1
|
Machado CRD, Azambuja M, Domit C, da Fonseca GF, Glugoski L, Gazolla CB, de Almeida RB, Pucci MB, Pires TT, Nogaroto V, Vicari MR. Integrating morphological, molecular and cytogenetic data for F2 sea turtle hybrids diagnosis revealed balanced chromosomal sets. J Evol Biol 2023; 36:1595-1608. [PMID: 37885128 DOI: 10.1111/jeb.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 10/28/2023]
Abstract
Hybridization could be considered part of the evolutionary history of many species. The hybridization among sea turtle species on the Brazilian coast is atypical and occurs where nesting areas and reproductive seasons overlap. Integrated analysis of morphology and genetics is still scarce, and there is no evidence of the parental chromosome set distribution in sea turtle interspecific hybrids. In this study, chromosome markers previously established for pure sea turtle species were combined with morphological and molecular analyses aiming to recognize genetic composition and chromosome sets in possible interspecific hybrids initially identified by mixed morphology. The data showed that one hybrid could be an F2 individual among Caretta caretta × Eretmochelys imbricata × Chelonia mydas, and another is resulting from backcross between C. caretta × Lepidochelys olivacea. Native alleles of different parental lineages were reported in the hybrids, and, despite this, it was verified that the hybrid chromosome sets were still balanced. Thus, how sea turtle hybridism can affect genetic features in the long term is a concern, as the implications of the crossing-over in hybrid chromosomal sets and the effects on genetic function are still unpredictable.
Collapse
Affiliation(s)
- Caroline Regina Dias Machado
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Gabriel Fraga da Fonseca
- Laboratório de Ecologia e Conservação, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Larissa Glugoski
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Rafael Bonfim de Almeida
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Marcela Baer Pucci
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
2
|
Sex Chromosomes and Master Sex-Determining Genes in Turtles and Other Reptiles. Genes (Basel) 2021; 12:genes12111822. [PMID: 34828428 PMCID: PMC8622242 DOI: 10.3390/genes12111822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Among tetrapods, the well differentiated heteromorphic sex chromosomes of birds and mammals have been highly investigated and their master sex-determining (MSD) gene, Dmrt1 and SRY, respectively, have been identified. The homomorphic sex chromosomes of reptiles have been the least studied, but the gap with birds and mammals has begun to fill. This review describes our current knowledge of reptilian sex chromosomes at the cytogenetic and molecular level. Most of it arose recently from various studies comparing male to female gene content. This includes restriction site-associated DNA sequencing (RAD-Seq) experiments in several male and female samples, RNA sequencing and identification of Z- or X-linked genes by male/female comparative transcriptome coverage, and male/female transcriptomic or transcriptome/genome substraction approaches allowing the identification of Y- or W-linked transcripts. A few putative master sex-determining (MSD) genes have been proposed, but none has been demonstrated yet. Lastly, future directions in the field of reptilian sex chromosomes and their MSD gene studies are considered.
Collapse
|
3
|
Cole CJ. Karyotypes of Coralsnakes (Reptilia: Elapidae) from the Western Hemisphere, with Comments on Intraspecific Variation and Centric Fission of Chromosomes. AMERICAN MUSEUM NOVITATES 2021. [DOI: 10.1206/3972.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charles J. Cole
- Division of Vertebrate Zoology (Herpetology), American Museum of Natural History
| |
Collapse
|
4
|
Genomic evidence of recent hybridization between sea turtles at Abrolhos Archipelago and its association to low reproductive output. Sci Rep 2020; 10:12847. [PMID: 32733067 PMCID: PMC7393485 DOI: 10.1038/s41598-020-69613-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Hybridization between sea turtle species occurs with particularly high frequency at two adjacent nesting areas in northeastern Brazil. To understand the outcomes of hybridization and their consequences for sea turtle conservation, we need to evaluate the extent of hybridization occurrence and possible deleterious effects in the hybrid progeny. Thus, we investigated the hypothesis of the existence of a new hybrid spot offshore of Brazil’s northeastern coast. The Abrolhos Archipelago is surrounded by the largest and richest coral reefs in the South Atlantic and is known to be a nesting site for loggerhead turtles (Carettacaretta). In this study, we performed a multidisciplinary investigation into levels of hybridization in sea turtles and their reproductive output in the Abrolhos beaches. Genetic data from mitochondrial DNA (mtDNA) and six autosomal markers showed that there are first-generation hybrid females nesting in Abrolhos, resulting from crossings between hawksbill males (Eretmochelysimbricata) and loggerhead females, and backcrossed hatchlings from both parental species. The type and extent of hybridization were characterized using genomic data obtained with the 3RAD method, which confirmed backcrossing between F1 hybrids and loggerhead turtles. The reproductive output data of Abrolhos nests suggests a disadvantage of hybrids when compared to loggerheads. For the first time, we have shown the association between hybridization and low reproductive success, which may represent a threat to sea turtle conservation.
Collapse
|
5
|
Clemente L, Mazzoleni S, Pensabene Bellavia E, Augstenová B, Auer M, Praschag P, Protiva T, Velenský P, Wagner P, Fritz U, Kratochvíl L, Rovatsos M. Interstitial Telomeric Repeats Are Rare in Turtles. Genes (Basel) 2020; 11:genes11060657. [PMID: 32560114 PMCID: PMC7348932 DOI: 10.3390/genes11060657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023] Open
Abstract
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
Collapse
Affiliation(s)
- Lorenzo Clemente
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Eleonora Pensabene Bellavia
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Markus Auer
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | | | | | - Petr Velenský
- Prague Zoological Garden, 17100 Prague, Czech Republic;
| | | | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany; (M.A.); (U.F.)
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (L.C.); (S.M.); (E.P.B.); (B.A.); (L.K.)
- Correspondence:
| |
Collapse
|
6
|
Cavalcante MG, Bastos CEMC, Nagamachi CY, Pieczarka JC, Vicari MR, Noronha RCR. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae). PLoS One 2018; 13:e0197536. [PMID: 29813087 PMCID: PMC5973585 DOI: 10.1371/journal.pone.0197536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.
Collapse
Affiliation(s)
- Manoella Gemaque Cavalcante
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Carlos Eduardo Matos Carvalho Bastos
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| |
Collapse
|
7
|
Noronha RCR, Barros LMR, Araújo REF, Marques DF, Nagamachi CY, Martins C, Pieczarka JC. New insights of karyoevolution in the Amazonian turtles Podocnemis expansa and Podocnemis unifilis (Testudines, Podocnemidae). Mol Cytogenet 2016; 9:73. [PMID: 27708713 PMCID: PMC5039792 DOI: 10.1186/s13039-016-0281-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cytogenetic studies were conducted in the Brazilian Amazon turtles, Podocnemis expansa Schweigger, 1912 (PEX) and Podocnemis unifilis Troschel, 1848 (PUN) to understand their karyoevolution. Their chromosomal complements were compared using banding techniques (C, G-, Ag-NOR and Chromomycin A3) and fluorescence in situ hybridization (FISH), and efforts were made to establish evolutionary chromosomal relationships within the Podocnemidae family. RESULTS Our results revealed that both species have a chromosome complement of 2n = 28. For PEX and PUN, the fundamental numbers (FNs) were 54 and 52, respectively and the karyotypic formulas (KFs) were 24 m/sm + 2st + 2a and 22 m/sm + 2st + 4a, respectively. G-banding evidenced homologies between the two species and allowed identify a heteromorphic pair (chromosome pair 10) in PUN. In PEX, constitutive heterochromatin (CH) was found in the centromeric regions of pairs 1, 2, 4, 6 and 11 and on 9p. In PUN, CH was observed in the centromeric regions of all chromosomes, and in small proximal bands on 1p, 2p, 3q, 4q, 5q, 9q, 10q and 11q. Moreover, CH amplification was seen in one of the homologs of pair 10 (the heteromorphic pair). The CMA3 staining results were consistent with the CH findings. Ag-NOR staining showed that nucleolar organizing regions (NORs) were localized in the pericentromeric region of pair 1 in both species, and this result was confirmed by the 18S rDNA FISH probe. FISH with telomeric probes identified telomeric sequences in the distal regions of all chromosomes. In addition, interstitial telomeric sequences (ITSs) were present in seven chromosome pairs of PUN, perhaps reflecting the amplification of telomere-like sequences. FISH with a probe against the transposable element (TE), Rex 6, revealed that it is dispersed in euchromatic regions of the first chromosome pairs of both species. This is the first report describing the FISH-based analysis of PEX and PUN for the 18S rDNA, Rex 6 and human telomeric sequences. CONCLUSIONS Our results contribute to clarifying the chromosomal homologies and rearrangement mechanisms that occurred during the evolution of these species, and may help researchers uncover new markers that will improve our understanding of the taxonomy and systematic classification of Podocnemidae. TRIAL REGISTRATION ISRCTN ISRCTN73824458. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- R C R Noronha
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - L M R Barros
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - R E F Araújo
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - D F Marques
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil
| | - C Y Nagamachi
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - C Martins
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - J C Pieczarka
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| |
Collapse
|
8
|
Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes. Cytogenet Genome Res 2016; 148:292-304. [DOI: 10.1159/000447478] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes.
Collapse
|
9
|
Deakin JE, Edwards MJ, Patel H, O'Meally D, Lian J, Stenhouse R, Ryan S, Livernois AM, Azad B, Holleley CE, Li Q, Georges A. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genomics 2016; 17:447. [PMID: 27286959 PMCID: PMC4902969 DOI: 10.1186/s12864-016-2774-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Background Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. Results By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. Conclusions Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2774-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - Melanie J Edwards
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Jinmin Lian
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Rachael Stenhouse
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Sam Ryan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Alexandra M Livernois
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Bhumika Azad
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Qiye Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 2016; 126:105-113. [DOI: 10.1007/s00412-016-0576-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/27/2022]
|
11
|
Badenhorst D, Hillier LW, Literman R, Montiel EE, Radhakrishnan S, Shen Y, Minx P, Janes DE, Warren WC, Edwards SV, Valenzuela N. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation. Genome Biol Evol 2015; 7:2038-50. [PMID: 26108489 PMCID: PMC4524486 DOI: 10.1093/gbe/evv119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 01/04/2023] Open
Abstract
Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms.
Collapse
Affiliation(s)
- Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | | | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | | | | | - Yingjia Shen
- The Genome Institute at Washington University, St Louis
| | - Patrick Minx
- The Genome Institute at Washington University, St Louis
| | - Daniel E Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Department of Organismic and Evolutionary Biology, Harvard University
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| |
Collapse
|
12
|
Siripiyasing P, Tanomtong A, Jumrusthanasan S, Patawang I, Phimphan S, Sanoamuang LO. First Cytogenetic Study of Malayan Snail-eating Turtle, Malayemys macrocephala (Testudines, Geoemydidae) in Thailand. CYTOLOGIA 2013. [DOI: 10.1508/cytologia.78.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Alongklod Tanomtong
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| | - Sarun Jumrusthanasan
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| | - Isara Patawang
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| | - Sumalee Phimphan
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| | - La-orsri Sanoamuang
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| |
Collapse
|
13
|
Marks J. Hominoid cytogenetics and evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012. [DOI: 10.1002/ajpa.1330260507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Reid BN, LE M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R, Naro-Maciel E. Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol Ecol Resour 2011; 11:956-67. [PMID: 21635698 DOI: 10.1111/j.1755-0998.2011.03032.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Molecular barcoding can serve as a powerful tool in wildlife forensics and may prove to be a vital aid in conserving organisms that are threatened by illegal wildlife trade, such as turtles (Order Testudines). We produced cytochrome oxidase subunit one (COI) sequences (650 bp) for 174 turtle species and combined these with publicly available sequences for 50 species to produce a data set representative of the breadth of the order. Variability within the barcode region was assessed, and the utility of both distance-based and character-based methods for species identification was evaluated. For species in which genetic material from more than one individual was available (n = 69), intraspecific divergences were 1.3% on average, although divergences greater than the customary 2% barcode threshold occurred within 15 species. High intraspecific divergences could indicate species with a high degree of internal genetic structure or possibly even cryptic species, although introgression is also probable in some of these taxa. Divergences between species of the same genus were 6.4% on average; however, 49 species were <2% divergent from congeners. Low levels of interspecific divergence could be caused by recent evolutionary radiations coupled with the low rates of mtDNA evolution previously observed in turtles. Complementing distance-based barcoding with character-based methods for identifying diagnostic sets of nucleotides provided better resolution in several cases where distance-based methods failed to distinguish species. An online identification engine was created to provide character-based identifications. This study constitutes the first comprehensive barcoding effort for this seriously threatened order.
Collapse
Affiliation(s)
- B N Reid
- Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Patterns of genetic diversity in the critically endangered Central American river turtle: human influence since the Mayan age? CONSERV GENET 2011. [DOI: 10.1007/s10592-011-0225-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Bickham JW, Tucker PK, Legler JM. Diploid-Triploid Mosaicism: An Unusual Phenomenon in Side-Necked Turtles (Platemys platycephala). Science 2010; 227:1591-3. [PMID: 17795351 DOI: 10.1126/science.227.4694.1591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diploid and diploid-triploid mosaic individuals of Platemys platycephala were found in natural populations. In mosaic specimens, the blood, spleen, liver, and testis contained both diploid and triploid cells. The ratio of triploid to diploid cells was more variable among individuals than among somatic tissues within an individual. Only diploid cells underwent meiosis in males; haploid gametes were produced. There appears to be geographic variation for mosaicism in that only diploids were found in Bolivia, whereas diploids and diploid-triploid mosaics occured in Surinam.
Collapse
|
17
|
Reis EC, Soares LS, Lôbo-Hajdu G. Evidence of olive ridley mitochondrial genome introgression into loggerhead turtle rookeries of Sergipe, Brazil. CONSERV GENET 2009. [DOI: 10.1007/s10592-009-9973-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Abstract
Reptiles are a karyologically heterogeneous group, where some orders and suborders exhibit characteristics similar to those of anamniotes and others share similarities with homeotherms. The class also shows different evolutionary trends, for instance in genome and chromosome size and composition. The turtle DNA base composition is similar to that of mammals, whereas that of lizards and snakes is more similar to that of anamniotes. The major karyological differences between turtles and squamates are the size and composition of the genome and the rate at which chromosomes change. Turtles have larger and more variable genome sizes, and a greater amount of middle repetitive DNA that differs even among related species. In lizards and snakes size of the genome are smaller, single-copy DNA is constant within each suborder, and differences in repetitive DNA involve fractions that become increasingly heterogeneous with widening phylogenetic distance. With regard to variation in karyotype morphology, turtles and crocodiles show low variability in chromosome number, morphology, and G-banding pattern. Greater variability is found among squamates, which have a similar degree of karyotypic change-as do some mammals, such as carnivores and bats-and in which there are also differences among congeneric species. An interesting relationship has been highlighted in the entire class Reptilia between rates of change in chromosomes, number of living species, and rate of extinction. However, different situations obtain in turtles and crocodiles on the one hand, and squamates on the other. In the former, the rate of change in chromosomes is lower and the various evolutionary steps do not seem to have entailed marked chromosomal variation, whereas squamates have a higher rate of change in chromosomes clearly related to the number of living species, and chromosomal variation seems to have played an important role in the evolution of several taxa. The different evolutionary trends in chromosomes observed between turtles and crocodiles on the one hand and squamates on the other might depend on their different patterns of G-banding.
Collapse
Affiliation(s)
- Ettore Olmo
- Istituto di Biologia e Genetica, Università Politecnica delle Marche and Istituto Nazionale di Biosistemi e Biostrutture, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
19
|
Abstract
The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may be sufficient to prevent allopatric speciation under contemporary geographic and climatic conditions. Genetic studies have advanced our understanding of marine turtle biology and evolution, but significant gaps persist and provide challenges for the next generation of sea turtle geneticists.
Collapse
Affiliation(s)
- B W Bowen
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Kaneohe, HI 96744, USA.
| | | |
Collapse
|
20
|
|
21
|
Noleto RB, Kantek DLZ, Swarça AC, Dias AL, Fenocchio AS, Cestari MM. Karyotypic characterization of Hydromedusa tectifera (Testudines, Pleurodira) from the upper Iguaçu River in the Brazilian state of Paraná. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000200011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Abstract
Chromosomal data have been underutilized in phylogenetic investigations despite the obvious potential that cytogenetic studies have to reveal both structural and functional homologies among taxa. In large part this is associated with difficulties in scoring conventional and molecular cytogenetic information for phylogenetic analysis. The manner in which chromosomal data have been used by most authors in the past was often conceptionally flawed in terms of the methods and principles underpinning modern cladistics. We present herein a review of the different methods employed, examine their relative strengths, and then outline a simple approach that considers the chromosomal change as the character, and its presence or absence the character state. We test this using one simulated and several empirical data sets. Features that are unique to cytogenetic investigations, including B-chromosomes, heterochromatic additions/deletions, and the location and number of nucleolar organizer regions (NORs), as well as the weighting of chromosomal characters, are critically discussed with regard to their suitability for phylogenetic reconstruction. We conclude that each of these classes of data have inherent problems that limit their usefulness in phylogenetic analyses and in most of these instances, inclusion should be subject to rigorous appraisal that addresses the criterion of unequivocal homology.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Museum National d'Histoire Naturelle, Laboratoire Origine, Structure et Evolution de la Biodiversité, 55, rue Buffon, F75005 Paris, France.
| | | | | | | |
Collapse
|
23
|
Abstract
Although Reptiles occupy a strategic position among terrestrial vertebrates, studies of the composition and evolution of their genome are scarce. The cytogenetic analysis of nearly 1400 species evidenced different karyotypical evolutionary rates and different G-banding structures in turtles and crocodiles on the one hand and squamates on the other. A similar dichotomy was also identified through the study of the quantitative and compositional characteristics of the genome. The different evolutionary rates of chromosome morphology and genome size and composition and the diversification of coding and non-coding sequences bear an interesting relationship to the number of extant species and the extinction rates of the reptilian orders and suborders studied, suggesting a large role for such different evolutionary rates in the phylogenesis of this class. The different molecular and structural organisation of chromosomes could be an important, though by no means the sole, factor affecting the genome's evolutionary rate.
Collapse
Affiliation(s)
- E Olmo
- Istituto di Biologia e Genetica, Facoltà di Scienze, Università di Ancona, Via Brecce Bianche, Ancona, Italy.
| | | | | |
Collapse
|
24
|
Suchyta SP, Cheng HH, Burnside J, Dodgson JB. Comparative mapping of chicken anchor loci orthologous to genes on human chromosomes 1, 4 and 9. Anim Genet 2001; 32:12-8. [PMID: 11419339 DOI: 10.1046/j.1365-2052.2001.00717.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comparative mapping of chicken and human genomes is described, primarily of regions corresponding to human chromosomes 1, 4 and 9. Segments of chicken orthologues of selected human genes were amplified from parental DNA of the East Lansing backcross reference mapping population, and the two parental alleles were sequenced. In about 80% of the genes tested, sequence polymorphism was identified between reference population parental DNAs. The polymorphism was used to design allele-specific primers with which to genotype the backcross panel and place genes on the chicken linkage map. Thirty-seven genes were mapped which confirmed the surprisingly high level of conserved synteny between orthologous chicken and human genes. In several cases the order of genes in conserved syntenic groups differs between the two genomes, suggesting that there may have been more frequent intrachromosomal inversions as compared with interchromosomal translocations during the separate evolution of avian and mammalian genomes.
Collapse
Affiliation(s)
- S P Suchyta
- Department of Microbiology and Molecular Genetics and Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Comparaison g�n�tique des tortues vertes (Chelonia mydas) des Oceans Atlantique, Indien et Pacifique. Genetica 1987. [DOI: 10.1007/bf00055218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Bickham JW, Rogers DS. Structure and variation of the Nucleolus Organizer Region in turtles. Genetica 1985. [DOI: 10.1007/bf02424488] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
|
30
|
Different trends in the variations of the main genomic components in turtles and scaly-reptiles. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0305-0491(85)90269-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
|
32
|
|
33
|
Russell DA. Exponential evolution: implications for intelligent extraterrestrial life. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1983; 3:95-103. [PMID: 11542467 DOI: 10.1016/0273-1177(83)90045-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some measures of biologic complexity, including maximal levels of brain development, are exponential functions of time through intervals of 10(6) to 10(9) yrs. Biological interactions apparently stimulate evolution but physical conditions determine the time required to achieve a given level of complexity. Trends in brain evolution suggest that other organisms could attain human levels within approximately 10(7) yrs. The number (N) and longevity (L) terms in appropriate modifications of the Drake Equation, together with trends in the evolution of biological complexity on Earth, could provide rough estimates of the prevalence of life forms at specified levels of complexity within the Galaxy. If life occurs throughout the cosmos, exponential evolutionary processes imply that higher intelligence will soon (10(9) yrs) become more prevalent than it now is. Changes in the physical universe become less rapid as time increases from the Big Bang. Changes in biological complexity may be most rapid at such later times. This lends a unique and symmetrical importance to early and late universal times.
Collapse
Affiliation(s)
- D A Russell
- Paleobiology Division, National Museum of Natural Sciences, Ottawa, Canada
| |
Collapse
|
34
|
|
35
|
|