1
|
Alkhatib DZR, Thi Kim Truong T, Fujii S, Hasegawa K, Nagano R, Tajiri Y, Kiyoshima T. Stepwise activation of p63 and the MEK/ERK pathway induces the expression of ARL4C to promote oral squamous cell carcinoma cell proliferation. Pathol Res Pract 2023; 246:154493. [PMID: 37141698 DOI: 10.1016/j.prp.2023.154493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Carcinogenesis is a multistep process wherein cells accumulate multiple genetic alterations and progress to a more malignant phenotype. It has been proposed that sequential accumulation of gene abnormalities in specific genes drives the transition from non-tumorous epithelia through a preneoplastic lesion/benign tumor to cancer. Histologically, oral squamous cell carcinoma (OSCC) progresses in multiple ordered steps that begin with mucosal epithelial cell hyperplasia, which is followed by dysplasia, carcinoma in situ and invasive carcinoma. It is therefore hypothesized that genetic alteration-mediated multistep carcinogenesis would be involved in the development of OSCC; however, the detailed molecular mechanisms are unknown. We clarified the comprehensive gene expression patterns and carried out an enrichment analysis using DNA microarray data from a pathological specimen of OSCC (including a non-tumor region, carcinoma in situ lesion and invasive carcinoma lesion). The expression of numerous genes and signal activation were altered in the development of OSCC. Among these, the p63 expression was increased and the MEK/ERK-MAPK pathway was activated in carcinoma in situ lesion and in invasive carcinoma lesion. Immunohistochemical analyses revealed that p63 was initially upregulated in carcinoma in situ and ERK was sequentially activated in invasive carcinoma lesions in OSCC specimens. ADP-ribosylation factor (ARF)-like 4c (ARL4C), the expression of which is reportedly induced by p63 and/or the MEK/ERK-MAPK pathway in OSCC cells, has been shown to promote tumorigenesis. Immunohistochemically, in OSCC specimens, ARL4C was more frequently detected in tumor lesions, especially in invasive carcinoma lesions, than in carcinoma in situ lesions. Additionally, ARL4C and phosphorylated ERK were frequently merged in invasive carcinoma lesions. Loss-of-function experiments using inhibitors and siRNAs revealed that p63 and MEK/ERK-MAPK cooperatively induce the expression of ARL4C and cell growth in OSCC cells. These results suggest that the stepwise activation of p63 and MEK/ERK-MAPK contributes to OSCC tumor cell growth through regulation of ARL4C expression.
Collapse
Affiliation(s)
- Dania Zuhier Ragheb Alkhatib
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Thinh Thi Kim Truong
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoko Nagano
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Dentistry and Oral Surgery, National Hospital Organization, Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, Fukuoka 811-3195, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
3
|
Green Tea ( Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123909. [PMID: 35745040 PMCID: PMC9231383 DOI: 10.3390/molecules27123909] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/21/2022]
Abstract
Objectives Green tea (Camellia sinensis) is a kind of unfermented tea that retains the natural substance in fresh leaves to a great extent. It is regarded as the second most popular drink in the world besides water. In this paper, the phytochemistry, pharmacology, and toxicology of green tea are reviewed systematically and comprehensively. Key findings Green tea has been demonstrated to be good for human health. Nowadays, multiple pharmacologically active components have been isolated and identified from green tea, including tea polyphenols, alkaloids, amino acids, polysaccharides, and volatile components. Recent studies have demonstrated that green tea shows versatile pharmacological activities, such as antioxidant, anticancer, hypoglycemic, antibacterial, antiviral, and neuroprotective. Studies on the toxic effects of green tea extract and its main ingredients have also raised concerns including hepatotoxicity and DNA damage. Summary Green tea can be used to assist the treatment of diabetes, Alzheimer’s disease, oral cancer, and dermatitis. Consequently, green tea has shown promising practical prospects in health care and disease prevention.
Collapse
|
4
|
Bellamri M, Walmsley SJ, Turesky RJ. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ 2021; 43:29. [PMID: 34271992 PMCID: PMC8284014 DOI: 10.1186/s41021-021-00200-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J Walmsley
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Masutani M, Nakagama H. Takashi Sugimura (1926-2020). DNA Repair (Amst) 2021. [DOI: 10.1016/j.dnarep.2020.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Nishimura S, Nakagama H. Takashi Sugimura: In Memoriam (1926–2020)–A Personal Perspective. Cancer Res 2021. [DOI: 10.1158/0008-5472.can-20-3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Hitoshi Nakagama
- 2National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Nakagama H. Takashi Sugimura 1926‐2020. Cancer Sci 2020. [DOI: 10.1111/cas.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Rim KT. Adverse outcome pathways for chemical toxicity and their applications to workers' health: a literature review. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2020; 12:99-108. [PMID: 32412554 PMCID: PMC7222038 DOI: 10.1007/s13530-020-00053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE AND METHODS Various papers related to the application of adverse outcome pathways (AOPs) for the prevention of occupational disease were reviewed. The Internet was used as the primary tool to search for the necessary research data and information, using such online resources as Google Scholar, ScienceDirect, Scopus, NDSL, and PubMed. The key search terms were "adverse outcome pathway," "toxicology," "risk assessment," "human," "worker," "occupational safety and health," and so on. RESULTS AND CONCLUSION The aim of this paper is to explain the use of AOP for the understanding of chemical toxicity as a conceptual means and to predict the toxic mechanism. The tools of AOP have emerged as a forward-looking alternative to the existing chemical risk assessment paradigm. AOP is being applied to the assessment of acute toxicity and to chronic toxic chemicals in the workplace. Not only can it lead to breakthroughs in occupational and environmental cancer prevention, it is also widely used in chemical risk assessment and has led to breakthroughs in the prevention of occupational disease in the workplace.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
9
|
Jin YJ, Byun S, Han S, Chamberlin J, Kim D, Kim MJ, Lee Y. Differential alternative splicing regulation among hepatocellular carcinoma with different risk factors. BMC Med Genomics 2019; 12:175. [PMID: 31856847 PMCID: PMC6923823 DOI: 10.1186/s12920-019-0635-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol consumption are predominant causes of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying how differently these causes are implicated in HCC development are not fully understood. Therefore, we investigated differential alternative splicing (AS) regulation among HCC patients with these risk factors. Methods We conducted a genome-wide survey of AS events associated with HCCs among HBV (n = 95), HCV (n = 47), or alcohol (n = 76) using RNA-sequencing data obtained from The Cancer Genome Atlas. Results In three group comparisons of HBV vs. HCV, HBV vs. alcohol, and HCV vs. alcohol for RNA seq (ΔPSI> 0.05, FDR < 0.05), 133, 93, and 29 differential AS events (143 genes) were identified, respectively. Of 143 AS genes, eight and one gene were alternatively spliced specific to HBV and HCV, respectively. Through functional analysis over the canonical pathways and gene ontologies, we identified significantly enriched pathways in 143 AS genes including immune system, mRNA splicing-major pathway, and nonsense-mediated decay, which may be important to carcinogenesis in HCC risk factors. Among eight genes with HBV-specific splicing events, HLA-A, HLA-C, and IP6K2 exhibited more differential expression of AS events (ΔPSI> 0.1). Intron retention of HLA-A was observed more frequently in HBV-associated HCC than HCV- or alcohol-associated HCC, and intron retention of HLA-C showed vice versa. Exon 3 (based on ENST00000432678) of IP6K2 was less skipped in HBV-associated in HCC compared to HCV- or alcohol-associated HCC. Conclusion AS may play an important role in regulating transcription differences implicated in HBV-, HCV-, and alcohol-related HCC development.
Collapse
Affiliation(s)
- Young-Joo Jin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Chamberlin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dongwook Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Min Jung Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Pharmacy program, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Ohmori K, Umeda M, Tanaka N, Takagi H, Yoshimura I, Sasaki K, Asasda S, Sakai A, Araki H, Asakura M, Baba H, Fushiwaki Y, Hamada S, Kitou N, Nakamura T, Nakamura Y, Oishi H, Sasaki S, Shimada S, Tsuchiya T, Uno Y, Washizuka M, Yajima S, Yamamoto Y, Yamamura E, Yatsushiro T. An Inter-laboratory Collaborative Study by the Non-Genotoxic Carcinogen Study Group in Japan, on a Cell Transformation Assay for Tumour Promoters Using Bhas 42 cells. Altern Lab Anim 2019; 33:619-39. [PMID: 16372836 DOI: 10.1177/026119290503300616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Bhas promotion assay is a cell culture transformation assay designed as a sensitive and economical method for detecting the tumour-promoting activities of chemicals. In order to validate the transferability and applicability of this assay, an inter-laboratory collaborative study was conducted with the participation of 14 laboratories. After confirmation that these laboratories could obtain positive results with two tumour promoters, 12- O-tetradecanoylphorbol-13-acetate (TPA) and lithocholic acid (LCA), 12 coded chemicals were assayed. Each chemical was tested in four laboratories. For eight chemicals, all four laboratories obtained consistent results, and for two of the other four chemicals, only one of the four laboratories showed inconsistent results. Thus, the rate of consistency was high. During the study, several issues were raised, each of which were analysed step-by-step, leading to revision of the protocol of the original assay. Among these issues were the importance of careful maintenance of mother cultures and the adoption of test concentrations for toxic chemicals. In addition, it is suggested that three different types of chemicals show positive promoting activity in the assay. Those designated as T-type induced extreme growth enhancement, and included TPA, mezerein, PDD and insulin. LCA and okadaic acid belonged to the L-type category, in which transformed foci were induced at concentrations showing growth-inhibition. In contrast, M-type chemicals, progesterone, catechol and sodium saccharin, induced foci at concentrations with little or slight growth inhibition. The fact that different types of chemicals similarly induce transformed foci in the Bhas promotion assay may provide clues for elucidating mechanisms of tumour promotion.
Collapse
Affiliation(s)
- Kiyomi Ohmori
- Chemistry Division, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abtouche S, Issad-Elkebich M, Brahimi M, Assfeld X. Complexation of Ca2+ cation by the lateral chain of Paclitaxel (N-Benzoyl-ß-phenylisoserine): A theoretical study. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Kang DS, Yang JH, Kim HS, Koo BK, Lee CM, Ahn YS, Jung JH, Seo YR. Application of the Adverse Outcome Pathway Framework to Risk Assessment for Predicting Carcinogenicity of Chemicals. J Cancer Prev 2018; 23:126-133. [PMID: 30370257 PMCID: PMC6197844 DOI: 10.15430/jcp.2018.23.3.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
As industry develops in modern society, many chemicals are being used. The safety of chemicals is an important issue because humans are constantly exposed to chemicals throughout their daily life. Through a risk assessment, the hazardous human effects of chemicals can be identified. Recently, the adverse outcome pathway (AOP) framework has been used to predict the adverse effects of chemicals. As a conceptual framework for organizing existing biological knowledge, the AOP consists of a molecular initiating event, key events, and an adverse outcome. These independent elements represent biological responses and are connected by key event relationships. This AOP framework provides intuitive hazard identification that can be helpful for carcinogenic risk assessment of chemicals. In this review, we introduce the application of the AOP framework to risk assessment for predicting carcinogenicity of chemicals and illustrate the utility of this approach for cancer prevention.
Collapse
Affiliation(s)
- Doo Seok Kang
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Jun Hyuek Yang
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Hyun Soo Kim
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Bon Kon Koo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Cheol Min Lee
- Department of Chemical and Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine and Institute of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong-Hyeon Jung
- Faculty of Health Science, Daegu Haany University, Gyeongsan, Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
13
|
Huang S, Tang Y, Zhu Z, Yang J, Zhang Z, Wang L, Sun C, Zhang Y, Zhao Q, Chen M, Wu L, Wang D, Ju W, Guo Z, He X. Outcomes of Organ Transplantation from Donors with a Cancer History. Med Sci Monit 2018; 24:997-1007. [PMID: 29455213 PMCID: PMC5825978 DOI: 10.12659/msm.909059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The inherent challenges of selecting an acceptable donor for the increasing number and acuity of recipients has forced programs to take increased risks, including accepting donors with a cancer history (DWCH). Outcomes of organ transplantation using organs from DWCH must be clarified. We assessed transplant outcomes of recipients of organs from DWCH. Material/Methods Retrospective analysis of the Scientific Registry of Transplant Recipients data from January 1, 2000 to December 31, 2014 identified 8385 cases of transplants from DWCH. A Cox-proportional hazard regression model and log-rank test were used to compare patient survival and hazard levels of various cancer types. Results DWCH was an independent risk factor of 5-year patient survival (HR=1.089, 95% CI: 1.009–1.176, P=0.03) and graft survival (HR=1.129, 95% CI: 1.056–1.208, P<0.01) in liver and heart transplantation (patient survival: HR=1.112, 95% CI: 1.057–1.170, P<0.01; graft survival: HR=1.244, 95% CI: 1.052–1.472, P=0.01). There was no remarkable difference between the 2 groups in kidney and lung transplantation. Donors with genitourinary and gastrointestinal cancers were associated with inferior outcomes in kidney transplantation. Transplantation from donors with central nervous system cancer resulted in poorer survival in liver transplant recipients. Recipients of organs from donors with hematologic malignancy and otorhinolaryngologic cancer had poorer survival following heart transplantation. Conclusions Under the current donor selection criteria, recipients of organs from DWCH had inferior outcomes in liver and heart transplantation, whereas organs from DWCH were safely applied in kidney and lung transplantation. Specific cancer types should be cautiously evaluated before performing certain types of organ transplantation.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Jie Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
14
|
Murugan S, Dave Y, Rakhit A, Sarkar DK. Hypothalamic beta-endorphin neurons suppress preneoplastic and neoplastic lesions development in 1,2-dimethylhydrazine induced rat colon cancer model. J Cancer 2017; 8:3105-3113. [PMID: 29158781 PMCID: PMC5665025 DOI: 10.7150/jca.18860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/29/2017] [Indexed: 01/20/2023] Open
Abstract
In recent years, experimental studies demonstrated negative impacts of impaired body stress response on colonic pathologies. In this study, we tested if reducing body stress response by the use of β-endorphin (BEP) neuronal transplants in the hypothalamus suppresses pre-neoplastic and neoplastic lesions. Colon cancer was induced by injecting 1,2-dimethylhydrazine (DMH) for sixteen weeks in Sprague Dawley rats with BEP neuron transplants or control neuron transplants, and their colonic histopathologies, colon tissue levels of pro-inflammatory cytokines and epithelial-mesenchymal transition (EMT) proteins and splenic levels of cytotoxic proteins were measured. Our results revealed that DMH induced tumors in colon at 100% incidence in control rats but failed to induce colonic tumors in 70% of animal with BEP neuronal transplants. The mean volume of tumor at the colon was smaller in BEP neurons transplanted rats than those in controls. Histopathologies of colon tissues revealed that BEP neurons transplanted animals had lesser tissue lesions such as aberrant crypt foci (ACF) and adenocarcinoma development in the colon than those in control groups. Immunohistochemical and western blot analyses identified reduced expression of Ki-67, TNF-α and NF-κB nuclear translocation in colonic tissues of BEP neurons transplanted rats than those in controls. BEP neurons transplanted rats also showed reduced expressions of transcription factors linked to EMT like Snail, Twist, and N-cadherin, but increased the levels of an epithelial cell marker E-cadherin in colon tissue. Furthermore, splenic NK cells cytolytic proteins such as perforin, granzyme B and IFN-γ levels in BEP neurons transplanted rats were higher than those in control rats. These data suggest that BEP neuron transplants suppress the growth and progression of colonic tumors possibly by decreasing inflammatory mileu and EMT via activation of innate immune responses.
Collapse
Affiliation(s)
- Sengottuvelan Murugan
- Current address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yatee Dave
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Ankush Rakhit
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Dipak K Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
15
|
Chu YJ, Yang HI, Wu HC, Liu J, Wang LY, Lu SN, Lee MH, Jen CL, You SL, Santella RM, Chen CJ. Aflatoxin B 1 exposure increases the risk of cirrhosis and hepatocellular carcinoma in chronic hepatitis B virus carriers. Int J Cancer 2017; 141:711-720. [PMID: 28509392 PMCID: PMC5513813 DOI: 10.1002/ijc.30782] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
The relation between aflatoxin B1 (AFB1 ) and cirrhosis in chronic carriers of hepatitis B virus (HBV) remains inconclusive. This case-control study nested in a large community-based cohort aimed to assess the effect of AFB1 exposure on cirrhosis and HCC in chronic HBV carriers. Serum AFB1 -albumin adduct levels at study entry were measured in 232 cirrhosis cases, 262 HCC cases and 577 controls. Multivariate-adjusted odds ratios (aORs) and 95% confidence intervals (95% CIs) were estimated using logistic regression. Among all chronic HBV carriers, the time intervals between study entry and diagnosis of HCC, cirrhosis, cirrhotic HCC, and non-cirrhotic HCC were all significantly (p < 0.0001) shorter in participants with high serum levels of AFB1 -albumin adducts than those with low/undetectable levels. There were significant dose-response relations with serum AFB1 -albumin adduct level at study entry for cirrhosis (p-trend = 0.0001) and cirrhotic HCC (p-trend < 0.0001) newly diagnosed within 9 years after entry as well as non-cirrhotic HCC (p-trend = 0.021) newly diagnosed within 4 years after entry. The aORs (95% CIs) for high versus undetectable serum AFB1 -albumin adduct levels were 2.45 (1.51-3.98) for cirrhosis (p = 0.0003), 5.47 (2.20-13.63) for cirrhotic HCC (p = 0.0003), and 5.39 (1.11-26.18) for non-cirrhotic (p = 0.0368) HCC, respectively. There remained a significant dose-response relation between serum AFB1 -albumin adduct level and HCC risk (p-trend = 0.0291) in cirrhosis patients, showing an aOR (95% CI) of 3.04 (1.11-8.30) for high versus undetectable serum levels (p = 0.0299). It is concluded that AFB1 exposure may increase the risk of cirrhosis and HCC in a dose-response manner among chronic HBV carriers.
Collapse
Affiliation(s)
- Yu-Ju Chu
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Jessica Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Sheng-Nan Lu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chin-Lan Jen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - San-Lin You
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Presence of heterocyclic amine carcinogens in home-cooked and fast-food camel meat burgers commonly consumed in Saudi Arabia. Sci Rep 2017; 7:1707. [PMID: 28490740 PMCID: PMC5431862 DOI: 10.1038/s41598-017-01968-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 11/20/2022] Open
Abstract
Heterocyclic amines (HCAs) are formed by cooking protein-rich foods, for instance, meat and fish, and are listed as possible human carcinogens. In the present study, the presence of five potential HCAs (IQ, MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP) in cooked camel meat burgers was analyzed for the first time. The analysis was performed in home-cooked and fast-food burger samples containing food additives. The applied cooking technique for the home-cooked samples was pan frying for a controlled cooking time and temperature. In the control cooked meat samples (samples that contained no food additives), the concentrations of MeIQx, 4,8-DiMeIQx, and PhIP ranged from 2.47 ng/g to 4.89 ng/g, whereas IQ and MeIQ were found to be below the limit of quantification. The concentrations contents of MeIQx, 4,8-DiMeIQx, and PhIP in the home-cooked and fast-food samples ranged from 1.52 ng/g to 2.13 ng/g and 1.85 ng/g to 3.46 ng/g, respectively. IQ and MeIQ were not detected in either type of sample. In comparison to the control samples, the home-cooked and fast-food samples produced lower levels of HCAs. Such observations could result from the existence of antioxidants in incorporated food additives, which induce pro-oxidative effects with the successive formation and/or scavenging of free radicals.
Collapse
|
17
|
Kanemoto K, Fukuta K, Kawai N, Tozawa K, Ochiai M, Okamoto K, Ohnami S, Sakamoto H, Yoshida T, Kanai Y, Katoh M, Yasui T, Kohri K, Kakizoe T, Nakagama H. Genomic Landscape of Experimental Bladder Cancer in Rodents and Its Application to Human Bladder Cancer: Gene Amplification and Potential Overexpression of Cyp2a5/CYP2A6 Are Associated with the Invasive Phenotype. PLoS One 2016; 11:e0167374. [PMID: 27902773 PMCID: PMC5130269 DOI: 10.1371/journal.pone.0167374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/30/2016] [Indexed: 11/23/2022] Open
Abstract
Non-muscle invasive (superficial) bladder cancer is a low-grade malignancy with good prognosis, while muscle invasive (invasive) bladder cancer is a high-grade malignancy with poor prognosis. N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) induces superficial bladder cancers with papillary morphology in rats and invasive bladder cancers with infiltrating phenotype in mice. In this study, we analyzed genomic landscapes of rodent BBN-induced bladder cancers using array-based comparative genomic hybridization (array CGH). While no significant copy number alterations were detected in superficial bladder tumors in rats, copy number gains in chromosomal regions 2D-E1, 7qA3, 9F2, and 11C-D were detected in invasive bladder tumors in mice. Amplification of representative genes located on 2D-E1 and 7qA3 chromosomal regions was confirmed by quantitative PCR. Cyp2a22 and Cyp2a5 genes but not Cyp2g1, Cyp2a12, and Rab4b genes on mouse chromosome 7qA3 were amplified in invasive bladder cancers. Although the human ortholog gene of Cyp2a22 has not been confirmed, the mouse Cyp2a5 gene is the ortholog of the human CYP2A6 gene located in chromosomal region 19q13.2, and CYP2A6 was identified by database search as one of the closest human homolog to mouse Cyp2a22. Considering a possibility that this region may be related to mouse 7qA3, we analyzed CYP2A6 copy number and expression in human bladder cancer using cell lines and resected tumor specimens. Although only one of eight cell lines showed more than one copy increase of the CYP2A6 gene, CYP2A6 amplification was detected in six out of 18 primary bladder tumors where it was associated with the invasive phenotype. Immunohistochemical analyses of 118 primary bladder tumors revealed that CYP2A6 protein expression was also higher in invasive tumors, especially in those of the scattered type. Together, these findings indicate that the amplification and overexpression of the CYP2A6 gene are characteristic of human bladder cancers with increased malignancy and that CYP2A6 can be a candidate prognostic biomarker in this type of cancer.
Collapse
Affiliation(s)
- Kazuhiro Kanemoto
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Fukuta
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyasu Kawai
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keiichi Tozawa
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masako Ochiai
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan
| | - Sumiko Ohnami
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Yasui
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenjiro Kohri
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tadao Kakizoe
- National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
18
|
Urt-Filho A, Oliveira RJ, Hermeto LC, Pesarini JR, David ND, Cantero WDB, Falcão G, Marks G, Antoniolli-Silva ACMB. Mesenchymal stem cell therapy promotes the improvement and recovery of renal function in a preclinical model. Genet Mol Biol 2016; 39:290-9. [PMID: 27275667 PMCID: PMC4910560 DOI: 10.1590/1678-4685-gmb-2015-0178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Acute renal failure (ARF) is an extremely important public health issue in need of
novel therapies. The present study aimed to evaluate the capacity of mesenchymal stem
cell (MSC) therapy to promote the improvement and recovery of renal function in a
preclinical model. Wistar rats were used as the experimental model, and our results
show that cisplatin (5mg/kg) can efficiently induce ARF, as measured by changes in
biochemical (urea and creatinine) and histological parameters. MSC therapy performed
24h after the administration of chemotherapy resulted in normalized plasma urea and
creatinine levels 30 and 45d after the onset of kidney disease. Furthermore, MSC
therapy significantly reduced histological changes (intratubular cast formation in
protein overload nephropathy and tubular hydropic degeneration) in this ARF model.
Thus, considering that current therapies for ARF are merely palliative and that MSC
therapy can promote the improvement and recovery of renal function in this model
system, we suggest that innovative/alternative therapies involving MSCs should be
considered for clinical studies in humans to treat ARF.
Collapse
Affiliation(s)
- Antônio Urt-Filho
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Hospital Universitário "Maria Aparecida Pedrossian", Empresa Brasileira de Serviços Hospitalares, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Rodrigo Juliano Oliveira
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Hospital Universitário "Maria Aparecida Pedrossian", Empresa Brasileira de Serviços Hospitalares, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.,Programa de Mestrado em Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Larissa Correa Hermeto
- Programa de Pós-Graduação em Clínica Veterinária, Faculdade de Ciências Agrária e Veterinária, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - João Renato Pesarini
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Hospital Universitário "Maria Aparecida Pedrossian", Empresa Brasileira de Serviços Hospitalares, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Natan de David
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Hospital Universitário "Maria Aparecida Pedrossian", Empresa Brasileira de Serviços Hospitalares, Campo Grande, MS, Brazil.,Programa de Mestrado em Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Wilson de Barros Cantero
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Hospital Universitário "Maria Aparecida Pedrossian", Empresa Brasileira de Serviços Hospitalares, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Gustavo Falcão
- Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Guido Marks
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Andréia Conceição Milan Brochado Antoniolli-Silva
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Hospital Universitário "Maria Aparecida Pedrossian", Empresa Brasileira de Serviços Hospitalares, Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
19
|
Khan MR, Naushad M, Alothman ZA, Algamdi MS, Alsohaimi IH, Ghfar AA. Effect of Natural Food Condiments on Carcinogenic/Mutagenic Heterocyclic Amines Formation in Thermally Processed Camel Meat. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Rizwan Khan
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mu Naushad
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Zeid Abdullah Alothman
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammed Saad Algamdi
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Ayman Abdul Ghfar
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Abstract
Oral squamous cell carcinoma (OSCC) is a multistep process which is modulated by several endogenous and environmental factors. Epigenetic changes have been found to be equally responsible for OSCC as genetic changes. A plethora of genes showing hypermethylation have been discovered in OSCC. Since these changes are reversible, a lot of emphasis is on using the natural compounds for their ability to cause demethylation which could lead to reactivation of the inactivated tumor suppressor genes. This review encompasses the promoter hypermethylation of tumor suppressor genes in OSCC and its possible reversal using natural compounds. In addition, new compounds which could be screened for their demethylating ability have also been proposed.
Collapse
|
21
|
Khan MR. Influence of food condiments on the formation of carcinogenic heterocyclic amines in cooked chicken and determination by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:307-14. [PMID: 25589062 DOI: 10.1080/19440049.2015.1008057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heterocyclic amines (HCAs) are known to be suspected human carcinogens produced by high-temperature cooking of protein-rich foods such as meat and fish. In the present study, the influence of numerous food condiments on the formation of HCAs in cooked chicken was investigated. Chicken samples were subjected to pan-frying under controlled temperature. The levels of HCAs DMIP, MeIQx, 4,8-DiMeIQx, PhIP, harman and norharman were found to be between 0.93 and 27.52 ng g(-1), whereas IQ, MeIQ, AαC, MeAαC, Trp-P-1 and Trp-P-2 were found either below the limit of quantification or not detected in the control sample. Nevertheless, for samples cooked using food condiments, the amounts of HCAs (DMIP, MeIQx, 4,8-DiMeIQx and PhIP) were between 0.14 and 19.57 ng g(-1); harman and norharman were detected at higher concentrations up to 17.77 ng g(-1) while IQ and MeIQ were at levels below the limit of quantification; and AαC, MeAαC, Trp-P-1 and Trp-P-2 were not detected in any of the samples. The outcomes revealed that the formation of HCAs (except harman and norharman) diminished after the addition of food condiments. Edible oil contributed to the highest levels of HCA formation, followed by garlic, paprika, pepper and tomato.
Collapse
Affiliation(s)
- Mohammad Rizwan Khan
- a Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
22
|
Yamakage K, Sui H, Ohta R, Toyoizumi T, Kawakami K, Matsumoto H, Takahashi T, Sasaki K, Ikezumi M, Negishi S, Izumi K, Todoriki S, Takashi K, Furuta M. Genotoxic potential and in vitro tumour-promoting potential of 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone, two radiolytic products of fatty acids. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:95-104. [PMID: 25344170 DOI: 10.1016/j.mrgentox.2014.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/16/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
The DNA-damaging and tumour-promoting effects of two 2-alkylcyclobutanones (2-ACBs), which are found in irradiated fat-containing foods, were investigated by use of the comet assay and in an azoxymethane (AOM)-induced colon-carcinogenesis study in rats, respectively. We conducted genotoxicity tests of 2-dodecylcyclobutanone (2-dDCB) and 2-tetradecylcyclobutanone (2-tDCB) according to the test guidelines for chemicals or drugs. In addition, a cell-transformation assay with Bhas 42 cells was performed to investigate their promoting potential in vitro. The Salmonella typhimurium mutagenicity assay (Ames test), conducted with five tester strains, revealed that neither 2-dDCB nor 2-tDCB possessed mutagenic activity. Moreover, both in the in vitro chromosomal aberration test on CHL/IU cells and the in vivo bone-marrow micronucleus test where mice were given 2-dDCB and 2-tDCB (orally, up to 2000 mg/kg bw/day), we did not detect any clastogenic effects. Furthermore, DNA strand-breaks were not detected in the in vitro comet assay with CHL/IU cells, and DNA adducts derived from 2-dDCB and 2-tDCB were not detected in the colon tissues of the mice used for the micronucleus tests, in rats from a repeated dose 90-day oral toxicity test (0.03% 2-tDCB in the diet), or in rats from the AOM-induced carcinogenesis study (0.025% 2-tDCB in the diet). An in vitro tumour-promotion assay with Bhas 42 cells revealed that the number of transformed foci increased significantly following treatment of cells in the stationary phase with 2-dDCB or 2-tDCB for 10 days. Our results indicate that neither 2-dDCB nor 2-tDCB were genotoxic chemicals. However, they exhibited promoting activity, at least in vitro, when Bhas 42 cells were continuously exposed to these chemicals at toxic doses.
Collapse
Affiliation(s)
- Kohji Yamakage
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan.
| | - Hajime Sui
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Tomoyasu Toyoizumi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Kumiko Kawakami
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Hirotaka Matsumoto
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Toshitaka Takahashi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Kiyoshi Sasaki
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Mayu Ikezumi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Saki Negishi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Setsuko Todoriki
- Food Safety Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Kondo Takashi
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Masakazu Furuta
- Laboratory of Quantum-Beam Chemistry and Biology, Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
23
|
Nohmi T. Past, Present, and Future Challenges of the International Association of Environmental Mutagenesis and Genomics Societies (IAEMGS). Genes Environ 2014. [DOI: 10.3123/jemsge.2014.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Phang CW, Malek SNA, Ibrahim H. Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:243. [PMID: 24083445 PMCID: PMC3851209 DOI: 10.1186/1472-6882-13-243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
Background Alpinia pahangensis, a wild ginger distributed in the lowlands of Pahang, Malaysia, is used by the locals to treat flatulence. In this study, the antioxidant and cytotoxic activities of the crude aqueous methanol and fractionated extracts of Alpinia pahangensis against five different cancer and one normal cell lines were investigated. The total phenolic content of each extract and its fractions were also quantified. This is the first report on the antioxidant and cytotoxic activities of Alpinia pahangensis extract. Methods In the current study, the crude methanol and fractionated extract of the rhizomes of Alpinia pahangensis were investigated for their antioxidant activity using four different assays namely, the DPPH scavenging activity, superoxide anion scavenging, β-carotene bleaching and reducing power assays whilst their phenolic contents were measured by the Folin-Ciocalteu’s method. In vitro neutral red cytotoxicity assay was employed to evaluate the cytotoxic activity against five different cancer cell lines, colon cancer (HCT 116 and HT-29), cervical cancer (Ca Ski), breast cancer (MCF7) and lung cancer (A549) cell lines, and one normal cell line (MRC-5). The extract that showed high cytotoxic activity was further investigated for its chemical constituents by GC-MS (gas chromatography–mass spectrometry) analysis. Results The ethyl acetate fraction showed the strongest DPPH radical scavenging (0.35 ± 0.094 mg/ml) and SOD activities (51.77 ± 4.9%) whilst the methanol extract showed the highest reducing power and also the strongest antioxidant activity in the β-carotene bleaching assays in comparison to other fractions. The highest phenolic content was found in the ethyl acetate fraction, followed by the crude methanol extract, hexane and water fractions. The results showed a positive correlation between total phenolic content with DPPH radical scavenging capacities and SOD activities. The hexane fraction showed potent cytotoxic effect against KB, Ca Ski and HCT 116 cell lines with IC50 of 5.8 ± 0.1 and 9.1 ± 2.0 ug/ml, respectively. The major components of hexane fraction analysed by GC-MS analysis were mostly methyl esters. Conclusions The current study suggests that the methanol extract and ethyl acetate fraction of A. pahangensis is a potential source of natural antioxidant for protective as well as prevention of life-threatening diseases. The hexane fraction of A. pahangensis may have the potential to be developed into therapeutic option for treating cancer.
Collapse
|
25
|
Oliveira RJ, Salles MJS, da Silva AF, Kanno TYN, Lourenço ACDS, Leite VDS, Matiazi HJ, Pesarini JR, Ribeiro LR, Mantovani MS. In vivo evaluation of the antimutagenic and antigenotoxic effects of β-glucan extracted from Saccharomyces cerevisiae in acute treatment with multiple doses. Genet Mol Biol 2013; 36:413-24. [PMID: 24130450 PMCID: PMC3795161 DOI: 10.1590/s1415-47572013005000028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/27/2013] [Indexed: 01/29/2023] Open
Abstract
Ample evidence suggests that cancer is triggered by mutagenic damage and diets or supplements capable of reducing such incidences can be related to the prevention of neoplasy development or to an improvement in life quality of patients who undergo chemotherapy. This research aimed to evaluate the antimutagenic and antigenotoxic activity of β-glucan. We set up 8 experimental groups: control (Group 1), cyclophosphamide (Group 2), Groups 3–5 to assess the effect of β-glucan administration, and Groups 6–8 to evaluate the association between cyclophosphamide and β-glucan. The intraperitonial concentrations of β-glucan used were 100, 150 and 200 mg/kg. Micronucleus and comet assays showed that within the first week of treatment β-glucan presented a damage reduction rate between 100–62.04% and 94.34–59.52% for mutagenic and genotoxic damages, respectively. This activity decreased as the treatment was extended. During the sixth week of treatment antimutagenicity rates were reduced to 59.51–39.83% and antigenotoxicity was not effective. This leads to the conclusion that the efficacy of β-glucan in preventing DNA damage is limited when treatment is extended, and that its use as a chemotherapeutic adjuvant need to be better clarified.
Collapse
Affiliation(s)
- Rodrigo Juliano Oliveira
- Centro de Estudos em Célula Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil . ; Programa de Pós-graduação em Saúde em Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil . ; Programa de Mestrado em Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Masutani M, Fujimori H. Poly(ADP-ribosyl)ation in carcinogenesis. Mol Aspects Med 2013; 34:1202-16. [PMID: 23714734 DOI: 10.1016/j.mam.2013.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022]
Abstract
Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Japan.
| | | |
Collapse
|
27
|
Feng XS, Wang YF, Hao SG, Ru Y, Gao SG, Wang LD. Expression of Das-1, Ki67 and sulfuric proteins in gastric cardia adenocarcinoma and intestinal metaplasia lesions. Exp Ther Med 2013; 5:1555-1558. [PMID: 23837030 PMCID: PMC3702704 DOI: 10.3892/etm.2013.1038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to characterize histo-chemical patterns and Das-1 and Ki67 protein expression in gastric cardia adenocarcinoma (GCA) and intestinal metaplasia (IM) lesions adjacent to GCA. Histochemical techniques, including Alcian blue/periodic acid-Schiff (AB/PAS), high iron diamine/Alcian blue (HID/AB) and avidin-biotin-peroxidase complex (ABC) immunohistochemistry were applied to GCA and IM samples from patients (n=200) in Linzhou, Henan, China, a high incidence area for GCA and esophageal squamous cell carcinoma (SCC). The detection rate of IM lesions in resected tissues adjacent to GCA was 32.5% (65/200). GCA and IM lesions presented a high frequency of Das-1 and Ki67-positive staining with statistical significance (P<0.01). The expression of sulfuric proteins did not show co-expression with Das-1 and Ki67 in GCA and surrounding IM lesions (P>0.05) from the same GCA patient. The high frequency of co-expression of Das-1 and Ki67 in GCA and adjacent IM lesions indicates that IM adjacent to GCA may undergo similar molecular changes to GCA, which may be one of the mechanisms for malignant transformation of IM in the population studied.
Collapse
Affiliation(s)
- Xiao-Shan Feng
- Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003
| | | | | | | | | | | |
Collapse
|
28
|
Masutani M. The pioneering spirit of Takashi Sugimura: his studies of the biochemistry of poly(ADP-ribosylation) and of cancer. J Biochem 2012; 151:221-8. [PMID: 22375027 DOI: 10.1093/jb/mvs005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Takashi Sugimura has accomplished many scientific achievements in the field of biochemistry and in cancer research. Sugimura's group identified the novel polymer poly(ADP-ribose) in parallel to P. Mandel's and O. Hayaishi's groups and demonstrated the presence of the enzyme poly(ADP-ribose) polymerase (PARP). He also discovered the cognate catabolic enzyme, poly(ADP-ribose) glycohydrolase (PARG) and further elucidated the biology of poly(ADP-ribose). The astonishing discovery of pierisin, an apoptogenic peptide that ADP-ribosyaltes DNA, profoundly illuminates his scientific character and curiosity as well. Sugimura's work in cancer research shows an extraordinarily wide range, which includes the establishment of new methods in chemical carcinogenesis, the identification of various environmental mutagens/carcinogens and new tumour promoters. He also established the concept that cancer is a disease of DNA and contributed to the development of the concept of the multi-step model of carcinogenesis.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
29
|
Turesky RJ, Bessette EE, Dunbar D, Liberman RG, Skipper PL. Cytochrome P450-mediated metabolism and DNA binding of 2-amino-1,7-dimethylimidazo[4,5-g]quinoxaline and its carcinogenic isomer 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in mice. Chem Res Toxicol 2012; 25:410-21. [PMID: 22118226 PMCID: PMC3531872 DOI: 10.1021/tx2004536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
2-Amino-1,7-dimethylimidazo[4,5-g]quinoxaline (MeIgQx) is a recently discovered heterocyclic aromatic amine (HAA) that is formed during the cooking of meats. MeIgQx is an isomer of 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), a rodent carcinogen and possible human carcinogen that also occurs in cooked meats. MeIgQx is a bacterial mutagen, but knowledge about its metabolism and carcinogenic potential is lacking. Metabolism studies on MeIgQx and MeIQx were conducted with human and mouse liver microsomes, and recombinant human P450s. DNA binding studies were also investigated in mice to ascertain the genotoxic potential of MeIgQx in comparison to MeIQx. Both HAAs underwent comparable rates of N-oxidation to form genotoxic N-hydroxylated metabolites with mouse liver microsomes (0.2-0.3 nmol/min/mg protein). The rate of N-oxidation of MeIQx was 4-fold greater than the rate of N-oxidation of MeIgQx with human liver microsomes (1.7 vs 0.4 nmol/min/mg protein). The rate of N-oxidation, by recombinant human P450 1A2, was comparable for both substrates (6 pmol/min/pmol P450 1A2). MeIgQx also underwent N-oxidation by human P450s 1A1 and 1B1 at appreciable rates, whereas MeIQx was poorly metabolized by these P450s. The potential of MeIgQx and MeIQx to form DNA adducts was assessed in female C57BL/6 mice given [(14)C]-MeIgQx (10 μCi, 9.68 mg/kg body wt) or [(14)C]-MeIQx (10 μCi, 2.13 mg/kg body wt). DNA adduct formation in the liver, pancreas, and colorectum was measured by accelerator mass spectrometry at 4, 24, or 48 h post-treatment. Variable levels of adducts were detected in all organs. The adduct levels were similar for both HAAs, when adjusted for dose, and ranged from 1 to 600 adducts per 10(7) nucleotides per mg/kg dose. Thus, MeIgQx undergoes metabolic activation and binds to DNA at levels that are comparable to MeIQx. Given the high amounts of MeIgQx formed in cooked meats, further investigations are warranted to assess the carcinogenic potential of this HAA.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health , Albany, New York 12201, United States.
| | | | | | | | | |
Collapse
|
30
|
Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 2011; 24:1169-214. [PMID: 21688801 PMCID: PMC3156293 DOI: 10.1021/tx200135s] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center , Albany, New York 12201, United States.
| | | |
Collapse
|
31
|
Lee UL, Choi SW. The chemopreventive properties and therapeutic modulation of green tea polyphenols in oral squamous cell carcinoma. ISRN ONCOLOGY 2011; 2011:403707. [PMID: 22084729 PMCID: PMC3197077 DOI: 10.5402/2011/403707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/20/2011] [Indexed: 11/23/2022]
Abstract
Chemoprevention is a relatively novel and promising approach for controlling cancer that uses specific natural products or synthetic agents to suppress, reverse, or prevent premalignancy before transformation into invasive cancer. Oral cavity squamous cell carcinoma (OCSCC) represents a large, worldwide health burden with approximately 274,000 cases diagnosed annually worldwide. Smoking and alcohol consumption are major inducers of OCSCC. Recently, the human papilloma virus was also shown to potentially be an etiologic factor. Due to its easily identifiable risk factors and the presence of premalignant regions, oral cancer makes a good candidate for chemoprevention. Green tea is the most widely consumed beverage in the world, and it has received considerable attention because of its abundant, scientifically proven, beneficial effects on human health. In this review, we discuss the role of green tea in oral cancer chemoprevention with regard to the multiple molecular mechanisms proposed in various in vitro, in vivo, and clinical trials.
Collapse
Affiliation(s)
- Ui-Lyong Lee
- Tooth Bioengineering National Research Lab, BK21, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | |
Collapse
|
32
|
Kaushik G, Satya S, Naik SN. Green tea: protective action against oxidative damage induced by xenobiotics. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2010. [DOI: 10.1007/s12349-010-0014-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Cheng KW, Wong CC, Chao J, Lo C, Chen F, Chu IK, Che CM, Ho CT, Wang M. Inhibition of mutagenic PhIP formation by epigallocatechin gallate via scavenging of phenylacetaldehyde. Mol Nutr Food Res 2009; 53:716-25. [PMID: 19437482 DOI: 10.1002/mnfr.200800206] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chemical model investigation showed that both epigallocatechin gallate (EGCG) and its peracetate, which has all the hydroxyl groups acetylated, effectively reduced the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundant mutagenic heterocyclic amine found in foods. Mechanistic study was subsequently carried out to characterize the probable inhibitory mechanism involved. GC-MS analysis showed that EGCG in only one-fourth molar quantity of phenylalanine reduced formation of phenylacetaldehyde, a key PhIP intermediate by nearly 90%. Its peracetate also showed similar inhibitory activity. This further supported the existence of an antioxidant-independent mechanism contributing to the inhibition of PhIP formation by EGCG. Subsequent LC-MS analyses of samples from a wide range of model systems consisting of PhIP precursors showed the generation of characteristic analytes with molecular weight corresponding to the sum of EGCG and phenylalanine fragment(s) only in models where phenylalanine and EGCG were simultaneously present. An isotope-labeling study revealed that these analytes all contained fragment(s) of phenylalanine origin. Direct reaction employing phenylacetaldehyde and EGCG further confirmed the capability of EGCG to form adducts with phenylacetaldehyde, thus reducing its availability for PhIP formation. Finally, an investigation of the time course of the generation of postulated adduction products supported EGCG as an effective inhibitor of PhIP formation in prolonged heating processes.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wakabayashi K. Chemical and Biological Approaches for Detecting Environmental Causes of Cancer. Genes Environ 2009. [DOI: 10.3123/jemsge.31.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Cheng KW, Wong CC, Cho CK, Chu IK, Sze KH, Lo C, Chen F, Wang M. Trapping of Phenylacetaldehyde as a Key Mechanism Responsible for Naringenin’s Inhibitory Activity in Mutagenic 2-Amino-1-methyl-6-phenylimidazo [4,5-b]Pyridine Formation. Chem Res Toxicol 2008; 21:2026-34. [DOI: 10.1021/tx800220h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Chi Chun Wong
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Chi Kong Cho
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Ivan K. Chu
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Kong Hung Sze
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Clive Lo
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Feng Chen
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| | - Mingfu Wang
- School of Biological Sciences and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 123456, People's Republic of China
| |
Collapse
|
36
|
Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and cancer prevention : pathways and targets for intervention. Sports Med 2008; 38:271-96. [PMID: 18348589 DOI: 10.2165/00007256-200838040-00002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity, an established epidemiological risk factor for many cancers, has risen steadily for the past several decades in the US and many other countries. Particularly alarming are the increasing rates of obesity among children, portending continuing increases in the rates of obesity and obesity-related cancers for many years to come. Modulation of energy balance, via increased physical activity, has been shown in numerous comprehensive epidemiological reviews to reduce cancer risk. Unfortunately, the effects and mechanistic targets of physical activity interventions on the carcinogenesis process have not been thoroughly characterized. Studies to date suggest that exercise can exert its cancer-preventive effects at many stages during the process of carcinogenesis, including both tumour initiation and progression. As discussed in this review, exercise may be altering tumour initiation events by modifying carcinogen activation, specifically by enhancing the cytochrome P450 system and by enhancing selective enzymes in the carcinogen detoxification pathway, including, but not limited to, glutathione-S-transferases. Furthermore, exercise may reduce oxidative damage by increasing a variety of anti-oxidant enzymes, enhancing DNA repair systems and improving intracellular protein repair systems. In addition to altering processes related to tumour initiation, exercise may also exert a cancer-preventive effect by dampening the processes involved in the promotion and progression stages of carcinogenesis, including scavenging reactive oxygen species (ROS); altering cell proliferation, apoptosis and differentiation; decreasing inflammation; enhancing immune function; and suppressing angiogenesis. A paucity of data exists as to whether exercise may be working as an anti-promotion strategy via altering ROS in initiated or preneoplastic models; therefore, no conclusions can be made about this possible mechanism. The studies directly examining cell proliferation and apoptosis have shown that exercise can enhance both processes, which is difficult to interpret in the context of carcinogenesis. Studies examining the relationship between exercise and chronic inflammation suggest that exercise may reduce pro-inflammatory mediators and reduce the state of low-grade, chronic inflammation. Additionally, exercise has been shown to enhance components of the innate immune response (i.e. macrophage and natural killer cell function). Finally, only a limited number of studies have explored the relationship between exercise and angiogenesis; therefore, no conclusions can be made currently about the role of exercise in the angiogenesis process as it relates to tumour progression. In summary, exercise can alter biological processes that contribute to both anti-initiation and anti-progression events in the carcinogenesis process. However, more sophisticated, detailed studies are needed to examine each of the potential mechanisms contributing to an exercise-induced decrease in carcinogenesis in order to determine the minimum dose, duration and frequency of exercise needed to yield significant cancer-preventive effects, and whether exercise can be used prescriptively to reverse the obesity-induced physiological changes that increase cancer risk.
Collapse
Affiliation(s)
- Connie J Rogers
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
37
|
Srinivasan P, Suchalatha S, Babu PVA, Devi RS, Narayan S, Sabitha KE, Shyamala Devi CS. Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-Nitroquinoline 1-oxide induced oral cancer. Chem Biol Interact 2008; 172:224-34. [DOI: 10.1016/j.cbi.2008.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 12/22/2022]
|
38
|
Abstract
Recent progress in the analyses of the mouse transcriptome leads to unexpected discoveries. The mouse genomic sequences read by RNA polymerase II may be six times more than previously expected for human chromosomes. The transcript-abundant regions (named "transcription forests") occupy more than half of the genomic sequence and are divided by transcript-scarce regions (transcription deserts). Many of the coding mRNAs may have partially overlapping antisense RNAs. There are transcripts bridging several adjacent genes that were previously regarded as distinct ones. The transcription start sites appearing as cap analysis of gene expression (CAGE) tags are mapped on the mouse genomic sequences. Distributions of CAGE tags show that the shapes of mammalian gene promoters can be classified into four major categories. These shapes were conserved between mouse and human. Most of the gene has exonic transcription start sites, especially in the 3' untranslated region (3' UTR) sequences. The term "RNA continent" has been invented to express this unexpectedly complex and prodigious mouse transcriptome. More than a half of the RNA polymerase II transcripts are regarded as noncoding RNAs (ncRNAs). The great variety of ncRNAs in mammalian transcriptome implies that there are many functional ncRNAs in the cells. Especially, the evolutionarily conserved microRNAs play critical roles in mammalian development and other biological functions. Moreover, many other ncRNAs have also been shown to have biological significant functions, mainly in the regulation of gene expression. The functional survey of the RNA continent has just started. We will describe the state of the art of the RNA continent and its impact on the modern molecular biology, especially on the cancer research.
Collapse
Affiliation(s)
- Jun Yasuda
- Functional RNA Research Program, Frontier Research System, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
39
|
Srinivasan P, Sabitha KE, Shyamaladevi CS. Attenuation of 4-Nitroquinoline 1-oxide induced in vitro lipid peroxidation by green tea polyphenols. Life Sci 2007; 80:1080-6. [PMID: 17280688 DOI: 10.1016/j.lfs.2006.11.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 11/08/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Lipid peroxidation is believed to play an important role in pathogenesis of diseases. 4-Nitroquiunoline 1-oxide (4-NQO) a potent oral carcinogen, widely used for induction of oral carcinogenesis, was found to induce lipid peroxidation in vivo and in vitro. Green tea contains high content of polyphenols, which are potent antioxidants. Thus green tea polyphenols (GP) can play a protective role in 4-NQO induced in vitro lipid peroxidation. 4-NQO at the concentration of 1.5 mM was found to induce lipid peroxidation in 5% liver homogenate in phosphate buffered saline and extent of lipid peroxidation at the different time intervals 0, 15, 30 and 45 min where studied by assessing parameters such as hydroxyl radical production (OH), thiobarbituric acid reactants (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). It was found that addition of 4-NQO caused an increase in OH and TBARS level and a decrease in activity of SOD, CAT and the levels of GSH. Simultaneous addition of GP 10 mg/ml significantly decreased lipid peroxidation and increased in antioxidant status. Thus, we conclude that GP, a potent antioxidant, was found to nullify 4-NQO induced lipid peroxidation in vitro and 4-NQO acts initially by causing oxidative stress and leads to carcinogenesis.
Collapse
Affiliation(s)
- Periasamy Srinivasan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
| | | | | |
Collapse
|
40
|
Le Bihan T, Goh T, Stewart II, Salter AM, Bukhman YV, Dharsee M, Ewing R, Wiśniewski JR. Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J Proteome Res 2006; 5:2701-10. [PMID: 17022641 DOI: 10.1021/pr060190y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to quantitatively compare protein levels across different regions of the brain to identify disease mechanisms remains a fundamental research challenge. It requires both a robust method to efficiently isolate proteins from small amounts of tissue and a differential technique that provides a sensitive and comprehensive analysis of these proteins. Here, we describe a proteomic approach for the quantitative mapping of membrane proteins between mouse fore- and hindbrain regions. The approach focuses primarily on a recently developed method for the fractionation of membranes and on-membrane protein digestion, but incorporates off-line SCX-fractionation of the peptide mixture and nano-LC-MS/MS analysis using an LTQ-FT-ICR instrument as part of the analytical method. Comparison of mass spectral peak intensities between samples, mapping of peaks to peptides and protein sequences, and statistical analysis were performed using in-house differential analysis software (DAS). In total, 1213 proteins were identified and 967 were quantified; 81% of the identified proteins were known membrane proteins and 38% of the protein sequences were predicted to contain transmembrane helices. Although this paper focuses primarily on characterizing the efficiency of this purification method from a typical sample set, for many of the quantified proteins such as glutamate receptors, GABA receptors, calcium channel subunits, and ATPases, the observed ratios of protein abundance were in good agreement with the known mRNA expression levels and/or intensities of immunostaining in rostral and caudal regions of murine brain. This suggests that the approach would be well-suited for incorporation in more rigorous, larger scale quantitative analysis designed to achieve biological significance.
Collapse
|
41
|
Abstract
Heterocyclic amines (HAs) occur at the ppb range in foods. Most of them demonstrate potent mutagenicity in bacteria mutagenicity test, and some of them have been classified by the International Agency for Research on Cancer as probable/possible human carcinogens. Their capability of formation even during ordinary cooking practices implies frequent exposure by the general public. Over the past 30 years, numerous studies have been stimulated aiming to alleviate human health risk associated with HAs. These studies contribute to the understanding of their formation, characterization, and quantification in foods; their mutagenesis/carcinogenesis, mechanisms of antimutagenesis by chemical or phytogenic modulators; and strategies to inhibit their formation. The chemistry of HAs, their implications in human health, factors influencing their formation, and feasible ways of suppression will be briefly reviewed. Their occurrence in trace amounts in foods necessitates continuous development and amelioration of analytical techniques. Various inhibitory strategies, ranging from modifying cooking conditions to incorporation of different modulators, have been developed. This will remain one of the foremost areas of research in the field of food chemistry and safety.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- Department of Botany, The University of Hong Kong, Hong Kong, PR China
| | | | | |
Collapse
|
42
|
Feng H, Masaki T, Nonomura T, Morishita A, Jian G, Nakai S, Deguchi A, Uchida N, Himoto T, Iwama H, Usuki H, Wakabayashi H, Izuishi K, Yoshiji H, Kurokohchi K, Kuriyama S. Activation of c-Yes in hepatocellular carcinoma: A preliminary study. World J Gastroenterol 2006; 12:5743-5. [PMID: 17007035 PMCID: PMC4088183 DOI: 10.3748/wjg.v12.i35.5743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
43
|
Singh CS, Giri K, Gupta R, Aladdin M, Sawhney H. Successful management of hepatic artery pseudoaneurysm complicating chronic pancreatitis by stenting. World J Gastroenterol 2006; 12:5733-4. [PMID: 17007032 PMCID: PMC4088180 DOI: 10.3748/wjg.v12.i35.5733] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A 41-year old alchoholic male with a history of chronic pancreatitis was admitted for nausea, vomiting and weight loss. Angiogram was performed and demonstrated an aneurysmal sac with a narrow neck originating from the inferior aspect of the distal portion of the proper hepatic artery. The origin of the pseudoaneurysm was covered with a 5 mm × 2.5 cm Viabahn cover stent (Gore). A repeat angiogram showed some leak and a second stent (6 mm × 2.3 cm) was deployed and overlapped with the first stent by 3 mm. Contrast was injected and a repeat angiogram demonstrated complete exclusion of the aneurysm. A repeat computerized axial tomography (CAT) scan of the abdomen after 24 h showed successful stenting. The patient had an uneventful post-operative course.
Collapse
Affiliation(s)
- Cynthia Sudar Singh
- Wyckoff Heights Medical Center, 374 Stockholm Street, Brooklyn, NY 11237, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Oxidative stress is associated with carcinogenesis. Reactive oxygen and nitrogen species contribute to the accumulation of mutations in the genome, presumably followed by selective processes. Recent data suggest that preferred signaling pathways exist for oxidative stress-associated carcinogenesis. Whether this completely depends on random mutations induced by reactive species or whether instead some fragile genomic loci are sensitive to oxidative damage in association with changes of transcriptional activity or other topologic or nontopologic effects remains to be explored. Reliable markers for oxidative stress as well as for oxidative stress-induced preneoplastic lesions must be established.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
45
|
Srinivasan P, Sabitha KE, Shyamaladevi CS. Modulatory efficacy of green tea polyphenols on glycoconjugates and immunological markers in 4-Nitroquinoline 1-oxide-induced oral carcinogenesis-A therapeutic approach. Chem Biol Interact 2006; 162:149-56. [PMID: 16859662 DOI: 10.1016/j.cbi.2006.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 05/25/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Green tea polyphenols (GTP) has been used as a chemopreventive agent world wide against chemically induced cancer. The present study is aimed to understand the therapeutic action of GTP on glycoconjugates and immunological markers in 4-Nitroquinoline 1-oxide (4-NQO)-induced oral cancer over a period of 30 days at 200mg/kg, p.o., Oral cancer was induced by painting 4-NQO for 8 weeks followed by administration of GTP after 22 weeks, for 30 days. Glycoconjugates such as hexose, hexosamine, sialicacid, fucose and mucoprotein were analysed. Expression of glycoconjugates was examined through histology and SDS-PAGE. Immunological markers such as circulating immune complex and mast cell density were studied. Oral cancer-induced animals showed a significant increase in levels of glycoconjugates and its expression, similar to that observed for immunological markers. Treatment with GTP altered the expression of glycoconjugates as well as immunological markers. The results suggest that GTP modulates both the expression of glycoconjugates and immunological markers resulting in regression of oral cancer.
Collapse
Affiliation(s)
- Periasamy Srinivasan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | | | | |
Collapse
|
46
|
Ahn J, Grün IU. Heterocyclic Amines: 1. Kinetics of Formation of Polar and Nonpolar Heterocyclic Amines as a Function of Time and Temperature. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2005.tb07079.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Abstract
Although hepatitis B (HBV) and C viruses (HCV) are, individually, major causes of hepatocellular carcinoma, the interaction, if any, between the carcinogenic effects of the two viruses is uncertain. Equal numbers of published studies have reported no risk interaction or a synergistic risk interaction. These conflicting results are explained by the rarity of concurrent infection with HBV and HCV in individuals without clinically evident liver disease, which severely limits the ability to accurately estimate the hepatocarcinogenic risk of dual infection compared with that of either infection alone. In an attempt to circumvent this difficulty, two meta-analyses have been performed, one based on studies published from a number of countries and the other on studies confined to Chinese patients. Both analyses concluded that a synergistic carcinogenic interaction existed between the two viruses and that the increased risk was super-additive but not multiplicative. If confirmed, this risk interaction will occur against a background of negative confounding effects on viral replication between HBV and HCV, which may be reciprocal. The mechanisms responsible for the carcinogenic interaction between the viruses are unknown. One possibility is that the increased incidence of cirrhosis with concurrent HBV and HCV infections acts as an even more potent tumour promoter than occurs with either virus alone. Synergism between the direct hepatocarcinogenic effects of the two viruses is another possible mechanism, but proof will have to await a fuller understanding of the pathogenetic mechanisms involved with the individual viruses.
Collapse
Affiliation(s)
- M C Kew
- MRC/University Molecular Hepatology Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
48
|
Asada S, Sasaki K, Tanaka N, Takeda K, Hayashi M, Umeda M. Detection of initiating as well as promoting activity of chemicals by a novel cell transformation assay using v-Ha-ras-transfected BALB/c 3T3 cells (Bhas 42 cells). Mutat Res 2005; 588:7-21. [PMID: 16260176 DOI: 10.1016/j.mrgentox.2005.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 07/07/2005] [Accepted: 07/20/2005] [Indexed: 11/25/2022]
Abstract
Cell transformation assay using BALB/c 3T3 cells, C3H10T1/2 cells and others, can simulate the two-stage carcinogenesis utilized for formation of transformed foci. A sensitive cell transformation assay for tumor initiators as well as promoters has been developed using a v-Ha-ras-transfected BALB/c 3T3 cell line, Bhas 42; these cells are regarded as initiated in the two-stage paradigm of carcinogenesis. To distinguish between initiation and promotion, the initiation assay involves a 2-day treatment of low-density cells, obtained one day after plating, with a test chemical, and the promotion assay involves treatment of near-confluent cells with a test chemical for a period of 12 days (Day 3-14). When Bhas 42 cells were treated with tumor initiators, N-methyl-N'-nitro-N-nitrosoguanidine and 3-methylcholanthrene, transformed foci were induced in the initiation assay but not in the promotion assay. In contrast, tumor promoters, 12-O-tetradecanoylphorbol-13-acetate, lithocholic acid and okadaic acid, gave negative responses in the initiation assay but positive responses in the promotion assay. The results were reproducible with various treatment protocols. Sixteen polycyclic aromatic hydrocarbons were examined using both assays. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene induced focus formation only in the initiation assay. Increase of focus formation was observed in the promotion assay with benzo[e]pyrene, benzo[ghi]perylene, 1-nitropyrene and pyrene. Benz[a]anthracene, benz[b]anthracene, chrysene and perylene showed positive responses in both initiation and promotion assays. Results of initiation and promotion assays of acenaphthylene, anthracene, coronene, 9,10-diphenylanthracene, naphthalene and phenanthrene were negative or equivocal. The present Bhas assays for the detection of either/both initiating and promoting activities of chemicals are sensitive and of high performance compared with other cell transformation assays.
Collapse
Affiliation(s)
- Shin Asada
- Laboratory of Cell Toxicology, Hatano Research Institute, Food and Drug Safety Center, and Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Agner AR, Bazo AP, Ribeiro LR, Salvadori DMF. DNA damage and aberrant crypt foci as putative biomarkers to evaluate the chemopreventive effect of annatto (Bixa orellana L.) in rat colon carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:146-54. [PMID: 15781219 DOI: 10.1016/j.mrgentox.2005.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Chemoprevention opens new perspectives in the prevention of cancer and other degenerative diseases. Use of target-organ biological models at the histological and genetic levels can markedly facilitate the identification of such potential chemopreventive agents. Colon cancer is one of the highest incidence rates throughout the world and some evidences have indicated carotenoids as possible agents that decrease the risk of colorectal cancer. In the present study, we evaluate the activity of annatto (Bixa orellana L.), a natural food colorant rich in carotenoid, on the formation of aberrant crypt foci (ACF) induced by dimethylhydrazine (DMH) in rat colon. Further, we investigate, the effect of annatto on DMH-induced DNA damage, by the comet assay. Male Wistar rats were given s.c. injections of DMH (40 mg/kg body wt.) twice a week for 2 weeks to induce ACF. They also received experimental diets containing annatto at 20, 200 or 1000 ppm for five 5 weeks before (pre-treatment), or 10 weeks after (post-treatment) DMH treatment. In both protocols the rats were sacrificed on week 15th. For the comet assay, the animals were fed with the same experimental diets for 2 weeks. Four hours before the sacrifice, the animals received an s.c. injection of DMH (40 mg/kg body wt.). Under such conditions, dietary administration of 1000 ppm annatto neither induce DNA damage in blood and colon cells nor aberrant crypt foci in rat distal colon. Conversely, annatto was successful in inhibiting the number of crypts/colon (animal), but not in the incidence of DMH-induced ACF, mainly when administered after DMH. However, no antigenotoxic effect was observed in colon cells. These findings suggest possible chemopreventive effects of annatto through their modulation of the cryptal cell proliferation but not at the initiation stage of colon carcinogenesis.
Collapse
Affiliation(s)
- Aniele R Agner
- TOXICAN - Núcleo de Avaliação Toxicogenética e Cancerígena, Departamento de Patologia, Faculdade de Medicina Universidade Estadual Paulista - UNESP, Botucatu, SP 18618-000, Brazil
| | | | | | | |
Collapse
|
50
|
Shibata A, Kamada N, Masumura KI, Nohmi T, Kobayashi S, Teraoka H, Nakagama H, Sugimura T, Suzuki H, Masutani M. Parp-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent. Oncogene 2005; 24:1328-37. [PMID: 15608683 DOI: 10.1038/sj.onc.1208289] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulated evidence suggests that Parp-1 is involved in DNA repair processes, including base excision repair, single-strand and double-strand break repairs. To understand the precise role of Parp-1 in genomic stability in vivo, we carried out mutation analysis using Parp-1 knockout (Parp-1-/-) mice harboring two marker genes, gpt and red/gam genes. Spontaneous mutant frequencies of both genes in the bone marrows and livers did not differ significantly between Parp-1-/- and Parp-1+/+ mice (P>0.05). After treatment with an alkylating agent, N-nitrosobis(2-hydroxypropyl)amine (BHP), the mutant frequency of the red/gam genes in the liver in Parp-1-/- mice was 1.6-fold higher than that in Parp-1+/+ mice (P<0.05). Categorization of the mutations revealed that deletions larger than 1 kb or those accompanying 1-5 bp insertions at the deletion junctions, as well as rearrangements, were more frequently observed in Parp-1-/- than in Parp-1+/+ mice (P<0.05, respectively). In contrast, mutant frequencies of the gpt gene in the livers of Parp-1(-/-) and Parp-1(+/+) mice after BHP treatment were both elevated and there was no significant difference between the genotypes. These results indicate that Parp-1 is implicated in suppressing deletion mutations in vivo, especially those accompanying small insertions or rearrangements.
Collapse
Affiliation(s)
- Atsushi Shibata
- Biochemistry Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|