1
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Dunkelmann DL, Piedrafita C, Dickson A, Liu KC, Elliott TS, Fiedler M, Bellini D, Zhou A, Cervettini D, Chin JW. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism. Nature 2024; 625:603-610. [PMID: 38200312 PMCID: PMC10794150 DOI: 10.1038/s41586-023-06897-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several β-amino acids, α,α-disubstituted-amino acids and β-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of β-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.
Collapse
Affiliation(s)
| | - Carlos Piedrafita
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandre Dickson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dom Bellini
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Zhou
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
3
|
Fu X, Shang Y, Chen S, Dedkova LM, Hecht SM. Activation of d-Asparagine and d-Glutamine Derivatives Using the Mitsunobu Reaction. Org Lett 2023. [PMID: 36800493 DOI: 10.1021/acs.orglett.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Seven d-amino acid derivatives having reactive side chains have been activated to afford their respective 3,5-dinitrobenzyl esters using the Mitsunobu reaction. This esterification was found to be difficult using traditional methods involving 3,5-dinitrobenzyl chloride under alkaline conditions. The conversion of a tRNA to the respective d-glutaminyl-tRNA using d-glutamine 3,5-dinitrobenzyl ester was catalyzed by a flexizyme, followed by purification to remove all the unacylated tRNAs and other byproducts. Both d- and l-glutamine were incorporated from their aminoacyl-tRNAs into a model peptide structurally related to IFN-β.
Collapse
Affiliation(s)
- Xuan Fu
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuqin Shang
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
4
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
5
|
Thommen M, Draycheva A, Rodnina MV. Ribosome selectivity and nascent chain context in modulating the incorporation of fluorescent non-canonical amino acid into proteins. Sci Rep 2022; 12:12848. [PMID: 35896582 PMCID: PMC9329280 DOI: 10.1038/s41598-022-16932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fluorescence reporter groups are important tools to study the structure and dynamics of proteins. Genetic code reprogramming allows for cotranslational incorporation of non-canonical amino acids at any desired position. However, cotranslational incorporation of bulky fluorescence reporter groups is technically challenging and usually inefficient. Here we analyze the bottlenecks for the cotranslational incorporation of NBD-, BodipyFL- and Atto520-labeled Cys-tRNACys into a model protein using a reconstituted in-vitro translation system. We show that the modified Cys-tRNACys can be rejected during decoding due to the reduced ribosome selectivity for the modified aa-tRNA and the competition with native near-cognate aminoacyl-tRNAs. Accommodation of the modified Cys-tRNACys in the A site of the ribosome is also impaired, but can be rescued by one or several Gly residues at the positions −1 to −4 upstream of the incorporation site. The incorporation yield depends on the steric properties of the downstream residue and decreases with the distance from the protein N-terminus to the incorporation site. In addition to the full-length translation product, we find protein fragments corresponding to the truncated N-terminal peptide and the C-terminal fragment starting with a fluorescence-labeled Cys arising from a StopGo-like event due to a defect in peptide bond formation. The results are important for understanding the reasons for inefficient cotranslational protein labeling with bulky reporter groups and for designing new approaches to improve the yield of fluorescence-labeled protein.
Collapse
Affiliation(s)
- Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Abstract
![]()
Since the establishment
of site-specific mutagenesis of single
amino acids to interrogate protein function in the 1970s, biochemists
have sought to tailor protein structure in the native cell environment.
Fine-tuning the chemical properties of proteins is an indispensable
way to address fundamental mechanistic questions. Unnatural amino
acids (UAAs) offer the possibility to expand beyond the 20 naturally
occurring amino acids in most species and install new and useful chemical
functions. Here, we review the literature about advances in UAA incorporation
technology from chemoenzymatic aminoacylation of modified tRNAs to in vitro translation systems to genetic encoding of UAAs
in the native cell environment and whole organisms. We discuss innovative
applications of the UAA technology to challenges in bioengineering
and medicine.
Collapse
Affiliation(s)
- Mia A Shandell
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, U.K
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Department of Systems Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Maini R, Kimura H, Takatsuji R, Katoh T, Goto Y, Suga H. Ribosomal Formation of Thioamide Bonds in Polypeptide Synthesis. J Am Chem Soc 2019; 141:20004-20008. [DOI: 10.1021/jacs.9b11097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Kuncha SK, Kruparani SP, Sankaranarayanan R. Chiral checkpoints during protein biosynthesis. J Biol Chem 2019; 294:16535-16548. [PMID: 31591268 DOI: 10.1074/jbc.rev119.008166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein chains contain only l-amino acids, with the exception of the achiral glycine, making the chains homochiral. This homochirality is a prerequisite for proper protein folding and, hence, normal cellular function. The importance of d-amino acids as a component of the bacterial cell wall and their roles in neurotransmission in higher eukaryotes are well-established. However, the wider presence and the corresponding physiological roles of these specific amino acid stereoisomers have been appreciated only recently. Therefore, it is expected that enantiomeric fidelity has to be a key component of all of the steps in translation. Cells employ various molecular mechanisms for keeping d-amino acids away from the synthesis of nascent polypeptide chains. The major factors involved in this exclusion are aminoacyl-tRNA synthetases (aaRSs), elongation factor thermo-unstable (EF-Tu), the ribosome, and d-aminoacyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome act as "chiral checkpoints" by preferentially binding to l-amino acids or l-aminoacyl-tRNAs, thereby excluding d-amino acids. Interestingly, DTD, which is conserved across all life forms, performs "chiral proofreading," as it removes d-amino acids erroneously added to tRNA. Here, we comprehensively review d-amino acids with respect to their occurrence and physiological roles, implications for chiral checkpoints required for translation fidelity, and potential use in synthetic biology.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, CSIR-CCMB Campus, Hyderabad, Telangana 500007, India
| | - Shobha P Kruparani
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| |
Collapse
|
10
|
Ottl J, Leder L, Schaefer JV, Dumelin CE. Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Molecules 2019; 24:E1629. [PMID: 31027189 PMCID: PMC6514559 DOI: 10.3390/molecules24081629] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/22/2023] Open
Abstract
The scope of targets investigated in pharmaceutical research is continuously moving into uncharted territory. Consequently, finding suitable chemical matter with current compound collections is proving increasingly difficult. Encoded library technologies enable the rapid exploration of large chemical space for the identification of ligands for such targets. These binders facilitate drug discovery projects both as tools for target validation, structural elucidation and assay development as well as starting points for medicinal chemistry. Novartis internalized two complementing encoded library platforms to accelerate the initiation of its drug discovery programs. For the identification of low-molecular weight ligands, we apply DNA-encoded libraries. In addition, encoded peptide libraries are employed to identify cyclic peptides. This review discusses how we apply these two platforms in our research and why we consider it beneficial to run both pipelines in-house.
Collapse
Affiliation(s)
- Johannes Ottl
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Lukas Leder
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Jonas V Schaefer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | | |
Collapse
|
11
|
Iqbal ES, Dods KK, Hartman MCT. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase. Org Biomol Chem 2019; 16:1073-1078. [PMID: 29367962 DOI: 10.1039/c7ob02931d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.
Collapse
Affiliation(s)
- Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, Virginia 23284, USA.
| | | | | |
Collapse
|
12
|
Takatsuji R, Shinbara K, Katoh T, Goto Y, Passioura T, Yajima R, Komatsu Y, Suga H. Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with In Vitro Display. J Am Chem Soc 2019; 141:2279-2287. [DOI: 10.1021/jacs.8b05327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Takatsuji
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koki Shinbara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Yajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yamato Komatsu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
14
|
Sereikaitė V, Jensen TMT, Bartling CRO, Jemth P, Pless SA, Strømgaard K. Probing Backbone Hydrogen Bonds in Proteins by Amide-to-Ester Mutations. Chembiochem 2018; 19:2136-2145. [PMID: 30073762 DOI: 10.1002/cbic.201800350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/09/2023]
Abstract
All proteins contain characteristic backbones formed of consecutive amide bonds, which can engage in hydrogen bonds. However, the importance of these is not easily addressed by conventional technologies that only allow for side-chain substitutions. By contrast, technologies such as nonsense suppression mutagenesis and protein ligation allow for manipulation of the protein backbone. In particular, replacing the backbone amide groups with ester groups, that is, amide-to-ester mutations, is a powerful tool to examine backbone-mediated hydrogen bonds. In this minireview, we showcase examples of how amide-to-ester mutations can be used to uncover pivotal roles of backbone-mediated hydrogen bonds in protein recognition, folding, function, and structure.
Collapse
Affiliation(s)
- Vita Sereikaitė
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Thomas M T Jensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Christian R O Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123, Uppsala, Sweden
| | - Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| |
Collapse
|
15
|
Schmidt A, Altincekic N, Gustmann H, Wachtveitl J, Hengesbach M. The Protein Microenvironment Governs the Suitability of Labeling Sites for Single-Molecule Spectroscopy of RNP Complexes. ACS Chem Biol 2018; 13:2472-2483. [PMID: 30060648 DOI: 10.1021/acschembio.8b00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-molecule techniques allow unique insights into biological systems as they provide unrivaled access to structural dynamics and conformational heterogeneity. One major bottleneck for reliable single-molecule Förster resonance energy transfer (smFRET) analysis is the identification of suitable fluorophore labeling sites that neither impair the function of the biological system nor cause photophysical artifacts of the fluorophore. To address this issue, we identified the contribution of virtually all individual parameters that affect Förster resonance energy transfer between two fluorophores attached to a ribonucleoprotein complex consisting of the RNA-binding protein L7Ae and a cognate kink turn containing RNA. A non-natural amino acid was incorporated at various positions of the protein using an amber suppression system (pEVOL) to label the protein via copper(I)-catalyzed alkyne-azide cycloaddition. On the basis of simulations followed by functional, structural, and multiparameter fluorescence analysis of five different smFRET RNPs, new insights into the design of smFRET RNPs were obtained. From this, a correlation between the photophysical properties of fluorophores attached to the protein and the predictability of the corresponding smFRET construct was established. Additionally, we identify a straightforward experimental method for characterizing selected labeling sites. Overall, this protocol allows fast generation and assessment of functional RNPs for accurate single-molecule experiments.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Henrik Gustmann
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
16
|
Fleisher RC, Cornish VW, Gonzalez RL. d-Amino Acid-Mediated Translation Arrest Is Modulated by the Identity of the Incoming Aminoacyl-tRNA. Biochemistry 2018; 57:4241-4246. [PMID: 29979035 DOI: 10.1021/acs.biochem.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A complete understanding of the determinants that restrict d-amino acid incorporation by the ribosome, which is of interest to both basic biologists and the protein engineering community, remains elusive. Previously, we demonstrated that d-amino acids are successfully incorporated into the C-terminus of the nascent polypeptide chain. Ribosomes carrying the resulting peptidyl-d-aminoacyl-tRNA (peptidyl-d-aa-tRNA) donor substrate, however, partition into subpopulations that either undergo translation arrest through inactivation of the ribosomal peptidyl-transferase center (PTC) or remain translationally competent. The proportion of each subpopulation is determined by the identity of the d-amino acid side chain. Here, we demonstrate that the identity of the aminoacyl-tRNA (aa-tRNA) acceptor substrate that is delivered to ribosomes carrying a peptidyl-d-aa-tRNA donor further modulates this partitioning. Our discovery demonstrates that it is the pairing of the peptidyl-d-aa-tRNA donor and the aa-tRNA acceptor that determines the activity of the PTC. Moreover, we provide evidence that both the amino acid and tRNA components of the aa-tRNA acceptor contribute synergistically to the extent of arrest. The results of this work deepen our understanding of the mechanism of d-amino acid-mediated translation arrest and how cells avoid this precarious obstacle, reveal similarities to other translation arrest mechanisms involving the PTC, and provide a new route for improving the yields of engineered proteins containing d-amino acids.
Collapse
Affiliation(s)
- Rachel C Fleisher
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Virginia W Cornish
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Ruben L Gonzalez
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
17
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
19
|
Müller MM. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Biochemistry 2017; 57:177-185. [PMID: 29064683 PMCID: PMC5770884 DOI: 10.1021/acs.biochem.7b00861] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Post-translational
modifications (PTMs) dramatically enhance the
capabilities of proteins. They introduce new functionalities and dynamically
control protein activity by modulating intra- and intermolecular interactions.
Traditionally, PTMs have been considered as reversible attachments
to nucleophilic functional groups on amino acid side chains, whereas
the polypeptide backbone is often thought to be inert. This paradigm
is shifting as chemically and functionally diverse alterations of
the protein backbone are discovered. Importantly, backbone PTMs can
control protein structure and function just as side chain modifications
do and operate through unique mechanisms to achieve these features.
In this Perspective, I outline the various types of protein backbone
modifications discovered so far and highlight their contributions
to biology as well as the challenges in studying this versatile yet
poorly characterized class of PTMs.
Collapse
Affiliation(s)
- Manuel M Müller
- Department of Chemistry, King's College London , 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
20
|
Cheloha RW, Chen B, Kumar NN, Watanabe T, Thorne RG, Li L, Gardella TJ, Gellman SH. Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad β Residue Distribution. J Med Chem 2017; 60:8816-8833. [PMID: 29064243 DOI: 10.1021/acs.jmedchem.7b00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The parathyroid hormone receptor 1 (PTHR1) is a member of the B-family of GPCRs; these receptors are activated by long polypeptide hormones and constitute targets of drug development efforts. Parathyroid hormone (PTH, 84 residues) and PTH-related protein (PTHrP, 141 residues) are natural agonists of PTHR1, and an N-terminal fragment of PTH, PTH(1-34), is used clinically to treat osteoporosis. Conventional peptides in the 20-40-mer length range are rapidly degraded by proteases, which may limit their biomedical utility. We have used the PTHR1-ligand system to explore the impact of broadly distributed replacement of α-amino acid residues with β-amino acid residues on susceptibility to proteolysis and agonist activity. This effort led us to identify new PTHR1 agonists that contain α → β replacements throughout their sequences, manifest potent agonist activity in cellular assays, and display remarkable resistance to proteolysis, in cases remaining active after extended exposure to simulated gastric fluid. The strategy we have employed suggests a path toward identifying protease-resistant agonists of other B-family GPCRs.
Collapse
Affiliation(s)
- Ross W Cheloha
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Niyanta N Kumar
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Robert G Thorne
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison Biomedical Engineering , Engineering Centers Building, Room 2120, 1550 Engineering Drive, Madison Wisconsin 53706, United States.,Neuroscience Training Program & Center for Neuroscience, Wisconsin Institutes for Medical Research II , Rooms 9531 and 9533, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Cellular and Molecular Pathology Graduate Training Program, UW Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison , 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Repurposing ribosomes for synthetic biology. Curr Opin Chem Biol 2017; 40:87-94. [PMID: 28869851 DOI: 10.1016/j.cbpa.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022]
Abstract
The translation system is the cell's factory for protein biosynthesis, stitching together hundreds to thousands of amino acids into proteins, which are required for the structure, function, and regulation of living systems. The extraordinary synthetic capability of this system, which includes the ribosome and its associated factors required for polymerization, has driven extensive efforts to harness it for societal use in areas as diverse as energy, materials, and medicine. A powerful example is recombinant protein production, which has impacted the lives of patients through the synthesis of biopharmaceuticals such as insulin. In nature, however, only limited sets of monomers are utilized, thereby resulting in limited sets of biopolymers (i.e., proteins). Expanding nature's repertoire of ribosomal monomers could yield new classes of enzymes, therapeutics, materials, and chemicals with diverse, genetically encoded chemistry. Here, we discuss recent progress towards engineering ribosomes both in vivo and in vitro. These fundamental and technical breakthroughs open doors for advanced applications in biotechnology and synthetic biology.
Collapse
|
22
|
Maini R, Umemoto S, Suga H. Ribosome-mediated synthesis of natural product-like peptides via cell-free translation. Curr Opin Chem Biol 2016; 34:44-52. [DOI: 10.1016/j.cbpa.2016.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
|
23
|
Melo Czekster C, Robertson WE, Walker AS, Söll D, Schepartz A. In Vivo Biosynthesis of a β-Amino Acid-Containing Protein. J Am Chem Soc 2016; 138:5194-7. [PMID: 27086674 DOI: 10.1021/jacs.6b01023] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has recently been reported that ribosomes from erythromycin-resistant Escherichia coli strains, when isolated in S30 extracts and incubated with chemically mis-acylated tRNA, can incorporate certain β-amino acids into full length DHFR in vitro. Here we report that wild-type E. coli EF-Tu and phenylalanyl-tRNA synthetase collaborate with these mutant ribosomes and others to incorporate β(3)-Phe analogs into full length DHFR in vivo. E. coli harboring the most active mutant ribosomes are robust, with a doubling time only 14% longer than wild-type. These results reveal the unexpected tolerance of E. coli and its translation machinery to the β(3)-amino acid backbone and should embolden in vivo selections for orthogonal translational machinery components that incorporate diverse β-amino acids into proteins and peptides. E. coli harboring mutant ribosomes may possess the capacity to incorporate many non-natural, non-α-amino acids into proteins and other sequence-programmed polymeric materials.
Collapse
Affiliation(s)
- Clarissa Melo Czekster
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Wesley E Robertson
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Allison S Walker
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Dieter Söll
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
24
|
Richardson CJ, First EA. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain. Biochemistry 2016; 55:1541-53. [DOI: 10.1021/acs.biochem.5b01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Charles J. Richardson
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| | - Eric A. First
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| |
Collapse
|
25
|
Fujino T, Goto Y, Suga H, Murakami H. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids. J Am Chem Soc 2016; 138:1962-9. [DOI: 10.1021/jacs.5b12482] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoshige Fujino
- Department
of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hiroshi Murakami
- Department
of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
26
|
Fujino T, Murakami H. In VitroSelection Combined with Ribosomal Translation Containing Non-proteinogenic Amino Acids. CHEM REC 2016; 16:365-77. [DOI: 10.1002/tcr.201500239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Tomoshige Fujino
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
27
|
Achenbach J, Jahnz M, Bethge L, Paal K, Jung M, Schuster M, Albrecht R, Jarosch F, Nierhaus KH, Klussmann S. Outwitting EF-Tu and the ribosome: translation with d-amino acids. Nucleic Acids Res 2015; 43:5687-98. [PMID: 26026160 PMCID: PMC4499158 DOI: 10.1093/nar/gkv566] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNAGly that was selected according to the rules of ‘thermodynamic compensation’. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions.
Collapse
Affiliation(s)
- John Achenbach
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Michael Jahnz
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lucas Bethge
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krisztina Paal
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maria Jung
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maja Schuster
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Renate Albrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Florian Jarosch
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Knud H Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
28
|
The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. Proc Natl Acad Sci U S A 2015; 112:6038-43. [PMID: 25918365 DOI: 10.1073/pnas.1424712112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells.
Collapse
|
29
|
Kotsuki H, Kataoka M, Fukui C, Mimoto A, Kuge H, Honke K. A New Strategy for Synthesis of the Dinucleotide pdCpA: A Convenient Method for the Deprotection of Cyanoethyl, TBDMS, and Benzoyl Groups in One Step at High Pressure. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Schiller SM. Protein Tectons in Synthetic Biology. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
31
|
Ma H, Liu N, Shi S, Wang S, Chen Y. Genetic incorporation of d-amino acids into green fluorescent protein based on polysubstrate specificity. RSC Adv 2015; 5:39580-39586. [DOI: 10.1039/c5ra02289d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
A number of d-amino acids were genetically incorporated into green fluorescent protein, and the GFPuv mutant containing d-phenylalanine in the fluorophore at residue 66 was characterized.
Collapse
Affiliation(s)
- Hairong Ma
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Shaobo Shi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| |
Collapse
|
32
|
Reinert ZE, Horne WS. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure. Org Biomol Chem 2014; 12:8796-802. [PMID: 25285575 PMCID: PMC4211622 DOI: 10.1039/c4ob01769b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.
Collapse
Affiliation(s)
- Zachary E Reinert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
33
|
Passioura T, Suga H. Reprogramming the genetic code in vitro. Trends Biochem Sci 2014; 39:400-8. [DOI: 10.1016/j.tibs.2014.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
|
34
|
Abstract
Macrocyclic peptides are an emerging class of therapeutics that can modulate protein-protein interactions. In contrast to the heavily automated high-throughput screening systems traditionally used for the identification of chemically synthesized small-molecule drugs, peptide-based macrocycles can be synthesized by ribosomal translation and identified using in vitro selection techniques, allowing for extremely rapid (hours to days) screening of compound libraries comprising more than 10(13) different species. Furthermore, chemical modification of translated peptides and engineering of the genetic code have greatly expanded the structural diversity of the available peptide libraries. In this review, we discuss the use of these technologies for the identification of bioactive macrocyclic peptides, emphasizing recent developments.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; , , ,
| | | | | | | |
Collapse
|
35
|
Passioura T, Suga H. Flexizyme-Mediated Genetic Reprogramming As a Tool for Noncanonical Peptide Synthesis and Drug Discovery. Chemistry 2013; 19:6530-6. [DOI: 10.1002/chem.201300247] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Fujino T, Goto Y, Suga H, Murakami H. Reevaluation of the d-Amino Acid Compatibility with the Elongation Event in Translation. J Am Chem Soc 2013; 135:1830-7. [DOI: 10.1021/ja309570x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoshige Fujino
- Department of Life
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,
153-8902, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Hiroshi Murakami
- Department of Life
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,
153-8902, Japan
| |
Collapse
|
37
|
Quitterer F, List A, Beck P, Bacher A, Groll M. Biosynthesis of the 22nd genetically encoded amino acid pyrrolysine: structure and reaction mechanism of PylC at 1.5Å resolution. J Mol Biol 2012; 424:270-82. [PMID: 22985965 DOI: 10.1016/j.jmb.2012.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/21/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide L-lysine-N(ε)-3R-methyl-D-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5'-adenylyl-β-γ-imidodiphosphate, ADP, D-ornithine (D-Orn), L-lysine (Lys), phosphorylated D-Orn, L-lysine-N(ε)-D-ornithine, inorganic phosphate, carbonate, and Mg(2+). The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of D-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an S(N)2 reaction resulting in L-lysine-N(ε)-D-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis.
Collapse
Affiliation(s)
- Felix Quitterer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | | | | | | | | |
Collapse
|
38
|
Forster AC. Synthetic biology challenges long-held hypotheses in translation, codon bias and transcription. Biotechnol J 2012; 7:835-45. [DOI: 10.1002/biot.201200002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/28/2012] [Accepted: 05/08/2012] [Indexed: 11/09/2022]
|
39
|
Iwasaki K, Goto Y, Katoh T, Suga H. Selective thioether macrocyclization of peptides having the N-terminal 2-chloroacetyl group and competing two or three cysteine residues in translation. Org Biomol Chem 2012; 10:5783-6. [PMID: 22419118 DOI: 10.1039/c2ob25306b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mode of thioether macrocyclization of peptides containing an N-terminal 2-chloroacetyl group and two or three competing cysteine residues at downstream positions has been extensively studied, leading to a strategy for designated formation of overlapping-bicyclic peptides or dumbbell-type bicyclic peptides.
Collapse
Affiliation(s)
- Kazuhiro Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
40
|
Merkel L, Budisa N. Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. Org Biomol Chem 2012; 10:7241-61. [DOI: 10.1039/c2ob06922a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Dedkova LM, Fahmi NE, Paul R, del Rosario M, Zhang L, Chen S, Feder G, Hecht SM. β-Puromycin Selection of Modified Ribosomes for in Vitro Incorporation of β-Amino Acids. Biochemistry 2011; 51:401-15. [DOI: 10.1021/bi2016124] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Larisa M. Dedkova
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Rakesh Paul
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Melissa del Rosario
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Liqiang Zhang
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Shengxi Chen
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Glen Feder
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| |
Collapse
|
42
|
Nangreave RC, Dedkova LM, Chen S, Hecht SM. A New Strategy for the Synthesis of Bisaminoacylated tRNAs. Org Lett 2011; 13:4906-9. [DOI: 10.1021/ol201993c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ryan C. Nangreave
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85827, United States
| | - Larisa M. Dedkova
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85827, United States
| | - Shengxi Chen
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85827, United States
| | - Sidney M. Hecht
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85827, United States
| |
Collapse
|
43
|
Katoh T, Goto Y, Reza MS, Suga H. Ribosomal synthesis of backbone macrocyclic peptides. Chem Commun (Camb) 2011; 47:9946-58. [PMID: 21766105 DOI: 10.1039/c1cc12647d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A wealth of knowledge has been accumulated on ribosomal synthesis of macrocyclic peptides in the past decade. In nature, backbone cyclization of the translated linear peptides is generally catalyzed by specific enzymes, giving them peptidase resistance, thermodynamic stability and various other physiological activities. Due to these biochemical traits, backbone cyclic peptides have become an attractive resource for the discovery of drug leads. Recently, various new methodologies have also been established to generate man-made cyclic peptides. Here, we describe the biosynthetic mechanisms of naturally occurring backbone macrocyclic peptides focusing on cyclotides, sunflower trypsin inhibitors (SFTIs) and cyanobactins as well as several new emerging methodologies, such as sortase mediated ligation, protein splicing method and genetic code reprogramming.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
44
|
Subtelny AO, Hartman MCT, Szostak JW. Optimal Codon Choice Can Improve the Efficiency and Fidelity of N-Methyl Amino Acid Incorporation into Peptides by In-Vitro Translation. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Subtelny AO, Hartman MCT, Szostak JW. Optimal codon choice can improve the efficiency and fidelity of N-methyl amino acid incorporation into peptides by in-vitro translation. Angew Chem Int Ed Engl 2011; 50:3164-7. [PMID: 21381166 PMCID: PMC4006073 DOI: 10.1002/anie.201007686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander O Subtelny
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
46
|
Eastwood AL, Blum AP, Zacharias NM, Dougherty DA. A selenide-based approach to photochemical cleavage of peptide and protein backbones at engineered backbone esters. J Org Chem 2010; 74:9241-4. [PMID: 19902952 DOI: 10.1021/jo901368g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy for photochemical cleavage of peptide and protein backbones is described, which is based on a selenide-mediated cleavage of a backbone ester moiety. Studies in model systems establish the viability of the chemistry and suggest the method could be a valuable tool for chemical biology studies of proteins.
Collapse
Affiliation(s)
- Amy L Eastwood
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
47
|
Effraim PR, Wang J, Englander MT, Avins J, Leyh TS, Gonzalez RL, Cornish VW. Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nat Chem Biol 2009; 5:947-53. [PMID: 19915542 PMCID: PMC2911967 DOI: 10.1038/nchembio.255] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/30/2009] [Indexed: 12/05/2022]
Abstract
The involvement of tRNA structural elements beyond the anticodon in aminoacyl-tRNA (aa-tRNA) selection by the ribosome has revealed that substrate recognition is considerably more complex than originally envisioned in the adaptor hypothesis. By combining recent breakthroughs in aa-tRNA synthesis and mechanistic and structural studies of protein synthesis, we ask if aa-tRNA recognition further extends to the amino acid, thereby explaining various translation disorders exhibited by misacylated tRNAs. Contrary to expectation, we find that natural amino acids misacylated onto natural, but non-native tRNAs are selected with efficiencies very similar to those of their correctly-acylated counterparts. Despite this, small, but reproducible differences in selection indeed demonstrate that the translational machinery is sensitive to the amino acid/tRNA pairing. These results suggest that either the ribosome is an exquisite sensor of natural versus unnatural amino acid/tRNA pairings and/or that aa-tRNA selection is not the primary step governing the amino acid specificity of the ribosome.
Collapse
|
48
|
Sletten E, Bertozzi C. Bioorthogonale Chemie - oder: in einem Meer aus Funktionalität nach Selektivität fischen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900942] [Citation(s) in RCA: 522] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Brudno Y, Liu DR. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. ACTA ACUST UNITED AC 2009; 16:265-76. [PMID: 19318208 DOI: 10.1016/j.chembiol.2009.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/20/2009] [Accepted: 02/16/2009] [Indexed: 12/21/2022]
Abstract
Biological polymers such as nucleic acids and proteins are ubiquitous in living systems, but their ability to address problems beyond those found in nature is constrained by factors such as chemical or biological instability, limited building-block functionality, bioavailability, and immunogenicity. In principle, sequence-defined synthetic polymers based on nonbiological monomers and backbones might overcome these constraints; however, identifying the sequence of a synthetic polymer that possesses a specific desired functional property remains a major challenge. Molecular evolution can rapidly generate functional polymers but requires a means of translating amplifiable templates such as nucleic acids into the polymer being evolved. This review covers recent advances in the enzymatic and nonenzymatic templated polymerization of nonnatural polymers and their potential applications in the directed evolution of sequence-defined synthetic polymers.
Collapse
Affiliation(s)
- Yevgeny Brudno
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, 12 Oxford Street, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
50
|
Goto Y, Suga H. Translation Initiation with Initiator tRNA Charged with Exotic Peptides. J Am Chem Soc 2009; 131:5040-1. [DOI: 10.1021/ja900597d] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuki Goto
- Research Center for Advanced Science and Technology and Department of Advanced Interdisciplinary Studies, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroaki Suga
- Research Center for Advanced Science and Technology and Department of Advanced Interdisciplinary Studies, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|