembrane domain region. Furthermore, we perform computational ligand docking of the NAMs into structural models of the homomeric GluA2 receptor and optimize side chain conformations around the NAMs to model how NAMs bind in this specific site. The new insights provide potentially valuable input for structure-based drug design of new NAMs. SIGNIFICANCE STATEMENT: The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are glutamate-gated ion channels that mediate the majority of excitatory neurotransmission in the brain. Negative allosteric modulators of AMPA receptors are considered to have significant therapeutic potential in diseases linked to glutamate hyperactivity. The present work employs mutational analysis and molecular modeling of the binding site for prototypical NAMs to provide new molecular insight into how NAMs interact with the AMPA receptor, which is of potential use for future design of new types of NAMs.
Collapse
Affiliation(s)
- Charlotte Stenum-Berg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| | - Maria Musgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| | - Sergei Chavez-Abiega
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| | - Christine L Thisted
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| | - Lorenzo Barrella
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| | - Philip C Biggin
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (C.S.-B., S.C.-A., C.L.T., L.B., A.S.K.); and Department of Biochemistry, University of Oxford, Oxford, United Kingdom (M.M., P.C.B.)
| |
Collapse
|
34
|
Coombs ID, Soto D, McGee TP, Gold MG, Farrant M, Cull-Candy SG. Homomeric GluA2(R) AMPA receptors can conduct when desensitized. Nat Commun 2019; 10:4312. [PMID: 31541113 PMCID: PMC6754398 DOI: 10.1038/s41467-019-12280-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Desensitization is a canonical property of ligand-gated ion channels, causing progressive current decline in the continued presence of agonist. AMPA-type glutamate receptors (AMPARs), which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization. Recent cryo-EM studies of AMPAR assemblies show their ion channels to be closed in the desensitized state. Here we present evidence that homomeric Q/R-edited AMPARs still allow ions to flow when the receptors are desensitized. GluA2(R) expressed alone, or with auxiliary subunits (γ-2, γ-8 or GSG1L), generates large fractional steady-state currents and anomalous current-variance relationships. Our results from fluctuation analysis, single-channel recording, and kinetic modeling, suggest that the steady-state current is mediated predominantly by conducting desensitized receptors. When combined with crystallography this unique functional readout of a hitherto silent state enabled us to examine cross-linked cysteine mutants to probe the conformation of the desensitized ligand binding domain of functioning AMPAR complexes. AMPA-type glutamate receptors, which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization, causing a progressive current decline in the continued presence of agonist. Here authors show that homomeric Q/R edited AMPARs still allow ions to flow when the receptors are desensitized.
Collapse
Affiliation(s)
- Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Soto
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Biomedicine, Neurophysiology Laboratory, Medical School, Institute of Neurosciences, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas P McGee
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
35
|
Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Sci Rep 2019; 9:6969. [PMID: 31061516 PMCID: PMC6502836 DOI: 10.1038/s41598-019-43360-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/23/2019] [Indexed: 02/02/2023] Open
Abstract
Kainate receptors are glutamate-gated cation-selective channels involved in excitatory synaptic signaling and are known to be modulated by ions. Prior functional and structural studies suggest that the dimer interface at the agonist-binding domain plays a key role in activation, desensitization, and ion modulation in kainate receptors. Here we have used fluorescence-based methods to investigate the changes and conformational heterogeneity at these interfaces associated with the resting, antagonist-bound, active, desensitized, and ion-modulated states of the receptor. These studies show that in the presence of Na+ ions the interfaces exist primarily in the coupled state in the apo, antagonist-bound and activated (open channel) states. Under desensitizing conditions, the largely decoupled dimer interface at the agonist-binding domain as seen in the cryo-EM structure is one of the states observed. However, in addition to this state there are several additional states with lower levels of decoupling. Replacing Na+ with Cs+ does not alter the FRET efficiencies of the states significantly, but shifts the population to the more decoupled states in both resting and desensitized states, which can be correlated with the lower activation seen in the presence of Cs+.
Collapse
Affiliation(s)
- Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Sana A Shaikh
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA.
| |
Collapse
|
36
|
Lau AY. Enhanced sampling of glutamate receptor ligand-binding domains. Neurosci Lett 2019; 700:17-21. [DOI: 10.1016/j.neulet.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
37
|
Sainas S, Temperini P, Farnsworth JC, Yi F, Møllerud S, Jensen AA, Nielsen B, Passoni A, Kastrup JS, Hansen KB, Boschi D, Pickering DS, Clausen RP, Lolli ML. Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. J Med Chem 2019; 62:4467-4482. [PMID: 30943028 DOI: 10.1021/acs.jmedchem.8b01986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a series of glutamate and aspartate analogues designed using the hydroxy-1,2,3-triazole moiety as a bioisostere for the distal carboxylic acid. Compound 6b showed unprecedented selectivity among ( S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtypes, confirmed also by an unusual binding mode observed for the crystal structures in complex with the AMPA receptor GluA2 agonist-binding domain. Here, a methionine (Met729) was highly disordered compared to previous agonist-bound structures. This observation provides a possible explanation for the pharmacological profile. In the structure with 7a, an unusual organization of water molecules around the bioisostere arises compared to previous structures of ligands with other bioisosteres. Aspartate analogue 8 with the hydroxy-1,2,3-triazole moiety directly attached to glycine was unexpectedly able to activate both the glutamate and glycine agonist-binding sites of the N-methyl-d-aspartic acid receptor. These observations demonstrate novel features that arise when employing a hydroxytriazole moiety as a bioisostere for the distal carboxylic acid in glutamate receptor agonists.
Collapse
Affiliation(s)
- Stefano Sainas
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Piero Temperini
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Jill C Farnsworth
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Stine Møllerud
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Alice Passoni
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , via La Masa 19 , 20156 Milan , Italy
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Donatella Boschi
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Marco L Lolli
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| |
Collapse
|
38
|
Song K, Zhang J, Lu S. Progress in Allosteric Database. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:65-87. [PMID: 31707700 DOI: 10.1007/978-981-13-8719-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An allosteric mechanism refers to the biological regulation process wherein macromolecules propagate the effect of ligand binding at one site to a spatially distant orthosteric locus, thus affecting activity. The theory has remained a trending topic in biology research for over 50 years, since the understanding of allostery is fundamental for gleaning numerous biological processes and developing new drug therapies. In the past two decades, the allosteric paradigm has evolved into more descriptive models, with ever-expanding amounts of experimental data pertaining to newly identified allosteric molecules. The AlloSteric Database (ASD, accessible at http://mdl.shsmu.edu.cn/ASD ), which is a comprehensive knowledge repository, has provided the public with integrated information encompassing allosteric proteins, modulators, sites, pathways, and networks to investigate allostery since 2009. In this chapter, we introduce the history and usage of the ASD and give attention to specific applications that have benefited from the ASD.
Collapse
Affiliation(s)
- Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Baranovic J, Plested AJ. Auxiliary subunits keep AMPA receptors compact during activation and desensitization. eLife 2018; 7:40548. [PMID: 30520730 PMCID: PMC6324883 DOI: 10.7554/elife.40548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
Signal transduction at vertebrate excitatory synapses involves the rapid activation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors, glutamate-gated ion channels whose four subunits assemble as a dimer-of-dimers. Technical advances in cryo-electron microscopy brought a slew of full-length structures of AMPA receptors, on their own and in combination with auxiliary subunits. These structures indicate that dimers might undergo substantial lateral motions during gating, opening up the extracellular layer along the central twofold symmetry axis. We used bifunctional methanethiosulfonate cross-linkers to calibrate the conformations found in functional AMPA receptors in the presence and absence of the auxiliary subunit Stargazin. Our data indicate that extracellular layer of AMPA receptors can get trapped in stable, opened-up conformations, especially upon long exposures to glutamate. In contrast, Stargazin limits this conformational flexibility. Thus, under synaptic conditions, where brief glutamate exposures and the presence of auxiliary proteins dominate, extracellular domains of AMPA receptors likely stay compact during gating. The nearly 100 billion neurons in our brain create a complex and intricate network that can relay information in a fraction of a second. Two neurons can communicate with each other by forming a synapse, a specialised structure where the two cells come into close contact. There, the signalling neuron releases chemicals that the receiving cell captures through dedicated receptors embedded in its membrane. For example, the AMPA receptor is a complex assemblage of different subunits that quickly transmits information by opening and closing to let ions move into the receiving cell. These receptors are some of the fastest to react to the released chemicals, allowing information to be encoded swiftly. In fact, it is increasingly clear that epilepsy and deficits in mental processes can be associated with AMPA receptors having a faulty activity. Yet, it is still unknown how exactly these proteins work. In particular, previous studies have shown that an AMPA receptor can go through dramatic changes in its structure, with the different subunits being able to spread apart widely. However, these experiments had to be conducted when the proteins were isolated from membranes and held in a cocktail of activating or deactivating molecules for hours. It is still unclear whether the results hold when AMPA receptors sit at the membrane while assembled with their partner proteins, like they normally do in the brain. Baranovic and Plested went on to investigate this question by using ‘molecular rulers’. These tiny molecules have different lengths, and they act as yardsticks: their sticky ends can attach to specific areas in the protein, helping to measure how these regions move relative to each other when the receptors are on or off. A method called patch clamp electrophysiology was used to determine how much the normal activity of the AMPA receptors was hindered by being bound by the molecular rulers. The results showed that AMPA receptors can undergo large structural changes but these movements require time and are much reduced by partner proteins. In the brain, AMPA receptors in synapses probably lack the freedom and opportunity to move so dramatically when neurons are communicating with each other. Ultimately, knowing how these receptors work and move may help grasp the changes in their activity that cause connections between neurons to become defective.
Collapse
Affiliation(s)
- Jelena Baranovic
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany.,Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,NeuroCure, Charité Universitätsmedizin, Berlin, Germany
| | - Andrew Jr Plested
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany.,Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,NeuroCure, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
40
|
Population Shift Mechanism for Partial Agonism of AMPA Receptor. Biophys J 2018; 116:57-68. [PMID: 30573176 DOI: 10.1016/j.bpj.2018.11.3122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoaxazolepropionic acid (AMPA) ionotropic glutamate receptors mediate fast excitatory neurotransmission in the central nervous system, and their dysfunction is associated with neurological diseases. Glutamate binding to ligand-binding domains (LBDs) of AMPA receptors induces channel opening in the transmembrane domains of the receptors. The T686A mutation reduces glutamate efficacy so that the glutamate behaves as a partial agonist. The crystal structures of wild-type and mutant LBDs are very similar and cannot account for the observed behavior. To elucidate the molecular mechanism inducing partial agonism of the T686A mutant, we computed the free-energy landscapes governing GluA2 LBD closure using replica-exchange umbrella sampling simulations. A semiclosed state, not observed in crystal structures, appears in the mutant during simulation. In this state, the LBD cleft opens slightly because of breaking of interlobe hydrogen bonds, reducing the efficiency of channel opening. The energy difference between the LBD closed and semiclosed states is small, and transitions between the two states would occur by thermal fluctuations. Evidently, glutamate binding to the T686A mutant induces a population shift from a closed to a semiclosed state, explaining the partial agonism in the AMPA receptor.
Collapse
|
41
|
Ramos-Vicente D, Ji J, Gratacòs-Batlle E, Gou G, Reig-Viader R, Luís J, Burguera D, Navas-Perez E, García-Fernández J, Fuentes-Prior P, Escriva H, Roher N, Soto D, Bayés À. Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events. eLife 2018; 7:e35774. [PMID: 30465522 PMCID: PMC6307864 DOI: 10.7554/elife.35774] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Jie Ji
- Institute of Biotechnology and Biomedicine, Department of Cell Biology, Animal Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, August Pi i Sunyer Biomedical Research Institute, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
| | - Gemma Gou
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Javier Luís
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Demian Burguera
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Enrique Navas-Perez
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Jordi García-Fernández
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Pablo Fuentes-Prior
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes MarinsBanyuls-sur-MerFrance
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine, Department of Cell Biology, Animal Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, August Pi i Sunyer Biomedical Research Institute, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
| | - Àlex Bayés
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
42
|
Larsen AH, Dorosz J, Thorsen TS, Johansen NT, Darwish T, Midtgaard SR, Arleth L, Kastrup JS. Small-angle neutron scattering studies on the AMPA receptor GluA2 in the resting, AMPA-bound and GYKI-53655-bound states. IUCRJ 2018; 5:780-793. [PMID: 30443361 PMCID: PMC6211538 DOI: 10.1107/s2052252518012186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
The AMPA receptor GluA2 belongs to the family of ionotropic glutamate receptors, which are responsible for most of the fast excitatory neuronal signalling in the central nervous system. These receptors are important for memory and learning, but have also been associated with brain diseases such as Alzheimer's disease and epilepsy. Today, one drug is on the market for the treatment of epilepsy targeting AMPA receptors, i.e. a negative allosteric modulator of these receptors. Recently, crystal structures and cryo-electron microscopy (cryo-EM) structures of full-length GluA2 in the resting (apo), activated and desensitized states have been reported. Here, solution structures of full-length GluA2 are reported using small-angle neutron scattering (SANS) with a novel, fully matched-out detergent. The GluA2 solution structure was investigated in the resting state as well as in the presence of AMPA and of the negative allosteric modulator GYKI-53655. In solution and at neutral pH, the SANS data clearly indicate that GluA2 is in a compact form in the resting state. The solution structure resembles the crystal structure of GluA2 in the resting state, with an estimated maximum distance (D max) of 179 ± 11 Å and a radius of gyration (R g) of 61.9 ± 0.4 Å. An ab initio model of GluA2 in solution generated using DAMMIF clearly showed the individual domains, i.e. the extracellular N-terminal domains and ligand-binding domains as well as the transmembrane domain. Solution structures revealed that GluA2 remained in a compact form in the presence of AMPA or GYKI-53655. At acidic pH only, GluA2 in the presence of AMPA adopted a more open conformation of the extracellular part (estimated D max of 189 ± 5 Å and R g of 65.2 ± 0.5 Å), resembling the most open, desensitized class 3 cryo-EM structure of GluA2 in the presence of quisqualate. In conclusion, this methodological study may serve as an example for future SANS studies on membrane proteins.
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Jerzy Dorosz
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nicolai Tidemand Johansen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Australia
| | - Søren Roi Midtgaard
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Jette Sandholm Kastrup
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
43
|
MacLean DM, Durham RJ, Jayaraman V. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. Trends Neurosci 2018; 42:128-139. [PMID: 30385052 DOI: 10.1016/j.tins.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The ionotropic glutamate receptors mediate excitatory neurotransmission in the mammalian central nervous system. These receptors provide a range of temporally diverse signals which stem from subunit composition and also from the inherent ability of each member to occupy multiple functional states, the distribution of which can be altered by small molecule modulators and binding partners. Hence it becomes essential to characterize the conformational landscape of the receptors under this variety of different conditions. This has recently become possible due to single molecule fluorescence resonance energy transfer measurements, along with the rich foundation of existing structures allowing for direct correlations between conformational and functional diversity.
Collapse
Affiliation(s)
- David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Twomey EC, Yelshanskaya MV, Vassilevski AA, Sobolevsky AI. Mechanisms of Channel Block in Calcium-Permeable AMPA Receptors. Neuron 2018; 99:956-968.e4. [PMID: 30122377 PMCID: PMC6181147 DOI: 10.1016/j.neuron.2018.07.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
AMPA receptors mediate fast excitatory neurotransmission and are critical for CNS development and function. Calcium-permeable subsets of AMPA receptors are strongly implicated in acute and chronic neurological disorders. However, despite the clinical importance, the therapeutic landscape for specifically targeting them, and not the calcium-impermeable AMPA receptors, remains largely undeveloped. To address this problem, we used cryo-electron microscopy and electrophysiology to investigate the mechanisms by which small-molecule blockers selectively inhibit ion channel conductance in calcium-permeable AMPA receptors. We determined the structures of calcium-permeable GluA2 AMPA receptor complexes with the auxiliary subunit stargazin bound to channel blockers, including the orb weaver spider toxin AgTx-636, the spider toxin analog NASPM, and the adamantane derivative IEM-1460. Our structures provide insights into the architecture of the blocker binding site and the mechanism of trapping, which are critical for development of small molecules that specifically target calcium-permeable AMPA receptors.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast 141700, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Krieger J, Lee JY, Greger IH, Bahar I. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Neurosci Lett 2018; 700:22-29. [PMID: 29481851 PMCID: PMC6107436 DOI: 10.1016/j.neulet.2018.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are key players in synaptic transmission and plasticity. They are composed of four subunits, each containing four functional domains, the quaternary packing and collective structural dynamics of which are important determinants of their molecular mechanism of function. With the explosion of structural studies on different members of the family, including the structures of activated open channels, the mechanisms of action of these central signaling machines are now being elucidated. We review the current state of computational studies on two major members of the family, AMPA and NMDA receptors, with focus on molecular simulations and elastic network model analyses that have provided insights into the coupled movements of extracellular and transmembrane domains. We describe the newly emerging mechanisms of activation, allosteric signaling and desensitization, as mainly a selective triggering of pre-existing soft motions, as deduced from computational models and analyses that leverage structural data on intact AMPA and NMDA receptors in different states.
Collapse
Affiliation(s)
- James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
46
|
Kunugi A, Tajima Y, Kuno H, Sogabe S, Kimura H. HBT1, a Novel AMPA Receptor Potentiator with Lower Agonistic Effect, Avoided Bell-Shaped Response in In Vitro BDNF Production. J Pharmacol Exp Ther 2018; 364:377-389. [PMID: 29298820 DOI: 10.1124/jpet.117.245050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/28/2017] [Indexed: 11/22/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (AMPA-R) potentiators with brain-derived neurotrophic factor (BDNF)-induction potential could be promising as therapeutic drugs for neuropsychiatric and neurologic disorders. However, AMPA-R potentiators such as LY451646 have risks of narrow bell-shaped responses in pharmacological effects, including in vivo BDNF induction. Interestingly, LY451646 and LY451395, other AMPA-R potentiators, showed agonistic effects and exhibited bell-shaped responses in the BDNF production in primary neurons. We hypothesized that the agonistic property is related to the bell-shaped response and endeavored to discover novel AMPA-R potentiators with lower agonistic effects. LY451395 showed an agonistic effect in primary neurons, but not in a cell line expressing AMPA-Rs, in Ca2+ influx assays; thus, we used a Ca2+ influx assay in primary neurons and, from a chemical library, discovered two AMPA-R potentiators with lower agonistic effects: 2-(((5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetyl)amino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (HBT1) and (3S)-1-(4-tert-butylphenyl)-N-((1R)-2-(dimethylamino)-1-phenylethyl)-3-isobutyl-2-oxopyrrolidine-3-carboxamide (OXP1). In a patch-clamp study using primary neurons, HBT1 showed little agonistic effect, whereas both LY451395 and OXP1 showed remarkable agonistic effects. HBT1, but not OXP1, did not show remarkable bell-shaped response in BDNF production in primary neurons. HBT1 bound to the ligand-binding domain (LBD) of AMPA-R in a glutamate-dependent manner. The mode of HBT1 and LY451395 binding to a pocket in the LBD of AMPA-R differed: HBT1, but not LY451395, formed hydrogen bonds with S518 in the LBD. OXP1 may bind to a cryptic binding pocket on AMPA-R. Lower agonistic profile of HBT1 may associate with its lower risks of bell-shaped responses in BDNF production in primary neurons.
Collapse
Affiliation(s)
- Akiyoshi Kunugi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yasukazu Tajima
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhiko Kuno
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoshi Sogabe
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
47
|
Lee MR, Gardinier KM, Gernert DL, Schober DA, Wright RA, Wang H, Qian Y, Witkin JM, Nisenbaum ES, Kato AS. Structural Determinants of the γ-8 TARP Dependent AMPA Receptor Antagonist. ACS Chem Neurosci 2017; 8:2631-2647. [PMID: 28825787 DOI: 10.1021/acschemneuro.7b00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The forebrain specific AMPA receptor antagonist, LY3130481/CERC-611, which selectively antagonizes the AMPA receptors associated with TARP γ-8, an auxiliary subunit enriched in the forebrain, has potent antiepileptic activities without motor side effects. We designated the compounds with such activities as γ-8 TARP dependent AMPA receptor antagonists (γ-8 TDAAs). In this work, we further investigated the mechanisms of action using a radiolabeled γ-8 TDAA and ternary structural modeling with mutational validations to characterize the LY3130481 binding to γ-8. The radioligand binding to the cells heterologously expressing GluA1 and/or γ-8 revealed that γ-8 TDAAs binds to γ-8 alone without AMPA receptors. Homology modeling of γ-8, based on the crystal structures of a distant TARP homologue, murine claudin 19, in conjunction with knowledge of two γ-8 residues previously identified as critical for the LY3130481 TARP-dependent selectivity provided the basis for a binding mode prediction. This allowed further rational mutational studies for characterization of the structural determinants in TARP γ-8 for LY3130481 activities, both thermodynamically as well as kinetically.
Collapse
Affiliation(s)
- Matthew R. Lee
- Lilly
Biotechnology Center, Eli Lilly and Company, 10300 Campus Point Dr. #200, San Diego, California 92121, United States
| | - Kevin M. Gardinier
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Douglas L. Gernert
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Douglas A. Schober
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Rebecca A. Wright
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - He Wang
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Yuewei Qian
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Jeffrey M. Witkin
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Eric S. Nisenbaum
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| | - Akihiko S. Kato
- Neuroscience
Discovery, Lilly Research Laboratory, 355 E Merril St., Indianapolis, Indiana 46285, United States
| |
Collapse
|
48
|
Shaikh SA, Dolino DM, Lee G, Chatterjee S, MacLean DM, Flatebo C, Landes CF, Jayaraman V. Stargazin Modulation of AMPA Receptors. Cell Rep 2017; 17:328-335. [PMID: 27705782 DOI: 10.1016/j.celrep.2016.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 02/03/2023] Open
Abstract
Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.
Collapse
Affiliation(s)
- Sana A Shaikh
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Drew M Dolino
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Garam Lee
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - David M MacLean
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Charlotte Flatebo
- Department of Chemistry, Rice University, Houston, TX 77251, USA; Applied Physics Graduate Program, Rice University, Houston, TX 77251, USA
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, TX 77251, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251, USA; Applied Physics Graduate Program, Rice University, Houston, TX 77251, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Abstract
![]()
Ionotropic
glutamate receptors (iGluRs) are ligand-gated ion channels
that mediate the majority of excitatory neurotransmission in the central
nervous system. iGluRs open their ion channels in response to binding
of the neurotransmitter glutamate, rapidly depolarize the postsynaptic
neuronal membrane, and initiate signal transduction. Recent studies
using X-ray crystallography and cryo-electron microscopy have determined
full-length iGluR structures that (1) uncover the receptor architecture
in an unliganded, resting state, (2) reveal conformational changes
produced by ligands in order to activate iGluRs, open their ion channels,
and conduct ions, and (3) show how activated, glutamate-bound iGluRs
can adopt a nonconducting desensitized state. These new findings,
combined with the results of previous structural and functional experiments,
kinetic and molecular modeling, mutagenesis, and biochemical analyses,
provide new views on the structural mechanisms of iGluR gating.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Biochemistry and Molecular Biophysics and ‡Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University , 650 West 168th Street, New York, New York 10032, United States
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics and ‡Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University , 650 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
50
|
Hawken NM, Zaika EI, Nakagawa T. Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin. J Physiol 2017; 595:6517-6539. [PMID: 28815591 DOI: 10.1113/jp274897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/04/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex. ABSTRACT During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits.
Collapse
Affiliation(s)
- Natalie M Hawken
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| | - Elena I Zaika
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|