1
|
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.
Collapse
Affiliation(s)
- Abdulrahman Aldossary
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | | - Sergio Pablo-García
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
| | - Shi Xuan Leong
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Ella Miray Rajaonson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Luca Thiede
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Gary Tom
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Andrew Wang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Davide Avagliano
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), Paris, F-75005, France
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College St., Toronto, ON, M5S 3E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 66118 University Ave., Toronto, M5G 1M1, Canada
- Acceleration Consortium, 80 St George St, Toronto, M5S 3H6, Canada
| |
Collapse
|
2
|
Weinhold F, Glendening ED. Natural resonance-theoretic conceptions of extreme electronic delocalization in soft materials. Phys Chem Chem Phys 2024; 26:2815-2822. [PMID: 38196333 DOI: 10.1039/d3cp04790c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
In the broad context of Dalton's atomic hypothesis and subsequent classical vs. quantum understanding of macroscopic materials, we show how Pauling's resonance-type conceptions, as quantified in natural resonance theory (NRT) analysis of modern wavefunctions, can be modified to unify description of interatomic interactions from the Lewis-like limit of localized e-pair covalency in molecules to the extreme delocalized limit of supramolecular "soft matter" aggregation. Such "NRT-centric" integration of NRT bond orders for hard- and soft-matter interactions is illustrated with application to a long-predicted and recently synthesized organometallic sandwich-type complex ("diberyllocene") that exhibits bond orders ranging from the soft limit (bBeC ≈ 0.01) to the typical values (bCC ≈ 1.35) of molecular resonance-covalency in the organic domain, with intermediate value (bBeBe ≈ 0.86) for intermetallic Be⋯Be interaction.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Eric D Glendening
- Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA.
| |
Collapse
|
3
|
Esposito VJ, Palmer CZ, Fortenberry RC, Francisco JS. Spectroscopy and Photochemistry of OAlNO and Implications for New Metal Chemistry in the Atmosphere. J Phys Chem A 2023; 127:7618-7629. [PMID: 37647609 DOI: 10.1021/acs.jpca.3c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A new aluminum-bearing species, OAlNO, which has the potential to impact the chemistry of the Earth's upper atmosphere, is characterized via high-level, ab initio, spectroscopic methods. Meteor-ablated aluminum atoms are quickly oxidized to aluminum oxide (AlO) in the mesosphere and lower thermosphere (MLT), where a steady-state layer of AlO then builds up. Concurrent formation of nitric oxide (NO) in the same region of the atmosphere will lead to the bimolecular formation of the OAlNO molecule. Molecular orbital analysis provides fundamental insights into the chemical bonding and energetic arrangement of the triplet (1 3A″) ground state and singlet (1 1A') excited-state species of OAlNO. Additionally, unpaired electrons on the terminal oxygen atom of triplet (1 3A″) OAlNO cause it to be reactive to atmospheric species, potentially impacting climate science and high-altitude chemistry. The triplet (1 3A″) ground-state species exhibits a large permanent dipole moment useful for rotational spectroscopic detection; however, similar rotational constants to the singlet (1 1A') excited-state species will hamper differentiation in a spectrum. Strong infrared intensities will assist in detection and discrimination of the different spin states and isomers. Repulsive electronic excited states of OAlNO will lead to photolysis of the Al-N bond and formation of various electronic states of AlO + NO through nonadiabatic pathways. Reaction through the OAlNO intermediate represents a means for the production of electronically excited AlO, leading to new chemistry in the atmosphere. Excitation to higher-lying electronic states will lead to fluorescence with a minor Stokes shift, useful for laboratory investigation. Such physical properties of this molecule will allow for new, unexplored chemical pathways in the MLT to be considered.
Collapse
Affiliation(s)
- Vincent J Esposito
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - C Zachary Palmer
- Department of Chemistry and Biochemistry, University of Mississippi, University Park, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University Park, Mississippi 38677-1848, United States
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
4
|
Marie A, Burton HGA. Excited States, Symmetry Breaking, and Unphysical Solutions in State-Specific CASSCF Theory. J Phys Chem A 2023; 127:4538-4552. [PMID: 37141564 DOI: 10.1021/acs.jpca.3c00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
State-specific electronic structure theory provides a route toward balanced excited-state wave functions by exploiting higher-energy stationary points of the electronic energy. Multiconfigurational wave function approximations can describe both closed- and open-shell excited states and avoid the issues associated with state-averaged approaches. We investigate the existence of higher-energy solutions in complete active space self-consistent field (CASSCF) theory and characterize their topological properties. We demonstrate that state-specific approximations can provide accurate higher-energy excited states in H2 (6-31G) with more compact active spaces than would be required in a state-averaged formalism. We then elucidate the unphysical stationary points, demonstrating that they arise from redundant orbitals when the active space is too large or symmetry breaking when the active space is too small. Furthermore, we investigate the singlet-triplet crossing in CH2 (6-31G) and the avoided crossing in LiF (6-31G), revealing the severity of root flipping and demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.
Collapse
Affiliation(s)
- Antoine Marie
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Hugh G A Burton
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
5
|
Mills JD. Applications of the Spectral Theory of Chemical Bonding to Simple Hydrocarbons. J Phys Chem A 2023; 127:1998-2010. [PMID: 36802578 DOI: 10.1021/acs.jpca.2c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The finite-basis, pair formulation of the Spectral Theory of chemical bonding is briefly surveyed. Solutions of the Born-Oppenheimer polyatomic Hamiltonian that are totally antisymmetric in electron exchange are obtained from diagonalization of an aggregate matrix built up from conventional diatomic solutions to atom-localized problems. A succession of transformations of the bases of the underlying matrices and the unique character of symmetric orthogonalization in producing the archived matrices calculated "once-of-all" in the pairwise-antisymmetrized basis are described. Application is made to molecules containing hydrogens and a single carbon atom. Results in conventional orbital bases are given and compared to experimental and high-level theoretical results. Chemical valence is shown to be respected and subtle angular effects in polyatomic contexts are reproduced. Means of reducing the size of the atomic-state basis and improving the fidelity of the diatomic descriptions for fixed basis size, so as to enable application to larger polyatomic molecules, are outlined along with future initiatives and prospects.
Collapse
Affiliation(s)
- Jeffrey D Mills
- Air Force Research Laboratory, 10 East Saturn Boulevard, Edwards AFB, California 93524, United States
| |
Collapse
|
6
|
Wang Q, Shih JL, Tsui KY, Laconsay CJ, Tantillo DJ, May JA. Experimental and Computational Mechanistic Study of Carbonazidate-Initiated Cascade Reactions. J Org Chem 2022; 87:8983-9000. [PMID: 35758036 DOI: 10.1021/acs.joc.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of Huisgen cyclization or nitrene/carbene alkyne cascade reactions with different types of termination were investigated. Accessible nitrene precursors were assessed, and carbonazidates were found to be the only effective initiators. Solvents, terminal alkynyl substituents, and catalysts can all impact the reaction outcome. Study of the mechanism both computationally (by density functional theory) and experimentally revealed relevant intermediates and plausible reaction pathways.
Collapse
Affiliation(s)
- Qinxuan Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Jiun-Le Shih
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Ka Yi Tsui
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Gershoni‐Poranne R, Keinan E, Kozuch S. Rosarium Philosophorum on Computational Chemistry. Isr J Chem 2022. [DOI: 10.1002/ijch.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Chan YC, Kortyna A, Nesbitt DJ. High-resolution infrared spectroscopy of supersonically cooled singlet carbenes: Bromomethylene (HCBr) in the CH stretch region. J Chem Phys 2022; 156:014304. [PMID: 34998358 DOI: 10.1063/5.0077341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First high-resolution spectra of cold (∼35 K) singlet bromomethylene HCBr in the CH stretching (v1) region from 2770 to 2850 cm-1 are reported using near quantum shot-noise limited laser absorption methods in a slit jet supersonic discharge expansion source. Three rovibrational bands are identified at high S/N (20:1-40:1) and rotationally assigned to (i) the CH stretch fundamental (v1) band X̃1,0,0←X̃0,0,0 and (ii) vibrational hot bands [X̃(1,1,0)←X̃(0,1,0) and X̃(1,0,1)←X̃(0,0,1)] arising from vibrationally excited HCBr populated in the discharge with single quanta in either the H-C-Br bend (v2) or C-Br stretch (v3) modes. Precision rotational constants are reported for a total of six states, with an experimentally determined CH stretch vibrational frequency (2799.38 cm-1) in good agreement with previous low-resolution fluorescence studies [M. Deselnicu et al., J. Chem. Phys. 124(13), 134302 (2006)]. Detailed analysis of the fundamental v1 band highlights the presence of perturbations in the X̃1,0,0 level, which we tentatively attribute to arise from the nearby triplet state ã(0,0,1) through spin-orbit interaction or the multiple quanta X̃0,2,1 singlet state via c-type Coriolis coupling. Reduced-Doppler resolution (60 MHz) in the slit-jet IR spectrometer permits for clear observation of a nuclear spin hyperfine structure, with experimental line shapes well reproduced by nuclear quadrupole/spin-rotation coupling constants from microwave studies [C. Duan et al., J. Mol. Spectrosc. 220(1), 113-121 (2003)]. Finally, the a-type to b-type transition intensity ratio for the fundamental CH stretch band is notably larger than that predicted by using a bond-dipole model, which from high level ab initio quantum calculations [CCSD(T)/PVQZ] can be attributed to vibrationally induced "charge-sloshing" of electron density along the polar C-Br bond.
Collapse
Affiliation(s)
- Ya-Chu Chan
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| | - Andrew Kortyna
- Cold Quanta, 3030 Sterling Circle, Boulder, Colorado 80301, USA
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| |
Collapse
|
9
|
Schlick T, Portillo-Ledesma S. Biomolecular modeling thrives in the age of technology. NATURE COMPUTATIONAL SCIENCE 2021; 1:321-331. [PMID: 34423314 PMCID: PMC8378674 DOI: 10.1038/s43588-021-00060-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
The biomolecular modeling field has flourished since its early days in the 1970s due to the rapid adaptation and tailoring of state-of-the-art technology. The resulting dramatic increase in size and timespan of biomolecular simulations has outpaced Moore's law. Here, we discuss the role of knowledge-based versus physics-based methods and hardware versus software advances in propelling the field forward. This rapid adaptation and outreach suggests a bright future for modeling, where theory, experimentation and simulation define three pillars needed to address future scientific and biomedical challenges.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
- New York University–East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| | | |
Collapse
|
10
|
Montgomery JM, Alexander E, Mazziotti DA. Prediction of the Existence of LiCH: A Carbene-like Organometallic Molecule. J Phys Chem A 2020; 124:9562-9566. [DOI: 10.1021/acs.jpca.0c07134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason M. Montgomery
- Department of Chemistry, Biochemistry, and Physics, Florida Southern College, Lakeland, Florida 33801, United States
| | - Ezra Alexander
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David A. Mazziotti
- Department of Chemistry and The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Marian CM. Theoretical spectroscopy in the early days of digital computing – an homage to Sigrid D. Peyerimhoff. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1744755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christel M. Marian
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Shirazi RG, Pantazis DA, Neese F. Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet–triplet state splittings of aryl-carbenes. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1764644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Reza Ghafarian Shirazi
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
14
|
Abbott BZ, Hoobler PR, Schaefer HF. Relatives of cyanomethylene: replacement of the divalent carbon by B -, N +, Al -, Si, P +, Ga -, Ge, and As . Phys Chem Chem Phys 2019; 21:26438-26452. [PMID: 31774089 DOI: 10.1039/c9cp05777c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lowest lying singlet and triplet states of HBCN-, HCCN, HNCN+, HAlCN-, HSiCN, HPCN+, HGaCN-, HGeCN, and HAsCN+ were studied using the CCSDT(Q)/CBS//CCSD(T)/aug-cc-pVQZ level of theory. Periodic trends in geometries, singlet-triplet gaps, and barriers to linearity were established and analyzed. The first row increasingly favors the triplet state, with a singlet-triplet gap (ΔEST = Esinglet - Etriplet) of 3.5 kcal mol-1, 11.9 kcal mol-1, and 22.6 kcal mol-1, respectively, for HBCN-, HCCN, and HNCN+. The second row increasing favors the singlet state, with singlet-triplet gaps of -20.4 kcal mol-1 (HAlCN-), -26.6 kcal mol-1 (HSiCN), and -26.8 kcal mol-1 (HPCN+). The third row also favors the singlet state, with singlet-triplet gaps of -26.8 kcal mol-1 (HGaCN-), -33.5 kcal mol-1 (HGeCN), and -33.1 kcal mol-1 (HAsCN+). The HXCN species have larger absolute singlet-triplet energy gaps compared to their parent species XH2 except for the case of X = N+. The effect of the substitution of hydrogen with a cyano group was analyzed with isodesmic bond separation analysis and NBO.
Collapse
Affiliation(s)
- Boyi Z Abbott
- Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
15
|
Giner E, Scemama A, Toulouse J, Loos PF. Chemically accurate excitation energies with small basis sets. J Chem Phys 2019; 151:144118. [DOI: 10.1063/1.5122976] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emmanuel Giner
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
16
|
Császár AG, Fábri C, Sarka J. Quasistructural molecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - János Sarka
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA
| |
Collapse
|
17
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
18
|
Wilkins-Diehr N, Crawford TD. NSF’s Inaugural Software Institutes: The Science Gateways Community Institute and the Molecular Sciences Software Institute. Comput Sci Eng 2018. [DOI: 10.1109/mcse.2018.05329813] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Kortyna A, Nesbitt DJ. Infrared spectroscopy of jet-cooled HCCl singlet chlorocarbene diradical: CH stretching and vibrational coupling dynamics. J Chem Phys 2018; 149:074303. [PMID: 30134693 DOI: 10.1063/1.5039882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quantum shot noise limited laser absorption methods are used to obtain first high-resolution infrared rovibrational spectra of jet cooled chlorocarbene (HCCl) diradical in a supersonic slit-jet discharge expansion spectrometer. The rotationally resolved absorption spectra of the C-H stretch ν1 fundamental are analyzed in the framework of a Watson non-rigid asymmetric rotor Hamiltonian model. Further analysis of the mid-infrared data reveals the additional presence of what has nominally been assigned as the X̃(012) combination band with one quantum of the H-C-Cl bend (ν2) and two quanta of the C-Cl stretch (2ν3). Rovibrational constants are obtained from least squares fits for each of the four excited vibrational states built on the ν1 fundamental X̃(100) and the X̃(012) combination mode for each 35Cl and 37Cl atom isotopologue. The four bands occur within a narrow spectral window, requiring detailed comparison of multiple spectral properties (e.g., rotational constant dependence on vibrational excitation, band types/transition dipole moment alignment in the body-fixed frame, etc.) to aid in the vibrational assignment. Indeed, the IR transition intensities arise from strong anharmonic mixing between the "bright" ν1 C-H stretch and "dark" X̃012 H-C-Cl bend/C-Cl stretch combination modes, resulting in nearly equal amplitudes for the zeroth order X̃(100) and X̃012 harmonic states. Finally, to aid the spectral search for HCCl in the interstellar medium, ground state two-line combination differences are combined with previous laser-induced fluorescence results to predict precision microwave transitions for HC35Cl and HC37Cl.
Collapse
Affiliation(s)
- A Kortyna
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - D J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
20
|
Ghafarian Shirazi R, Neese F, Pantazis DA. Accurate Spin-State Energetics for Aryl Carbenes. J Chem Theory Comput 2018; 14:4733-4746. [DOI: 10.1021/acs.jctc.8b00587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reza Ghafarian Shirazi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Chien AD, Holmes AA, Otten M, Umrigar CJ, Sharma S, Zimmerman PM. Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction. J Phys Chem A 2018; 122:2714-2722. [DOI: 10.1021/acs.jpca.8b01554] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alan D. Chien
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam A. Holmes
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Matthew Otten
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - C. J. Umrigar
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Wiens AE, Copan AV, Rossomme EC, Aroeira GJR, Bernstein OM, Agarwal J, Schaefer HF. Reinterpreting the infrared spectrum of H + HCN: Methylene amidogen radical and its coproducts. J Chem Phys 2018; 148:014305. [DOI: 10.1063/1.5004984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avery E. Wiens
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Andreas V. Copan
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Elliot C. Rossomme
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gustavo J. R. Aroeira
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Olivia M. Bernstein
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Jay Agarwal
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
23
|
Kim DY, Yang DC, Madridejos JML, Hajibabaei A, Baig C, Kim KS. Anisotropic and amphoteric characteristics of diverse carbenes. Phys Chem Chem Phys 2018; 20:13722-13733. [DOI: 10.1039/c8cp00457a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The singlet/triplet stabilities and amphoteric behaviors of diverse carbenes are elucidated with the anisotropic natures of their electron configurations.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Center for Superfunctional Materials
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Korea
| | - D. ChangMo Yang
- Center for Superfunctional Materials
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Korea
| | - Jenica Marie L. Madridejos
- Center for Superfunctional Materials
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Korea
| | - Amir Hajibabaei
- Center for Superfunctional Materials
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Korea
| | - Chunggi Baig
- Department of Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Korea
| | - Kwang S. Kim
- Center for Superfunctional Materials
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Korea
| |
Collapse
|
24
|
Schriber JB, Evangelista FA. Adaptive Configuration Interaction for Computing Challenging Electronic Excited States with Tunable Accuracy. J Chem Theory Comput 2017; 13:5354-5366. [DOI: 10.1021/acs.jctc.7b00725] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Ajala AO, Shen J, Piecuch P. Economical Doubly Electron-Attached Equation-of-Motion Coupled-Cluster Methods with an Active-Space Treatment of Three-Particle–One-Hole and Four-Particle–Two-Hole Excitations. J Phys Chem A 2017; 121:3469-3485. [DOI: 10.1021/acs.jpca.6b11393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adeayo O. Ajala
- Department
of Chemistry and ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jun Shen
- Department
of Chemistry and ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Piotr Piecuch
- Department
of Chemistry and ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Chien AD, Zimmerman PM. Recovering dynamic correlation in spin flip configuration interaction through a difference dedicated approach. J Chem Phys 2017; 146:014103. [DOI: 10.1063/1.4973245] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Banerjee D, Mondal M, Chattopadhyay S, Mahapatra US. A state-specific multi-reference coupled-cluster approach with a cost-effective treatment of connected triples: implementation to geometry optimisation. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Debi Banerjee
- Department of Physics, Shibpur Dinobundhoo Institution (College), Howrah, India
| | - Monosij Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | | |
Collapse
|
28
|
McAlexander HR, Crawford TD. A Comparison of Three Approaches to the Reduced-Scaling Coupled Cluster Treatment of Non-Resonant Molecular Response Properties. J Chem Theory Comput 2015; 12:209-22. [DOI: 10.1021/acs.jctc.5b00898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - T. Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Hansen JA, Bauman NP, Shen J, Borden WT, Piecuch P. Ab initiocoupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1112926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Cheng GJ, Zhang X, Chung LW, Xu L, Wu YD. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J Am Chem Soc 2015; 137:1706-25. [PMID: 25568962 DOI: 10.1021/ja5112749] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Perera A, Molt RW, Lotrich VF, Bartlett RJ. Singlet–triplet separations of di-radicals treated by the DEA/DIP-EOM-CCSD methods. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1514-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
|
34
|
Abstract
A perspective on the development of mechanistic carbene chemistry is presented. The author will point out questions that have been answered, and a next generation of questions will be proposed.
Collapse
Affiliation(s)
- Matthew S Platz
- Department of Chemistry, The Ohio State University 100 West 18th Avenue Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Shen J, Piecuch P. Doubly electron-attached and doubly ionised equation-of-motion coupled-cluster methods with full and active-space treatments of 4-particle–2-hole and 4-hole–2-particle excitations: the role of orbital choices. Mol Phys 2014. [DOI: 10.1080/00268976.2014.886397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Zen A, Coccia E, Luo Y, Sorella S, Guidoni L. Static and Dynamical Correlation in Diradical Molecules by Quantum Monte Carlo Using the Jastrow Antisymmetrized Geminal Power Ansatz. J Chem Theory Comput 2014; 10:1048-61. [DOI: 10.1021/ct401008s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea Zen
- Dipartimento
di Fisica, Sapienza-Università di Roma, Piazzale Aldo Moro
5, 00185 Rome, Italy
| | - Emanuele Coccia
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 2, 67010 L’Aquila, Italy
| | - Ye Luo
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA) and Democritos
National Simulation Center, Istituto Officina dei Materiali del CNR, via Bonomea 265, 34136 Trieste, Italy
| | - Sandro Sorella
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA) and Democritos
National Simulation Center, Istituto Officina dei Materiali del CNR, via Bonomea 265, 34136 Trieste, Italy
| | - Leonardo Guidoni
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 2, 67010 L’Aquila, Italy
| |
Collapse
|
37
|
Schmidt TC, Paasche A, Grebner C, Ansorg K, Becker J, Lee W, Engels B. QM/MM investigations of organic chemistry oriented questions. Top Curr Chem (Cham) 2014; 351:25-101. [PMID: 22392477 DOI: 10.1007/128_2011_309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy.
Collapse
Affiliation(s)
- Thomas C Schmidt
- Institut für Phys. und Theor. Chemie, Emil-Fischer-Strasse 42, Campus Hubland Nord, 97074, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Shen J, Piecuch P. Doubly electron-attached and doubly ionized equation-of-motion coupled-cluster methods with 4-particle–2-hole and 4-hole–2-particle excitations and their active-space extensions. J Chem Phys 2013; 138:194102. [DOI: 10.1063/1.4803883] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Simakov A, Miller GBS, Bunkan AJC, Hoffmann MR, Uggerud E. The dissociation of glycolate—astrochemical and prebiotic relevance. Phys Chem Chem Phys 2013; 15:16615-25. [DOI: 10.1039/c3cp51638e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Shen J, Piecuch P. Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet–Triplet Gaps in Biradical Systems. J Chem Theory Comput 2012; 8:4968-88. [DOI: 10.1021/ct300762m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Shen
- Department of Chemistry, Michigan State University,
East Lansing, Michigan 48824, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University,
East Lansing, Michigan 48824, United States
| |
Collapse
|
41
|
|
42
|
Császár AG, Fábri C, Szidarovszky T, Mátyus E, Furtenbacher T, Czakó G. The fourth age of quantum chemistry: molecules in motion. Phys Chem Chem Phys 2012; 14:1085-106. [DOI: 10.1039/c1cp21830a] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
SONG JIE. THEORETICAL INVESTIGATION OF METHYLENE: USING ULTRAHIGH ACCURATE MRCI APPROACH. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633607003507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new hybrid vairational-perturbational MRCISD(TQ) approach is applied to the problem of singlet–triplet and singlet–singlet separation in methylene using several basis sets. The inclusion of higher excitations beyond single and double excitations can predict more accurate splitting energies between states as well as closer single-point energies to available full CI results when the small basis set is used. Comparisons with MRCISD and MRCCSD treatments indicate that MRCISD(TQ) can lead to reliable predictions of the splitting energies when larger bases are employed.
Collapse
Affiliation(s)
- JIE SONG
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI 48502, USA
| |
Collapse
|
44
|
Zhang Z, Ma H, Bian W. Accurate quantum mechanical study of the Renner-Teller effect in the singlet CH2. J Chem Phys 2011; 135:154303. [DOI: 10.1063/1.3651081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Yamashita M. Creation of Nucleophilic Boryl Anions and Their Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20110123] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Maji B, Breugst M, Mayr H. N-Heterocyclic Carbenes: Organocatalysts with Moderate Nucleophilicity but Extraordinarily High Lewis Basicity. Angew Chem Int Ed Engl 2011; 50:6915-9. [DOI: 10.1002/anie.201102435] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Indexed: 11/07/2022]
|
47
|
Maji B, Breugst M, Mayr H. N-Heterocyclische Carbene: Organokatalysatoren mit mäßiger Nucleophilie, aber außerordentlich hoher Lewis-Basizität. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102435] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. Biomolecularmodeling and simulation: a field coming of age. Q Rev Biophys 2011; 44:191-228. [PMID: 21226976 PMCID: PMC3700731 DOI: 10.1017/s0033583510000284] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We assess the progress in biomolecular modeling and simulation, focusing on structure prediction and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed expectations, and current significant applications. The increases in computational power combined with improvements in algorithms and force fields have led to considerable success, especially in protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple conformational states) through the generation of structural hypotheses and pathway mechanisms. Although far from a general automated tool, structure prediction is notable for proteins and RNA that preceded the experiment, especially by knowledge-based approaches. Thus, despite early unrealistic expectations and the realization that computer technology alone will not quickly bridge the gap between experimental and theoretical time frames, ongoing improvements to enhance the accuracy and scope of modeling and simulation are propelling the field onto a productive trajectory to become full partner with experiment and a field on its own right.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
49
|
Johnson ER, Yang W, Davidson ER. Spin-state splittings, highest-occupied-molecular-orbital and lowest-unoccupied-molecular-orbital energies, and chemical hardness. J Chem Phys 2011; 133:164107. [PMID: 21033775 DOI: 10.1063/1.3497190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.
Collapse
Affiliation(s)
- Erin R Johnson
- School of Natural Sciences, University of California, Merced, Merced, California 95343, USA
| | | | | |
Collapse
|
50
|
Mahapatra US, Chattopadhyay S. Evaluation of the performance of single root multireference coupled cluster method for ground and excited states, and its application to geometry optimization. J Chem Phys 2011; 134:044113. [DOI: 10.1063/1.3523573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|