1
|
Németh BZ, Kiss B, Sahin-Tóth M, Magyar C, Pál G. The High-Affinity Chymotrypsin Inhibitor Eglin C Poorly Inhibits Human Chymotrypsin-Like Protease: Gln192 and Lys218 Are Key Determinants. Proteins 2025; 93:543-554. [PMID: 39301701 DOI: 10.1002/prot.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Eglin C, a small protein from the medicinal leech, has been long considered a general high-affinity inhibitor of chymotrypsins and elastases. Here, we demonstrate that eglin C inhibits human chymotrypsin-like protease (CTRL) weaker by several orders of magnitude than other chymotrypsins. In order to identify the underlying structural aspects of this unique deviation, we performed comparative molecular dynamics simulations on experimental and AlphaFold model structures of bovine CTRA and human CTRL. Our results indicate that in CTRL, the primary determinants of the observed weak inhibition are amino-acid positions 192 and 218 (using conventional chymotrypsin numbering), which participate in shaping the S1 substrate-binding pocket and thereby affect the stability of the protease-inhibitor complexes.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, California, Los Angeles, USA
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Dei Rossi A, Deavila S, Mohammed BM, Korolev S, Di Cera E. Replacement of a single residue changes the primary specificity of thrombin. J Thromb Haemost 2025:S1538-7836(24)00773-6. [PMID: 39756655 DOI: 10.1016/j.jtha.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown. OBJECTIVES Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189. METHODS X-ray crystallography is used to solve the structure of thrombin bound to the irreversible inhibitor H-D-Phe-Pro-Phe-CH2Cl (PPPCK). Residue D189 is mutated to Ala, Lys, Phe, and Ser. RESULTS The X-ray structure of the thrombin-PPPCK complex is solved at 2.5 Å resolution and compared to the structure of thrombin bound to H-D-Phe-Pro-Arg-CH2Cl (PPACK). PPPCK binds to thrombin in a conformation similar to that of PPACK, but Phe at P1 makes no contacts with D189. Replacement of D189 with Ala, Lys, Phe, or Ser reverses both substrate preference and stability enhancement from Arg to Phe. CONCLUSION D189 in the S1 pocket confers thrombin "trypsin-like" specificity for Arg at P1. However, the S1 pocket is wide enough to also enable "chymotrypsin-like" specificity for Phe at P1. Consistent with these structural features, a single amino acid replacement (D189A) switches thrombin specificity from trypsin-like to chymotrypsin-like, converting the substrate preference from H-D-Phe-Pro-Arg-p-nitroanilide to H-D-Phe-Pro-Phe-p-nitroanilide and preferential stability enhancement from PPACK to PPPCK. The observation that thrombin specificity is controlled mainly by a single residue establishes a new paradigm in the field of trypsin-like proteases.
Collapse
Affiliation(s)
- Alessia Dei Rossi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Samantha Deavila
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
3
|
Wu J, Wang Z, Zeng M, He Z, Chen Q, Chen J. Comprehensive Understanding of Laboratory Evolution for Food Enzymes: From Design to Screening Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24928-24943. [PMID: 39495102 DOI: 10.1021/acs.jafc.4c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
In the field of food processing, enzymes play a pivotal role in improving product quality and flavor, and extending shelf life. However, the exposure of traditional food enzymes to high temperatures during processing often leads to a decrease in activity or even inactivation, limiting the effectiveness of their application under high-temperature conditions. Therefore, the modification of thermostability and activity of enzymes to adapt to extreme conditions through protein engineering has become a key way to improve the efficiency and economic benefits of industrial production. Directed evolution and semirational design strategies in the laboratory have proven to be broadly applicable frameworks for biochemical researchers in the food field, including those who are beginners. In this review, we systematically summarize semirational design strategies and high-throughput screening strategies, and introduce some intuitive computer simulation software to improve the thermostability and enzyme activity of food enzymes. The application of these strategies and techniques provides a comprehensive guide for the optimization of food enzymes. In addition, the latest hot topics of genetically engineered food enzymes in the field of application are discussed.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Fawaz M, Sun C, Feng Y, Qirjollari A, Josien H, DeBord D, Simone A, Williamson DL, Pearson K, Gonzalez RJ, Vasicek L, Cancilla MT, Wang W, Spellman DS, Kedia K. Leveraging High-Resolution Ion Mobility-Mass Spectrometry for Cyclic Peptide Soft Spot Identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2596-2607. [PMID: 38992936 DOI: 10.1021/jasms.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Cyclic peptides are an important class of molecules that gained significant attention in the field of drug discovery due to their unique pharmacological characteristics and enhanced proteolytic stability. Yet, gastrointestinal degradation remains a major hurdle in the discovery of orally bioavailable cyclic peptides. Soft spot identification (SSID) of the regions in the cyclic peptide sequence susceptible to amide hydrolysis by proteases is used in the discovery stage to guide medicinal chemistry design. SSID can be an arduous task, traditionally performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), often resulting in complex and time-consuming manual analysis, particularly when isomeric linear peptide metabolites chromatographically coelute. Here, we present an alternative orthogonal approach that entails a high-resolution ion mobility (HRIM) system based on Structures for Lossless Ion Manipulation (SLIM) technology interfaced with quadrupole time-of-flight (QTOF) mass spectrometry to address some of the challenges associated with SSID. Two strategies were used to resolve linear isomeric peptide metabolites: labeled and label-free, both utilizing the HRIM platform. The label-free strategy leverages negative polarity to ionize the isomers which achieves better separation of the gas phase ions in the ion mobility (IM) dimension as compared to positive polarity, which is a more conventional approach when studying proteins and peptides. The second approach uses an isotope-labeled dimethyl tag on the terminal amine group, acting as a "shift reagent" to influence the mobility of isomers in the positive mode. This method resulted in baseline separation for the isomers of interest and produced unique product ions in the fragmentation spectra for unambiguous soft spot identification. Both label-free and labeled strategies demonstrated the ability to solve the challenges associated with SSID for cyclic peptides.
Collapse
Affiliation(s)
- Maria Fawaz
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Congliang Sun
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yu Feng
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Hubert Josien
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Ashli Simone
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | | | - Kara Pearson
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Lisa Vasicek
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mark T Cancilla
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Komal Kedia
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
5
|
Long MJC, Aye Y. Let's get biophysical - How to get your favorite protein's digits. Bioorg Med Chem 2024; 112:117873. [PMID: 39180860 DOI: 10.1016/j.bmc.2024.117873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
In these days of information overload and high-throughput analysis, it is easy to lose focus on the study of individual proteins. It is our conjecture that such investigations are still crucially important and offer uniquely penetrative insights. We thus present a discussion of biophysical methods to allow readers to get to know their protein of interest better. Although this perspective is not written with the expert in mind, we hope that for interdisciplinary scientists, or researchers who do not routinely perform biophysical analyses, the content will be helpful and inspiring.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
6
|
Kozome D, Sljoka A, Laurino P. Remote loop evolution reveals a complex biological function for chitinase enzymes beyond the active site. Nat Commun 2024; 15:3227. [PMID: 38622119 PMCID: PMC11018821 DOI: 10.1038/s41467-024-47588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Loops are small secondary structural elements that play a crucial role in the emergence of new enzyme functions. However, the evolutionary molecular mechanisms how proteins acquire these loop elements and obtain new function is poorly understood. To address this question, we study glycoside hydrolase family 19 (GH19) chitinase-an essential enzyme family for pathogen degradation in plants. By revealing the evolutionary history and loops appearance of GH19 chitinase, we discover that one loop which is remote from the catalytic site, is necessary to acquire the new antifungal activity. We demonstrate that this remote loop directly accesses the fungal cell wall, and surprisingly, it needs to adopt a defined structure supported by long-range intramolecular interactions to perform its function. Our findings prove that nature applies this strategy at the molecular level to achieve a complex biological function while maintaining the original activity in the catalytic pocket, suggesting an alternative way to design new enzyme function.
Collapse
Affiliation(s)
- Dan Kozome
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, 103-0027, Japan
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Stojanovski BM, Pelc LA, Di Cera E. Thrombin has dual trypsin-like and chymotrypsin-like specificity. J Thromb Haemost 2024; 22:1009-1015. [PMID: 38160728 PMCID: PMC10960677 DOI: 10.1016/j.jtha.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The residue at the site of activation of protein C is Arg in all species except the ray-finned fish, where it is Trp. This feature raises the question of whether thrombin is the physiological activator of protein C across vertebrates. OBJECTIVES To establish if thrombin can cleave at Trp residues. METHODS The activity of wild-type thrombin and mutant D189S was tested with a library of chromogenic substrates and toward wild-type protein C and mutants carrying substitutions at the site of cleavage. RESULTS Thrombin has trypsin-like and chymotrypsin-like specificity and cleaves substrates at Arg or Trp residues. Cleavage at Arg is preferred, but cleavage at Trp is significant and comparable with that of chymotrypsin. The D189S mutant of thrombin has broad specificity and cleaves at basic and aromatic residues without significant preference. Thrombin also cleaves natural substrates at Arg or Trp residues, showing activity toward protein C across vertebrates, including the ray-finned fish. The rate of activation of protein C in the ray-finned fish is affected by the sequence preceding Trp at the scissile bond. CONCLUSION The results provide a possible solution for the paradoxical presence of a Trp residue at the site of cleavage of protein C in ray-finned fish and support thrombin as the physiological activator of protein C in all vertebrates. The dual trypsin-like and chymotrypsin-like specificity of thrombin suggests that the spectrum of physiological substrates of this enzyme is broader currently assumed.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
8
|
Barth KM, Hiller DA, Strobel SA. The Impact of Second-Shell Nucleotides on Ligand Specificity in Cyclic Dinucleotide Riboswitches. Biochemistry 2024:10.1021/acs.biochem.3c00586. [PMID: 38329042 PMCID: PMC11306416 DOI: 10.1021/acs.biochem.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ligand specificity is an essential requirement for all riboswitches. Some variant riboswitches utilize a common structural motif, yet through subtle sequence differences, they are able to selectively respond to different small molecule ligands and regulate downstream gene expression. These variants discriminate between structurally and chemically similar ligands. Crystal structures provide insight into how specificity is achieved. However, ligand specificity cannot always be explained solely by nucleotides in direct contact with the ligand. The cyclic dinucleotide variant family contains two classes, cyclic-di-GMP and cyclic-AMP-GMP riboswitches, that were distinguished based on the identity of a single nucleotide in contact with the ligand. Here we report a variant riboswitch with a mutation at a second ligand-contacting position that is promiscuous for both cyclic-di-GMP and cyclic-AMP-GMP despite a predicted preference for cyclic-AMP-GMP. A high-throughput mutational analysis, SMARTT, was used to quantitatively assess thousands of sites in the first- and second-shells of ligand contact for impacts on ligand specificity and promiscuity. In addition to nucleotides in direct ligand contact, nucleotides more distal from the binding site, within the J1/2 linker and the terminator helix, were identified that impact ligand specificity. These findings provide an example of how nucleotides outside the ligand binding pocket influence the riboswitch specificity. Moreover, these distal nucleotides could be used to predict promiscuous sequences.
Collapse
Affiliation(s)
- Kathryn M. Barth
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - David A. Hiller
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Scott A. Strobel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Crean RM, Corbella M, Calixto AR, Hengge AC, Kamerlin SCL. Sequence - dynamics - function relationships in protein tyrosine phosphatases. QRB DISCOVERY 2024; 5:e4. [PMID: 38689874 PMCID: PMC11058592 DOI: 10.1017/qrd.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 05/02/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are crucial regulators of cellular signaling. Their activity is regulated by the motion of a conserved loop, the WPD-loop, from a catalytically inactive open to a catalytically active closed conformation. WPD-loop motion optimally positions a catalytically critical residue into the active site, and is directly linked to the turnover number of these enzymes. Crystal structures of chimeric PTPs constructed by grafting parts of the WPD-loop sequence of PTP1B onto the scaffold of YopH showed WPD-loops in a wide-open conformation never previously observed in either parent enzyme. This wide-open conformation has, however, been observed upon binding of small molecule inhibitors to other PTPs, suggesting the potential of targeting it for drug discovery efforts. Here, we have performed simulations of both enzymes and show that there are negligible energetic differences in the chemical step of catalysis, but significant differences in the dynamical properties of the WPD-loop. Detailed interaction network analysis provides insight into the molecular basis for this population shift to a wide-open conformation. Taken together, our study provides insight into the links between loop dynamics and chemistry in these YopH variants specifically, and how WPD-loop dynamic can be engineered through modification of the internal protein interaction network.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ana R. Calixto
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Shina C. L. Kamerlin
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Meister SW, Parks L, Kolmar L, Borras AM, Ståhl S, Löfblom J. Engineering of TEV protease variants with redesigned substrate specificity. Biotechnol J 2023; 18:e2200625. [PMID: 37448316 DOI: 10.1002/biot.202200625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Due to their ability to catalytically cleave proteins and peptides, proteases present unique opportunities for the use in industrial, biotechnological, and therapeutic applications. Engineered proteases with redesigned substrate specificities have the potential to expand the scope of practical applications of this enzyme class. We here apply a combinatorial protease engineering-based screening method that links proteolytic activity to the solubility and correct folding of a fluorescent reporter protein to redesign the substrate specificity of tobacco etch virus (TEV) protease. The target substrate EKLVFQA differs at three out of seven positions from the TEV consensus substrate sequence. Flow cytometric sorting of a semi-rational TEV protease library, consisting of focused mutations of the substrate binding pockets as well as random mutations throughout the enzyme, led to the enrichment of a set of protease variants that recognize and cleave the novel target substrate.
Collapse
Affiliation(s)
- Sebastian W Meister
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Luke Parks
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Leonie Kolmar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Mestre Borras
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
11
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
12
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Singh V, Singh N, Pradhan A, Kumar Y, Bhatnagar S. Structure-activity relationships of dihydropyrimidone inhibitors against native and auto-processed human neutrophil elastase. Comput Biol Med 2023; 161:107004. [PMID: 37230015 DOI: 10.1016/j.compbiomed.2023.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Human neutrophil elastase (HNE) is a key driver of systemic and cardiopulmonary inflammation. Recent studies have established the existence of a pathologically active auto-processed form of HNE with reduced binding affinity against small molecule inhibitors. METHOD AutoDock Vina v1.2.0 and Cresset Forge v10 software were used to develop a 3D-QSAR model for a series of 47 DHPI inhibitors. Molecular Dynamics (MD) simulations were carried out using AMBER v18 to study the structure and dynamics of sc (single-chain HNE) and tcHNE (two-chain HNE). MMPBSA binding free energies of the previously reported clinical candidate BAY 85-8501 and the highly active BAY-8040 were calculated with sc and tcHNE. RESULTS The DHPI inhibitors occupy the S1 and S2 subsites of scHNE. The robust 3D-QSAR model showed acceptable predictive and descriptive capability with regression coefficient of r2 = 0.995 and cross-validation regression coefficient q2 = 0.579 for the training set. The key descriptors of shape, hydrophobics and electrostatics were mapped to the inhibitory activity. In auto-processed tcHNE, the S1 subsite undergoes widening and disruption. All the DHPI inhibitors docked with the broadened S1'-S2' subsites of tcHNE with lower AutoDock binding affinities. The MMPBSA binding free energy of BAY-8040 with tcHNE reduced in comparison with scHNE while the clinical candidate BAY 85-8501 dissociated during MD. Thus, BAY-8040 may have lower inhibitory activity against tcHNE whereas the clinical candidate BAY 85-8501 is likely to be inactive. CONCLUSION SAR insights gained from this study will aid the future development of inhibitors active against both forms of HNE.
Collapse
Affiliation(s)
- Vasundhara Singh
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Nirupma Singh
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Amartya Pradhan
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Yatender Kumar
- Mammalian Cell Culture Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India; Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
14
|
Shen R, Crean RM, Olsen KJ, Corbella M, Calixto AR, Richan T, Brandão TAS, Berry RD, Tolman A, Loria JP, Johnson SJ, Kamerlin SCL, Hengge AC. Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases. Chem Sci 2022; 13:13524-13540. [PMID: 36507179 PMCID: PMC9682893 DOI: 10.1039/d2sc04135a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) possess a conserved mobile catalytic loop, the WPD-loop, which brings an aspartic acid into the active site where it acts as an acid/base catalyst. Prior experimental and computational studies, focused on the human enzyme PTP1B and the PTP from Yersinia pestis, YopH, suggested that loop conformational dynamics are important in regulating both catalysis and evolvability. We have generated a chimeric protein in which the WPD-loop of YopH is transposed into PTP1B, and eight chimeras that systematically restored the loop sequence back to native PTP1B. Of these, four chimeras were soluble and were subjected to detailed biochemical and structural characterization, and a computational analysis of their WPD-loop dynamics. The chimeras maintain backbone structural integrity, with somewhat slower rates than either wild-type parent, and show differences in the pH dependency of catalysis, and changes in the effect of Mg2+. The chimeric proteins' WPD-loops differ significantly in their relative stability and rigidity. The time required for interconversion, coupled with electrostatic effects revealed by simulations, likely accounts for the activity differences between chimeras, and relative to the native enzymes. Our results further the understanding of connections between enzyme activity and the dynamics of catalytically important groups, particularly the effects of non-catalytic residues on key conformational equilibria.
Collapse
Affiliation(s)
- Ruidan Shen
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Rory M Crean
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Marina Corbella
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
| | - Ana R Calixto
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
| | - Teisha Richan
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Tiago A S Brandão
- Departamento de Química, ICEX, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais 31270-901 Brazil
| | - Ryan D Berry
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Alex Tolman
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - J Patrick Loria
- Department of Chemistry, Yale University 225 Prospect Street New Haven CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University 266 Whitney Avenue New Haven CT 06520 USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
- School of Chemistry and Biochemistry, Georgia Institute of Technology 901 Atlantic Drive NW Atlanta, GA 30332-0400 USA
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| |
Collapse
|
15
|
Abstract
Trypsin is a long-known serine protease widely used in biochemical, analytical, biotechnological, or biocatalytic applications. The high biotechnological potential is based on its high catalytic activity, substrate specificity, and catalytic robustness in non-physiological reaction conditions. The latter is mainly due to its stable protein fold, to which six intramolecular disulfide bridges make a significant contribution. Although trypsin does not depend on cofactors, it essentially requires the binding of calcium ions to its calcium-binding site to obtain complete enzymatic activity and stability. This behavior is inevitably associated with a limitation of the enzyme’s applicability. To make trypsin intrinsically calcium-independent, we removed the native calcium-binding site and replaced it with another disulfide bridge. The resulting stabilized apo-trypsin (aTn) retains full catalytic activity as proven by enzyme kinetics. Studies using Ellmann’s reagent further prove that the two inserted cysteines at positions Glu70 and Glu80 are in their oxidized state, creating the desired functional disulfide bond. Furthermore, aTn is independent of calcium ions, possesses increased thermal and functional stability, and significantly reduced autolysis compared to wildtype trypsin. Finally, we confirmed our experimental data by solving the X-ray crystal structure of aTn.
Collapse
|
16
|
Dušeková E, Garajová K, Yavaşer R, Tomková M, Sedláková D, Dzurillová V, Kulik N, Fadaei F, Shaposhnikova A, Minofar B, Sedlák E. Modulation of global stability, ligand binding and catalytic properties of trypsin by anions. Biophys Chem 2022; 288:106856. [PMID: 35872468 DOI: 10.1016/j.bpc.2022.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Specific salts effect is well-known on stability and solubility of proteins, however, relatively limited knowledge is known regarding the effect on catalytic properties of enzymes. Here, we examined the effect of four sodium anions on thermal stability and catalytic properties of trypsin and binding of the fluorescent probe, p-aminobenzamidine (PAB), to the enzyme. We show that the specific anions effect on trypsin properties agrees with the localization of the anions in the Hofmeister series. Thermal stability of trypsin, Tm, the affinity of the fluorescent probe to the binding site, Kd, and the rate constant, kcat, of trypsin-catalyzed hydrolysis of the substrate N-benzoyl-L-arginine ethyl ester (BAEE) increase with increasing kosmotropic character of anions in the order: perchlorate<bromide<chloride<sulfate, while the value of Michaelis constant, KM, decreases. Correlations between the values of Tm, Kd for PAB, kcat, and KM for BAEE in the presence of 1 M studied salts suggest interrelation among these parameters of the enzyme. Global stabilization as well as increased rigidity of trypsin is accompanied by strengthening of interaction with fluorescent probe PAB and in accordance with decreasing values of KM for the substrate BAEE. Strong correlations between parameters characterizing the trypsin properties with the charge densities of anions clearly indicate direct electrostatic interaction as a basis of the specific anion effect on the conformational and functional properties of the enzyme.
Collapse
Affiliation(s)
- Eva Dušeková
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Katarína Garajová
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia
| | - Rukiye Yavaşer
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia; Chemistry Department, Faculty of Arts and Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Mária Tomková
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Veronika Dzurillová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Natalia Kulik
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic
| | - Fatemeh Fadaei
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic; Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic
| | - Anastasiia Shaposhnikova
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic; Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
| |
Collapse
|
17
|
Sorensen AB, Greisen PJ, Madsen JJ, Lund J, Andersen G, Wulff-Larsen PG, Pedersen AA, Gandhi PS, Overgaard MT, Østergaard H, Olsen OH. A systematic approach for evaluating the role of surface-exposed loops in trypsin-like serine proteases applied to the 170 loop in coagulation factor VIIa. Sci Rep 2022; 12:3747. [PMID: 35260627 PMCID: PMC8904457 DOI: 10.1038/s41598-022-07620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two β-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1–7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2–3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.
Collapse
Affiliation(s)
- Anders B Sorensen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.,Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark
| | | | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jacob Lund
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Gorm Andersen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | | | | | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark
| | | | - Ole H Olsen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark.
| |
Collapse
|
18
|
Rocha CP, Maciel CMT, Valenti WC, Moraes-Valenti P, Sampaio I, Maciel CR. Prospection of putative genes for digestive enzymes based on functional genome of the hepatopancreas of Amazon river prawn. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.53894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over recent years, Macrobrachium amazonicum has become a popular species for shrimp farming due to their fast growth, high survival rates, and marketability. Several studies have focused on the development of new technology for the culture of this species, but many aspects of their nutrition and physiology remain unknown. Thus, the goal of the present study was to obtain transcripts of putative genes encoding digestive enzymes, based on a library of the cDNA from the hepatopancreas of M. amazonicum, sequenced in the Ion TorrentTM platform. We identified fragments of nine genes related to digestive enzymes, acting over proteins, carbohydrates and lipids. Endo and exoproteases were also recorded in the hepatopancreas, indicating adaptation to the digestion of protein-rich foods. Nonetheless, the enzymes involved in the carbohydrate metabolism formed the largest functional group in M. amazonicum, including enzymes related to the digestion of starch, chitin, and cellulose. These findings indicate that the species has a genetic apparatus of a well-adapted omnivorous animal. This information may provide important insights for the selection of ingredients for the formulation of a more appropriate diet to the enzymatic repertoire of M. amazonicum.
Collapse
|
19
|
Gao M, Johnson DA, Piper IM, Kodama HM, Svendsen JE, Tahti E, Longshore‐Neate F, Vogel B, Antos JM, Amacher JF. Structural and biochemical analyses of selectivity determinants in chimeric Streptococcus Class A sortase enzymes. Protein Sci 2022; 31:701-715. [PMID: 34939250 PMCID: PMC8862441 DOI: 10.1002/pro.4266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/22/2023]
Abstract
Sequence variation in related proteins is an important characteristic that modulates activity and selectivity. An example of a protein family with a large degree of sequence variation is that of bacterial sortases, which are cysteine transpeptidases on the surface of gram-positive bacteria. Class A sortases are responsible for attachment of diverse proteins to the cell wall to facilitate environmental adaption and interaction. These enzymes are also used in protein engineering applications for sortase-mediated ligations (SML) or sortagging of protein targets. We previously investigated SrtA from Streptococcus pneumoniae, identifying a number of putative β7-β8 loop-mediated interactions that affected in vitro enzyme function. We identified residues that contributed to the ability of S. pneumoniae SrtA to recognize several amino acids at the P1' position of the substrate motif, underlined in LPXTG, in contrast to the strict P1' Gly recognition of SrtA from Staphylococcus aureus. However, motivated by the lack of a structural model for the active, monomeric form of S. pneumoniae SrtA, here, we expanded our studies to other Streptococcus SrtA proteins. We solved the first monomeric structure of S. agalactiae SrtA which includes the C-terminus, and three others of β7-β8 loop chimeras from S. pyogenes and S. agalactiae SrtA. These structures and accompanying biochemical data support our previously identified β7-β8 loop-mediated interactions and provide additional insight into their role in Class A sortase substrate selectivity. A greater understanding of individual SrtA sequence and structural determinants of target selectivity may also facilitate the design or discovery of improved sortagging tools.
Collapse
Affiliation(s)
- Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - D. Alex Johnson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Isabel M. Piper
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Hanna M. Kodama
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Justin E. Svendsen
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Elise Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | - Brandon Vogel
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - John M. Antos
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
20
|
Pelc LA, Koester SK, Kukla CR, Chen Z, Di Cera E. The active site region plays a critical role in Na + binding to thrombin. J Biol Chem 2022; 298:101458. [PMID: 34861239 PMCID: PMC8695361 DOI: 10.1016/j.jbc.2021.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N∗) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the N∗→N transition is strongly correlated with the analogous E∗→E transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.
Collapse
Affiliation(s)
- Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Cassandra R Kukla
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Kitagawa H, Kikuchi M, Sato S, Watanabe H, Umezawa N, Kato M, Hisamatsu Y, Umehara T, Higuchi T. Structure-Based Identification of Potent Lysine-Specific Demethylase 1 Inhibitor Peptides and Temporary Cyclization to Enhance Proteolytic Stability and Cell Growth-Inhibitory Activity. J Med Chem 2021; 64:3707-3719. [PMID: 33754721 DOI: 10.1021/acs.jmedchem.0c01371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peptides are attractive drug candidates, but their utility is greatly limited by their inherent susceptibility to proteolytic degradation and their inability to pass through the cell membrane. Here, we employ a strategy of temporary cyclization to develop a cell-active lysine-specific demethylase 1 (LSD1/KDM1A) inhibitor peptide. We first identified a highly potent LSD1-inhibitory linear peptide, with the assistance of X-ray crystal structure data of inhibitor peptide-bound LSD1·CoREST. The peptide was converted to a redox-activatable cyclic peptide incorporating cell-penetrating peptide (CPP), expecting selective activation under intracellular reducing conditions. The cyclic peptide moiety exhibited enhanced stability to protease and was converted to the linear, unmodified LSD1 inhibitor peptide under reducing conditions. The cyclic peptide with CPP inhibited the proliferation of human acute myeloid leukemia cells (HL-60) in the low micromolar concentration range.
Collapse
Affiliation(s)
- Hiroki Kitagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hisami Watanabe
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Maiko Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
22
|
The Picornavirus Precursor 3CD Has Different Conformational Dynamics Compared to 3C pro and 3D pol in Functionally Relevant Regions. Viruses 2021; 13:v13030442. [PMID: 33803479 PMCID: PMC8001691 DOI: 10.3390/v13030442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses have evolved numerous strategies to maximize the use of their limited genetic material, including proteolytic cleavage of polyproteins to yield products with different functions. The poliovirus polyprotein 3CD is involved in important protein-protein, protein-RNA and protein-lipid interactions in viral replication and infection. It is a precursor to the 3C protease and 3D RNA-dependent RNA polymerase, but has different protease specificity, is not an active polymerase, and participates in other interactions differently than its processed products. These functional differences are poorly explained by the known X-ray crystal structures. It has been proposed that functional differences might be due to differences in conformational dynamics between 3C, 3D and 3CD. To address this possibility, we conducted nuclear magnetic resonance spectroscopy experiments, including multiple quantum relaxation dispersion, chemical exchange saturation transfer and methyl spin-spin relaxation, to probe conformational dynamics across multiple timescales. Indeed, these studies identified differences in conformational dynamics in functionally important regions, including enzyme active sites, and RNA and lipid binding sites. Expansion of the conformational ensemble available to 3CD may allow it to perform additional functions not observed in 3C and 3D alone despite having nearly identical lowest-energy structures.
Collapse
|
23
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
24
|
Tessmer MH, DeCero SA, Del Alamo D, Riegert MO, Meiler J, Frank DW, Feix JB. Characterization of the ExoU activation mechanism using EPR and integrative modeling. Sci Rep 2020; 10:19700. [PMID: 33184362 PMCID: PMC7665212 DOI: 10.1038/s41598-020-76023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
ExoU, a type III secreted phospholipase effector of Pseudomonas aeruginosa, serves as a prototype to model large, dynamic, membrane-associated proteins. ExoU is synergistically activated by interactions with membrane lipids and ubiquitin. To dissect the activation mechanism, structural homology was used to identify an unstructured loop of approximately 20 residues in the ExoU amino acid sequence. Mutational analyses indicate the importance of specific loop amino acid residues in mediating catalytic activity. Engineered disulfide cross-links show that loop movement is required for activation. Site directed spin labeling EPR and DEER (double electron-electron resonance) studies of apo and holo states demonstrate local conformational changes at specific sites within the loop and a conformational shift of the loop during activation. These data are consistent with the formation of a substrate-binding pocket providing access to the catalytic site. DEER distance distributions were used as constraints in RosettaDEER to construct ensemble models of the loop in both apo and holo states, significantly extending the range for modeling a conformationally dynamic loop.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Samuel A DeCero
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Diego Del Alamo
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Molly O Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig SAC, Germany
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Cavett V, Paegel BM. Multiplexed Enzyme Activity-Based Probe Display via Hybridization. ACS COMBINATORIAL SCIENCE 2020; 22:579-585. [PMID: 32803953 DOI: 10.1021/acscombsci.0c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emulsions offer the means to miniaturize and parallelize high-throughput screening but require a robust method to localize activity-based fluorescent probes in each droplet. Multiplexing probes in droplets is impractical, though highly desirable for identifying library members that possess very specific activity. Here, we present multiplexed probe immobilization on library beads for emulsion screening. During library bead preparation, we quantitated ∼106 primers per bead by fluorescence in situ hybridization, however emulsion PCR yielded only ∼103 gene copies per bead. We leveraged the unextended bead-bound primers to hybridize complementary probe-oligonucleotide heteroconjugates to the library beads. The probe-hybridized bead libraries were then used to program emulsion in vitro transcription/translation reactions and analyzed by FACS to perform multiplexed activity-based screening of trypsin and chymotrypsin mutant libraries for novel proteolytic specificity. The approach's modularity should permit a high degree of probe multiplexing and appears extensible to other enzyme classes and library types.
Collapse
Affiliation(s)
- Valerie Cavett
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Brian M. Paegel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Departments of Chemistry & Biomedical Engineering, University of California, Irvine, California 92617, United States
| |
Collapse
|
26
|
A deep eutectic solvent modified magnetic β-cyclodextrin particle for solid-phase extraction of trypsin. Anal Chim Acta 2020; 1137:125-135. [DOI: 10.1016/j.aca.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
|
27
|
García Arteaga V, Apéstegui Guardia M, Muranyi I, Eisner P, Schweiggert-Weisz U. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102449] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Golovina TG, Konstantinova AF, Timofeev VI. Features of Optical Activity in Inorganic and Organic Materials. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520050077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Hoque MA, Zhang Y, Li Z, Cui L, Feng Y. Remodeling enzyme active sites by stepwise loop insertion. Methods Enzymol 2020; 643:111-127. [PMID: 32896277 DOI: 10.1016/bs.mie.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The remolding active site loops via residue insertion/deletion as well as substitution is thought to play a key role in enzyme divergent evolution. However, enzyme engineering by residue insertion in active site loops often severely perturbs the protein structural integrity and causes protein misfolding and activity loss. We have designed a stepwise loop insertion strategy (StLois), in which a pair of randomized residues is introduced in a stepwise manner, efficiently collating mutational fitness effects. The strategy of StLois constitutes three key steps. First, the target regions should be identified through structural and functional analysis on the counterpart enzymes. Second, pair residues can be introduced in loop regions through insertion with NNK codon degeneracy. Third, the best hit used as a template for the next round mutagenesis. The residue insertion process can repeat as many times as necessary. By using the StLois method, we have evolved the substrate preference of a lactonase to phosphotriesterase. In this chapter, we describe the detailed StLois technique, which efficiently expands the residue in the loop region and remolds the architecture of enzyme active site for novel catalytic properties.
Collapse
Affiliation(s)
- Md Anarul Hoque
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Querino Lima Afonso M, da Fonseca NJ, de Oliveira LC, Lobo FP, Bleicher L. Coevolved Positions Represent Key Functional Properties in the Trypsin-Like Serine Proteases Protein Family. J Chem Inf Model 2020; 60:1060-1068. [DOI: 10.1021/acs.jcim.9b00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marcelo Querino Lima Afonso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brazil 31270-901
| | - Neli J. da Fonseca
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brazil 31270-901
| | - Lucas Carrijo de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brazil 31270-901
| | - Francisco Pereira Lobo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brazil 31270-901
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, Brazil 31270-901
| |
Collapse
|
31
|
Ramesh B, Abnouf S, Mali S, Moree WJ, Patil U, Bark SJ, Varadarajan N. Engineered ChymotrypsiN for Mass Spectrometry-Based Detection of Protein Glycosylation. ACS Chem Biol 2019; 14:2616-2628. [PMID: 31710461 DOI: 10.1021/acschembio.9b00506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have engineered the substrate specificity of chymotrypsin to cleave after Asn by high-throughput screening of large libraries created by comprehensive remodeling of the substrate binding pocket. The engineered variant (chymotrypsiN, ChyB-Asn) demonstrated an altered substrate specificity with an expanded preference for Asn-containing substrates. We confirmed that protein engineering did not compromise the stability of the enzyme by biophysical characterization. Comparison of wild-type ChyB and ChyB-Asn in profiling lysates of HEK293 cells demonstrated both qualitative and quantitative differences in the nature of the peptides and proteins identified by liquid chromatography and tandem mass spectrometry. ChyB-Asn enabled the identification of partially glycosylated Asn sites within a model glycoprotein and in the extracellular proteome of Jurkat T cells. ChymotrypsiN is a valuable addition to the toolkit of proteases to aid the mapping of N-linked glycosylation sites within proteins and proteomes.
Collapse
Affiliation(s)
- Balakrishnan Ramesh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Shaza Abnouf
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Sujina Mali
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Wilna J. Moree
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Steven J. Bark
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| |
Collapse
|
32
|
Role of the I16-D194 ionic interaction in the trypsin fold. Sci Rep 2019; 9:18035. [PMID: 31792294 PMCID: PMC6889508 DOI: 10.1038/s41598-019-54564-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na+ binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na+ binding, reduces stability of the transition state, collapses the 215–217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na+ binding and the E*-E equilibrium.
Collapse
|
33
|
Nutho B, Mulholland AJ, Rungrotmongkol T. Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations Support a Concerted Reaction Mechanism for the Zika Virus NS2B/NS3 Serine Protease with Its Substrate. J Phys Chem B 2019; 123:2889-2903. [PMID: 30845796 DOI: 10.1021/acs.jpcb.9b02157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) is mainly transmitted to humans by Aedes species mosquitoes and is associated with serious pathological disorders including microcephaly in newborns and Guillain-Barré syndrome in adults. Currently, there is no vaccine or anti-ZIKV drug available for preventing or controlling ZIKV infection. An attractive drug target for ZIKV treatment is a two-compartment (NS2B/NS3) serine protease that processes viral polyprotein during infection. Here, conventional molecular dynamics simulations of the ZIKV protease in complex with peptide substrate (TGKRS) sequence at the C-terminus of NS2B show that the substrate is in the active conformation for the cleavage reaction by ZIKV protease. Hybrid quantum mechanics/molecular mechanics (QM/MM) umbrella sampling simulations (PM6/ff14SB) of acylation results reveal that proton transfer from S135 to H51 and nucleophilic attack on the substrate by S135 are concerted. The rate-limiting step involves the formation of a tetrahedral intermediate. In addition, the single-point energy QM/MM calculations, precisely at the level of coupled cluster theory (LCCSD(T)/(aug)-cc-pVTZ), were performed to correct the potential energy profiles for the first step of the acylation process. The average computed activation barrier at this level of theory is 16.3 kcal mol-1. Therefore, the computational approaches presented here are helpful for further designing of NS2B/NS3 inhibitors based on transition-state analogues.
Collapse
Affiliation(s)
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , U.K
| | | |
Collapse
|
34
|
Kanno G, Klomklao S, Kumagai Y, Kishimura H. A thermostable trypsin from freshwater fish Japanese dace (Tribolodon hakonensis): a comparison of the primary structures among fish trypsins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:561-571. [PMID: 30547269 DOI: 10.1007/s10695-018-0600-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Trypsin from Japanese dace (Tribolodon hakonensis) (JD-T) living in freshwater (2-18 °C) was purified. JD-T represented typical fish trypsin characteristics regarding the effects of protease inhibitor, calcium-ion, and pH. For the effect of temperature, JD-T quite resembled to the trypsins from tropical-zone marine fish and freshwater fish (the catfish cultured in Thailand), i.e., the optimum temperature was 60 °C, and it was stable below 60 °C at pH 8.0 for 15 min incubation. From the data, it seemed that the trypsin from freshwater fish is thermostable in spite of the fact that their habitat temperatures are low. So, we determined the primary structure of JD-T to discuss its thermostability-structure relationship. JD-T possessed basic structural features of fish trypsin such as the catalytic triad, the Asp189 residue for substrate specificity, 12 Cys residues forming six disulfide-bridges, and the calcium-ion-binding loop. On the other hand, the contents of charged amino acid residues in whole JD-T molecule (16.2%) and N-terminal region (13.8%) were similar to those of tropical-zone marine fish and other freshwater fish trypsins. Then, JD-T conserved the five amino acid residues (Glu70, Asn72, Val75, Glu77, and Glu80) coordinate with calcium-ion, and the proportion of negatively charged amino acids to charged amino acids in the calcium-ion-binding region of JD-T (75.0%) was equivalent to those of tropical-zone marine fish and freshwater fish trypsins. Therefore, it was suggested that the high thermostability of JD-T are stemmed from these structural specificities.
Collapse
Affiliation(s)
- Gaku Kanno
- Laboratory of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Agro- and Bio- Industry, Thaksin University, Phatthalung Campus, Pa-Phayom, Phatthalung, 93210, Thailand
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
35
|
Meister SW, Hendrikse NM, Löfblom J. Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method. Biol Chem 2019; 400:405-415. [PMID: 30521472 DOI: 10.1515/hsz-2018-0362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
Proteases are crucial for regulating biological processes in organisms through hydrolysis of peptide bonds. Recombinant proteases have moreover become important tools in biotechnological, and biomedical research and as therapeutics. We have developed a label-free high-throughput method for quantitative assessment of proteolytic activity in Escherichia coli. The screening method is based on co-expression of a protease of interest and a reporter complex. This reporter consists of an aggregation-prone peptide fused to a fluorescent protein via a linker that contains the corresponding substrate sequence. Cleavage of the substrate rescues the fluorescent protein from aggregation, resulting in increased fluorescence that correlates to proteolytic activity, which can be monitored using flow cytometry. In one round of flow-cytometric cell sorting, we isolated an efficiently cleaved tobacco etch virus (TEV) substrate from a 1:100 000 background of non-cleavable sequences, with around 6000-fold enrichment. We then engineered the 3C protease from coxsackievirus B3 (CVB3 3Cpro) towards improved proteolytic activity on the substrate LEVLFQ↓GP. We isolated highly proteolytic active variants from a randomly mutated CVB3 3Cpro library with up to 4-fold increase in activity. The method enables simultaneous measurement of proteolytic activity and protease expression levels and can therefore be applied for protease substrate profiling, as well as directed evolution of proteases.
Collapse
Affiliation(s)
- Sebastian W Meister
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Natalie M Hendrikse
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
36
|
Smith G, Kelly JE, Macias-Muñoz A, Butts CT, Martin RW, Briscoe AD. Evolutionary and structural analyses uncover a role for solvent interactions in the diversification of cocoonases in butterflies. Proc Biol Sci 2019; 285:rspb.2017.2037. [PMID: 29298934 DOI: 10.1098/rspb.2017.2037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
Multi-omic approaches promise to supply the power to detect genes underlying disease and fitness-related phenotypes. Optimal use of the resulting profusion of data requires detailed investigation of individual candidate genes, a challenging proposition. Here, we combine transcriptomic and genomic data with molecular modelling of candidate enzymes to characterize the evolutionary history and function of the serine protease cocoonase. Heliconius butterflies possess the unique ability to feed on pollen; recent work has identified cocoonase as a candidate gene in pollen digestion. Cocoonase was first described in moths, where it aids in eclosure from the cocoon and is present as a single copy gene. In heliconiine butterflies it is duplicated and highly expressed in the mouthparts of adults. At least six copies of cocoonase are present in Heliconius melpomene and copy number varies across H. melpomene sub-populations. Most cocoonase genes are under purifying selection, however branch-site analyses suggest cocoonase 3 genes may have evolved under episodic diversifying selection. Molecular modelling of cocoonase proteins and examination of their predicted structures revealed that the active site region of each type has a similar structure to trypsin, with the same predicted substrate specificity across types. Variation among heliconiine cocoonases instead lies in the outward-facing residues involved in solvent interaction. Thus, the neofunctionalization of cocoonase duplicates appears to have resulted from the need for these serine proteases to operate in diverse biochemical environments. We suggest that cocoonase may have played a buffering role in feeding during the diversification of Heliconius across the neotropics by enabling these butterflies to digest protein from a range of biochemical milieux.
Collapse
Affiliation(s)
- G Smith
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA .,School of Biological Sciences, Bangor University, Brambell Laboratories, Bangor, Gwynedd, UK
| | - J E Kelly
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - A Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - C T Butts
- Department of Sociology, University of California, Irvine, CA 92697, USA.,Department of Statistics, University of California, Irvine, CA 92697, USA.,Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| | - R W Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - A D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Mohammad M, Razmjou A, Liang K, Asadnia M, Chen V. Metal-Organic-Framework-Based Enzymatic Microfluidic Biosensor via Surface Patterning and Biomineralization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1807-1820. [PMID: 30525376 DOI: 10.1021/acsami.8b16837] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, the biomineralization of enzyme in metal-organic-framework (enzyme-MOF) composite have shown a great potential to increase enzymes stability without compromising their activity; hence, it is desirable for its applications in biosensing devices. Nonetheless, most of the enzyme-MOF research has been focusing on enzyme encapsulation in particle form, which limits its synthesis flexibility for practical applications because of its requirement for postsynthesis immobilization onto solid support. Therefore, to develop a diagnostic device out of the biomineralized enzyme, surface patterning and integration of microfluidic system offers many advantages. In this work, mussel-inspired polydopamine/polyethyleneimine (PDA/PEI) coating is employed to pattern enzyme-MOF in microfluidic channels and exploit the wettability gradient for "pumpless transportation" effect. As a proof of concept, we combine a cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes to detect glucose into a patterned zeolitic imidazole framework-8 (ZIF-8) thin film on a flexible polymeric substrate. The results show that the ZIF-8/GOx&HRP in situ composites on PDA/PEI patterns have good acid and thermal stability compared with samples without ZIF-8. ZIF-8/GOx&HRP in situ shows high selectivity toward glucose, linear sensitivity of 0.00303 Abs/μM, and the limit of detection of 8 μM glucose concentration. An unexpected benefit of this approach is the ability of the ZIF-8 thin-film structure to provide a diffusion limiting effect for substrate influx, thus, producing high range of linear response range (8 μM to 5 mM of glucose). This work provides insights into the spatial location of the enzymes in MOF thin films and the potential of such patterning techniques for MOF-based biosensors using other types of biological elements such as antibodies and aptamers.
Collapse
Affiliation(s)
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies , University of Isfahan , Isfahan 73441-81746 , Iran
| | | | - Mohsen Asadnia
- School of Engineering , Macquarie University , Sydney 2109 , Australia
| | - Vicki Chen
- School of Chemical Engineering , University of Queensland , St. Lucia 4072 , Australia
| |
Collapse
|
38
|
Tran DT. Engineering Proteases for Mass Spectrometry‐Based Post Translational Modification Analyses. Proteomics 2018; 19:e1700471. [DOI: 10.1002/pmic.201700471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Duc T. Tran
- School of BiotechnologyInternational University—Vietnam National University in HCMC Ho Chi Minh City 720351 Vietnam
| |
Collapse
|
39
|
Akparov VK, Timofeev VI, Kuranova IP, Rakitina TV. Crystal structure of mutant carboxypeptidase T from Thermoactinomyces vulgaris with an implanted S1' subsite from pancreatic carboxypeptidase B. Acta Crystallogr F Struct Biol Commun 2018; 74:638-643. [PMID: 30279315 PMCID: PMC6168770 DOI: 10.1107/s2053230x18011962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/23/2018] [Indexed: 11/10/2022] Open
Abstract
A site-directed mutagenesis method has been used to obtain the G215S/A251G/T257A/D260G/T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris (CPT), in which the amino-acid residues of the S1' subsite are substituted by the corresponding residues from pancreatic carboxypeptidase B (CPB). It was shown that the mutant enzyme retained the broad, mainly hydrophobic selectivity of wild-type CPT. The mutant containing the implanted CPB S1' subsite was crystallized and its three-dimensional structure was determined at 1.29 Å resolution by X-ray crystallography. A comparison of the three-dimensional structures of CPT, the G215S/A251G/T257A/D260G/T262D CPT mutant and CPB showed that the S1' subsite of CPT has not been distorted by the mutagenesis and adequately reproduces the structure of the CPB S1' subsite. The CPB-like mutant differs from CPB in substrate selectivity owing to differences between the two enzymes outside the S1' subsite. Moreover, the difference in substrate specificity between the enzymes was shown to be affected by residues other than those that directly contact the substrate.
Collapse
Affiliation(s)
- Valery Kh. Akparov
- Protein Chemistry Department, State Research Institute for Genetics and Selection of Industrial Microorganisms, 1yi Dorozhnyi Proezd 1, Moscow 117545, Russian Federation
| | - Vladimir I. Timofeev
- X-ray Analysis Methods and Synchrotron Radiation Laboratory, Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
- Kurchatov Complex of NBICS-Technologies, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Sq. 1, Moscow 123182, Russian Federation
| | - Inna P. Kuranova
- X-ray Analysis Methods and Synchrotron Radiation Laboratory, Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky Prospect 59, Moscow 119333, Russian Federation
- Kurchatov Complex of NBICS-Technologies, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Sq. 1, Moscow 123182, Russian Federation
| | - Tatiana V. Rakitina
- Kurchatov Complex of NBICS-Technologies, National Research Centre ‘Kurchatov Institute’, Akad. Kurchatova Sq. 1, Moscow 123182, Russian Federation
| |
Collapse
|
40
|
de Veer SJ, Li CY, Swedberg JE, Schroeder CI, Craik DJ. Engineering potent mesotrypsin inhibitors based on the plant-derived cyclic peptide, sunflower trypsin inhibitor-1. Eur J Med Chem 2018; 155:695-704. [PMID: 29936356 DOI: 10.1016/j.ejmech.2018.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Plants produce a diverse range of peptides and proteins that inhibit the activity of different serine proteases. The value of these inhibitors not only stems from their native role(s) in planta, but they are also regarded as promising templates for inhibitor engineering. Interest in this field has grown rapidly in recent years, particularly for therapeutic applications. The serine protease mesotrypsin has been implicated in several cancers, but is a challenging target for inhibitor engineering as a number of serine protease inhibitors that typically display broad-range activity show limited activity against mesotrypsin. In this study, we use a cyclic peptide isolated from sunflower seeds, sunflower trypsin inhibitor-1 (SFTI-1), as a scaffold for engineering potent mesotrypsin inhibitors. SFTI-1 comprises 14-amino acids and is a potent inhibitor of human cationic trypsin (Ki = 30 ± 0.8 pM) but shows 165,000-fold weaker activity against mesotrypsin (Ki = 4.96 ± 0.2 μM). Using an inhibitor library based on SFTI-1, we show that the inhibitor's P2' residue (Ile) is a key contributor to SFTI-1's limited activity against mesotrypsin. Substituting P2' Ile with chemically diverse amino acids, including non-canonical aromatic residues, produced new inhibitor variants that maintained a similar structure to SFTI-1 and showed marked improvements in activity (exceeding 100-fold). An assessment of the activity of the new inhibitors against closely-related trypsin paralogs revealed that the improved activity against mesotrypsin was accompanied by a loss in activity against off-target proteases, such that several engineered variants showed comparable activity against mesotrypsin and human cationic trypsin. Together, these findings identify potent mesotrypsin inhibitors that are suitable for further optimisation studies and demonstrate the potential gains in activity and selectivity that can be achieved by optimising the P2' residue, particularly for engineered SFTI-based inhibitors.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
41
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
42
|
Ido Y, Maçon AL, Iguchi M, Ozeki Y, Koeda S, Obata A, Kasuga T, Mizuno T. Construction of enzyme-encapsulated fibermats from the cross-linkable copolymers poly(acrylamide)- co -poly(diacetone acrylamide) with the bi-functional cross-linker, adipic acid dihydrazide. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Engineering peptide ligase specificity by proteomic identification of ligation sites. Nat Chem Biol 2017; 14:50-57. [PMID: 29155430 PMCID: PMC5726896 DOI: 10.1038/nchembio.2521] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme–substrate specificity limits its utility. Here, we present an approach for comprehensive characterization of peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme–substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. These studies provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.
Collapse
|
44
|
Packer MS, Rees HA, Liu DR. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat Commun 2017; 8:956. [PMID: 29038472 PMCID: PMC5643515 DOI: 10.1038/s41467-017-01055-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 01/15/2023] Open
Abstract
Here we perform phage-assisted continuous evolution (PACE) of TEV protease, which canonically cleaves ENLYFQS, to cleave a very different target sequence, HPLVGHM, that is present in human IL-23. A protease emerging from ∼2500 generations of PACE contains 20 non-silent mutations, cleaves human IL-23 at the target peptide bond, and when pre-mixed with IL-23 in primary cultures of murine splenocytes inhibits IL-23-mediated immune signaling. We characterize the substrate specificity of this evolved enzyme, revealing shifted and broadened specificity changes at the six positions in which the target amino acid sequence differed. Mutational dissection and additional protease specificity profiling reveal the molecular basis of some of these changes. This work establishes the capability of changing the substrate specificity of a protease at many positions in a practical time scale and provides a foundation for the development of custom proteases that catalytically alter or destroy target proteins for biotechnological and therapeutic applications.Proteases are promising therapeutics to treat diseases such as hemophilia which are due to endogenous protease deficiency. Here the authors use phage-assisted continuous evolution to evolve a variant TEV protease with altered target peptide sequence specificities.
Collapse
Affiliation(s)
- Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Graduate Program in Biophysics Program, Harvard University, 240 Longwood Avenue, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - Holly A Rees
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA. .,Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142, USA. .,Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
45
|
Albaum D, Broehan G, Muthukrishnan S, Merzendorfer H. Functional analysis of TcCTLP-5C 2, a chymotrypsin-like serine protease needed for molting in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:20-28. [PMID: 28522347 DOI: 10.1016/j.ibmb.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
In a previous study, we have characterized a gene family encoding chymotrypsin-like proteases from the red flour beetle, Tribolium castaneum (TcCTLPs). We identified 14 TcCTLP genes that were predominantly expressed in the midgut, where they presumably function in digestion. Two genes (TcCTLP-6C and TcCTLP-5C2), however, additionally showed considerable expression in the carcass, and RNAi studies demonstrated that they are required for molting (Broehan et al., 2010; Insect Biochem. Mol. Biol 40, 274-83). Thus, the enzyme has distinct functions in different physiological environments. To study molecular adaptations that facilitate enzyme function in different environments, we performed an in-depth analysis of the molecular and enzymatic properties of TcCTLP-5C2. We expressed different mutated versions of TcCTLP-5C2 in form of factor Xa activatable pro-enzymes in insect cells using a baculoviral expression system, and purified the recombinant proteins by affinity chromatography. By measuring and comparing the enzyme activities, we obtained information about the significance of single amino acid residues in motifs that determine substrate specificity and pH tolerance. Further, we showed that TcCTLP-5C2 is modified by N-glycosylation at amino acid position N137, which lies opposite to the catalytic cleft. Comparison of the enzymatic properties of non-glycosylated and glycosylated TcCTLP-5C2 versions showed that N-glycosylation decreases Vmax (maximum velocity) and kcat (turnover) while leaving the Km (specificity) unchanged. Thus, we provide evidence that N-glycosylation alters catalytic behavior by allosteric effects presumably due to altered structural dynamics as observed for chemically glycosylated enzymes.
Collapse
Affiliation(s)
- Daniel Albaum
- Institute of Biology, University of Siegen, 57076 Siegen, Germany
| | - Gunnar Broehan
- Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | | |
Collapse
|
46
|
Hoque MA, Zhang Y, Chen L, Yang G, Khatun MA, Chen H, Hao L, Feng Y. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions. ACS Chem Biol 2017; 12:1188-1193. [PMID: 28323400 DOI: 10.1021/acschembio.7b00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >107 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.
Collapse
Affiliation(s)
- Md Anarul Hoque
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuqing Chen
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mst Afroza Khatun
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haifeng Chen
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu Hao
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Stewart JJP. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin. J Mol Model 2017; 23:154. [PMID: 28378242 PMCID: PMC5380709 DOI: 10.1007/s00894-017-3326-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/17/2017] [Indexed: 02/01/2023]
Abstract
The catalytic cycle for the serine protease α-chymotrypsin was investigated in an attempt to determine the suitability of using the semiempirical method PM7 in the program MOPAC for investigating enzyme-catalyzed reactions. All six classical intermediates were modeled using standard methods, and were characterized as stable minima on the potential energy surface. Using a modified saddle point optimization method, five transition states were located and verified both by vibrational and by intrinsic reaction coordinate analysis. Some individual features, such as the hydrogen bonds in the oxyanion hole, the nature of various electrostatic interactions, and the role of Met192, were examined. This involved designing and running computational experiments to model mutations that would allow features of interest, in particular the energies involved, to be isolated. Three features within the enzyme were examined in detail: the reaction site itself, where covalent bonds were made and broken, the electrostatic effects of the buried aspartate anion, a passive but essential component of the catalytic triad, and the oxyanion hole, where hydrogen bonds help stabilize charged intermediates. With one minor exception, all phenomena investigated agreed with previously-reported descriptions. This result, along with the fact that all the techniques used were relatively straightforward, leads to the recommendation that PM7 and related methods, such as PM6-D3H4, are appropriate for modeling similar enzyme-catalyzed reactions. Graphical abstract Fifth of six transition states, showing water splitting into hydroxyl anion and a proton, to form the second tetrahedral intermediate and histidinium ion. Atoms of the water molecule involved in the hydrolysis are indicated by halos.
Collapse
Affiliation(s)
- James J P Stewart
- Stewart Computational Chemistry, 15210 Paddington Circle, Colorado Springs, CO, 80921, USA.
| |
Collapse
|
48
|
Bienvenut WV, Scarpelli JP, Dumestier J, Meinnel T, Giglione C. EnCOUNTer: a parsing tool to uncover the mature N-terminus of organelle-targeted proteins in complex samples. BMC Bioinformatics 2017; 18:182. [PMID: 28320318 PMCID: PMC5359831 DOI: 10.1186/s12859-017-1595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background Characterization of mature protein N-termini by large scale proteomics is challenging. This is especially true for proteins undergoing cleavage of transit peptides when they are targeted to specific organelles, such as mitochondria or chloroplast. Protein neo-N-termini can be located up to 100–150 amino acids downstream from the initiator methionine and are not easily predictable. Although some bioinformatics tools are available, they usually require extensive manual validation to identify the exact N-terminal position. The situation becomes even more complex when post-translational modifications take place at the neo-N-terminus. Although N-terminal acetylation occurs mostly in the cytosol, it is also observed in some organelles such as chloroplast. To date, no bioinformatics tool is available to define mature protein starting positions, the associated N-terminus acetylation status and/or yield for each proteoform. In this context, we have developed the EnCOUNTer tool (i) to score all characterized peptides using discriminating parameters to identify bona fide mature protein N-termini and (ii) to determine the N-terminus acetylation yield of the most reliable ones. Results Based on large scale proteomics analyses using the SILProNAQ methodology, tandem mass spectrometry favoured the characterization of thousands of peptides. Data processing using the EnCOUNTer tool provided an efficient and rapid way to extract the most reliable mature protein N-termini. Selected peptides were subjected to N-terminus acetylation yield determination. In an A. thaliana cell lysate, 1232 distinct proteotypic N-termini were characterized of which 648 were located at the predicted protein N-terminus (position 1/2) and 584 were located further downstream (starting at position > 2). A large number of these N-termini were associated with various well-defined maturation processes occurring on organelle-targeted proteins (mitochondria, chloroplast and peroxisome), secreted proteins or membrane-targeted proteins. It was also possible to highlight some protein alternative starts, splicing variants or erroneous protein sequence predictions. Conclusions The EnCOUNTer tool provides a unique way to extract accurately the most relevant mature proteins N-terminal peptides from large scale experimental datasets. Such data processing allows the identification of the exact N-terminus position and the associated acetylation yield. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1595-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Willy Vincent Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Jean-Pierre Scarpelli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Johan Dumestier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
49
|
Fuchs JE, Schilling O, Liedl KR. Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data. Curr Protein Pept Sci 2017; 18:905-913. [PMID: 27455965 PMCID: PMC5898033 DOI: 10.2174/1389203717666160724211231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/30/2017] [Accepted: 04/15/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent advances in proteomics methodologies allow for high throughput profiling of proteolytic cleavage events. The resulting substrate peptide distributions provide deep insights in the underlying macromolecular recognition events, as determinants of biomolecular specificity identified by proteomics approaches may be compared to structure-based analysis of corresponding protein-protein interfaces. METHOD Here, we present an overview of experimental and computational methodologies and tools applied in the area and provide an outlook beyond the protein class of proteases. RESULTS AND CONCLUSION We discuss here future potential, synergies and needs of the emerging overlap disciplines of proteomics and structure-based modelling.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104Freiburg, Germany
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020Innsbruck, Austria
| |
Collapse
|
50
|
Bisht M, Venkatesu P. Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. NEW J CHEM 2017. [DOI: 10.1039/c7nj03023a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Unanticipated high thermal stability and sustained activity of CT was found in the presence of [Ch][Ac], [Ch][Cl] and [Ch][Dhp], while [Ch][Cit] and [Ch][OH] act as strong destabilizers for the CT structure.
Collapse
Affiliation(s)
- Meena Bisht
- Department of Chemistry, University of Delhi
- Delhi-110 007
- India
| | | |
Collapse
|