1
|
Che YH, Wang JF, Shi XF, Ding WP, Xiao ZH, Wu JM, Wang FZ, Zhang S. 8 R-methoxy-9 R-hydroxyl-fumitremorgin C, a new diketopiperazine alkaloid from Haima cold seep-derived fungus Aspergillus fumigatus CYH-5. Nat Prod Res 2025; 39:2197-2202. [PMID: 38099373 DOI: 10.1080/14786419.2023.2294483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 04/09/2025]
Abstract
One novel diketopiperazine derivative 8R-methoxy-9R-hydroxyl-fumitremorgin C (1), together with twelve known compounds, was separated from the fungus Aspergillus fumigatus CYH-5 collected from Haima cold seep. The structures of the compounds were identified by NMR, MS, optical rotation, hydrolysis reaction and comparing with literatures. Among them, compounds 10 and 11 exhibited inhibitory effect against bacteria. Compound 11 showed inhibitory activity on α-glucosidase and compound 8 displayed acetylcholinesterase (AchE) inhibitory activity.
Collapse
Affiliation(s)
- Yi-Hao Che
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Feng Shi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wen-Ping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhi-Hui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Min Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fa-Zuo Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Seid CA, Hiley AS, McCowin MF, Carvajal JI, Cha H, Ahyong ST, Ashford OS, Breedy O, Eernisse DJ, Goffredi SK, Hendrickx ME, Kocot KM, Mah CL, Miller AK, Mongiardino Koch N, Mooi R, O'Hara TD, Pleijel F, Stiller J, Tilic E, Valentich-Scott P, Warén A, Wicksten MK, Wilson NG, Cordes EE, Levin LA, Cortés J, Rouse GW. A faunal inventory of methane seeps on the Pacific margin of Costa Rica. Zookeys 2025; 1222:1-250. [PMID: 39877055 PMCID: PMC11770332 DOI: 10.3897/zookeys.1222.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 01/31/2025] Open
Abstract
The methane seeps on the Pacific margin of Costa Rica support extensive animal diversity and offer insights into deep-sea biogeography. During five expeditions between 2009 and 2019, we conducted intensive faunal sampling via 63 submersible dives to 11 localities at depths of 300-3600 m. Based on these expeditions and published literature, we compiled voucher specimens, images, and 274 newly published DNA sequences to present a taxonomic inventory of macrofaunal and megafaunal diversity with a focus on invertebrates. In total 488 morphospecies were identified, representing the highest number of distinct morphospecies published from a single seep or vent region to date. Of these, 131 are described species, at least 58 are undescribed species, and the remainder include some degree of taxonomic uncertainty, likely representing additional undescribed species. Of the described species, 38 are known only from the Costa Rica seeps and their vicinity. Fifteen range extensions are also reported for species known from Mexico, the Galápagos seamounts, Chile, and the western Pacific; as well as 16 new depth records and three new seep records for species known to occur at vents or organic falls. No single evolutionary narrative explains the patterns of biodiversity at these seeps, as even morphologically indistinguishable species can show different biogeographic affinities, biogeographic ranges, or depth ranges. The value of careful molecular taxonomy and comprehensive specimen-based regional inventories is emphasized for biodiversity research and monitoring.
Collapse
Affiliation(s)
- Charlotte A. Seid
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Avery S. Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Marina F. McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - José I. Carvajal
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Harim Cha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Shane T. Ahyong
- Australian Museum, Sydney, New South Wales, AustraliaAustralian MuseumSydneyAustralia
- University of New South Wales, Kensington, New South Wales, AustraliaUniversity of New South WalesKensingtonAustralia
| | - Oliver S. Ashford
- Ocean Program, World Resources Institute, London, UKOcean Program, World Resources InstituteLondonUnited Kingdom
| | - Odalisca Breedy
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Douglas J. Eernisse
- California State University Fullerton, Fullerton, California, USACalifornia State University FullertonFullertonUnited States of America
| | - Shana K. Goffredi
- Occidental College, Los Angeles, California, USAOccidental CollegeLos AngelesUnited States of America
| | - Michel E. Hendrickx
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, MexicoUniversidad Nacional Autónoma de MéxicoMazatlánMexico
| | - Kevin M. Kocot
- University of Alabama, Tuscaloosa, Alabama, USAUniversity of AlabamaTuscaloosaUnited States of America
| | - Christopher L. Mah
- Smithsonian National Museum of Natural History, Washington, DC, USASmithsonian National Museum of Natural HistoryWashingtonUnited States of America
| | - Allison K. Miller
- University of Otago, Dunedin, New ZealandUniversity of OtagoDunedinNew Zealand
| | - Nicolás Mongiardino Koch
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Rich Mooi
- California Academy of Sciences, San Francisco, California, USACalifornia Academy of SciencesSan FranciscoUnited States of America
| | - Timothy D. O'Hara
- Museums Victoria, Melbourne, Victoria, AustraliaMuseums VictoriaMelbourneAustralia
| | - Fredrik Pleijel
- University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Josefin Stiller
- University of Copenhagen, Copenhagen, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Ekin Tilic
- Senckenberg Research Institute and Natural History Museum, Frankfurt, GermanySenckenberg Research Institute and Natural History MuseumFrankfurtGermany
| | - Paul Valentich-Scott
- Santa Barbara Museum of Natural History, Santa Barbara, California, USASanta Barbara Museum of Natural HistorySanta BarbaraUnited States of America
| | - Anders Warén
- Swedish Museum of Natural History, Stockholm, SwedenSwedish Museum of Natural HistoryStockholmSweden
| | - Mary K. Wicksten
- Texas A&M University, College Station, Texas, USATexas A&M UniversityTexasUnited States of America
| | - Nerida G. Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, AustraliaWestern Australian MuseumWelshpoolAustralia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, AustraliaUniversity of Western AustraliaPerthAustralia
| | - Erik E. Cordes
- Temple University, Philadelphia, Pennsylvania, USATemple UniversityPhiladelphiaUnited States of America
| | - Lisa A. Levin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Jorge Cortés
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| |
Collapse
|
3
|
Kong X, Wang W, Chen S, Song M, Zhi Y, Cai Y, Zhang H, Shen X. Comparative study of lysine acetylation in Vesicomyidae clam Archivesica marissinica and the manila clam Ruditapes philippinarum: adaptation mechanisms in cold seep environments. BMC Genomics 2024; 25:1006. [PMID: 39465380 PMCID: PMC11514971 DOI: 10.1186/s12864-024-10916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The deep-sea cold seep zone is characterized by high pressure, low temperature, darkness, and oligotrophy. Vesicomyidae clams are the dominant species within this environment, often forming symbiotic relationships with chemosynthetic microbes. Understanding the mechanisms by which Vesicomyidae clams adapt to the cold seep environment is significant. Acetylation modification of lysine is known to play a crucial role in various metabolic processes. Consequently, investigating the role of lysine acetylation in the adaptation of Vesicomyidae clams to deep-sea environments is worthwhile. So, a comparative study of lysine acetylation in cold seep clam Archivesica marissinica and shallow water shellfish Ruditapes philippinarum was conducted. RESULTS A total of 539 acetylated proteins were identified with 1634 acetylation sites. Conservative motif enrichment analysis revealed that the motifs -KacR-, -KacT-, and -KacF- were the most conserved. Subsequent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted on significantly differentially expressed acetylated proteins. The GO enrichment analysis indicated that acetylated proteins are crucial in various biological processes, including cellular response to stimulation, and other cellular processes ( p < 0.05 and false discovery rate (FDR) < 0.25). The results of KEGG enrichment analysis indicated that acetylated proteins are involved in various cellular processes, including tight junction, motor proteins, gap junction, phagosome, cGMP-PKG signaling pathways, endocytosis, glycolysis/gluconeogenesis, among others (p < 0.05 and FDR < 0.25). Notably, a high abundance of lysine acetylation was observed in the glycolysis/glycogenesis pathways, and the acetylation of glyceraldehyde 3-phosphate dehydrogenase might facilitate ATP production. Subsequent investigation into acetylation modifications associated with deep-sea adaptation revealed the specific identification of key acetylated proteins. Among these, the adaptation of cold seep clam hemoglobin and heat shock protein to high hydrostatic pressure and low temperature might involve an increase in acetylation levels. Acetylation of arginine kinase might be related to ATP production and interaction with symbiotic bacteria. Myosin heavy chain (Ama01085) has the most acetylation sites and might improve the actomyosin system stability through acetylation. Further validation is required for the acetylation modification from Vesicomyidae clams. CONCLUSION A novel comparative analysis was undertaken to investigate the acetylation of lysine in Vesicomyidae clams, yielding novel insights into the regulatory role of lysine acetylation in deep-sea organisms. The findings present many potential proteins for further exploration of acetylation functions in cold seep clams and other deep-sea mollusks.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Chen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Manzong Song
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
4
|
Xu J, Zhao R, Liu A, Li L, Li S, Li Y, Qu M, Di Y. To live or die: "Fine-tuning" adaptation revealed by systemic analyses in symbiotic bathymodiolin mussels from diverse deep-sea extreme ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170434. [PMID: 38278266 DOI: 10.1016/j.scitotenv.2024.170434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.
Collapse
Affiliation(s)
- Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|
5
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang T, He W, Liang Q, Zheng F, Xiao X, Zeng Z, Zhou J, Yao W, Chen H, Zhu Y, Zhao J, Zheng Y, Zhang C. Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea. Front Microbiol 2023; 14:1241958. [PMID: 37954235 PMCID: PMC10635418 DOI: 10.3389/fmicb.2023.1241958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Cold seeps on the continental margins are characterized by intense microbial activities that consume a large portion of methane by anaerobic methanotrophic archaea (ANME) through anaerobic oxidation of methane (AOM). Although ANMEs are known to contain unique ether lipids that may have an important function in marine carbon cycling, their full lipidomic profiles and functional distribution in particular cold-seep settings are still poorly characterized. Here, we combined the 16S rRNA gene sequencing and lipidomic approaches to analyze archaeal communities and their lipids in cold seep sediments with distinct methane supplies from the South China Sea. The archaeal community was dominated by ANME-1 in the moderate seepage area with strong methane emission. Low seepage area presented higher archaeal diversity covering Lokiarchaeia, Bathyarchaeia, and Thermoplasmata. A total of 55 core lipids (CLs) and intact polar lipids (IPLs) of archaea were identified, which included glycerol dialkyl glycerol tetraethers (GDGTs), hydroxy-GDGTs (OH-GDGTs), archaeol (AR), hydroxyarchaeol (OH-AR), and dihydroxyarchaeol (2OH-AR). Diverse polar headgroups constituted the archaeal IPLs. High concentrations of dissolved inorganic carbon (DIC) with depleted δ13CDIC and high methane index (MI) values based on both CLs (MICL) and IPLs (MIIPL) indicate that ANMEs were active in the moderate seepage area. The ANME-2 and ANME-3 clades were characterized by enhanced glycosidic and phosphoric diether lipids production, indicating their potential role in coupling carbon and phosphurus cycling in cold seep ecosystems. ANME-1, though representing a smaller proportion of total archaea than ANME-2 and ANME-3 in the low seepage area, showed a positive correlation with MIIPL, indicating a different mechanism contributing to the IPL-GDGT pool. This also suggests that MIIPL could be a sensitive index to trace AOM activities performed by ANME-1. Overall, our study expands the understanding of the archaeal lipid composition in the cold seep and improves the application of MI using intact polar lipids that potentially link to extent ANME activities.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou, China
- East China Sea Ecological Center, Ministry of Natural Resources, Shanghai, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qianyong Liang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fengfeng Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou, China
| | - Zhiyu Zeng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingzhuo Zhou
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
| | - Wenyong Yao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haodong Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Jing Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Yan Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
7
|
Diao C, Wang M, Zhong Z, Li Y, Xian W, Zhang H. Biodiversity exploration of Formosa Ridge cold seep in the South China Sea using an eDNA metabarcoding approach. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106109. [PMID: 37506653 DOI: 10.1016/j.marenvres.2023.106109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The Formosa Ridge, also named Site F, is an active cold seep marine ecosystem site that has been studied since it was discovered on the continental slope of the northeast South China Sea (SCS). However, few studies have focused on the eukaryotic diversity at Site F. Environmental DNA (eDNA) technology is a non-invasive method applied in biodiversity surveys with a high species detection probability. In the present study, we identified multi-trophic biodiversity using eDNA metabarcoding combined with multiple ribosomal RNA gene (rDNA) markers. We detected 142 phytoplankton, 90 invertebrates, and 64 fish species by amplifying the 18S rRNA gene V4 region, the 18S rRNA gene V9 region, and the 12S rRNA gene. The results elucidated dissimilar trends of different assemblages with depth. The diversity of phytoplankton and invertebrate assemblages markedly decreased with depth, whereas little change was observed within the fish assemblage. We comprehensively assessed the relationship between the three assemblages and environmental factors (temperature, salinity, depth, dissolved oxygen, and chlorophyll a). These factors strongly impacted on phytoplankton and invertebrates, but only slightly on fish. We inferred the finding might be due to fish having a strong migration capacity and wide distribution. This study indicates that eDNA metabarcoding with multiple markers is a powerful tool for marine biodiversity research that is able to provide technical support and knowledge for resource management and biodiversity protection efforts.
Collapse
Affiliation(s)
- Caoyun Diao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, 361005, China
| | - Weiwei Xian
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Hui Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Chen Y, Dai T, Li N, Li Q, Lyu Y, Di P, Lyu L, Zhang S, Li J. Environmental heterogeneity shapes the C and S cycling-associated microbial community in Haima's cold seeps. Front Microbiol 2023; 14:1199853. [PMID: 37502402 PMCID: PMC10370420 DOI: 10.3389/fmicb.2023.1199853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Environmental heterogeneity in cold seeps is usually reflected by different faunal aggregates. The sediment microbiome, especially the geochemical cycling-associated communities, sustains the ecosystem through chemosynthesis. To date, few studies have paid attention to the structuring and functioning of geochemical cycling-associated communities relating to environmental heterogeneity in different faunal aggregates of cold seeps. In this study, we profiled the microbial community of four faunal aggregates in the Haima cold seep, South China Sea. Through a combination of geochemical and meta-omics approaches, we have found that geochemical variables, such as sulfate and calcium, exhibited a significant variation between different aggregates, indicating changes in the methane flux. Anaerobic methanotrophic archaea (ANME), sulfate-reducing, and sulfide-oxidizing bacteria (SRB and SOB) dominated the microbial community but varied in composition among the four aggregates. The diversity of archaea and bacteria exhibited a strong correlation between sulfate, calcium, and silicate. Interspecies co-exclusion inferred by molecular ecological network analysis increased from non-seep to clam aggregates and peaked at the mussel aggregate. The networked geochemical cycling-associated species showed an obvious aggregate-specific distribution pattern. Notably, hydrocarbon oxidation and sulfate reduction by ANME and SRB produced carbonate and sulfide, driving the alkalization of the sediment environment, which may impact the microbial communities. Collectively, these results highlighted that geofluid and microbial metabolism together resulted in environmental heterogeneity, which shaped the C and S cycling-associated microbial community.
Collapse
Affiliation(s)
- Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Niu Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Pengfei Di
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Chen Y, Lyu Y, Zhang J, Li Q, Lyu L, Zhou Y, Kong J, Zeng X, Zhang S, Li J. Riddles of Lost City: Chemotrophic Prokaryotes Drives Carbon, Sulfur, and Nitrogen Cycling at an Extinct Cold Seep, South China Sea. Microbiol Spectr 2023; 11:e0333822. [PMID: 36511717 PMCID: PMC9927161 DOI: 10.1128/spectrum.03338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Deep-sea cold seeps are one of the most productive ecosystems that sustained by hydrocarbons carried by the fluid. Once the seep fluid ceases, the thriving autotrophic communities die out, terming as the extinct seep. But heterotrophic fauna can still survive even for thousands of years. The critical role of prokaryotes in active seeps are well defined, but their functions in extinct seeps are poorly understood to date. Here, we clarified the diversity, taxonomic specificity, interspecies correlation, and metabolic profiles of sediment prokaryotes at an extinct seep site of Haima cold seep, South China Sea. Alpha diversity of archaea significantly increased, while that of bacteria remained unchanged in extinct seep compared to active seep. However, archaea composition did not differ significantly at extinct seep from active or nonseep sites based on weighted-unifrac dissimilarity, while bacteria composition exhibited significant difference. Distribution of archaea and bacteria showed clear specificity to extinct seeps, indicating the unique life strategies here. Prokaryotes might live chemolithoautotrophically on cycling of inorganic carbon, sulfur, and nitrogen, or chemoorganotrophically on recycling of hydrocarbons. Notably, many of the extinct seep specific species and networked keystone lineages are classified as Proteobacteria. Regarding the functional diversity and metabolic flexibility of this clade, Proteobacteria is supposed to integrate the geochemical cycles and play a critical role in energy and resource supplement for microbiome in extinct seep. Collectively, our findings shed lights on the microbial ecology and functional diversity in extinct seeps, providing new understanding of biogeochemical cycling after fluid cessation. IMPORTANCE This research paper uncovered the potential mechanisms for microbiota mediated geochemical cycling in extinct cold seep, advancing our understanding in deep sea microbiology ecology.
Collapse
Affiliation(s)
- Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Jie Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Xinyang Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jie Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Wang M, Ruan L, Liu M, Liu Z, He J, Zhang L, Wang Y, Shi H, Chen M, Yang F, Zeng R, He J, Guo C, Chen J. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. BMC Genomics 2023; 24:72. [PMID: 36774470 PMCID: PMC9921365 DOI: 10.1186/s12864-023-09166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals living in deep-sea hydrothermal vents, cold seeps, and organic falls. The morphology and lifespan of Ridgeia piscesae, which is the only vestimentiferan tubeworm species found in the hydrothermal vents on the Juan de Fuca Ridge, vary greatly according to endemic environment. Recent analyses have revealed the genomic basis of adaptation in three vent- and seep-dwelling vestimentiferan tubeworms. However, the evolutionary history and mechanism of adaptation in R. piscesae, a unique species in the family Siboglinidae, remain to be investigated. RESULT We assembled a draft genome of R. piscesae collected at the Cathedral vent of the Juan de Fuca Ridge. Comparative genomic analysis showed that vent-dwelling tubeworms with a higher growth rate had smaller genome sizes than seep-dwelling tubeworms that grew much slower. A strong positive correlation between repeat content and genome size but not intron size and the number of protein-coding genes was identified in these deep-sea tubeworm species. Evolutionary analysis revealed that Ridgeia pachyptila and R. piscesae, the two tubeworm species that are endemic to hydrothermal vents of the eastern Pacific, started to diverge between 28.5 and 35 million years ago. Four genes involved in cell proliferation were found to be subject to positive selection in the genome of R. piscesae. CONCLUSION Ridgeia pachyptila and R. piscesae started to diverge after the formation of the Gorda/Juan de Fuca/Explorer ridge systems and the East Pacific Rise. The high growth rates of vent-dwelling tubeworms might be derived from their small genome sizes. Cell proliferation is important for regulating the growth rate in R. piscesae.
Collapse
Affiliation(s)
- Muhua Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Lingwei Ruan
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Meng Liu
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Zixuan Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Jian He
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Long Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Yuanyuan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Hong Shi
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Mingliang Chen
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Feng Yang
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Runying Zeng
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China. .,Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
11
|
Jiang Q, Jing H, Liu H, Du M. Biogeographic distributions of microbial communities associated with anaerobic methane oxidation in the surface sediments of deep-sea cold seeps in the South China Sea. Front Microbiol 2022; 13:1060206. [PMID: 36620029 PMCID: PMC9822730 DOI: 10.3389/fmicb.2022.1060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various cold seeps are located along the northern slope of the South China Sea (SCS). However, by far most microbial ecological studies were limited to specific cold seep in the SCS, and lack of comparison between different regions. Here, the surface sediments (0-4 cm) from the Site F/Haima cold seeps and the Xisha trough in the SCS were used to elucidate the biogeography of microbial communities, with particular interest in the typical functional groups involved in the anaerobic oxidation of methane (AOM) process. Distinct microbial clusters corresponding to the three sampling regions were formed, and significantly higher gene abundance of functional groups were present in the cold seeps than the trough. This biogeographical distribution could be explained by the geochemical characteristics of sediments, such as total nitrogen (TN), total phosphorus (TP), nitrate (NO3 -), total sulfur (TS) and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that mcrA and pmoA genotypes were closely affiliated with those from wetland and mangroves, where denitrifying anaerobic methane oxidation (DAMO) process frequently occurred; and highly diversified dsrB genotypes were revealed as well. In addition, significantly higher relative abundance of NC10 group was found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) process was more important in the hydrate-bearing trough, although its potential ecological contribution to AOM deserves further investigation. Our study also further demonstrated the necessity of combining functional genes and 16S rRNA gene to obtain a comprehensive picture of the population shifts of natural microbial communities among different oceanic regions.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mengran Du
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
12
|
Chen Z, Ma S, Qin G, Qu M, Zhang B, Lin Q. Strategy of micro-environmental adaptation to cold seep among different brittle stars’ colonization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1027139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diffusing fluid from methane seepage in cold seep field creates zones with physicochemical gradients and divergent ecosystems like the mussel beds and clam beds. Three species of brittle stars (Ophiuroidea) were discovered in the Haima cold seep fields, of which Ophiophthalmus serratus and Histampica haimaensis were found on top of or within mussel beds and clam beds, whereas Amphiura sp. was only collected from muds in the clam bed assemblage. Here, we evaluated the genetic signatures of micro-environmental adaptation of brittle stars to cold seep through the comparison of mitogenomes. This study provided two complete mitogenome sequences of O. serratus and Amphiura sp. and compared with those of H. haimaensis and other non-seep species. We found that the split events of the seep and non-seep species were as ancient as the Cretaceous period (∼148–98 Mya). O. serratus and H. haimaensis display rapid residue mutation and mitogenome rearrangements compared to their shallow or deep-sea relatives, in contrast, Amphiura sp. only show medium, regardless of nucleotide mutation rate or mitogenome rearrangement, which may correlate with their adaptation to one or two micro-ecosystems. Furthermore, we identified 10 positively selected residues in ND4 in the Amphiura sp. lineage, suggesting important roles of the dehydrogenase complex in Amphiura sp. adaptive to the cold seep environment. Our results shed light on the different evolutionary strategies during colonization in different micro-environments.
Collapse
|
13
|
Rattray JE, Chakraborty A, Elizondo G, Ellefson E, Bernard B, Brooks J, Hubert CRJ. Endospores associated with deep seabed geofluid features in the eastern Gulf of Mexico. GEOBIOLOGY 2022; 20:823-836. [PMID: 35993193 PMCID: PMC9804197 DOI: 10.1111/gbi.12517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have reported up to 1.9 × 1029 bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or 'dipicolinic acid' (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.
Collapse
Affiliation(s)
- Jayne E. Rattray
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Anirban Chakraborty
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Gretta Elizondo
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Emily Ellefson
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | | | | | - Casey R. J. Hubert
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
14
|
Lo Giudice A, Rizzo C. Bacteria Associated with Benthic Invertebrates from Extreme Marine Environments: Promising but Underexplored Sources of Biotechnologically Relevant Molecules. Mar Drugs 2022; 20:617. [PMID: 36286440 PMCID: PMC9605250 DOI: 10.3390/md20100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| |
Collapse
|
15
|
Blasiak R, Jouffray JB, Amon DJ, Moberg F, Claudet J, Søgaard Jørgensen P, Pranindita A, Wabnitz CCC, Österblom H. A forgotten element of the blue economy: marine biomimetics and inspiration from the deep sea. PNAS NEXUS 2022; 1:pgac196. [PMID: 36714844 PMCID: PMC9802412 DOI: 10.1093/pnasnexus/pgac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The morphology, physiology, and behavior of marine organisms have been a valuable source of inspiration for solving conceptual and design problems. Here, we introduce this rich and rapidly expanding field of marine biomimetics, and identify it as a poorly articulated and often overlooked element of the ocean economy associated with substantial monetary benefits. We showcase innovations across seven broad categories of marine biomimetic design (adhesion, antifouling, armor, buoyancy, movement, sensory, stealth), and use this framing as context for a closer consideration of the increasingly frequent focus on deep-sea life as an inspiration for biomimetic design. We contend that marine biomimetics is not only a "forgotten" sector of the ocean economy, but has the potential to drive appreciation of nonmonetary values, conservation, and stewardship, making it well-aligned with notions of a sustainable blue economy. We note, however, that the highest ambitions for a blue economy are that it not only drives sustainability, but also greater equity and inclusivity, and conclude by articulating challenges and considerations for bringing marine biomimetics onto this trajectory.
Collapse
Affiliation(s)
- Robert Blasiak
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Fredrik Moberg
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005 Paris, France
| | - Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- The Global Economic Dynamics and the Biosphere Academy Program, Royal Swedish Academy of Science, 104 05 Stockholm, Sweden
| | - Agnes Pranindita
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Colette C C Wabnitz
- Stanford Center for Ocean Solutions, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Henrik Österblom
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- South American Institute for Resilience and Sustainability Studies, CP 20200 Maldonado, Uruguay
| |
Collapse
|
16
|
Sato M, Sasaki A. Evolution and Maintenance of Mutualism between Tubeworms and Sulfur-Oxidizing Bacteria. Am Nat 2021; 197:351-365. [PMID: 33625963 DOI: 10.1086/712780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractTubeworms and sulfur-oxidizing bacteria mutualism, an essential part of the chemosynthetic ecosystem in the deep sea, has several puzzling features. After acquiring sulfur-oxidizing bacteria from the environment, tubeworms become fully dependent on their symbiont bacteria for nutrient intake. Once ingested by the tubeworm larva, no additional symbionts join from the environment, and no symbionts are released until the host tubeworm dies. Despite this very narrow window to acquire symbionts, some tubeworm species can live for >200 years. Such a restricted release of symbionts could lead to a shortage of symbiont bacteria in the environment without which tubeworms could not survive. In our study, we examine the conditions under which this mutualism can persist and whether the host mortality rate evolves toward a low value using a mathematical model for the tubeworm-symbiont bacteria system. Our model reveals that mutualism can persist only when the host mortality rate is within an intermediate range. With cohabitation of multiple symbionts strains in the same host, host mortality rate evolves toward a low value without driving either host or symbiont to extinction when competition among symbionts is weak and their growth within a host is slow. We also find the parameter conditions that lead to unlimited evolutionary escalation of host mortality rate toward coextinction of both tubeworms and symbionts populations (evolutionary double suicide). The generality of this evolutionary fragility in obligate mutualistic systems as well as the contrasting evolutionary robustness in host-parasite systems are discussed.
Collapse
|
17
|
Leprich DJ, Flood BE, Schroedl PR, Ricci E, Marlow JJ, Girguis PR, Bailey JV. Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. ISME JOURNAL 2021; 15:2043-2056. [PMID: 33574572 PMCID: PMC8245480 DOI: 10.1038/s41396-021-00903-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023]
Abstract
Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.
Collapse
Affiliation(s)
- Dalton J Leprich
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Beverly E Flood
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Peter R Schroedl
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Elizabeth Ricci
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Jeffery J Marlow
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jake V Bailey
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Dong D, Li X, Yang M, Gong L, Li Y, Sui J, Gan Z, Kou Q, Xiao N, Zhang J. Report of epibenthic macrofauna found from Haima cold seeps and adjacent deep-sea habitats, South China Sea. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:1-12. [PMID: 37073389 PMCID: PMC10077165 DOI: 10.1007/s42995-020-00073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/06/2020] [Indexed: 05/03/2023]
Abstract
This work reports on a preliminary taxonomic study of epibenthic macroinvertebrates collected or observed by underwater video at the Haima cold seeps and in adjacent deep-sea habitats, including a mud volcano field and Ganquan Plateau, during an expedition in the South China Sea by the Chinese-manned submersible Shenhai Yongshi in May 2018. A total of 41 species belonging to 6 phyla were identified, among which 34 species were collected from the Haima cold seeps. Mollusks and crustaceans that are specialized in reducing habitats were predominant in biotopes of the Haima cold seeps, whereas sponges and cold-water corals and their commensals were prominent in communities of the mud volcano field and the slopes of Ganquan Plateau. The distribution and faunal composition of each taxonomic group are discussed.
Collapse
Affiliation(s)
- Dong Dong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xinzheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Lin Gong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Yang Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jixing Sui
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Zhibin Gan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Qi Kou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Ning Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| |
Collapse
|
19
|
The Diversity, Composition, and Putative Functions of Gill-Associated Bacteria of Bathymodiolin Mussel and Vesicomyid Clam from Haima Cold Seep, South China Sea. Microorganisms 2020; 8:microorganisms8111699. [PMID: 33143295 PMCID: PMC7694083 DOI: 10.3390/microorganisms8111699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023] Open
Abstract
The Haima cold seep, which is one of the two active cold seeps in the South China Sea, is known for its great ecological importance. The seep bivalves are assumed to depend mainly on their bacterial symbiosis for survival and growth. However, information on the bacterial diversity, composition, and putative function of gill-associated of dominant dwelling animals in Haima cold seep remain elusive. Herein, we adopted a high-throughput sequencing of 16S rRNA gene amplicons, and function prediction methods (Functional Annotation of Prokaryotic Taxa (FAPROTAX) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICURUSTs)) to purposely illustrate the taxonomic and phylogenetic diversity, composition, and putative functions of the symbionts in bathymodiolin mussel Gigantidas haimaensis (Bivalvia: Mytilidae: Gigantidas) and vesicomyid clam Archivesica marissinica (Bivalvia: Glossoidea: Vesicomyidae). The predominant microbes of both species were Proteobacteria and Gammaproteobacteria on the phylum and class level, respectively. The taxonomic and phylogenetic diversity of gill microbial communities in G. haimaensis were significantly different from those in A. marissinica (p < 0.05). Nine functional groups, including seven carbon-related biogeochemical groups, were identified through the FAPROTAX analysis. However, the most dominant groups for G. haimaensis and A. marissinica were both chemoheterotrophic. G. haimaensis and A. marissinica shared many pathways, however, 16 obtained Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups (42.11%) significantly differed between the two species (p < 0.05). These findings would provide insight into the functions of microbes in the element cycling and energy flow as well as the host-symbiont relationship of bivalves in the Haima cold seep environment.
Collapse
|
20
|
Linse K, Sigwart JD, Chen C, Krylova EM. Ecophysiology and ecological limits of symbiotrophic vesicomyid bivalves (Pliocardiinae) in the Southern Ocean. Polar Biol 2020. [DOI: 10.1007/s00300-020-02717-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractGeothermal energy provides an important resource in Antarctic marine ecosystems, exemplified by the recent discovery of large-sized chemosymbiotic vesicomyid bivalves (subfamily Pliocardiinae) in the Southern Ocean. These clams, which we identified as Archivesica s.l. puertodeseadoi, have been reported as dead shells in areas previously covered by Larsen A and B ice shelves (eastern Antarctic Peninsula) and as live animals from active hydrothermal sites in the Kemp Caldera (South Sandwich Arc) at depths of 852–1487 m. Before, A. puertodeseadoi was known only from its type locality in the Argentine Sea, so we considerably extend the range of the species. Observations taken by remotely operated vehicle (ROV) footage show that the clams can live buried in sediment, or epilithically on the surface of rocks in diffuse geothermal flow. Experimental respirometry was conducted at surface pressure on individual bivalves acclimated to either their habitat temperature (4 °C) or elevated temperature (10 °C). The range of standard metabolic rates, from 3.13 to 6.59 (MO2, μmol O2 h−1 g−1 dry tissue mass), is similar to rates measured ex situ for other species in this clade, and rates did not differ significantly between temperature groups. Taken together, these data indicate a range of ecophysiological flexibility for A. puertodeseadoi. Although adapted to a specialist mode of life, this bivalve exploits a relatively broad range of habitats in the Southern Ocean: within sulphidic sediments, epilithically in the presence of diffuse sulphidic flow, or in deep methane-enriched seawater trapped under ice.
Collapse
|
21
|
Souza BHM, Passos FD, Shimabukuro M, Sumida PYG. An integrative approach distinguishes three new species of Abyssochrysoidea (Mollusca: Caenogastropoda) associated with organic falls of the deep south-west Atlantic. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
Two new species of Rubyspira and one of Cordesia (Gastropoda: Abyssochrysoidea) are described morphologically and genetically, based on specimens collected from whale bones and wood parcels artificially implanted in the deep south-west Atlantic Ocean, at c. 1500 and 3300 m depths. Rubyspira pescaprae sp. nov. and R. elongata sp. nov. occur preferentially on whale bones. Cordesia atlantica sp. nov. is dominant on wood parcels. Distribution of Cordesia was hitherto only associated with hydrocarbon seeps off West Africa. Stable isotopes and gut content analyses were carried out to check possible trophic pathways. Both Rubyspira species are bone eaters, while Cordesia atlantica seems to rely on a wider range of food sources, including juveniles of wood-specialized xylophagid bivalves. Morphological and genetic evidence suggest that Rubyspira and Cordesia are more closely related to Abyssochrysos than to any other Abyssochrysoidea snails. In the present study, Cordesia is considered part of the family Abyssochrysidae based on molecular and morphological evidence, such as the presence of a penis and pallial tentacles arrangement.
Collapse
Affiliation(s)
- Bruno H M Souza
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, São Paulo-SP, Brazil
| | - Flávio D Passos
- Instituto de Biologia, Universidade de Campinas, Campinas-SP, Brazil
| | - Maurício Shimabukuro
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, São Paulo-SP, Brazil
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Centre Bretagne, REM/EEP/LEP, Plouzané, France
| | - Paulo Y G Sumida
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, São Paulo-SP, Brazil
| |
Collapse
|
22
|
Li H, Yang Q, Zhou H. Niche Differentiation of Sulfate- and Iron-Dependent Anaerobic Methane Oxidation and Methylotrophic Methanogenesis in Deep Sea Methane Seeps. Front Microbiol 2020; 11:1409. [PMID: 32733397 PMCID: PMC7360803 DOI: 10.3389/fmicb.2020.01409] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Methane seeps are widespread seafloor ecosystems shaped by complex physicochemical-biological interactions over geological timescales, and seep microbiomes play a vital role in global biogeochemical cycling of key elements on Earth. However, the mechanisms underlying the coexistence of methane-cycling microbial communities remain largely elusive. Here, high-resolution sediment incubation experiments revealed a cryptic methane cycle in the South China Sea (SCS) methane seep ecosystem, showing the coexistence of sulfate (SO4 2-)- or iron (Fe)-dependent anaerobic oxidation of methane (AOM) and methylotrophic methanogenesis. This previously unrecognized methane cycling is not discernible from geochemical profiles due to high net methane consumption. High-throughput sequencing and Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) results suggested that anaerobic methane-oxidizing archaea (ANME)-2 and -3 coupled to sulfate-reducing bacteria (SRB) carried out SO4 2--AOM, and alternative ANME-2 and -3 solely or coupled to iron-reducing bacteria (IRB) might participate in Fe-AOM in sulfate-depleted environments. This finding suggested that ANME could alter AOM metabolic pathways according to geochemical changes. Furthermore, the majority of methylotrophic methanogens belonged to Methanimicrococcus, and hydrogenotrophic and acetoclastic methanogens were likely inhibited by sulfate or iron respiration. Fe-AOM and methylotrophic methanogenesis are overlooked potential sources and sinks of methane in methane seep ecosystems, thus influencing methane budgets and even the global carbon budget in the ocean.
Collapse
Affiliation(s)
| | - Qunhui Yang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Sun QL, Zhang J, Wang MX, Cao L, Du ZF, Sun YY, Liu SQ, Li CL, Sun L. High-Throughput Sequencing Reveals a Potentially Novel Sulfurovum Species Dominating the Microbial Communities of the Seawater-Sediment Interface of a Deep-Sea Cold Seep in South China Sea. Microorganisms 2020; 8:microorganisms8050687. [PMID: 32397229 PMCID: PMC7284658 DOI: 10.3390/microorganisms8050687] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
In the Formosa cold seep of the South China Sea (SCS), large amounts of methane and sulfide hydrogen are released from the subseafloor. In this study, we systematically investigated the microbial communities in the seawater–sediment interface of Formosa cold seep using high-throughput sequencing techniques including amplicon sequencing based on next-generation sequencing and Pacbio amplicon sequencing platforms, and metagenomics. We found that Sulfurovum dominated the microbial communities in the sediment–seawater interface, including the seawater close to the seepage, the surface sediments, and the gills of the dominant animal inhabitant (Shinkaia crosnieri). A nearly complete 16S rRNA gene sequence of the dominant operational taxonomic units (OTUs) was obtained from the Pacbio sequencing platforms and classified as OTU-L1, which belonged to Sulfurovum. This OTU was potentially novel as it shared relatively low similarity percentages (<97%) of the gene sequence with its close phylogenetic species. Further, a draft genome of Sulfurovum was assembled using the binning technique based on metagenomic data. Genome analysis suggested that Sulfurovum sp. in this region may fix carbon by the reductive tricarboxylic acid (rTCA) pathway, obtain energy by oxidizing reduced sulfur through sulfur oxidizing (Sox) pathway, and utilize nitrate as electron acceptors. These results demonstrated that Sulfurovum probably plays an important role in the carbon, sulfur, and nitrogen cycles of the Formosa cold seep of the SCS. This study improves our understanding of the diversity, distribution, and function of sulfur-oxidizing bacteria in deep-sea cold seep.
Collapse
Affiliation(s)
- Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.-L.S.); (J.Z.); (Y.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.-L.S.); (J.Z.); (Y.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.-X.W.); (L.C.); (Z.-F.D.)
| | - Min-Xiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.-X.W.); (L.C.); (Z.-F.D.)
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.-X.W.); (L.C.); (Z.-F.D.)
| | - Zeng-Feng Du
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.-X.W.); (L.C.); (Z.-F.D.)
- Key Lab of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.-L.S.); (J.Z.); (Y.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shi-Qi Liu
- Faculty of Science, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| | - Chao-Lun Li
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.-X.W.); (L.C.); (Z.-F.D.)
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.-L.L.); (L.S.); Tel.: +86-532-8289-8599 (C.-L.L.); +86-532-8289-8829 (L.S.)
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.-L.S.); (J.Z.); (Y.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (C.-L.L.); (L.S.); Tel.: +86-532-8289-8599 (C.-L.L.); +86-532-8289-8829 (L.S.)
| |
Collapse
|
24
|
Geochemical and Geophysical Monitoring of Hydrocarbon Seepage in the Adriatic Sea. SENSORS 2020; 20:s20051504. [PMID: 32182919 PMCID: PMC7085597 DOI: 10.3390/s20051504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/18/2022]
Abstract
Hydrocarbon seepage is overlooked in the marine environment, mostly due to the lack of high-resolution exploration data. This contribution is about the set-up of a relocatable and cost-effective monitoring system, which was tested on two seepages in the Central Adriatic Sea. The two case studies are an oil spill at a water depth of 10 m and scattered biogenic methane seeps at a water depth of 84 m. Gas plumes in the water column were detected with a multibeam system, tightened to sub-seafloor seismic reflection data. Dissolved benthic fluxes of nutrients, metals and Dissolved Inorganic Carbon (DIC) were measured by in situ deployment of a benthic chamber, which was used also for the first time to collect water samples for hydrocarbons characterization. In addition, the concentration of polycyclic aromatic hydrocarbons, as well as major and trace elements were analyzed to provide an estimate of hydrocarbon contamination in the surrounding sediment and to make further inferences on the petroleum system.
Collapse
|
25
|
The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea. Extremophiles 2018; 22:499-510. [PMID: 29442249 DOI: 10.1007/s00792-018-1012-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/05/2018] [Indexed: 01/25/2023]
Abstract
In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.
Collapse
|
26
|
Methane- and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat Commun 2017; 8:1835. [PMID: 29180666 PMCID: PMC5703975 DOI: 10.1038/s41467-017-01776-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/16/2017] [Indexed: 11/08/2022] Open
Abstract
Subterranean estuaries extend inland into density-stratified coastal carbonate aquifers containing a surprising diversity of endemic animals (mostly crustaceans) within a highly oligotrophic habitat. How complex ecosystems (termed anchialine) thrive in this globally distributed, cryptic environment is poorly understood. Here, we demonstrate that a microbial loop shuttles methane and dissolved organic carbon (DOC) to higher trophic levels of the anchialine food web in the Yucatan Peninsula (Mexico). Methane and DOC production and consumption within the coastal groundwater correspond with a microbial community capable of methanotrophy, heterotrophy, and chemoautotrophy, based on characterization by 16S rRNA gene amplicon sequencing and respiratory quinone composition. Fatty acid and bulk stable carbon isotope values of cave-adapted shrimp suggest that carbon from methanotrophic bacteria comprises 21% of their diet, on average. These findings reveal a heretofore unrecognized subterranean methane sink and contribute to our understanding of the carbon cycle and ecosystem function of karst subterranean estuaries. It remains unclear how oligotrophic habitats in subterranean estuaries sustain complex ecosystems. Here, using stable isotopic evidence from organic matter and pelagic shrimp, the authors show that a microbial loop fuelled by methane and dissolved organic carbon sustains the anchialine food web.
Collapse
|
27
|
Medina-Silva R, Oliveira RR, Trindade FJ, Borges LGA, Lopes Simão TL, Augustin AH, Valdez FP, Constant MJ, Simundi CL, Eizirik E, Groposo C, Miller DJ, da Silva PR, Viana AR, Ketzer JMM, Giongo A. Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water. Antonie van Leeuwenhoek 2017; 111:533-550. [PMID: 29110156 DOI: 10.1007/s10482-017-0975-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
Abstract
As the depth increases and the light fades in oceanic cold seeps, a variety of chemosynthetic-based benthic communities arise. Previous assessments reported polychaete annelids belonging to the family Siboglinidae as part of the fauna at cold seeps, with the 'Vestimentifera' clade containing specialists that depend on microbial chemosynthetic endosymbionts for nutrition. Little information exists concerning the microbiota of the external portion of the vestimentiferan trunk wall. We employed 16S rDNA-based metabarcoding to describe the external microbiota of the chitin tubes from the vestimentiferan Escarpia collected from a chemosynthetic community in a cold seep area at the southwestern Atlantic Ocean. The most abundant operational taxonomic unit (OTU) belonged to the family Pirellulaceae (phylum Planctomycetes), and the second most abundant OTU belonged to the order Methylococcales (phylum Proteobacteria), composing an average of 21.1 and 15.4% of the total reads on tubes, respectively. These frequencies contrasted with those from the surrounding environment (sediment and water), where they represent no more than 0.1% of the total reads each. Moreover, some taxa with lower abundances were detected only in Escarpia tube walls. These data constitute on the first report of an epibiont microbial community found in close association with external surface of a cold-seep metazoan, Escarpia sp., from a chemosynthetic community in the southwestern Atlantic Ocean.
Collapse
Affiliation(s)
- Renata Medina-Silva
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael R Oliveira
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda J Trindade
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz G A Borges
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Taiz L Lopes Simão
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adolpho H Augustin
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda P Valdez
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo J Constant
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina L Simundi
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Eizirik
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claudia Groposo
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | - Dennis J Miller
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | - Priscila Reis da Silva
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello - CENPES, PETROBRAS, Rio de Janeiro, Brazil
| | | | - João M M Ketzer
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Giongo
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil. .,, Av. Ipiranga, 6681 Prédio 96J Sala 501-04, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Karaseva NP, Rimskaya-Korsakova NN, Galkin SV, Malakhov VV. Taxonomy, geographical and bathymetric distribution of vestimentiferan tubeworms (Annelida, Siboglinidae). BIOL BULL+ 2017. [DOI: 10.1134/s1062359016090132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Johnson SB, Krylova EM, Audzijonyte A, Sahling H, Vrijenhoek RC. Phylogeny and origins of chemosynthetic vesicomyid clams. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1252438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Elena M. Krylova
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prospect 36, 117997 Moscow, Russia
| | - Asta Audzijonyte
- Fisheries and Environmental Management Group, Department of Environmental Sciences, University of Helsinki, Viikinaari 2, P.O. Box 65, FIN-00014, Finland
| | - Heiko Sahling
- MARUM – Center for Marine Environment Sciences and Faculty of Geosciences, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
| | - Robert C. Vrijenhoek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
30
|
Hutchins BT, Engel AS, Nowlin WH, Schwartz BF. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities. Ecology 2016; 97:1530-42. [PMID: 27459783 DOI: 10.1890/15-1129.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The prevailing paradigm in subterranean ecology is that below-ground food webs are simple, limited to one or two trophic levels, and composed of generalist species because of spatio-temporally patchy food resources and pervasive energy limitation. This paradigm is based on relatively few studies of easily accessible, air-filled caves. However, in some subterranean ecosystems, chemolithoautotrophy can subsidize or replace surface-based allochthonous inputs of photosynthetically derived organic matter (OM) as a basal food resource and promote niche specialization and evolution of higher trophic levels. Consequently, the current subterranean trophic paradigm fails to account for variation in resources, trophic specialization, and food chain length in some subterranean ecosystems. We reevaluated the subterranean food web paradigm by examining spatial variation in the isotopic composition of basal food resources and consumers, food web structure, stygobiont species diversity, and chromophoric organic matter (CDOM), across a geochemical gradient in a large and complex groundwater system, the Edwards Aquifer in Central Texas (USA). Mean δ13C values of stygobiont communities become increasingly more negative along the gradient of photosynthetic OM sources near the aquifer recharge zone to chemolithoautotrophic OM sources closer to the freshwater-saline water interface (FWSWI) between oxygenated freshwater and anoxic, sulfide-rich saline water. Stygobiont community species richness declined with increasing distance from the FWSWI. Bayesian mixing models were used to estimate the relative importance of photosynthetic OM and chemolithoautorophic OM for stygobiont communities at three biogeochemically distinct sites. The contribution of chemolithoautotrophic OM to consumers at these sites ranged between 25% and 69% of total OM utilized and comprised as much as 88% of the diet for one species. In addition, the food web adjacent to the FWSWI had greater trophic diversity when compared to the other two sites. Our results suggest that diverse OM sources and in situ, chemolithoautotrophic OM production can support complex groundwater food webs and increase species richness. Chemolithoautotrophy has been fundamental for the long-term maintenance of species diversity, trophic complexity, and community stability in this subterranean ecosystem, especially during periods of decreased photosynthetic production and groundwater recharge that have occurred over geologic time scales.
Collapse
|
31
|
Kiel S, Hansen BT. Cenozoic Methane-Seep Faunas of the Caribbean Region. PLoS One 2015; 10:e0140788. [PMID: 26468887 PMCID: PMC4607474 DOI: 10.1371/journal.pone.0140788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted ‘Joes River fauna’ consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted ‘Bath Cliffs fauna’ containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman’s Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical ‘Cenozoic’ lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids because they are only facultative chemosymbiotic and need to derive a significant proportion of their nutrition from suspended organic matter.
Collapse
Affiliation(s)
- Steffen Kiel
- Georg-August-Universität Göttingen, Geoscience Center, Geobiology Group, Goldschmidtstr. 3, 37077, Göttingen, Germany
- Naturhistoriska riksmuseet, Department of Palaeobiology, Box 500 07, 104 05, Stockholm, Sweden
- * E-mail:
| | - Bent T. Hansen
- Georg-August-Universität Göttingen, Geoscience Center, Department of Isotope Geology, Goldschmidtstr. 3, 37077, Göttingen, Germany
| |
Collapse
|
32
|
Levin LA, Mendoza GF, Grupe BM, Gonzalez JP, Jellison B, Rouse G, Thurber AR, Waren A. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps. PLoS One 2015; 10:e0131080. [PMID: 26158723 PMCID: PMC4497642 DOI: 10.1371/journal.pone.0131080] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/28/2015] [Indexed: 12/04/2022] Open
Abstract
Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400–1850 m). The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails) as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive) sites is strongly related to the hydrography (depth, temperature, O2) of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m). Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm) from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰) ranged from -53.3‰ to +10.0‰, and were significantly heavier than carbonate δ13Corg (mean = -33.83‰), which ranged from -74.4‰ to -20.6‰. Invertebrates on carbonates had average δ13C (per rock) = -31.0‰ (range -18.5‰ to -46.5‰) and δ15N = 5.7‰ (range -4.5‰ to +13.4‰). Average δ13C values did not differ between active and inactive sites; carbonate fauna from both settings depend on chemosynthesis-based nutrition. Community metrics reflecting trophic diversity (SEAc, total Hull Area, ranges of δ13C and δ15N) and species packing (mean distance to centroid, nearest neighbor distance) also did not vary as a function of seepage activity or site. However, distinct isotopic signatures were observed among related, co-occurring species of gastropods and polychaetes, reflecting intense microbial resource partitioning. Overall, the substrate and nutritional heterogeneity introduced by authigenic seep carbonates act to promote diverse, uniquely adapted assemblages, even after seepage ceases. The macrofauna in these ecosystems remain largely overlooked in most surveys, but are major contributors to biodiversity of chemosynthetic ecosystems and the deep sea in general.
Collapse
Affiliation(s)
- Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, California, United States of America
- * E-mail:
| | - Guillermo F. Mendoza
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Benjamin M. Grupe
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Jennifer P. Gonzalez
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Brittany Jellison
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Greg Rouse
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Andrew R. Thurber
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 04 CEOAS Administration Building, Corvallis, Oregon, United States of America
| | - Anders Waren
- Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
33
|
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015; 19:721-40. [DOI: 10.1007/s00792-015-0760-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
|
34
|
Yang B, Zhang W, Tian R, Wang Y, Qian PY. Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea. Antonie van Leeuwenhoek 2015; 108:461-71. [PMID: 26059861 DOI: 10.1007/s10482-015-0499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
Abstract
Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted by MGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea.
Collapse
Affiliation(s)
- Bo Yang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong,
| | | | | | | | | |
Collapse
|
35
|
Eilertsen MH, Malaquias MAE. Speciation in the dark: diversification and biogeography of the deep-sea gastropod genus Scaphander in the Atlantic Ocean. JOURNAL OF BIOGEOGRAPHY 2015; 42:843-855. [PMID: 27524853 PMCID: PMC4964956 DOI: 10.1111/jbi.12471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
AIM The aim of this work was to improve understanding about the mode, geography and tempo of diversification in deep-sea organisms, using a time-calibrated molecular phylogeny of the heterobranch gastropod genus Scaphander. LOCATION Atlantic and Indo-West Pacific (IWP) oceans. METHODS Two mitochondrial gene markers (COI and 16S) and one nuclear ribosomal gene (28S) from six Atlantic species of Scaphander, and four IWP species were used to generate a multilocus phylogenetic hypothesis using uncorrelated relaxed-clock Bayesian methods implemented in beast and calibrated with the first occurrence of Scaphander in the fossil record (58.7-55.8 Ma). RESULTS Two main clades were supported: clade A, with sister relationships between species and subclades from the Atlantic and IWP; and clade B, with two western Atlantic sister species. Our estimates indicate that the two earliest divergences in clade A occurred between the middle Eocene and late Miocene and the most recent speciation occurred within the middle Miocene to Pleistocene. The divergence between the two western Atlantic species in clade B was estimated at late Oligocene-Pliocene. MAIN CONCLUSIONS The prevailing mode of speciation in Scaphander was allopatric, but one possible case of sympatric speciation was detected between two western Atlantic species. Sister relationships between IWP and Atlantic lineages suggest the occurrence both of vicariance events caused by the closure of the Tethyan Seaway and of dispersal between the two ocean basins, probably around South Africa during episodic disruptions of the deep-sea regional current system caused by glacial-interglacial cycles. Cladogenetic estimates do not support comparatively older diversification of deep-sea faunas, but corroborate the hypothesis of a pulse of diversification centred in the Oligocene and Miocene epochs. Amphi-Atlantic species were found to occur at deeper depths (bathyal-abyssal) and we hypothesize that trans-Atlantic connectivity is maintained by dispersal between neighbouring reproductive populations inhabiting the abyssal sea floor and by dispersal across the shelf and slope of Arctic and sub-Arctic regions.
Collapse
Affiliation(s)
- Mari H. Eilertsen
- Marine Biodiversity Research GroupDepartment of BiologyUniversity of Bergen5006BergenNorway
| | - Manuel António E. Malaquias
- Phylogenetic Systematics and Evolution Research GroupDepartment of Natural HistoryUniversity Museum of BergenUniversity of Bergen5020BergenNorway
| |
Collapse
|
36
|
|
37
|
Kiel S, Glodny J, Birgel D, Bulot LG, Campbell KA, Gaillard C, Graziano R, Kaim A, Lazăr I, Sandy MR, Peckmann J. The paleoecology, habitats, and stratigraphic range of the enigmatic cretaceous brachiopod peregrinella. PLoS One 2014; 9:e109260. [PMID: 25296341 PMCID: PMC4190153 DOI: 10.1371/journal.pone.0109260] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
Modern and Cenozoic deep-sea hydrothermal-vent and methane-seep communities are dominated by large tubeworms, bivalves and gastropods. In contrast, many Early Cretaceous seep communities were dominated by the largest Mesozoic rhynchonellid brachiopod, the dimerelloid Peregrinella, the paleoecologic and evolutionary traits of which are still poorly understood. We investigated the nature of Peregrinella based on 11 occurrences world wide and a literature survey. All in situ occurrences of Peregrinella were confirmed as methane-seep deposits, supporting the view that Peregrinella lived exclusively at methane seeps. Strontium isotope stratigraphy indicates that Peregrinella originated in the late Berriasian and disappeared after the early Hauterivian, giving it a geologic range of ca. 9.0 (+1.45/–0.85) million years. This range is similar to that of rhynchonellid brachiopod genera in general, and in this respect Peregrinella differs from seep-inhabiting mollusks, which have, on average, longer geologic ranges than marine mollusks in general. Furthermore, we found that (1) Peregrinella grew to larger sizes at passive continental margins than at active margins; (2) it grew to larger sizes at sites with diffusive seepage than at sites with advective fluid flow; (3) despite its commonly huge numerical abundance, its presence had no discernible impact on the diversity of other taxa at seep sites, including infaunal chemosymbiotic bivalves; and (4) neither its appearance nor its extinction coincides with those of other seep-restricted taxa or with global extinction events during the late Mesozoic. A preference of Peregrinella for diffusive seepage is inferred from the larger average sizes of Peregrinella at sites with more microcrystalline carbonate (micrite) and less seep cements. Because other seep-inhabiting brachiopods occur at sites where such cements are very abundant, we speculate that the various vent- and seep-inhabiting dimerelloid brachiopods since Devonian time may have adapted to these environments in more than one way.
Collapse
Affiliation(s)
- Steffen Kiel
- Georg-August-Universität Göttingen, Geowissenschaftliches Zentrum, Abteilung Geobiologie, Göttingen, Germany
- * E-mail:
| | - Johannes Glodny
- Deutsches GeoForschungsZentrum GFZ, Sektion 4.2, Anorganische und Isotopengeochemie, Telegrafenberg, Potsdam, Germany
| | - Daniel Birgel
- Universität Wien, Erdwissenschaftliches Zentrum, Department für Geodynamik und Sedimentologie, Wien, Austria
| | - Luc G. Bulot
- FRE CNRS 2761, Centre de Sédimentologie-Paléontologie, Université de Provence, Marseille, France
| | - Kathleen A. Campbell
- University of Auckland, Geology Programme, School of Environment Science, Auckland, New Zealand
| | - Christian Gaillard
- Université de Lyon-1, UMR CNRS 5125 Paléoenvironnements et Paléobiosphère, Villeurbanne, France
| | - Roberto Graziano
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Largo S. Marcellino, Napoli, Italia
| | | | - Iuliana Lazăr
- University of Bucharest, Faculty of Geology and Geophysics, Department of Geology, Bucharest, Romania
| | - Michael R. Sandy
- University of Dayton, Department of Geology, Dayton, Ohio, United States of America
| | - Jörn Peckmann
- Universität Wien, Erdwissenschaftliches Zentrum, Department für Geodynamik und Sedimentologie, Wien, Austria
| |
Collapse
|
38
|
Brown G, Sleeper K, Johnson MW, Blum JD, Cizdziel JV. Mercury concentrations, speciation, and isotopic composition in sediment from a cold seep in the northern Gulf of Mexico. MARINE POLLUTION BULLETIN 2013; 77:308-314. [PMID: 24269012 DOI: 10.1016/j.marpolbul.2013.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
Total-Hg, monomethylmercury (MMHg), and mercury isotopic composition was determined in sediment from a cold seep and background sites in the northern Gulf of Mexico (nGoM). Total-Hg averaged 50 ng/g (n=28), ranged from 31 to 67 ng/g, and decreased with depth (0-15 cm). MMHg averaged 0.91 ng/g (n=18), and ranged from 0.2 to 1.9 ng/g. There was no significant difference for total-Hg or MMHg between cold seep and background sites. δ(202)Hg ranged from -0.5 to -0.8‰ and becomes more negative with depth (r=0.989). Mass independent fractionation (Δ(199)Hg) was small but consistently positive (0.04-0.12‰); there was no difference between cold seeps (Δ(199)Hg = +0.09±0.03; n=7, 1SD) and background sites (Δ(199)Hg=+0.07±0.02; n=5, 1SD). This suggests that releases of hydrocarbons at the cold seep do not significantly alter Hg levels, and that cold seeps are likely not major sources of MMHg to nGoM waters.
Collapse
Affiliation(s)
- Garry Brown
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol 2013; 4:124. [PMID: 23720658 PMCID: PMC3659317 DOI: 10.3389/fmicb.2013.00124] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 11/24/2022] Open
Abstract
Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA ; Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA ; Center for Computational Medicine and Bioinformatics, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
41
|
Raggi L, Schubotz F, Hinrichs KU, Dubilier N, Petersen JM. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the Southern Gulf of Mexico. Environ Microbiol 2012; 15:1969-87. [PMID: 23279012 DOI: 10.1111/1462-2920.12051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/14/2012] [Indexed: 11/28/2022]
Abstract
Chemosynthetic life was recently discovered at Chapopote, an asphalt hydrocarbon seep in the southern Gulf of Mexico. Preliminary morphological analyses indicated that one tubeworm and two mussel species colonize Chapopote. Our molecular analyses identified the tubeworm as Escarpia sp., and the mussels as Bathymodiolus heckerae and B. brooksi. Comparative 16S rRNA analysis and FISH showed that all three species harbour intracellular sulfur-oxidizing symbionts highly similar or identical to those found in the same host species from northern Gulf of Mexico (nGoM). The mussels also harbour methane-oxidizing symbionts, and these shared highly similar to identical 16S rRNA sequences to their nGoM conspecifics. We discovered a novel symbiont in B. heckerae, which is closely related to hydrocarbon-degrading bacteria of the genus Cycloclasticus. In B. heckerae, we found key genes for the use of aromatic compounds, and its stable carbon isotope values were consistently higher than B. brooksi, indicating that the novel symbiont might use isotopically heavy aromatic hydrocarbons from the asphalt seep. This discovery is particularly intriguing because until now only methane and reduced sulfur compounds have been shown to power cold-seep chemosynthetic symbioses. The abundant hydrocarbons available at Chapopote would provide these mussel symbioses with a rich source of nutrition.
Collapse
Affiliation(s)
- L Raggi
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
42
|
Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 2012; 14:2689-710. [PMID: 22882476 DOI: 10.1111/j.1462-2920.2012.02832.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes.
Collapse
Affiliation(s)
- Sara Kleindienst
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | | | | | | |
Collapse
|
43
|
Bernardino AF, Levin LA, Thurber AR, Smith CR. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS One 2012; 7:e33515. [PMID: 22496753 PMCID: PMC3319539 DOI: 10.1371/journal.pone.0033515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/10/2012] [Indexed: 11/22/2022] Open
Abstract
Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities.
Collapse
Affiliation(s)
- Angelo F Bernardino
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Goiabeiras, Vitória, Espírito Santo, Brazil.
| | | | | | | |
Collapse
|
44
|
Levin LA, Orphan VJ, Rouse GW, Rathburn AE, Ussler W, Cook GS, Goffredi SK, Perez EM, Waren A, Grupe BM, Chadwick G, Strickrott B. A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proc Biol Sci 2012; 279:2580-8. [PMID: 22398162 DOI: 10.1098/rspb.2012.0205] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota.
Collapse
Affiliation(s)
- Lisa A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Roeselers G, Newton ILG. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol 2012; 94:1-10. [PMID: 22354364 PMCID: PMC3304057 DOI: 10.1007/s00253-011-3819-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 11/28/2022]
Abstract
Mutualistic associations between bacteria and eukaryotes occur ubiquitously in nature, forming the basis for key ecological and evolutionary innovations. Some of the most prominent examples of these symbioses are chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, chemosynthetic bacteria living in close association with their hosts convert CO2 or CH4 into organic compounds and provide the host with necessary nutrients. The dominant macrofauna of hydrothermal vent and cold seep ecosystems all depend on the metabolic activity of chemosynthetic bacteria, which accounts for almost all primary production in these complex ecosystems. Many of these enigmatic mutualistic associations are found within the molluscan class Bivalvia. Currently, chemosynthetic symbioses have been reported from five distinct bivalve families (Lucinidae, Mytilidae, Solemyidae, Thyasiridae, and Vesicomyidae). This brief review aims to provide an overview of the diverse physiological and genetic adaptations of symbiotic chemosynthetic bacteria and their bivalve hosts.
Collapse
Affiliation(s)
- Guus Roeselers
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands.
| | | |
Collapse
|
46
|
Levin LA, Sibuet M. Understanding continental margin biodiversity: a new imperative. ANNUAL REVIEW OF MARINE SCIENCE 2012; 4:79-112. [PMID: 22457970 DOI: 10.1146/annurev-marine-120709-142714] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.
Collapse
Affiliation(s)
- Lisa A Levin
- Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California 92093-0218, USA.
| | | |
Collapse
|
47
|
|
48
|
Thurber AR, Jones WJ, Schnabel K. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab. PLoS One 2011; 6:e26243. [PMID: 22140426 PMCID: PMC3227565 DOI: 10.1371/journal.pone.0026243] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 09/23/2011] [Indexed: 11/24/2022] Open
Abstract
Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.
Collapse
Affiliation(s)
- Andrew R Thurber
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America.
| | | | | |
Collapse
|
49
|
German CR, Ramirez-Llodra E, Baker MC, Tyler PA. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map. PLoS One 2011; 6:e23259. [PMID: 21829722 PMCID: PMC3150416 DOI: 10.1371/journal.pone.0023259] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 11/19/2022] Open
Abstract
The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin.
Collapse
Affiliation(s)
- Christopher R. German
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Eva Ramirez-Llodra
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Maria C. Baker
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom
| | - Paul A. Tyler
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom
| | | |
Collapse
|
50
|
Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL. Man and the last great wilderness: human impact on the deep sea. PLoS One 2011; 6:e22588. [PMID: 21829635 PMCID: PMC3148232 DOI: 10.1371/journal.pone.0022588] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.
Collapse
Affiliation(s)
- Eva Ramirez-Llodra
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Paul A. Tyler
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Maria C. Baker
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | | | - Malcolm R. Clark
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Elva Escobar
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, México, D.F., Mexico
| | - Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | | | - Ashley A. Rowden
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cindy L. Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
| |
Collapse
|