1
|
Tuszynski MH. Growth Factor Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S433-S441. [PMID: 39422960 DOI: 10.3233/jad-240545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Nervous system growth factors are natural proteins of the brain that influence neuronal survival and function throughout life, from embryonic development to old age. In animal models of Alzheimer's disease (AD), the growth factor brain derived neurotrophic factor (BDNF) prevents neuronal death, activates neuronal function, builds new synapses and improves learning and memory. Accordingly, we are determining whether gene delivery of BDNF in patients with AD will slow disease progression and improve memory. In a previous clinical trial of nerve growth factor (NGF) gene therapy in AD patients (NCT00017940, June 2001), we learned that growth factors can unequivocally elicit classic trophic responses from degenerating neurons in AD. Experience gained from the earlier NGF gene therapy trial is guiding our effort to optimize gene delivery of BDNF in our present clinical program (NCT05040217, June 2021).
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Medical Center, San Diego, CA, USA
| |
Collapse
|
2
|
Alldred MJ, Pidikiti H, Ibrahim KW, Lee SH, Heguy A, Hoffman GE, Mufson EJ, Stutzmann GE, Ginsberg SD. Hippocampal CA1 Pyramidal Neurons Display Sublayer and Circuitry Dependent Degenerative Expression Profiles in Aged Female Down Syndrome Mice. J Alzheimers Dis 2024; 100:S341-S362. [PMID: 39031371 PMCID: PMC11497160 DOI: 10.3233/jad-240622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Individuals with Down syndrome (DS) have intellectual disability and develop Alzheimer's disease (AD) pathology during midlife, particularly in the hippocampal component of the medial temporal lobe memory circuit. However, molecular and cellular mechanisms underlying selective vulnerability of hippocampal CA1 neurons remains a major knowledge gap during DS/AD onset. This is compounded by evidence showing spatial (e.g., deep versus superficial) localization of pyramidal neurons (PNs) has profound effects on activity and innervation within the CA1 region. Objective We investigated whether there is a spatial profiling difference in CA1 PNs in an aged female DS/AD mouse model. We posit dysfunction may be dependent on spatial localization and innervation patterns within discrete CA1 subfields. Methods Laser capture microdissection was performed on trisomic CA1 PNs in an established mouse model of DS/AD compared to disomic controls, isolating the entire CA1 pyramidal neuron layer and sublayer microisolations of deep and superficial PNs from the distal CA1 (CA1a) region. Results RNA sequencing and bioinformatic inquiry revealed dysregulation of CA1 PNs based on spatial location and innervation patterns. The entire CA1 region displayed the most differentially expressed genes (DEGs) in trisomic mice reflecting innate DS vulnerability, while trisomic CA1a deep PNs exhibited fewer but more physiologically relevant DEGs, as evidenced by bioinformatic inquiry. Conclusions CA1a deep neurons displayed numerous DEGs linked to cognitive functions whereas CA1a superficial neurons, with approximately equal numbers of DEGs, were not linked to pathways of dysregulation, suggesting the spatial location of vulnerable CA1 PNs plays an important role in circuit dissolution.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | | | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, School of Medicine, New York, NY, USA
| | - Gabriel E. Hoffman
- Department of Genetics and Genomic Sciences and Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elliott J. Mufson
- Department of Translational Neuroscience and Neurology and Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, School of Medicine, New York, NY, USA
- Neuroscience & Physiology, School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Yun D, Wang Y, Zhang Y, Jia M, Xie T, Zhao Y, Yang C, Chen W, Guo R, Liu X, Dai X, Liu Z, Yuan T. Sesamol Attenuates Scopolamine-Induced Cholinergic Disorders, Neuroinflammation, and Cognitive Deficits in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13602-13614. [PMID: 36239029 DOI: 10.1021/acs.jafc.2c04292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, characterized by memory loss and cognitive deficits accompanied by neuronal damage and cholinergic disorders. Sesamol, a lignan component in sesame oil, has been proven to have neuroprotective effects. This research aimed to investigate the preventive effects of sesamol on scopolamine (SCOP)-induced cholinergic disorders in C57BL/6 mice. The mice were pretreated with sesamol (100 mg/kg/d, p.o.) for 30 days. Behavioral tests indicated that sesamol supplement prevented SCOP-induced cognitive deficits. Sesamol enhanced the expression of neurotrophic factors and postsynaptic density (PSD) in SCOP-treated mice, reversing neuronal damage and synaptic dysfunction. Importantly, sesamol could balance the cholinergic system by suppressing the AChE activity and increasing the ChAT activity and M1 mAChR expression. Sesamol treatment also inhibited the expression of inflammatory factors and overactivation of microglia in SCOP-treated mice. Meanwhile, sesamol improved the antioxidant enzyme activity and suppressed oxidative stress in SCOP-treated mice and ameliorated the oxidized cellular status and mitochondrial dysfunction in SCOP-treated SH-SY5Y cells. In conclusion, these results indicated that sesamol attenuated SCOP-induced cognitive dysfunction via balancing the cholinergic system and reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Duo Yun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi712100, China
| |
Collapse
|
6
|
Orciani C, Hall H, Pentz R, Foret MK, Do Carmo S, Cuello AC. Long-term nucleus basalis cholinergic depletion induces attentional deficits and impacts cortical neurons and BDNF levels without affecting the NGF synthesis. J Neurochem 2022; 163:149-167. [PMID: 35921478 DOI: 10.1111/jnc.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Basal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers is unknown. To address our hypothesis, we immunolesioned the nucleus basalis (nb), a basal forebrain cholinergic nuclei projecting mainly to the cortex, by bilateral stereotaxic injection of 192-IgG-Saporin (the cytotoxin Saporin binds p75ntr receptors expressed exclusively by BFCNs) in 2.5-month-old Wistar rats. At six months post-lesion, Saporin-injected rats (SAP) showed an impairment in a modified version of the 5-Choice Serial Reaction Time Task (5-choice task). Post-mortem analyses of the brain revealed a reduction of Choline Acetyltransferase-immunoreactive neurons compared to wild-type controls. A diminished number of cortical vesicular acetylcholine transporter-immunoreactive boutons was accompanied by a reduction in BDNF mRNA, mBDNF protein levels, markers of glutamatergic (vGluT1) and GABAergic (GAD65) neurons in the SAP-group compared to the controls. NGF mRNA, NGF precursor and mNGF protein levels were not affected. Additionally, cholinergic markers correlated with the attentional deficit and BDNF levels. Our findings demonstrate that while cholinergic nb loss impairs cognition and reduces cortical neuron markers, it produces differential effects on neurotrophin availability, affecting BDNF but not NGF levels.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Helene Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, Oxford University, US (Visiting Professor)
| |
Collapse
|
7
|
Northington FJ, Kratimenos P, Turnbill V, Flock DL, Asafu-Adjaye D, Chavez-Valdez R, Martin LJ. Basal forebrain magnocellular cholinergic systems are damaged in mice following neonatal hypoxia-ischemia. J Comp Neurol 2022; 530:1148-1163. [PMID: 34687459 PMCID: PMC9014889 DOI: 10.1002/cne.25263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) causes lifelong neurologic disability. Despite the use of therapeutic hypothermia, memory deficits and executive functions remain severely affected. Cholinergic neurotransmission from the basal forebrain to neocortex and hippocampus is central to higher cortical functions. We examined the basal forebrain by light microscopy and reported loss of choline acetyltransferase-positive (ChAT)+ neurons, at postnatal day (P) 40, in the ipsilateral medial septal nucleus (MSN) after neonatal hypoxia-ischemia (HI) in mice. There was no loss of ChAT+ neurons in the ipsilateral nucleus basalis of Meynert (nbM) and striatum. Ipsilateral striatal and nbM ChAT+ neurons were abnormal with altered immunoreactivity for ChAT, shrunken and crenated somas, and dysmorphic appearing dendrites. Using confocal images with 3D reconstruction, nbM ChAT+ dendrites in HI mice were shorter than sham (p = .0001). Loss of ChAT+ neurons in the MSN directly correlated with loss of ipsilateral hippocampal area. In the nbM and striatum, percentage of abnormal ChAT+ neurons correlated with loss of ipsilateral cerebral cortical and striatal area, respectively. Acetylcholinesterase (AChE) activity increased in adjacent ipsilateral cerebral cortex and hippocampus and the increase was linearly related to loss of cortical and hippocampal area. Numbers and size of cathepsin D+ lysosomes increased in large neurons in the ipsilateral nbM. After neonatal HI, abnormalities were found throughout the major cholinergic systems in relationship to amount of forebrain area loss. There was also an upregulation of cathepsin D+ particles within the nbM. Cholinergic neuropathology may underlie the permanent dysfunction in learning, memory, and executive function after neonatal brain injury.
Collapse
Affiliation(s)
- Frances J. Northington
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,Corresponding Author: CMSC 6-104, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287,
| | - Panagiotis Kratimenos
- Department of Pediatrics and Neuroscience, Children’s National Hospital & The George Washington University School of Medicine, Washington, D.C
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Debra L. Flock
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniella Asafu-Adjaye
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lee J. Martin
- Department of Neuroscience, Pathology, and Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Pastor AM, Blumer R, de la Cruz RR. Extraocular Motoneurons and Neurotrophism. ADVANCES IN NEUROBIOLOGY 2022; 28:281-319. [PMID: 36066830 DOI: 10.1007/978-3-031-07167-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extraocular motoneurons are located in three brainstem nuclei: the abducens, trochlear and oculomotor. They control all types of eye movements by innervating three pairs of agonistic/antagonistic extraocular muscles. They exhibit a tonic-phasic discharge pattern, demonstrating sensitivity to eye position and sensitivity to eye velocity. According to their innervation pattern, extraocular muscle fibers can be classified as singly innervated muscle fiber (SIF), or the peculiar multiply innervated muscle fiber (MIF). SIF motoneurons show anatomical and physiological differences with MIF motoneurons. The latter are smaller and display lower eye position and velocity sensitivities as compared with SIF motoneurons.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología, Universidad de Sevilla, Seville, Spain.
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
9
|
Do Carmo S, Kannel B, Cuello AC. The Nerve Growth Factor Metabolic Pathway Dysregulation as Cause of Alzheimer's Cholinergic Atrophy. Cells 2021; 11:16. [PMID: 35011577 PMCID: PMC8750266 DOI: 10.3390/cells11010016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cause of the loss of basal forebrain cholinergic neurons (BFCNs) and their terminal synapses in the cerebral cortex and hippocampus in Alzheimer's disease (AD) has provoked a decades-long controversy. The cholinergic phenotype of this neuronal system, involved in numerous cognitive mechanisms, is tightly dependent on the target-derived nerve growth factor (NGF). Consequently, the loss of BFCNs cholinergic phenotype in AD was initially suspected to be due to an NGF trophic failure. However, in AD there is a normal NGF synthesis and abundance of the NGF precursor (proNGF), therefore the NGF trophic failure hypothesis for the atrophy of BCNs was abandoned. In this review, we discuss the history of NGF-dependency of BFCNs and the atrophy of these neurons in Alzheimer's disease (AD). Further to it, we propose that trophic factor failure explains the BFCNs atrophy in AD. We discuss evidence of the occurrence of a brain NGF metabolic pathway, the dysregulation of which, in AD explains the severe deficiency of NGF trophic support for the maintenance of BFCNs cholinergic phenotype. Finally, we revise recent evidence that the NGF metabolic dysregulation in AD pathology starts at preclinical stages. We also propose that the alteration of NGF metabolism-related markers in body fluids might assist in the AD preclinical diagnosis.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada;
| | - Benjamin Kannel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada;
| | - A. Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada;
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| |
Collapse
|
10
|
Cuello AC. Rita Levi-Montalcini, NGF Metabolism in Health and in the Alzheimer's Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:119-144. [PMID: 34453296 DOI: 10.1007/978-3-030-74046-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter relates biographic personal and scientific interactions with Rita Levi-Montalcini. It highlights research from our laboratory inspired by Rita's fundamental discovery. This work from studies on potentially neuro-reparative gangliosides, their interactions with NGF, the role of exogenous NGF in the recovery of degenerating cholinergic neurons of the basal forebrain to the evidence that endogenous NGF maintains the "day-to-day" cortical synaptic phenotype and the discovery of a novel CNS "NGF metabolic pathway." This brain pathway's conceptual platform allowed the investigation of its status during the Alzheimer's disease (AD) pathology. This revealed a major compromise of the conversion of the NGF precursor molecule (proNGF) into the most biologically active molecule, mature NGF (mNGF). Furthermore, in this pathology, we found enhanced protein levels and enzymatic activity of the proteases responsible for the proteolytic degradation of mNGF. A biochemical prospect explaining the tropic factor vulnerability of the NGF-dependent basal forebrain cholinergic neurons and of their synaptic terminals. The NGF deregulation of this metabolic pathway is evident at preclinical stages and reflected in body fluid particularly in the cerebrospinal fluid (CSF). The findings of a deregulation of the NGF metabolic pathway and its reflection in plasma and CSF are opening doors for the development of novel biomarkers for preclinical detection of AD pathology both in Alzheimer's and in Down syndrome (DS) with "silent" AD pathology.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
OʼShea TM, Wollenberg AL, Kim JH, Ao Y, Deming TJ, Sofroniew MV. Foreign body responses in mouse central nervous system mimic natural wound responses and alter biomaterial functions. Nat Commun 2020; 11:6203. [PMID: 33277474 PMCID: PMC7718896 DOI: 10.1038/s41467-020-19906-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Biomaterials hold promise for therapeutic applications in the central nervous system (CNS). Little is known about molecular factors that determine CNS foreign body responses (FBRs) in vivo, or about how such responses influence biomaterial function. Here, we probed these factors in mice using a platform of injectable hydrogels readily modified to present interfaces with different physiochemical properties to host cells. We found that biomaterial FBRs mimic specialized multicellular CNS wound responses not present in peripheral tissues, which serve to isolate damaged neural tissue and restore barrier functions. We show that the nature and intensity of CNS FBRs are determined by definable properties that significantly influence hydrogel functions, including resorption and molecular delivery when injected into healthy brain or stroke injuries. Cationic interfaces elicit stromal cell infiltration, peripherally derived inflammation, neural damage and amyloid production. Nonionic and anionic formulations show minimal levels of these responses, which contributes to superior bioactive molecular delivery. Our results identify specific molecular mechanisms that drive FBRs in the CNS and have important implications for developing effective biomaterials for CNS applications.
Collapse
Affiliation(s)
- Timothy M OʼShea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Jae H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
12
|
Schachtschneider KM, Welge ME, Auvil LS, Chaki S, Rund LA, Madsen O, Elmore MR, Johnson RW, Groenen MA, Schook LB. Altered Hippocampal Epigenetic Regulation Underlying Reduced Cognitive Development in Response to Early Life Environmental Insults. Genes (Basel) 2020; 11:genes11020162. [PMID: 32033187 PMCID: PMC7074491 DOI: 10.3390/genes11020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Michael E. Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Loretta S. Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Monica R.P. Elmore
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Martien A.M. Groenen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
- Correspondence:
| |
Collapse
|
13
|
Triaca V, Fico E, Sposato V, Caioli S, Ciotti MT, Zona C, Mercanti D, La Mendola D, Satriano C, Rizzarelli E, Tirassa P, Calissano P. hNGF Peptides Elicit the NGF-TrkA Signalling Pathway in Cholinergic Neurons and Retain Full Neurotrophic Activity in the DRG Assay. Biomolecules 2020; 10:biom10020216. [PMID: 32024191 PMCID: PMC7072391 DOI: 10.3390/biom10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-06-90091357
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Valentina Sposato
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| | - Silvia Caioli
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Cristina Zona
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
- Department of Systems Medicine, University of Rome “TorVergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
- Institute of Crystallography, National Research Council (CNR-IC), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| |
Collapse
|
14
|
Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. Neurobiol Dis 2019; 132:104586. [DOI: 10.1016/j.nbd.2019.104586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023] Open
|
15
|
Kawakita N, Takizawa H, Sawada T, Matsumoto D, Tsuboi M, Toba H, Yoshida M, Kawakami Y, Kondo K, Tangoku A. Indocyanine green fluorescence imaging for resection of pulmonary metastasis of hepatocellular carcinoma. J Thorac Dis 2019; 11:944-949. [PMID: 31019784 DOI: 10.21037/jtd.2019.01.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Indocyanine green (ICG) accumulates in hepatocellular carcinoma (HCC), and tumor fluorescence can be observed under irradiation with near infrared light (NIR). This study investigated the clinical utility of ICG fluorescence imaging during resection of pulmonary metastases of HCC. Methods From April 2010 to June 2018, six patients with suspected pulmonary metastasis of HCC were enrolled prospectively. Prior to surgery, all patients underwent the ICG hepatic function test following intravenous administration of ICG (0.5 mg/kg body weight). During surgery, metastatic HCC was identified by observation of ICG fluorescence, allowing assessment of the surgical margin. Tumor fluorescence was also evaluated on cut sections. Results A total of 11 metastatic HCCs were resected in six patients at nine operations. Eight lesions were removed by wedge resection and 3 lesions were managed by lobectomy. During surgery, tumor fluorescence could be confirmed through the visceral pleura in 6 out of 7 lesions treated by wedge resection, while NIR irradiation was difficult for 1 lesion. For these 6 lesions, the median distance from the tumor to the visceral pleura and the median surgical margin were 0 mm (range, 0-2 mm) and 14 mm (range, 11-17 mm), respectively. When cut sections were examined, all tumors emitted fluorescence. All lesions were histologically confirmed to be metastatic HCC. Conclusions In patients with pulmonary metastasis of HCC, ICG fluorescence imaging is useful for identifying the tumor and securing its margin when the lesion is peripheral and wedge resection is planned.
Collapse
Affiliation(s)
- Naoya Kawakita
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toru Sawada
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Daisuke Matsumoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
16
|
Cuello AC, Pentz R, Hall H. The Brain NGF Metabolic Pathway in Health and in Alzheimer's Pathology. Front Neurosci 2019; 13:62. [PMID: 30809111 PMCID: PMC6379336 DOI: 10.3389/fnins.2019.00062] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging research has re-emphasized the role of the cortical cholinergic system in the symptomology and progression of Alzheimer's disease (AD). Basal forebrain (BF) cholinergic nuclei depend on target-derived NGF for survival during development and for the maintenance of a classical cholinergic phenotype during adulthood. In AD, BF cholinergic neurons lose their cholinergic phenotype and function, suggesting an impairment in NGF-mediated trophic support. We propose that alterations to the enzymatic pathway that controls the maturation of proNGF to mature NGF and the latter's ulterior degradation underlie this pathological process. Indeed, the NGF metabolic pathway has been demonstrated to be impaired in AD and other amyloid pathologies, and pharmacological manipulation of NGF metabolism has consequences in vivo for both levels of proNGF/NGF and the phenotype of BF cholinergic neurons. The NGF pathway may also have potential as a biomarker of cognitive decline in AD, as its changes can predict future cognitive decline in patients with Down syndrome as they develop preclinical Alzheimer's pathology. New evidence suggests that the cholinergic system, and by extension NGF, may have a greater role in the progression of AD than previously realized, as changes to the BF precede and predict changes to the entorhinal cortex, as anticholinergic drugs increase odds of developing AD, and as the use of donepezil can reduce rates of hippocampal and cortical thinning. These findings suggest that new, more sophisticated cholinergic therapies should be capable of preserving the basal forebrain thus having profound positive effects as treatments for AD.
Collapse
Affiliation(s)
- A. Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Hélène Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, Amadoro G. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Front Cell Neurosci 2018; 12:487. [PMID: 30618634 PMCID: PMC6300588 DOI: 10.3389/fncel.2018.00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
Collapse
Affiliation(s)
| | | | - Cristina Zona
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Borreca
- Institute of Cellular Biology and Neurobiology – National Research Council, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology – National Research Council, Rome, Italy
| |
Collapse
|
18
|
Hall JM, Gomez-Pinilla F, Savage LM. Nerve Growth Factor Is Responsible for Exercise-Induced Recovery of Septohippocampal Cholinergic Structure and Function. Front Neurosci 2018; 12:773. [PMID: 30443202 PMCID: PMC6222249 DOI: 10.3389/fnins.2018.00773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
Exercise has been shown to improve or rescue cognitive functioning in both humans and rodents, and the augmented actions of neurotrophins within the hippocampus and associated regions play a significant role in the improved neural plasticity. The septohippocampal circuit is modified by exercise. Beyond an enhancement of spatial working memory and a rescue of hippocampal activity-dependent acetylcholine (ACh) efflux, the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band (MS/dB) is observed following exercise (Hall and Savage, 2016). To determine which neurotrophin, brain-derived neurotrophic factor (BDNF) or nerve growth factor (NGF), is critical for exercise-induced cholinergic improvements, control and amnestic rats had either NGF or BDNF sequestered by TrkA-IgG or TrkB-IgG coated microbeads placed within the dorsal hippocampus. Hippocampal ACh release within the hippocampus during spontaneous alternation was measured and MS/dB cholinergic neuronal phenotypes were assessed. Sequestering NGF, but not BDNF, abolished the exercise-induced recovery of spatial working memory and ACh efflux. Furthermore, the re-emergence of the cholinergic/nestin neuronal phenotype within the MS/dB following exercise was also selectively dependent on the actions of NGF. Thus, exercise-induced enhancement of NGF within the septohippocampal pathway represents a key avenue for aiding failing septo-hippocampal functioning and therefore has significant potential for the recovery of memory and cognition in several neurological disorders.
Collapse
Affiliation(s)
- Joseph M Hall
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
19
|
Serrano-Saiz E, Leyva-Díaz E, De La Cruz E, Hobert O. BRN3-type POU Homeobox Genes Maintain the Identity of Mature Postmitotic Neurons in Nematodes and Mice. Curr Biol 2018; 28:2813-2823.e2. [PMID: 30146154 DOI: 10.1016/j.cub.2018.06.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
Abstract
Many distinct regulatory factors have been shown to be required for the proper initiation of neuron-type-specific differentiation programs, but much less is known about the regulatory programs that maintain the differentiated state in the adult [1-3]. One possibility is that regulatory factors that initiate a terminal differentiation program during development are continuously required to maintain the differentiated state. Here, we test this hypothesis by investigating the function of two orthologous POU homeobox genes in nematodes and mice. The C. elegans POU homeobox gene unc-86 is a terminal selector that is required during development to initiate the terminal differentiation program of several distinct neuron classes [4-13]. Through post-developmental removal of unc-86 activity, we show here that unc-86 is also continuously required throughout the life of many neuron classes to maintain neuron-class-specific identity features. Similarly, the mouse unc-86 ortholog Brn3a/POU4F1 has been shown to control the initiation of the terminal differentiation program of distinct neuron types across the mouse brain, such as the medial habenular neurons [14-20]. By conditionally removing Brn3a in the adult mouse central nervous system, we show that, like its invertebrate ortholog unc-86, Brn3a is also required for the maintenance of terminal identity features of medial habenular neurons. In addition, Brn3a is required for the survival of these neurons, indicating that identity maintenance and survival are genetically linked. We conclude that the continuous expression of transcription factors is essential for the active maintenance of the differentiated state of a neuron across phylogeny.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Estanislao De La Cruz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Foidl BM, Ucar B, Schwarz A, Rebelo AL, Pandit A, Humpel C. Nerve growth factor released from collagen scaffolds protects axotomized cholinergic neurons of the basal nucleus of Meynert in organotypic brain slices. J Neurosci Methods 2017; 295:77-86. [PMID: 29221639 DOI: 10.1016/j.jneumeth.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimeŕs disease is accompanied by cell death of cholinergic neurons, resulting in cognitive impairment and memory loss. Nerve growth factor (NGF) is the most potent protein to support survival of cholinergic neurons. NEW METHOD Organotypic brain slices of the basal nucleus of Meynert (nBM) are a valuable tool to study cell death of axotomized cholinergic neurons, as well as protective effects of NGF added into the medium. The aim of the present study is to use collagen scaffolds crosslinked with polyethyleneglycole and load with NGF to target delivery of NGF to organotypic nBM brain slices. RESULTS Collagen scaffolds (visualized by incorporating AlexaFluor 488 antibodies) slowly degraded when applied onto organotypic brain slices within 2 weeks in culture. GFAP reactive astrocytes and Iba1+ microglia became visible around the collagen scaffolds 7days after incubation, showing reactive gliosis. Cholinergic neurons of the nBM survived (201±21, n=8) when incubated with 100ng/ml NGF in the medium compared to NGF-free medium (69±12, n=7). Collagen scaffolds loaded with NGF (1ng/2μl scaffold) significantly rescued cholinergic cell death in the nBM brain slices (175±12, n=10), which was counteracted by an anti-NGF antibody (77±5, n=5). COMPARISON WITH EXISTING METHODS The combination of coronal brain slices with biomaterial is a novel and potent tool to selectively study neuroprotective effects. CONCLUSIONS Collagen scaffolds loaded with low amounts of a protein/drug of interest can be easily applied directly onto organotypic brain slices, allowing slow targeted release of a protective molecule. Such an approach is highly useful to optimize CollScaff for further in vivo applications.
Collapse
Affiliation(s)
- Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Alina Schwarz
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Ana L Rebelo
- Centre for Research in Medical Devices, Biomedical Sciences National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices, Biomedical Sciences National University of Ireland Galway, Galway, Ireland
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
21
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
22
|
Gibon J, Barker PA. Neurotrophins and Proneurotrophins: Focus on Synaptic Activity and Plasticity in the Brain. Neuroscientist 2017; 23:587-604. [DOI: 10.1177/1073858417697037] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.
Collapse
Affiliation(s)
- Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Philip A. Barker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
23
|
Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci 2017; 11:68. [PMID: 28360840 PMCID: PMC5350152 DOI: 10.3389/fncel.2017.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10–12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (−38.45%) and glutamatergic (−56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical implications in the field of AD neurodegeneration because it: (i) provides new insights on the earliest molecular mechanisms underlying the loss of synaptic/trafficking proteins and, then, of synapes integrity which occurs in vulnerable basal forebrain population at preclinical stages of neuropathology; (ii) offers prime presynaptic-based molecular target to extend the therapeutic time-window of NGF action in the strategy of improving its neuroprotective in vivo intervention in affected patients.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Italy
| | | | - Cristina Zona
- IRCCS Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| | - Maria T Ciotti
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR)Rome, Italy; NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI)Rome, Italy
| | - Pietro Calissano
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| |
Collapse
|
24
|
Powers BE, Kelley CM, Velazquez R, Ash JA, Strawderman MS, Alldred MJ, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience 2017; 340:501-514. [PMID: 27840230 PMCID: PMC5177989 DOI: 10.1016/j.neuroscience.2016.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023]
Abstract
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.
Collapse
Affiliation(s)
- Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Christy M Kelley
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramon Velazquez
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Jessica A Ash
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Myla S Strawderman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10962, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Elliott J Mufson
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Powers BE, Velazquez R, Kelley CM, Ash JA, Strawderman MS, Alldred MJ, Ginsberg SD, Mufson EJ, Strupp BJ. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome. Brain Struct Funct 2016; 221:4337-4352. [PMID: 26719290 PMCID: PMC4929047 DOI: 10.1007/s00429-015-1164-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.
Collapse
Affiliation(s)
- Brian E Powers
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Ramon Velazquez
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Christy M Kelley
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jessica A Ash
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Myla S Strawderman
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10962, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10962, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, 10962, USA
| | - Elliott J Mufson
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Tatter SB, Galpern WR, Isacson O. Neurotrophic Factor Protection against Excitotoxic Neuronal Death. Neuroscientist 2016. [DOI: 10.1177/107385849500100506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotrophic factors are polypeptides capable of promoting neuronal survival in both the developing and the adult brain. In addition to the neurotrophins, NGF, brain-derived neurotropic factor, and NT-3 to -6, other neurotrophic factors include ciliary neurotrophic factor, fibroblast growth factors, insulin-like growth factors, members of the transforming growth factor superfamily, members of the epidermal growth factor family, and other cytokines such as leukemia inhibitory factor, oncostatin M, and interleukins-6 and -11. One condition under which these factors promote survival is the challenge of neurons with analogs of excitatory amino acid transmitters. Such analogs, including quinolinic acid, kainic acid, and ibotenic acid, are frequently employed as models of neurological diseases such as Huntington's disease, Parkinson's disease, Alzheimer's disease, epilepsy, cerebellar degenerations, and amyotrophic lateral sclerosis. Excitotoxicity also plays a role in neu ronal death caused by focal ischemia, hypoglycemia, or trauma. Although much has been learned about the mechanisms of both the action of neurotrophic factors and of cell death in response to excitotoxins, the mechanism of protection by these factors remains uncertain. This review explores the biochemical and phys iological changes mediated by neurotrophic factors that may underlie their ability to protect against excito toxic cell death. Second messenger pathways used degenerately by both excitotoxins and neurotrophic factors are discussed as a potential site of interaction mediating the protective effects of neurotrophic factors. Particular attention is also paid to the importance of the route of neurotrophic factor delivery in conferring neuroprotection in particular excitotoxic models. The Neuroscientist 1:286-297, 1995
Collapse
Affiliation(s)
- Stephen B. Tatter
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| | - Wendy R. Galpern
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| | - Ole Isacson
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| |
Collapse
|
27
|
Xu W, Weissmiller AM, White JA, Fang F, Wang X, Wu Y, Pearn ML, Zhao X, Sawa M, Chen S, Gunawardena S, Ding J, Mobley WC, Wu C. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J Clin Invest 2016; 126:1815-33. [PMID: 27064279 PMCID: PMC4855914 DOI: 10.1172/jci82409] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022] Open
Abstract
The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | | | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Fang Fang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Xinyi Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Matthew L. Pearn
- Department of Anesthesiology, UCSD, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - Xiaobei Zhao
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Mariko Sawa
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Chengbiao Wu
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
28
|
Overexpression of NTRK1 Promotes Differentiation of Neural Stem Cells into Cholinergic Neurons. BIOMED RESEARCH INTERNATIONAL 2015; 2015:857202. [PMID: 26509167 PMCID: PMC4609807 DOI: 10.1155/2015/857202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022]
Abstract
Neurotrophic tyrosine kinase type 1 (NTRK1) plays critical roles in proliferation, differentiation, and survival of cholinergic neurons; however, it remains unknown whether enhanced expression of NTRK1 in neural stem cells (NSCs) can promote their differentiation into mature neurons. In this study, a plasmid encoding the rat NTRK1 gene was constructed and transfected into C17.2 mouse neural stem cells (NSCs). NTRK1 overexpression in C17.2 cells was confirmed by western blot. The NSCs overexpressing NTRK1 and the C17.2 NSCs transfected by an empty plasmid vector were treated with or without 100 ng/mL nerve growth factor (NGF) for 7 days. Expression of the cholinergic cell marker, choline acetyltransferase (ChAT), was detected by florescent immunocytochemistry (ICC). In the presence of NGF induction, the NSCs overexpressing NTRK1 differentiated into ChAT-immunopositive cells at 3-fold higher than the NSCs transfected by the plasmid vector (26% versus 9%, P < 0.05). The data suggest that elevated NTRK1 expression increases differentiation of NSCs into cholinergic neurons under stimulation of NGF. The approach also represents an efficient strategy for generation of cholinergic neurons.
Collapse
|
29
|
Stepanichev MY, Tishkina AO, Lazareva NA, Mart’yanova EK, Tukhbatova GR, Kulagina AO, Salozhin SV, Gulyaeva NV. The expression of the TrkA and TrkB high-affinity neurotrophin receptors in the rat hippocampus after intracerebroventricular administration of Aβ(25–35). NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
31
|
Lebrun C, Avci HX, Wehrlé R, Doulazmi M, Jaudon F, Morel MP, Rivals I, Ema M, Schmidt S, Sotelo C, Vodjdani G, Dusart I. Klf9 is necessary and sufficient for Purkinje cell survival in organotypic culture. Mol Cell Neurosci 2012. [PMID: 23201237 DOI: 10.1016/j.mcn.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During their phase of developmental programmed cell death (PCD), neurons depend on target-released trophic factors for survival. After this period, however, they critically change as their survival becomes target-independent. The molecular mechanisms underlying this major transition remain poorly understood. Here, we investigated, which transcription factors (TFs) might be responsible for the closure of PCD. We used Purkinje cells as a model since their PCD is restricted to the first postnatal week in the mouse cerebellum. Transcriptome analysis of Purkinje cells during or after PCD allowed the identification of Krüppel like factor 9 (Klf9) as a candidate for PCD closure, given its high increase of expression at the end of the 1st postnatal week. Klf9 function was tested in organotypic cultures, through lentiviral vector-mediated manipulation of Klf9 expression. In absence of trophic factors, the Purkinje cell survival rate is of 40%. Overexpression of Klf9 during PCD dramatically increases the Purkinje cell survival rate from 40% to 88%, whereas its down-regulation decreases it to 14%. Accordingly, in organotypic cultures of Klf9 knockout animals, Purkinje cell survival rate is reduced by half as compared to wild-type mice. Furthermore, the absence of Klf9 could be rescued by Purkinje cell trophic factors, Insulin growth factor-1 and Neurotrophin3. Altogether, our results ascribe a clear role of Klf9 in Purkinje cell survival. Thus, we propose that Klf9 might be a key molecule involved in turning off the phase of Purkinje PCD.
Collapse
Affiliation(s)
- C Lebrun
- UPMC Univ Paris 06, UMR 7102, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Song B, Song J, Zhang S, Anderson MA, Ao Y, Yang CY, Deming TJ, Sofroniew MV. Sustained local delivery of bioactive nerve growth factor in the central nervous system via tunable diblock copolypeptide hydrogel depots. Biomaterials 2012; 33:9105-16. [PMID: 22985994 DOI: 10.1016/j.biomaterials.2012.08.060] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/24/2012] [Indexed: 11/17/2022]
Abstract
Biomaterial vehicles that can provide sustained, site-specific molecular delivery in the central nervous system (CNS) have potential for therapeutic and investigative applications. Here, we present in vitro and in vivo proof of principle tests of diblock copolypeptide hydrogels (DCH) to serve as depots for sustained local release of protein effector molecules. We tested two DCH, K(180)L(20) and E(180)L(20), previously shown to self-assemble into biocompatible, biodegradable deposits that persist four to eight weeks after injection into mouse forebrain. In vitro tests demonstrated sustained release from dialysis cassettes of the representative protein, lysozyme, dissolved in K(180)L(20) or E(180)L(20) hydrogels. Release time in vitro varied in relation to DCH charge and mechanical properties, and ionic strength of the media. To evaluate bioactive protein delivery in vivo, we used nerve growth factor (NGF) and measured the size of mouse forebrain cholinergic neurons, which respond to NGF with cellular hypertrophy. For in vivo tests, the storage modulus of DCH depots was tuned to just below that of CNS tissue. In comparison with NGF injected in buffer, depots of NGF dissolved in either K(180)L(20) or E(180)L(20) provided significantly longer delivery of NGF bioactivity, maintaining hypertrophy of local forebrain cholinergic neurons for at least 4 weeks and inducing hypertrophy a further distance away (up to 5 mm) from injection sites. These findings show that depots of DCH injected into CNS can provide sustained delivery within the blood-brain barrier of a bioactive protein growth factor that exerts a predicted, quantifiable effect on local cells over a prolonged subacute time.
Collapse
Affiliation(s)
- Bingbing Song
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Serafini G, Pompili M, Innamorati M, Giordano G, Montebovi F, Sher L, Dwivedi Y, Girardi P. The role of microRNAs in synaptic plasticity, major affective disorders and suicidal behavior. Neurosci Res 2012; 73:179-90. [PMID: 22521503 DOI: 10.1016/j.neures.2012.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
Major affective disorders are common widespread conditions associated with multiple psychosocial impairments and suicidal risk in the general population. At least 3-4% of all depressive individuals die by suicide. At a molecular level, affective disorders and suicidal behavior are recently associated with disturbances in structural and synaptic plasticity. A recent hypothesis suggested that small non-coding RNAs (ncRNAs), in particular microRNAs (miRNAs), play a critical role in the translational regulation at the synapse. We performed a selective overview of the current literature on miRNAs putative subcellular localization and sites of action in mature neurons analyzing their role in neurogenesis, synaptic plasticity, pathological stress changes, major affective disorders and suicidal behavior. miRNAs have played a fundamental role in the evolution of brain functions. The perturbation of some intracellular mechanisms as well as impaired assembly, localization, and translational regulation of specific RNA binding proteins may affect learning and memory, presumably contributing to the pathogenesis of major affective disorders and perhaps suicidal behavior. Also, miRNA dys-regulation has also been linked to several neuropsychiatric diseases. However, further evidence are needed in order to directly clarify the role of miRNAs in major affective disorders and suicidal behavior.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Suicide Prevention Center, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dusart I, Flamant F. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat 2012; 6:11. [PMID: 22514522 PMCID: PMC3324107 DOI: 10.3389/fnana.2012.00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/23/2012] [Indexed: 01/19/2023] Open
Abstract
Between the first and the second postnatal week, the development of rodent Purkinje cells is characterized by several profound transitions. Purkinje cells acquire their typical dendritic "espalier" tree morphology and form distal spines. During the first postnatal week, they are multi-innervated by climbing fibers and numerous collateral branches sprout from their axons, whereas from the second postnatal week, the regression of climbing fiber multi-innervation begins, and Purkinje cells become innervated by parallel fibers and inhibitory molecular layer interneurons. Furthermore, their periods of developmental cell death and ability to regenerate their axon stop and their axons become myelinated. Thus a Purkinje cell during the first postnatal week looks and functions differently from a Purkinje cell during the second postnatal week. These fundamental changes occur in parallel with a peak of circulating thyroid hormone in the mouse. All these features suggest to some extent an interesting analogy with amphibian metamorphosis.
Collapse
Affiliation(s)
- Isabelle Dusart
- Equipe Différenciation Neuronale et Gliale, Université Pierre et Marie CurieParis, France
- Centre National de la Recherche Scientifique, Neurobiologie des Processus AdaptatifsParis, France
| | - Frederic Flamant
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle de LyonLyon, France
| |
Collapse
|
35
|
Cabeza C, Figueroa A, Lazo OM, Galleguillos C, Pissani C, Klein A, Gonzalez-Billault C, Inestrosa NC, Alvarez AR, Zanlungo S, Bronfman FC. Cholinergic abnormalities, endosomal alterations and up-regulation of nerve growth factor signaling in Niemann-Pick type C disease. Mol Neurodegener 2012; 7:11. [PMID: 22458984 PMCID: PMC3395862 DOI: 10.1186/1750-1326-7-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i) NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF) after axotomy and ii) PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF. RESULTS NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT), whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A. CONCLUSIONS Our results suggest that the NPC cellular phenotype causes neuronal dysfunction through the abnormal up-regulation of survival pathways, which causes the perturbation of signaling cascades and anomalous phosphorylation of the cytoskeleton.
Collapse
Affiliation(s)
- Carolina Cabeza
- Physiology Department, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 2011; 29:802-11. [PMID: 21381151 DOI: 10.1002/stem.626] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An early substantial loss of basal forebrain cholinergic neurons (BFCN) is a constant feature of Alzheimer's disease and is associated with deficits in spatial learning and memory. The ability to selectively control the differentiation of human embryonic stem cells (hESCs) into BFCN would be a significant step toward a cell replacement therapy. We demonstrate here a method for the derivation of a predominantly pure population of BFCN from hESC cells using diffusible ligands present in the forebrain at developmentally relevant time periods. Overexpression of two relevant human transcription factors in hESC-derived neural progenitors also generates BFCN. These neurons express only those markers characteristic of BFCN, generate action potentials, and form functional cholinergic synapses in murine hippocampal slice cultures. siRNA-mediated knockdown of the transcription factors blocks BFCN generation by the diffusible ligands, clearly demonstrating the factors both necessary and sufficient for the controlled derivation of this neuronal population. The ability to selectively control the differentiation of hESCs into BFCN is a significant step both for understanding mechanisms regulating BFCN lineage commitment and for the development of both cell transplant-mediated therapeutic interventions for Alzheimer's disease and high-throughput screening for agents that promote BFCN survival.
Collapse
Affiliation(s)
- Christopher J Bissonnette
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lopez-Coviella I, Mellott TJ, Schnitzler AC, Blusztajn JK. BMP9 protects septal neurons from axotomy-evoked loss of cholinergic phenotype. PLoS One 2011; 6:e21166. [PMID: 21695154 PMCID: PMC3113905 DOI: 10.1371/journal.pone.0021166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Cholinergic projection from the septum to the hippocampus is crucial for normal cognitive function and degeneration of cells and nerve fibers within the septohippocampal pathway contributes to the pathophysiology of Alzheimer's disease. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiating factor during development both in vivo and in vitro. Methodology/Principal Findings To determine whether BMP9 could protect the adult cholinergic septohippocampal pathway from axotomy-evoked loss of the cholinergic phenotype, we performed unilateral fimbria-fornix transection in mice and treated them with a continuous intracerebroventricular infusion of BMP9 for six days. The number of choline acetyltransferase (CHAT)-positive cells was reduced by 50% in the medial septal nucleus ipsilateral to the lesion as compared to the intact, contralateral side, and BMP9 infusion prevented this loss in a dose-dependent manner. Moreover, BMP9 prevented most of the decline of hippocampal acetylcholine levels ipsilateral to the lesion, and markedly increased CHAT, choline transporter CHT, NGF receptors p75 (NGFR-p75) and TrkA (NTRK1), and NGF protein content in both the lesioned and unlesioned hippocampi. In addition, BMP9 infusion reduced bilaterally hippocampal levels of basic FGF (FGF2) protein. Conclusions/Significance These data indicate that BMP9 administration can prevent lesion-evoked impairment of the cholinergic septohippocampal neurons in adult mice and, by inducing NGF, establishes a trophic environment for these cells.
Collapse
Affiliation(s)
- Ignacio Lopez-Coviella
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tiffany J. Mellott
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Aletta C. Schnitzler
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jan K. Blusztajn
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Dwivedi Y. Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 2011; 42:142-56. [PMID: 21515361 DOI: 10.1016/j.jchemneu.2011.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/17/2023]
Abstract
Major depression is a debilitating disease. Despite a tremendous amount of research, the molecular mechanisms associated with the etiopathology of major depression are not clearly understood. Several lines of evidence indicate that depression is associated with altered neuronal and structural plasticity and neurogenesis. MicroRNAs are a newly discovered prominent class of gene expression regulators that have critical roles in neural development, are needed for survival and optimal health of postmitotic neurons, and regulate synaptic functions, particularly by regulating protein synthesis in dendritic spines. In addition, microRNAs (miRNAs) regulate both embryonic and adult neurogenesis. Given that miRNAs are involved in neural plasticity and neurogenesis, the concept that miRNAs may play an important role in psychiatric illnesses, including major depression, is rapidly advancing. Emerging evidence demonstrates that the expression of miRNAs is altered during stress, in the brain of behaviorally depressed animals, and in human postmortem brain of depressed subjects. In this review article, the possibility that dysregulation of miRNAs and/or altered miRNA response may contribute to the etiology and pathophysiology of depressive disorder is discussed.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Moon J, Chen M, Gandhy SU, Strawderman M, Levitsky DA, Maclean KN, Strupp BJ. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci 2010; 124:346-61. [PMID: 20528079 DOI: 10.1037/a0019590] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to mental retardation, individuals with Down syndrome (DS) also develop the neuropathological changes typical of Alzheimer's disease (AD) and the majority of these individuals exhibit dementia. The Ts65Dn mouse model of DS exhibits key features of these disorders, including early degeneration of cholinergic basal forebrain (CBF) neurons and impairments in functions dependent on the two CBF projection systems; namely, attention and explicit memory. Herein, we demonstrate that supplementing the maternal diet with excess choline during pregnancy and lactation dramatically improved attentional function of the adult trisomic offspring. Specifically, the adult offspring of choline-supplemented Ts65Dn dams performed significantly better than unsupplemented Ts65Dn mice on a series of 5 visual attention tasks, and in fact, on some tasks did not differ from the normosomic (2N) controls. A second area of dysfunction in the trisomic animals, heightened reactivity to committing an error, was partially normalized by the early choline supplementation. The 2N littermates also benefited from increased maternal choline intake on 1 attention task. These findings collectively suggest that perinatal choline supplementation might significantly lessen cognitive dysfunction in DS and reduce cognitive decline in related neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Jisook Moon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.
Collapse
|
41
|
Minciacchi D, Del Tongo C, Carretta D, Nosi D, Granato A. Alterations of the cortico-cortical network in sensori-motor areas of dystrophin deficient mice. Neuroscience 2010; 166:1129-39. [DOI: 10.1016/j.neuroscience.2010.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 02/09/2023]
|
42
|
Lazo OM, Mauna JC, Pissani CA, Inestrosa NC, Bronfman FC. Axotomy-induced neurotrophic withdrawal causes the loss of phenotypic differentiation and downregulation of NGF signalling, but not death of septal cholinergic neurons. Mol Neurodegener 2010; 5:5. [PMID: 20205865 PMCID: PMC2826326 DOI: 10.1186/1750-1326-5-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/19/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Septal cholinergic neurons account for most of the cholinergic innervations of the hippocampus, playing a key role in the regulation of hippocampal synaptic activity. Disruption of the septo-hippocampal pathway by an experimental transection of the fimbria-fornix drastically reduces the target-derived trophic support received by cholinergic septal neurons, mainly nerve growth factor (NGF) from the hippocampus. Axotomy of cholinergic neurons induces a reduction in the number of neurons positive for cholinergic markers in the medial septum. In several studies, the reduction of cholinergic markers has been interpreted as analogous to the neurodegeneration of cholinergic cells, ruling out the possibility that neurons lose their cholinergic phenotype without dying. Understanding the mechanism of cholinergic neurodegeneration after axotomy is relevant, since this paradigm has been extensively explored as an animal model of the cholinergic impairment observed in neuropathologies such as Alzheimer's disease.The principal aim of this study was to evaluate, using modern quantitative confocal microscopy, neurodegenerative changes in septal cholinergic neurons after axotomy and to assess their response to delayed infusion of NGF in rats. RESULTS We found that there is a slow reduction of cholinergic cells labeled by ChAT and p75 after axotomy. However, this phenomenon is not accompanied by neurodegenerative changes or by a decrease in total neuronal number in the medial septum. Although the remaining axotomized-neurons appear healthy, they are unable to respond to delayed NGF infusion. CONCLUSIONS Our results demonstrate that at 3 weeks, axotomized cholinergic neurons lose their cholinergic phenotype without dying and down-regulate their NGF-receptors, precluding the possibility of a response to NGF. Therefore, the physiological role of NGF in the adult septal cholinergic system is to support phenotypic differentiation and not survival of neurons. This evidence raises questions about the relationship between transcriptional regulation of the cholinergic phenotype by retrograde-derived trophic signaling and the transcriptional changes experienced when retrograde transport is impaired due to neuropathological conditions.
Collapse
Affiliation(s)
- Oscar M Lazo
- Department of Physiology, Neurobiology Unit, Center of Ageing and Regeneration (CARE), Nucleus Millennium in Regenerative Biology (MINREB), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, CP 8331010, Santiago, Chile
| | - Jocelyn C Mauna
- Department of Physiology, Neurobiology Unit, Center of Ageing and Regeneration (CARE), Nucleus Millennium in Regenerative Biology (MINREB), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, CP 8331010, Santiago, Chile
- Current address: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Claudia A Pissani
- Department of Physiology, Neurobiology Unit, Center of Ageing and Regeneration (CARE), Nucleus Millennium in Regenerative Biology (MINREB), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, CP 8331010, Santiago, Chile
| | - Nibaldo C Inestrosa
- Department of Cellular Biology, Center of Ageing and Regeneration (CARE), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, CP 8331010, Santiago, Chile
| | - Francisca C Bronfman
- Department of Physiology, Neurobiology Unit, Center of Ageing and Regeneration (CARE), Nucleus Millennium in Regenerative Biology (MINREB), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, CP 8331010, Santiago, Chile
| |
Collapse
|
43
|
Abstract
Nerve growth factor (NGF) is produced in the hippocampus throughout life and is retrogradely trafficked to septal cholinergic neurons, providing a potential mechanism for modulating cholinergic inputs and, thereby, hippocampal plasticity. To explore NGF modulation of hippocampal plasticity and function, NGF levels were augmented or blocked in intact adult rats, and subsequent in vivo effects on cholinergic neurons, hippocampal long-term potentiation (LTP), and learning were examined. NGF augmentation significantly enhanced cholinergic neuronal markers and facilitated induction of hippocampal LTP. Blockade of endogenous NGF significantly reduced hippocampal LTP and impaired retention of spatial memory. These findings reveal an essential role for NGF in regulating biological mechanisms related to plasticity and memory in the intact adult brain.
Collapse
|
44
|
Abstract
Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the "neurotrophin hypothesis of depression". Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB) and its splice variant (TrkB.T1) have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
45
|
Sultan-Styne K, Toledo R, Walker C, Kallkopf A, Ribak CE, Guthrie KM. Long-term survival of olfactory sensory neurons after target depletion. J Comp Neurol 2009; 515:696-710. [PMID: 19496176 DOI: 10.1002/cne.22084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Life-long addition and elimination of neurons within the adult olfactory epithelium and olfactory bulb allows for adaptive structural responses to sensory experience, learning, and recovery after injury. The interdependence of the two structures is highlighted by the shortened life span of sensory neurons deprived of bulb contact, and has prompted the hypothesis that trophic cues from the bulb contribute to their survival. The specific identity and source of these signals remain unknown. To investigate the potential role of target neurons in this support, we employed a neurotoxic lesion to selectively remove them while preserving the remaining nerve projection pathway, and examined the dynamics of sensory neuron proliferation and survival. Pulse-labeling of progenitors with bromodeoxyuridine showed that, as with surgical bulb removal, increased apoptosis in the epithelium triggered accelerated production of new neurons after chemical depletion of target cells. Rather than undergoing premature death, a large subpopulation of these neurons survived long term. The combination of increased proliferation and extended survival resulted in essentially normal numbers of new sensory neurons surviving for as long as 5 weeks, with an accompanying restoration of olfactory marker protein expression. Changes in neurotrophic factor expression levels as measured by quantitative polymerase chain reaction (Q-PCR), and in bulb cell populations, including the addition of new neurons generated in the subventricular zone, were observed in the injured bulb. These data indicate that olfactory sensory neurons can adapt to reductions in their normal target field by obtaining sufficient support from remaining or alternative cell sources to survive and maintain their projections.
Collapse
Affiliation(s)
- Krista Sultan-Styne
- Department of Basic Science, College of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | | | | | | | |
Collapse
|
46
|
Dwivedi Y, Rizavi HS, Zhang H, Mondal AC, Roberts RC, Conley RR, Pandey GN. Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biol Psychiatry 2009; 65:319-28. [PMID: 18930453 PMCID: PMC2654767 DOI: 10.1016/j.biopsych.2008.08.035] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/31/2008] [Accepted: 08/25/2008] [Indexed: 01/19/2023]
Abstract
BACKGROUND The physiological functions of neurotrophins occur through binding to two receptors: pan75 neurotrophin receptor (p75(NTR)) and a family of tropomyosin receptor kinases (Trks A, B, and C). We recently reported that expression of neurotrophins and TrkB were reduced in brains of suicide subjects. This study examines whether expression and activation of Trk receptors and expression of p75(NTR) are altered in brain of these subjects. METHODS Expression levels of TrkA, B, C, and of p75(NTR) were measured by quantitative reverse transcription polymerase chain reaction and Western blot in prefrontal cortex (PFC) and hippocampus of suicide and normal control subjects. The activation of Trks was determined by immunoprecipitation followed by Western blotting using phosphotyrosine antibody. RESULTS In hippocampus, lower mRNA levels of TrkA and TrkC were observed in suicide subjects. In the PFC, the mRNA level of TrkA was decreased, without any change in TrkC. However, the mRNA level of p75(NTR) was increased in both PFC and hippocampus. Immunolabeling studies showed similar results as observed for the mRNAs. In addition, phosphorylation of all Trks was decreased in hippocampus, but in PFC, decreased phosphorylation was noted only for TrkA and B. Increased expression ratios of p75(NTR) to Trks were also observed in PFC and hippocampus of suicide subjects. CONCLUSIONS Our results suggest not only reduced functioning of Trks in brains of suicide subjects but also that increased ratios of p75(NTR) to Trks indicate possible activation of pathways that are apoptotic in nature. These findings may be crucial in the pathophysiology of suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Hooriyah S. Rizavi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| | - Hui Zhang
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| | - Amal C. Mondal
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| | - Rosalinda C. Roberts
- University of Alabama at Birmingham, 865D Sparks Center, 1720 7th Ave South, Birmingham, AL 35294, USA
| | | | - Ghanshyam N. Pandey
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago IL, 60612, USA
| |
Collapse
|
47
|
Maguire-Zeiss KA, Federoff HJ. Immune-directed gene therapeutic development for Alzheimer's, prion, and Parkinson's diseases. J Neuroimmune Pharmacol 2008; 4:298-308. [PMID: 18931916 DOI: 10.1007/s11481-008-9133-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/26/2008] [Indexed: 12/28/2022]
Abstract
The development of novel immune-based therapeutics for neurodegenerative diseases is an area of intense focus. Neurodegenerative diseases represent a particular challenge since in many cases the onset of symptoms occurs after considerable degeneration has ensued. Based on human genetic and histopathological evidence from patients with neurodegenerative diseases, animal models that recapitulate specific pathologic features have been developed. Utilizing these animal models in combination with viral vector-based gene therapeutics, specific epochs of disease can be targeted. One common feature of several neurodegenerative diseases is misfolded proteins. The mechanism by which these altered protein conformers lead to neurodegeneration is not completely understood but much effort has been put forward to either degrade aberrant protein or prevent the formation of misfolded conformers. In this review, we will summarize work that employs viral vector gene therapeutics to modulate the brain's response to misfolded proteins with a specific focus on neurodegeneration.
Collapse
|
48
|
de la Cruz RR, Pastor AM, Delgado-garcía JM. The Neurotoxic Effects ofRicinus communisAgglutinin-II. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549509089967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Hu Y, Russek SJ. BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem 2008; 105:1-17. [PMID: 18208542 DOI: 10.1111/j.1471-4159.2008.05237.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is clear that brain-derived neurotrophic factor (BDNF) plays a crucial role in organizing the response of the genome to dynamic changes in the extracellular environment that enable brain plasticity. BDNF has emerged as one of the most important signaling molecules for the developing nervous system as well as the impaired nervous system, and multiple diseases, such as Alzheimer's, Parkinson's, Huntington's, epilepsy, Rett's syndrome, and psychiatric depression, are linked by their association with potential dysregulation of BDNF-driven signal transduction programs. These programs are responsible for controlling the amount of activated transcription factors, such as cAMP response element binding protein, that coordinate the expression of multiple brain proteins, like ion channels and early growth response factors, whose job is to maintain the balance of excitation and inhibition in the nervous system. In this review, we will explore the evidence for BDNF's role in gene regulation side by side with its potential role in the etiology of neurological diseases. It is hoped that by bringing the datasets together in these diverse fields we can help develop the foundation for future studies aimed at understanding basic principles of gene regulation in the nervous system and how they can be harnessed to develop new therapeutic opportunities.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Pharmacology and Experimental Therapeutics, Laboratory of Translational Epilepsy, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
50
|
Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 2008; 14:69-74. [PMID: 18157143 DOI: 10.1038/nm1682] [Citation(s) in RCA: 548] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 10/16/2007] [Indexed: 12/13/2022]
Abstract
Spinal cord injuries (SCIs) in humans and experimental animals are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.
Collapse
Affiliation(s)
- Gregoire Courtine
- Department of Physiological Sciences, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | | | | | | | | | |
Collapse
|