1
|
Khairullina V, Martynova Y. Quantitative Structure-Activity Relationship in the Series of 5-Ethyluridine, N2-Guanine, and 6-Oxopurine Derivatives with Pronounced Anti-Herpetic Activity. Molecules 2023; 28:7715. [PMID: 38067446 PMCID: PMC10708366 DOI: 10.3390/molecules28237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
A quantitative analysis of the relationship between the structure and inhibitory activity against the herpes simplex virus thymidine kinase (HSV-TK) was performed for the series of 5-ethyluridine, N2-guanine, and 6-oxopurines derivatives with pronounced anti-herpetic activity (IC50 = 0.09 ÷ 160,000 μmol/L) using the GUSAR 2019 software. On the basis of the MNA and QNA descriptors and whole-molecule descriptors using the self-consistent regression, 12 statistically significant consensus models for predicting numerical pIC50 values were constructed. These models demonstrated high predictive accuracy for the training and test sets. Molecular fragments of HSV-1 and HSV-2 TK inhibitors that enhance or diminish the anti-herpetic activity are considered. Virtual screening of the ChEMBL database using the developed QSAR models revealed 42 new effective HSV-1 and HSV-2 TK inhibitors. These compounds are promising for further research. The obtained data open up new opportunities for developing novel effective inhibitors of TK.
Collapse
Affiliation(s)
- Veronika Khairullina
- Institute of Chemistry and Defence in Emergency Situations, Ufa University of Science and Technology, 50076 Ufa, Russia;
| | | |
Collapse
|
2
|
Sokouti B, Hamzeh-Mivehroud M. 6D-QSAR for predicting biological activity of human aldose reductase inhibitors using quasar receptor surface modeling. BMC Chem 2023; 17:63. [PMID: 37349775 DOI: 10.1186/s13065-023-00970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
The application of QSAR analysis dates back a half-century ago and is currently continuously employed in any rational drug design. The multi-dimensional QSAR modeling can be a promising tool for researchers to develop reliable predictive QSAR models for designing novel compounds. In the present work, we studied inhibitors of human aldose reductase (AR) to generate multi-dimensional QSAR models using 3D- and 6D-QSAR methods. For this purpose, Pentacle and Quasar's programs were used to produce the QSAR models using corresponding dissociation constant (Kd) values. By inspecting the performance metrics of the generated models, we achieved similar results with comparable internal validation statistics. However, considering the externally validated values, 6D-QSAR models provide significantly better prediction of endpoint values. The obtained results suggest that the higher the dimension of the QSAR model, the higher the performance of the generated model. However, more studies are required to verify these outcomes.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Hu L, Li Z, Tang Z, Zhao C, Zhou X, Hu P. Effectively predicting HIV-1 protease cleavage sites by using an ensemble learning approach. BMC Bioinformatics 2022; 23:447. [PMID: 36303135 PMCID: PMC9608884 DOI: 10.1186/s12859-022-04999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The site information of substrates that can be cleaved by human immunodeficiency virus 1 proteases (HIV-1 PRs) is of great significance for designing effective inhibitors against HIV-1 viruses. A variety of machine learning-based algorithms have been developed to predict HIV-1 PR cleavage sites by extracting relevant features from substrate sequences. However, only relying on the sequence information is not sufficient to ensure a promising performance due to the uncertainty in the way of separating the datasets used for training and testing. Moreover, the existence of noisy data, i.e., false positive and false negative cleavage sites, could negatively influence the accuracy performance. Results In this work, an ensemble learning algorithm for predicting HIV-1 PR cleavage sites, namely EM-HIV, is proposed by training a set of weak learners, i.e., biased support vector machine classifiers, with the asymmetric bagging strategy. By doing so, the impact of data imbalance and noisy data can thus be alleviated. Besides, in order to make full use of substrate sequences, the features used by EM-HIV are collected from three different coding schemes, including amino acid identities, chemical properties and variable-length coevolutionary patterns, for the purpose of constructing more relevant feature vectors of octamers. Experiment results on three independent benchmark datasets demonstrate that EM-HIV outperforms state-of-the-art prediction algorithm in terms of several evaluation metrics. Hence, EM-HIV can be regarded as a useful tool to accurately predict HIV-1 PR cleavage sites.
Collapse
Affiliation(s)
- Lun Hu
- grid.9227.e0000000119573309Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Zhenfeng Li
- grid.162110.50000 0000 9291 3229School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Zehai Tang
- grid.162110.50000 0000 9291 3229School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Cheng Zhao
- grid.162110.50000 0000 9291 3229School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Xi Zhou
- grid.9227.e0000000119573309Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Pengwei Hu
- grid.9227.e0000000119573309Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| |
Collapse
|
4
|
Okafor SN, Angsantikul P, Ahmed H. Discovery of Novel HIV Protease Inhibitors Using Modern Computational Techniques. Int J Mol Sci 2022; 23:12149. [PMID: 36293006 PMCID: PMC9603388 DOI: 10.3390/ijms232012149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 09/10/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.
Collapse
Affiliation(s)
- Sunday N. Okafor
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 41001, Nigeria
| | | | - Hashim Ahmed
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
5
|
Ajamgard M, Sardroodi JJ, Ebrahimzadeh AR, Kamelabad MR. Molecular dynamics simulation study of gold nanosheet as drug delivery vehicles for anti-HIV-1 aptamers. Comput Biol Chem 2021; 95:107595. [PMID: 34739903 DOI: 10.1016/j.compbiolchem.2021.107595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
The adsorption process of three aptamers with gold nanosheet (GNS) as a drug carrier has been investigated with the help of molecular dynamics simulations. The sequencing of the considered aptamers are as (CUUCAUUGUAACUUCUCAUAAUUUCCCGAGGCUUUUACUUUCGGGGUCCU) and (CCGGGUCGUCCCCUACGGGGACUAAAGACUGUGUCCAACCGCCCUCGCCU) for AP1 and AP2, respectively. AP3 is a muted version of AP1 in which nucleotide positions 4, 6, 18, 28 and 39 have C4A, U6G, A18G, G28A, and U39C mutations. At positions 24, and 40, a deletion mutation is seen to eliminate U24 and U40 bases. These aptamers are inhibitors for HIV-1 protease and can be candidates as potential pharmaceutics for treatment of AIDS in the future. The interactions between considered aptamers and GNS have been analyzed in detail with help of structural and energetic properties. These analyses showed that all three aptamers could well adsorb on GNS. Overall, the final results show that the adsorption of AP2 on the GNS is more favorable than other considered ones and consequently GNS can be considered as a device in order to immobilize these aptamers.
Collapse
Affiliation(s)
- Marzieh Ajamgard
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran.
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Mahrokh Rezaei Kamelabad
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| |
Collapse
|
6
|
Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules 2020; 25:E2070. [PMID: 32365518 PMCID: PMC7249135 DOI: 10.3390/molecules25092070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS), which chiefly originatesfroma retrovirus named Human Immunodeficiency Virus (HIV), has impacted about 70 million people worldwide. Even though several advances have been made in the field of antiretroviral combination therapy, HIV is still responsible for a considerable number of deaths in Africa. The current antiretroviral therapies have achieved success in providing instant HIV suppression but with countless undesirable adverse effects. Presently, the biodiversity of the plant kingdom is being explored by several researchers for the discovery of potent anti-HIV drugs with different mechanisms of action. The primary challenge is to afford a treatment that is free from any sort of risk of drug resistance and serious side effects. Hence, there is a strong demand to evaluate drugs derived from plants as well as their derivatives. Several plants, such as Andrographis paniculata, Dioscorea bulbifera, Aegle marmelos, Wistaria floribunda, Lindera chunii, Xanthoceras sorbifolia and others have displayed significant anti-HIV activity. Here, weattempt to summarize the main results, which focus on the structures of most potent plant-based natural products having anti-HIV activity along with their mechanisms of action and IC50 values, structure-activity-relationships and important key findings.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| | - Pooja Sharma
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Girish K. Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot 145001, India;
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Dinesh Kumar
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| |
Collapse
|
7
|
Anderson-Daniels J, Singh PK, Sowd GA, Li W, Engelman AN, Aiken C. Dominant Negative MA-CA Fusion Protein Is Incorporated into HIV-1 Cores and Inhibits Nuclear Entry of Viral Preintegration Complexes. J Virol 2019; 93:e01118-19. [PMID: 31413124 PMCID: PMC6803256 DOI: 10.1128/jvi.01118-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/03/2019] [Indexed: 11/20/2022] Open
Abstract
Particle maturation is a critical step in the HIV-1 replication cycle that requires proteolytic cleavage of the Gag polyprotein into its constitutive proteins: the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins. The accurate and efficient cleavage of Gag is essential for virion infectivity; inhibitors of the viral protease are potent antivirals, and substitutions in Gag that prevent its cleavage result in reduced HIV-1 infectivity. In a previous study, a mutation inhibiting cleavage at the MA-CA junction was observed to potently inhibit virus infection: incorporation of small amounts of uncleaved MA-CA protein into HIV-1 particles inhibited infectivity by ∼95%, and the resulting viral particles exhibited aberrant capsids. Here we report a detailed mechanistic analysis of HIV-1 particles bearing uncleaved MA-CA protein. We show that the particles contain stable cores and can efficiently saturate host restriction by TRIMCyp in target cells. We further show that MA-CA associates with CA in particles without detectably affecting the formation of intermolecular CA interfaces. Incorporation of MA-CA did not markedly affect reverse transcription in infected cells, but nuclear entry was impaired and integration targeting was altered. Additionally, results from mutational analysis of Gag revealed that membrane-binding elements of MA contribute to the antiviral activity of uncleaved MA-CA protein. Our results suggest that small amounts of partially processed Gag subunits coassemble with CA during virion maturation, resulting in impaired capsid functions.IMPORTANCE To become infectious, newly formed HIV-1 particles undergo a process of maturation in which the viral polyproteins are cleaved into smaller components. A previous study demonstrated that inclusion of even small quantities of an uncleavable mutant Gag polyprotein results in a strong reduction in virus infectivity. Here we show that the mechanism of transdominant inhibition by uncleavable Gag involves inhibition of nuclear entry and alteration of viral integration sites. Additionally, the results of mutational analysis suggest that the membrane-binding activity of Gag is a major requirement for the antiviral activity. These results further define the antiviral mechanism of uncleavable Gag, which may be useful for exploiting this effect to develop new antivirals.
Collapse
Affiliation(s)
- Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory A Sowd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Borrajo A, Ranazzi A, Pollicita M, Bruno R, Modesti A, Alteri C, Perno CF, Svicher V, Aquaro S. Effects of Amprenavir on HIV-1 Maturation, Production and Infectivity Following Drug Withdrawal in Chronically-Infected Monocytes/Macrophages. Viruses 2017; 9:v9100277. [PMID: 28956865 PMCID: PMC5691629 DOI: 10.3390/v9100277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022] Open
Abstract
A paucity of information is available on the activity of protease inhibitors (PI) in chronically-infected monocyte-derived macrophages (MDM) and on the kinetics of viral-rebound after PI removal in vitro. To fill this gap, the activity of different concentrations of amprenavir (AMP) was evaluated in chronically-infected MDM by measuring p24-production every day up to 12 days after drug administration and up to seven days after drug removal. Clinically-relevant concentrations of AMP (4 and 20 μM) drastically decreased p24 amount released from chronically-infected MDM from Day 2 up to Day 12 after drug administration. The kinetics of viral-rebound after AMP-removal (4 and 20 μM) showed that, despite an initial increase, p24-production over time never reached the level observed for untreated-MDM, suggesting a persistent intracellular drug activity. In line with this, after AMP-removal, human immunodeficiency virus 1 (HIV-1) infectivity and intracellular the p24/p55 ratio (reflecting virion-maturation) were remarkably lower than observed for untreated MDM. Overall, AMP shows high efficacy in blocking HIV-1 replication in chronically-infected MDM, persisting even after drug-removal. This highlights the role of protease inhibitors in preventing the establishment of this important HIV-1 reservoir, thus reducing viral-dissemination in different anatomical compartments.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
- Clinical Virology Group, Institute of Biomedical Research of A Coruña (INIBIC)-University Hospital of A Coruña (CHUAC), Sergas, University of A Coruña (UDC), 15001 A Coruña, Spain.
| | - Alessandro Ranazzi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Rosalinda Bruno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
9
|
Nitschko H, Lindhofer H, Schätzl H, Eberle J, Deby G, Kranz B, von der Helm K. Long-Term Treatment of HIV-Infected MT-4 Cells in Culture with HIV Proteinase Inhibitor RO 31-8959 Leads to Complete Cure of Infection. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An HIV-infected cell culture was treated with the specific HIV proteinase inhibitor Ro 31-8959 for three months to analyse the antiviral effect and possible cytotoxicity of the drug in long-term treatment. The drug was added 1 h after HIV infection with 0.002 m.o.i. and maintained for 87 days in the cell culture. There was no detectable cell death nor any evidence of HIV production in this time. Cells were proven to be initially infected, since premature drug removal led to a re-emergence of infectious HIV and cell death. However, after 87 days of treatment the drug could be removed safely and HIV was cleared demonstrably from the culture. These data suggest that long-term dosage may be advantageous to the clinical treatment of HIV infection by HIV proteinase inhibitors.
Collapse
Affiliation(s)
- H. Nitschko
- Max-von-Pattenkofer Institut, University of Munich, D-80336-Munich, Germany
| | - H. Lindhofer
- Max-von-Pattenkofer Institut, University of Munich, D-80336-Munich, Germany
| | - H. Schätzl
- Max-von-Pattenkofer Institut, University of Munich, D-80336-Munich, Germany
| | - J. Eberle
- Max-von-Pattenkofer Institut, University of Munich, D-80336-Munich, Germany
| | - G. Deby
- Max-von-Pattenkofer Institut, University of Munich, D-80336-Munich, Germany
| | - B. Kranz
- Institut für Immunologie, GSF, Munich, Germany
| | - K. von der Helm
- Max-von-Pattenkofer Institut, University of Munich, D-80336-Munich, Germany
| |
Collapse
|
10
|
Bacheler LT, Paul M, Otto MJ, Jadhav PK, Stone BA, Miller JA. An Assay for HIV RNA in Infected Cell Lysates, and its use for the Rapid Evaluation of Antiviral Efficacy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A rapid, high-capacity assay for evaluating the potency of anti-HIV compounds was devised. This assay measures cell associated viral RNA levels 3 days after infection of susceptible T-cell lines grown in individual microtitre plate wells. Viral RNA was quantified by a sandwich hybridization assay, the first step of which was performed directly in crude infected cell lysates prepared in guanidinium isothio-cyanate. Levels of cell-associated viral RNA were shown to correlate with the yield of infectious virus and this correlation formed the basis of the test. Antiviral potencies of a large series of compounds tested in this RNA hybridization assay correlated closely with potency values determined by a sensitive but slower and more labour-intensive yield-reduction assay. Both laboratory strains and selected clinical isolates of HIV can be detected in this RNA hybridization assay.
Collapse
Affiliation(s)
- L. T. Bacheler
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - M. Paul
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - M. J. Otto
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - P. K. Jadhav
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - B. A. Stone
- Nucleic Acid Technology, Research and Development Division, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - J. A. Miller
- Nucleic Acid Technology, Research and Development Division, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| |
Collapse
|
11
|
Clayette P, Merrouche Y, Gharbaoui T, Roques P, Lechevallier A, Beugelmans R, Olomucki M, Dormont D. Anti-HIV Activities of Novel Nucleoside Analogues: Acyclic and Tricyclic Base Nucleosides. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two series of new nucleoside derivatives, acyclic nucleosides and tricyclic base nucleosides, were screened for cellular toxicity and against HIV-1. Compounds were tested on MT4, MT2, U937 cell lines and PBMCs in multiwell tissue culture plates. Cells were infected in vitro with 2 TCID50/105 cells or 0.2 TCID50/105 cells of HIV-1-LAV-1. Two out of eight tricyclic derivatives showed little cytotoxicity; at 100μM, only two acyclic compounds exhibited cellular toxicity in U937 cells. In vitro, none of these 19 compounds demonstrated any efficient activity against the lentiviral HIV infection and replication. Furthermore, combinations of these acyclonucleosides with ddC or AZT did not inhibit HIV-1-LAV-1 replication additively or synergistically. Because acyclonucleosides did not induce any cytotoxic effect, other compounds of this family should be investigated.
Collapse
Affiliation(s)
- P. Clayette
- Centre de Recherches du Service de Santé des Armées, Commissariat à l'Energie Atomique, DSV/DPTE, B.P. 6, 92265 Fontenay-aux-Roses Cedex, France
| | - Y. Merrouche
- Centre de Recherches du Service de Santé des Armées, Commissariat à l'Energie Atomique, DSV/DPTE, B.P. 6, 92265 Fontenay-aux-Roses Cedex, France
| | - T. Gharbaoui
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - P. Roques
- Centre de Recherches du Service de Santé des Armées, Commissariat à l'Energie Atomique, DSV/DPTE, B.P. 6, 92265 Fontenay-aux-Roses Cedex, France
- Laboratoire de Biochimie Cellulaire, Collège de France, Paris, France
| | - A. Lechevallier
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - R. Beugelmans
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - M. Olomucki
- Laboratoire de Biochimie Cellulaire, Collège de France, Paris, France
| | - D. Dormont
- Centre de Recherches du Service de Santé des Armées, Commissariat à l'Energie Atomique, DSV/DPTE, B.P. 6, 92265 Fontenay-aux-Roses Cedex, France
- Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Craig JC, Grief C, Mills JS, Hockley D, Duncan IB, Roberts NA. Effects of a Specific Inhibitor of HIV Proteinase (Ro 31-8959) on Virus Maturation in a Chronically Infected Promonocytic Cell Line (U1). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human immunodeficiency virus (HIV) proteinase inhibitor Ro 31-8959 prevents the maturation of virus in phorbol 12-myristate 13-acetate (PMA)-stimulated U1 cells, a chronically infected promonocytic cell line. Inhibition of both the morphological maturation of virions and the enzymic processing of gag polyprotein (p56) to produce capsid protein p24 was demonstrated at nanomolar concentrations of the compound. Furthermore, prolonged inhibition of the processing of p56 antigen was confirmed in pulse-chase experiments. The conclusion is that Ro 31-8959 can inhibit production of mature virions in a promonocyte cell line which is infected chronically/latently with HIV.
Collapse
Affiliation(s)
- J. C. Craig
- Roche Products Limited, PO Box 8, Welwyn Garden City, Herts AL7 3AY, UK
| | - C. Grief
- Department of Electron Microscopy and AIDS Collaborative Centre, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - J. S. Mills
- Roche Products Limited, PO Box 8, Welwyn Garden City, Herts AL7 3AY, UK
| | - D. Hockley
- Department of Electron Microscopy and AIDS Collaborative Centre, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - I. B. Duncan
- Roche Products Limited, PO Box 8, Welwyn Garden City, Herts AL7 3AY, UK
| | - N. A. Roberts
- Roche Products Limited, PO Box 8, Welwyn Garden City, Herts AL7 3AY, UK
| |
Collapse
|
13
|
Taylor DL, Ahmed PS, Brennan TM, Bridges CG, Tyms AS, Van Dorsselaer V, Tarnus C, Hornsperger JM, Schirlin D. Anti-Human Immunodeficiency Virus Activity, Bioavailability and Drug Resistance Profile of the Novel Proteinase Inhibitor MDL 74,695. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MDL 74,695, a novel dipeptide-like compound containing the ‘difluorostatone type’ transition state mimic and a potent inhibitor of the human immunodeficiency virus (HIV) proteinase, was investigated for anti-HIV activity in vitro. The compound showed selective inhibition of both HIV-1 and HIV-2 in MT-4 cells. A potent antiviral effect against a range of clinical isolates of HIV-1 cultured in human peripheral blood mononuclear cells and primary monocytes was also demonstrated. The antiviral activity of MDL 74,695 against viruses resistant to a range of reverse transcriptase inhibitors was equivalent to the wild-type. In rats MDL 74,695 (30 mg kg−1) was 4.9% orally bioavailable and maintained levels above the in vitro 50% inhibitory concentration (IC50) for approximately 3 h. Viruses with reduced sensitivity to MDL 74,695 and saquinavir were selected in cell culture by continuous passage in increasing drug concentrations, and first appeared after 20 and 17 passages, respectively. Amino acid changes were identified at positions 48 (glycine to valine), 50 (isoleucine to valine) and 82 (valine to either isoleucine or alanine) in various combinations for MDL 74,695-resistant viruses. For saquinavir-resistant viruses changes were identified at positions 48 (glycine to valine) and 90 (leucine to methionine). Studies using MDL 74,695, saquinavir and a third proteinase inhibitor indinavir, indicated that virus selected in the presence of MDL 74,695, with amino acid exchanges at positions 48 and 82 showed cross-resistance to saquinavir. However, viruses selected in the presence of MDL 74,695 with amino acid exchanges at positions 50 and 82 showed no significant change in sensitivity to saquinavir. Likewise, viruses selected in the presence of saquinavir with amino acid exchanges at positions 48 and 90 remained sensitive to MDL 74,695. All viruses selected after growth in the presence of either MDL 74,695 or saquinavir showed little or no resistance to indinavir.
Collapse
Affiliation(s)
- DL Taylor
- MRC Collaborative Centre, 1–3 Burtonhole Lane, Mill Hill, London, UK
| | - PS Ahmed
- MRC Collaborative Centre, 1–3 Burtonhole Lane, Mill Hill, London, UK
| | - TM Brennan
- MRC Collaborative Centre, 1–3 Burtonhole Lane, Mill Hill, London, UK
| | - CG Bridges
- MRC Collaborative Centre, 1–3 Burtonhole Lane, Mill Hill, London, UK
| | - AS Tyms
- MRC Collaborative Centre, 1–3 Burtonhole Lane, Mill Hill, London, UK
| | - V Van Dorsselaer
- Marion Merrell Dow Research Institute, 16 rue d'Ankara, 67080 Strasbourg Cedex, France
| | - C Tarnus
- Marion Merrell Dow Research Institute, 16 rue d'Ankara, 67080 Strasbourg Cedex, France
| | - J-M Hornsperger
- Marion Merrell Dow Research Institute, 16 rue d'Ankara, 67080 Strasbourg Cedex, France
| | - D Schirlin
- Marion Merrell Dow Research Institute, 16 rue d'Ankara, 67080 Strasbourg Cedex, France
| |
Collapse
|
14
|
Ryan C, Mo J, Schlesinger MJ. Antiviral Activities of Peptides with Sequences Related to the Cytoplasmic Domain of the Respiratory Syncytial Virus Glycoproteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029500600607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A set of peptides from 6–10 amino acids in length with sequences corresponding to the respiratory syncytial virus (RSV) attachment glycoprotein, G, has been found to inhibit secretion of virus particles from two human cell lines infected with RSV. Peptides of similar lengths with sequences related to the fusion (F) protein were not effective. A modified assay for syncytia formation was used to measure infectious particles and we found that cell-free infectious RSV was inhibited by those same peptides that blocked particle release. However, only about 5–20% of the total infectious virus formed in the cultured cells was released from the cells – the remaining was assayable only after lysis of the infected cells. Formation of this major fraction of infectious, cell-associated RSV was not affected by the peptides. The inhibitory peptides were ineffective in blocking release of infectious virus from cells infected with influenza, vesicular stomatitis and Semliki Forest viruses. Only a set of specific amino acids in these peptides were inhibitory and they consisted of a very hydrophobic sequence that also required a cysteine residue.
Collapse
Affiliation(s)
- C. Ryan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J. Mo
- Survival Technology Inc., 2550 Hermelin Dr., St. Louis, MO 63144, USA
| | - M. J. Schlesinger
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Billich A, Billich S, Rosenwirth B. Assay Systems for HIV-1 Proteinase and Their Use for Evaluation of Inhibitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A. Billich
- Sandoz Forschungsinstitut GmbH, Department of AntiRetroviral Therapy, Brunnerstr. 59, A-1235 Vienna, Austria
| | - S. Billich
- Sandoz Forschungsinstitut GmbH, Department of AntiRetroviral Therapy, Brunnerstr. 59, A-1235 Vienna, Austria
| | - B. Rosenwirth
- Sandoz Forschungsinstitut GmbH, Department of AntiRetroviral Therapy, Brunnerstr. 59, A-1235 Vienna, Austria
| |
Collapse
|
16
|
Smallheer JM, Otto MJ, Amaral-Ly CA, Earl RA, Myers MJ, Pennev P, Montefiori DC, Wuonola MA. Synthesis and anti-HIV Activity of a Series of 2-Indolinones and Related Analogues. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel series of 2-indolinones with in vitro anti-HIV (human immunodeficiency virus) activity is described. Two structurally related compounds, 1, 3,3-(4- N-methyl-1,2,5,6-tetrahydropyridylmethyl)-1- phenyl-2-indolinone, and 2, its 4- N-methylpiperidinylmethyl analogue (Fig. 1), formed the basis of a structure-activity study. The synthesis of approximately 50 analogues and their respective activities vs. HIV are presented. Both 1 and 2 were effective inhibitors of HIV(IIIb) in cell protection assays with IC90 values of 4.4 and 14.9μM (2.2 and 7.9μg ml−1), respectively. In the same concentration range, 1 and 2 also inhibit syncytia formation. These compounds represent a novel class of anti-HIV agents which appear to act by inhibiting virus-dependent cell fusion.
Collapse
Affiliation(s)
- J. M. Smallheer
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| | - M. J. Otto
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| | - C. A. Amaral-Ly
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| | - R. A. Earl
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| | - M. J. Myers
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| | - P. Pennev
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| | - D. C. Montefiori
- Vanderbilt University School of Medicine, Department of Pathology, Nashville, TN, USA
| | - M. A. Wuonola
- The Du Pont Merck Pharmaceutical Company, Wilmington DE 19880, USA
| |
Collapse
|
17
|
Madu IG, Li S, Li B, Li H, Chang T, Li YJ, Vega R, Rossi J, Yee JK, Zaia J, Chen Y. A Novel Class of HIV-1 Antiviral Agents Targeting HIV via a SUMOylation-Dependent Mechanism. Sci Rep 2015; 5:17808. [PMID: 26643614 PMCID: PMC4672295 DOI: 10.1038/srep17808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023] Open
Abstract
We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency.
Collapse
Affiliation(s)
- Ikenna G Madu
- Department of Molecular Medicine, 1500 East Duarte Road, CA 91010
| | - Shirley Li
- Department of Virology, 1500 East Duarte Road, CA 91010
| | - Baozong Li
- Department of Molecular Medicine, 1500 East Duarte Road, CA 91010
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Tammy Chang
- Department of Virology, 1500 East Duarte Road, CA 91010
| | - Yi-Jia Li
- Department of Molecular Medicine, 1500 East Duarte Road, CA 91010
| | - Ramir Vega
- Department of Molecular Medicine, 1500 East Duarte Road, CA 91010
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | | | - John Zaia
- Department of Virology, 1500 East Duarte Road, CA 91010
| | - Yuan Chen
- Department of Molecular Medicine, 1500 East Duarte Road, CA 91010
| |
Collapse
|
18
|
Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses 2015; 7:1578-98. [PMID: 25835530 PMCID: PMC4411666 DOI: 10.3390/v7041578] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes latency in resting memory CD4+ T cells and cells of myeloid lineage. In contrast to the T cells, cells of myeloid lineage are resistant to the HIV-1 induced cytopathic effect. Cells of myeloid lineage including macrophages are present in anatomical sanctuaries making them a difficult drug target. In addition, the long life span of macrophages as compared to the CD4+ T cells make them important viral reservoirs in infected individuals especially in the late stage of viral infection where CD4+ T cells are largely depleted. In the past decade, HIV-1 persistence in resting CD4+ T cells has gained considerable attention. It is currently believed that rebound viremia following cessation of combination anti-retroviral therapy (cART) originates from this source. However, the clinical relevance of this reservoir has been questioned. It is suggested that the resting CD4+ T cells are only one source of residual viremia and other viral reservoirs such as tissue macrophages should be seriously considered. In the present review we will discuss how macrophages contribute to the development of long-lived latent reservoirs and how macrophages can be used as a therapeutic target in eradicating latent reservoir.
Collapse
|
19
|
High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e228. [PMID: 25689224 PMCID: PMC4345311 DOI: 10.1038/mtna.2015.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
HIV-1 aspartyl protease (PR) plays a key role in virion morphogenesis, underscoring the effectiveness of protease inhibitors (PI). Despite their utility, side effects and drug-resistance remains a problem. We report the development of RNA aptamers as inhibitors of HIV-1 PR for potential use in anti-HIV gene therapy. Employing Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we isolated four unique families of anti-HIV-1 PR RNA aptamers displaying moderate binding affinities (Kd = 92–140 nmol/l) and anti-PR inhibitory activity (Kis = 138–647 nmol/l). Second-generation RNA aptamers selected from partially randomized pools based on two of the aptamer sequences displayed striking enhancements in binding (Kds = 2–22 nmol/l) and inhibition (Kis = 31–49 nmol/l). The aptamers were specific in that they did not bind either the related HIV-2 protease, or the cellular aspartyl protease, Cathepsin D. Site-directed mutagenesis of a second-generation aptamer to probe the predicted secondary structure indicated that the stem-loops SL2 and SL3 and the stem P1 were essential for binding and that only the 3'-most 17 nucleotides were dispensable. Anti-PR aptamers inhibited HIV replication in vitro and the degree of inhibition was higher for second-generation aptamers with greater affinity and the inhibition was abrogated for a nonbinding aptamer variant.
Collapse
|
20
|
Biology of Viruses and Viral Diseases. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152303 DOI: 10.1016/b978-1-4557-4801-3.00134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
21
|
Meredith LW, Farquhar MJ, Tarr AW, McKeating JA. Type I interferon rapidly restricts infectious hepatitis C virus particle genesis. Hepatology 2014; 60:1891-901. [PMID: 25066844 PMCID: PMC4265257 DOI: 10.1002/hep.27333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Interferon-alpha (IFNα) has been used to treat chronic hepatitis C virus (HCV) infection for over 20 years with varying efficacy, depending on the infecting viral genotype. The mechanism of action of IFNα is not fully understood, but is thought to target multiple stages of the HCV lifecycle, inhibiting viral transcription and translation leading to a degradation of viral RNA and protein expression in the infected cell. IFNα induces the expression of an array of interferon-stimulated genes within minutes of receptor engagement; however, the impact of these early responses on the viral lifecycle are unknown. We demonstrate that IFNα inhibits the genesis of infectious extracellular HCV particles within 2 hours of treating infected cells, with minimal effect on the intracellular viral burden. Importantly, this short duration of IFNα treatment of infected cells significantly reduced cell-free and cell-to-cell dissemination. The secreted viral particles showed no apparent change in protein content or density, demonstrating that IFNα inhibits particle infectivity but not secretion rates. To investigate whether particles released from IFNα-treated cells have a reduced capacity to establish infection we used HCV lentiviral pseudotypes (HCVpp) and demonstrated a defect in cell entry. Using a panel of monoclonal antibodies targeting the E2 glycoprotein, we demonstrate that IFNα alters glycoprotein conformation and receptor utilization. CONCLUSION These observations show a previously unreported and rapid effect of IFNα on HCV particle infectivity that inhibits de novo infection events. Evasion of this response may be a contributing factor in whether a patient achieves early or rapid virological response, a key indicator of progression to sustained virological response or clearance of viral infection.
Collapse
Affiliation(s)
- Luke W Meredith
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK
| | - Michelle J Farquhar
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK
| | - Alexander W Tarr
- School of Molecular Medical Sciences and the Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical CentreNottingham, UK
| | - Jane A McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK,NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| |
Collapse
|
22
|
Moghadamtousi SZ, Kamarudin MNA, Chan CK, Goh BH, Kadir HA. Phytochemistry and Biology of Loranthus parasiticus Merr, a Commonly Used Herbal Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:23-35. [DOI: 10.1142/s0192415x14500025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Loranthus parasiticus Merr (L. parasiticus) is a member of Loranthaceae family and is an important medicinal plant with a long history of Chinese traditional use. L. parasiticus, also known as Sang Ji Sheng (in Chinese), benalu teh (in Malay) and baso-kisei (in Japanese), is a semiparasitic plant, which is mostly distributed in the southern and southwestern regions of China. This review aims to provide a comprehensive overview of the ethnomedicinal use, phytochemistry and pharmacological activity of L. parasiticus and to highlight the needs for further investigation and greater global development of the plant's medicinal properties. To date, pharmacological studies have demonstrated significant biological activities, which support the traditional use of the plant as a neuroprotective, tranquilizing, anticancer, immunomodulatory, antiviral, diuretic and hypotensive agent. In addition, studies have identified antioxidative, antimutagenic, antiviral, antihepatotoxic and antinephrotoxic activity. The key bioactive constituents in L. parasiticus include coriaria lactone comprised of sesquiterpene lactones: coriamyrtin, tutin, corianin, and coriatin. In addition, two proanthocyanidins, namely, AC trimer and (+)-catechin, have been recently discovered as novel to L. parasiticus. L. parasiticus usefulness as a medicinal plant with current widespread traditional use warrants further research, clinical trials and product development to fully exploit its medicinal value.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chim Kei Chan
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey Hing Goh
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore RD, Siliciano RF. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Invest 2013; 123:3848-60. [PMID: 23979165 DOI: 10.1172/jci67399] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/30/2013] [Indexed: 11/17/2022] Open
Abstract
HIV-1 protease inhibitors (PIs) are among the most effective antiretroviral drugs. They are characterized by highly cooperative dose-response curves that are not explained by current pharmacodynamic theory. An unresolved problem affecting the clinical use of PIs is that patients who fail PI-containing regimens often have virus that lacks protease mutations, in apparent violation of fundamental evolutionary theory. Here, we show that these unresolved issues can be explained through analysis of the effects of PIs on distinct steps in the viral life cycle. We found that PIs do not affect virion release from infected cells but block entry, reverse transcription, and post-reverse transcription steps. The overall dose-response curves could be reconstructed by combining the curves for each step using the Bliss independence principle, showing that independent inhibition of multiple distinct steps in the life cycle generates the highly cooperative dose-response curves that make these drugs uniquely effective. Approximately half of the inhibitory potential of PIs is manifest at the entry step, likely reflecting interactions between the uncleaved Gag and the cytoplasmic tail (CT) of the Env protein. Sequence changes in the CT alone, which are ignored in current clinical tests for PI resistance, conferred PI resistance, providing an explanation for PI failure without resistance.
Collapse
Affiliation(s)
- S Alireza Rabi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Current Status of the Development of HIV Protease Inhibitors and Their Clinical Potential. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Zhu F, Ma XH, Qin C, Tao L, Liu X, Shi Z, Zhang CL, Tan CY, Chen YZ, Jiang YY. Drug discovery prospect from untapped species: indications from approved natural product drugs. PLoS One 2012; 7:e39782. [PMID: 22808057 PMCID: PMC3394748 DOI: 10.1371/journal.pone.0039782] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022] Open
Abstract
Due to extensive bioprospecting efforts of the past and technology factors, there have been questions about drug discovery prospect from untapped species. We analyzed recent trends of approved drugs derived from previously untapped species, which show no sign of untapped drug-productive species being near extinction and suggest high probability of deriving new drugs from new species in existing drug-productive species families and clusters. Case histories of recently approved drugs reveal useful strategies for deriving new drugs from the scaffolds and pharmacophores of the natural product leads of these untapped species. New technologies such as cryptic gene-cluster exploration may generate novel natural products with highly anticipated potential impact on drug discovery.
Collapse
Affiliation(s)
- Feng Zhu
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China
- Innovative Drug Research Centre and College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People’s Republic of China
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
| | - Xiao Hua Ma
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore
| | - Lin Tao
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore
| | - Xin Liu
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
| | - Zhe Shi
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
| | - Cun Long Zhang
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China
| | - Chun Yan Tan
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China
| | - Yu Zong Chen
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
- * E-mail: (YZC); (YYJ)
| | - Yu Yang Jiang
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China
- * E-mail: (YZC); (YYJ)
| |
Collapse
|
26
|
Lillemark MR, Gerstoft J, Obel N, Kronborg G, Pedersen C, Jørgensen LB, Madsen TV, Katzenstein TL. Characterization of HIV-1 from patients with virological failure to a boosted protease inhibitor regimen. J Med Virol 2011; 83:377-83. [PMID: 21264856 DOI: 10.1002/jmv.21997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of highly active antiretroviral treatment (HAART) regimens with unboosted protease inhibitors (PIs) has resulted in a high level of virological failure primarily due to the development of resistant virus. Current boosted PI regimens combine successfully low-dose ritonavir (r) with a second PI. The aim of the study was to estimate the proportion of patients, in a population based setting, who develop virological failure on a PI/r regimen. Through The Danish HIV Cohort Study 1,007 patients who received PI/r based treatment between 1995 and 2008 were identified. Twenty-three (2.3%) experienced virological failure, of whom 19 (83%) started PI/r treatment before 2001. Patients from Copenhagen (n=19) were selected to study the development of protease (PR) and gag cleavage site (CS) mutations during PI/r treatment and PI plasma levels at the time of virological failure. Three patients (16%) developed major PI resistance mutations. Mutations in the p7/p1 and p1/p6 gag CS only developed in patients with major or minor mutations in PR. Drug concentrations were low or undetectable in 10 out of the 19 patients. In total PR resistance mutations and low drug levels could account for 12 (63%) of the failure cases. In conclusion, virological failure to PI/r is a low and decreasing problem primarily caused by low plasma drug levels and to a lesser extent major PR mutations. Gag CS mutations did not contribute significantly to resistance development and virological failure.
Collapse
|
27
|
ZHANG DAW, HUANG PHILIPLIN, LEE-HUANG SYLVIA, ZHANG JOHNZH. DESIGN OF HYBRID INHIBITORS TO HIV-1 PROTEASE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of HIV-1 protease (PR) inhibitors are designed to increase the binding affinity with PR subsites based on the quantum analysis of the contributions of molecular fragments in six FDA-approved PR drugs to the total binding interaction. The binding free energies were estimated by modified linear interaction energy approach [Zoete H, Michielin O, Karplus M, J Comput Aided Mol Des17:861, 2003], in which the binding free energy is written as a linear combination of the electrostatic interaction energy between PR and the ligand, Eelec, the van der Waals interaction energy between PR and the ligand, E vdW , and the difference of the solvation free energies of the complex, the receptor and the isolated ligand, ΔG solv . The parameters of these energy terms were fitted for a training set of 14 HIV-1 protease–inhibitor complexes of known 3D structure with a correlation coefficient of 0.91 and an unsigned mean error of 0.83 kcal/mol.
Collapse
Affiliation(s)
- DA W. ZHANG
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | - SYLVIA LEE-HUANG
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - JOHN Z. H. ZHANG
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
28
|
ZHANG DAWEI, YU LIUZE, HUANG PHILIPLIN, LEE-HUANG SYLVIA, ZHANG JOHNZH. COMPUTATIONAL DESIGN OF NORBORNANE-BASED HIV-1 PROTEASE INHIBITORS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633610005773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of norbornane-based HIV-1 protease (PR) inhibitors are designed theoretically to displace the tetrahedrally coordinated internal water molecule that bridges inhibitor to flaps via hydrogen bonds. These designed inhibitors use the norbornenone oxygen atom to mimic this structural water molecule and contain diols to interact with the carboxylate oxygens of catalytic aspartates. The binding free energies were estimated by modified linear interaction energy approach [Zoete H, Michielin O, Karplus M, J Comput Aided Mol Des17:861, 2003], in which the binding free energy is written as a linear combination of the electrostatic interaction energy between PR and the ligand, E elec , the van der Waals interaction energy between PR and the ligand, E vdW , and the difference of the solvation free energies of the complex, the receptor, and the isolated ligand, ΔG solv . The equation obtained in previous work [Da W. Zhang, Philip Lin Huang, Sylvia Lee-Huang, John Z. H. Zhang, J Theor Comput Chem7:485, 2008] is applied directly to calculate the binding free energy of designed norbornane-based HIV-1 PR inhibitors.
Collapse
Affiliation(s)
- DAWEI ZHANG
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - LIU ZE YU
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | - SYLVIA LEE-HUANG
- Department of Biochemistry, New York University Langone Medical Center, New York, NY 10016, USA
| | - JOHN Z. H. ZHANG
- Department of Physics, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
29
|
Garrec J, Sautet P, Fleurat-Lessard P. Understanding the HIV-1 Protease Reactivity with DFT: What Do We Gain from Recent Functionals? J Phys Chem B 2011; 115:8545-58. [DOI: 10.1021/jp200565w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- J. Garrec
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| | - P. Sautet
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| | - P. Fleurat-Lessard
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| |
Collapse
|
30
|
|
31
|
Kraus B, Boller K, Reuter A, Schnierle BS. Characterization of the human endogenous retrovirus K Gag protein: identification of protease cleavage sites. Retrovirology 2011; 8:21. [PMID: 21429186 PMCID: PMC3073897 DOI: 10.1186/1742-4690-8-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/23/2011] [Indexed: 11/16/2022] Open
Abstract
Background Viral genomes of the human endogenous retrovirus K (HERV-K) family are integrated into the human chromosome and are transmitted vertically as Mendelian genes. Although viral particles are released by some transformed cells, they have never been shown to be infectious. In general, gammaretroviruses are produced as immature viral particles by accumulation of the Gag polyproteins at the plasma membrane, which subsequently bud from the cell surface. After release from the cell, Gag is further processed by proteolytic cleavage by the viral protease (PR), which results in morphologically mature particles with condensed cores. The HERV-K Gag polyprotein processing and function has not yet been precisely determined. Results We generated a recombinant poxvirus, encoding the human endogenous retrovirus K consensus gag-pro-pol genes (MVA-HERV-Kcon) and obtained high levels of HERV-K Gag expression. The resulting retroviral particle assembled at the plasma membrane, as is typical for gammaretroviruses; and immature as well as mature retrovirus-like particles (VLPs) were observed around the infected cells. VLPs were purified, concentrated and separated by two-dimensional gel electrophoresis. The HERV-K Gag fragments were identified by mass spectroscopy and N-terminal sequencing which revealed that HERV-K Gag is processed into MA, a short spacer peptide, p15, CA and NC. Conclusion The cleavage sites of HERV-K Gag were mapped and found to be highly conserved among HERV-K genomes. The consensus HERV-K gag gene used in this study is known to support viral, infectivity [1], and thus the cleavage sites that were mapped in this study for all the Gag components are relevant for HERV-K infectivity.
Collapse
Affiliation(s)
- Benjamin Kraus
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | | | | | | |
Collapse
|
32
|
Mahmoud KA, Luong JHT. A Sensitive Electrochemical Assay for Early Detection of HIV-1 Protease Using Ferrocene-Peptide Conjugate/Au Nanoparticle/Single Walled Carbon Nanotube Modified Electrode. ANAL LETT 2010. [DOI: 10.1080/00032711003653924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Garrec J, Cascella M, Rothlisberger U, Fleurat-Lessard P. Low Inhibiting Power of N···CO Based Peptidomimetic Compounds against HIV-1 Protease: Insights from a QM/MM Study. J Chem Theory Comput 2010. [DOI: 10.1021/ct9004728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Julian Garrec
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michele Cascella
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Paul Fleurat-Lessard
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Deeb O, Goodarzi M. Exploring QSARs for Inhibitory Activity of Non-peptide HIV-1 Protease Inhibitors by GA-PLS and GA-SVM. Chem Biol Drug Des 2010; 75:506-14. [DOI: 10.1111/j.1747-0285.2010.00953.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Shi L, Chen L, Chen R, Chen L. Synthesis of deuterium-labelled fosamprenavir calcium. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
KANEKO M, UDAGAWA T, TACHIKAWA M. Geometric Isotope Effect on Low Barrier Hydrogen-Bonding Systems of Acetic Acid Dimer, Formic Acid Dimer, and Their Anionic Clusters by Using the Multi-Component Molecular Orbital Method. ACTA ACUST UNITED AC 2010. [DOI: 10.2477/jccj.h2124m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Design and synthesis of novel P2 substituents in diol-based HIV protease inhibitors. Eur J Med Chem 2009; 45:160-70. [PMID: 19926360 DOI: 10.1016/j.ejmech.2009.09.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 09/03/2009] [Accepted: 09/25/2009] [Indexed: 11/22/2022]
Abstract
The synthesis and SAR of HIV-1 protease inhibitors containing novel P2 structural elements are presented. The inhibitors were designed having hydrogen bond accepting P2 substituents to probe potential favorable interactions to Asp-29/Asp-30 of the HIV-1 protease backbone utilizing inhibitor 3 as a model template. Several inhibitors were synthesized from an L-Val methyl amide P2 motif by appending hydrogen bonding moieties from either the isopropyl side-chain or from the methyl amide portion. The most promising inhibitors 4a and 4e displayed Ki values of 1.0 nM and 0.7 nM respectively and EC50 values in the MT4 cell-based assay of 0.17 microM and 0.33 microM respectively, a slight loss in potency compared to lead inhibitor 3. These inhibitors were also tested against an HIV protease inhibitor resistant strain carrying the M46I, V82F, and I84V mutations. Inhibitors 4a and 4e displayed a 3 and 4 fold change respectively compared with HIV wild type, whereas lead inhibitor 3 showed a higher 9 fold change. This study further demonstrate the chemical tractability of the approach where various P2 substituents can be introduced in just one chemical step from lactone 21 enabling facile modifications of the overall properties in this inhibitor class.
Collapse
|
38
|
Ghosh AK, Gemma S, Takayama J, Baldridge A, Leshchenko-Yashchuk S, Miller HB, Wang YF, Kovalevsky AY, Koh Y, Weber IT, Mitsuya H. Potent HIV-1 protease inhibitors incorporating meso-bicyclic urethanes as P2-ligands: structure-based design, synthesis, biological evaluation and protein-ligand X-ray studies. Org Biomol Chem 2008; 6:3703-13. [PMID: 18843400 PMCID: PMC2797486 DOI: 10.1039/b809178a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, we designed a series of novel HIV-1 protease inhibitors incorporating a stereochemically defined bicyclic fused cyclopentyl (Cp-THF) urethane as the high affinity P2-ligand. Inhibitor with this P2-ligand has shown very impressive potency against multi-drug-resistant clinical isolates. Based upon the -bound HIV-1 protease X-ray structure, we have now designed and synthesized a number of meso-bicyclic ligands which can conceivably interact similarly to the Cp-THF ligand. The design of meso-ligands is quite attractive as they do not contain any stereocenters. Inhibitors incorporating urethanes of bicyclic-1,3-dioxolane and bicyclic-1,4-dioxane have shown potent enzyme inhibitory and antiviral activities. Inhibitor (K(i) = 0.11 nM; IC(50) = 3.8 nM) displayed very potent antiviral activity in this series. While inhibitor showed comparable enzyme inhibitory activity (K(i) = 0.18 nM) its antiviral activity (IC(50) = 170 nM) was significantly weaker than inhibitor . Inhibitor maintained an antiviral potency against a series of multi-drug resistant clinical isolates comparable to amprenavir. A protein-ligand X-ray structure of -bound HIV-1 protease revealed a number of key hydrogen bonding interactions at the S2-subsite. We have created an active model of inhibitor based upon this X-ray structure.
Collapse
Affiliation(s)
- Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mahmoud KA, Luong JHT. Impedance Method for Detecting HIV-1 Protease and Screening For Its Inhibitors Using Ferrocene−Peptide Conjugate/Au Nanoparticle/Single-Walled Carbon Nanotube Modified Electrode. Anal Chem 2008; 80:7056-62. [DOI: 10.1021/ac801174r] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khaled A. Mahmoud
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada H4P 2R2, and Department of Chemistry, University College Cork, Cork, Ireland
| | - John H. T. Luong
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada H4P 2R2, and Department of Chemistry, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Abstract
Biochemical experiments have recently revealed that the p-S8 peptide, with an amino-acid sequence identical to the conserved fragment 83-93 (S8) of the HIV-1 protease, can inhibit catalytic activity of the enzyme by interfering with protease folding and dimerization. In this study, we introduce a hierarchical modeling approach for understanding the molecular basis of the HIV-1 protease folding inhibition. Coarse-grained molecular docking simulations of the flexible p-S8 peptide with the ensembles of HIV-1 protease monomers have revealed structurally different complexes of the p-S8 peptide, which can be formed by targeting the conserved segment 24-34 (S2) of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini beta-sheet region (dimerization inhibition). All-atom molecular dynamics simulations of the inhibitor complexes with the HIV-1 PR monomer have been independently carried out for the predicted folding and dimerization binding modes of the p-S8 peptide, confirming the thermodynamic stability of these complexes. Binding free-energy calculations of the p-S8 peptide and its active analogs are then performed using molecular dynamics trajectories of the peptide complexes with the HIV-1 PR monomers. The results of this study have provided a plausible molecular model for the inhibitor intervention with the HIV-1 PR folding and dimerization and have accurately reproduced the experimental inhibition profiles of the active folding inhibitors.
Collapse
|
41
|
|
42
|
Wittayanarakul K, Hannongbua S, Feig M. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. J Comput Chem 2008; 29:673-85. [PMID: 17849388 DOI: 10.1002/jcc.20821] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binding free energies were calculated for the inhibitors lopinavir, ritonavir, saquinavir, indinavir, amprenavir, and nelfinavir bound to HIV-1 protease. An MMPB/SA-type analysis was applied to conformational samples from 3 ns explicit solvent molecular dynamics simulations of the enzyme-inhibitor complexes. Binding affinities and the sampled conformations of the inhibitor and enzyme were compared between different HIV-1 protease protonation states to find the most likely protonation state of the enzyme in the complex with each of the inhibitors. The resulting set of protonation states leads to good agreement between calculated and experimental binding affinities. Results from the MMPB/SA analysis are compared with an explicit/implicit hybrid scheme and with MMGB/SA methods. It is found that the inclusion of explicit water molecules may offer a slight advantage in reproducing absolute binding free energies while the use of the Generalized Born approximation significantly affects the accuracy of the calculated binding affinities.
Collapse
|
43
|
Ravichandran V, Jain PK, Mourya VK, Agrawal RK. QSAR study on some arylsulfonamides as anti-HIV agents. Med Chem Res 2007. [DOI: 10.1007/s00044-007-9034-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Duan LL, Tong Y, Mei Y, Zhang QG, Zhang JZH. Quantum study of HIV-1 protease-bridge water interaction. J Chem Phys 2007; 127:145101. [DOI: 10.1063/1.2770720] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Hornak V, Simmerling C. Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discov Today 2007; 12:132-8. [PMID: 17275733 PMCID: PMC4767006 DOI: 10.1016/j.drudis.2006.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 11/24/2006] [Accepted: 12/11/2006] [Indexed: 11/21/2022]
Abstract
HIV-1 protease remains an important anti-AIDS drug target. Although it has been known that ligand binding induces large conformational changes in the protease, the dynamic aspects of binding have been largely ignored. Several computational models describing protease dynamics have been reported recently. These have reproduced experimental observations, and have also explained how ligands gain access to the binding site through dynamic behavior of the protease. Specifically, the transitions between three different conformations of the protein have been modeled in atomic detail. Two of these forms were determined by crystallography, and the third was implied by NMR experiments. Based on these computational models, it has been suggested that binding of inhibitors in allosteric sites might affect protease flexibility and disrupt its function.
Collapse
Affiliation(s)
- Viktor Hornak
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
46
|
Ghosh AK, Ramu Sridhar P, Kumaragurubaran N, Koh Y, Weber IT, Mitsuya H. Bis-tetrahydrofuran: a privileged ligand for darunavir and a new generation of hiv protease inhibitors that combat drug resistance. ChemMedChem 2006; 1:939-50. [PMID: 16927344 DOI: 10.1002/cmdc.200600103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Laure HJ, Faça VM, Izumi C, Padovan JC, Greene LJ. Low molecular weight squash trypsin inhibitors from Sechium edule seeds. PHYTOCHEMISTRY 2006; 67:362-70. [PMID: 16406091 DOI: 10.1016/j.phytochem.2005.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 09/10/2005] [Indexed: 05/06/2023]
Abstract
Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.
Collapse
Affiliation(s)
- Hélen J Laure
- Departamento de Bioquímica, Area de Biologia Molecular, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
48
|
Jiang J, Aiken C. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages. Virology 2005; 346:460-8. [PMID: 16375941 DOI: 10.1016/j.virol.2005.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/11/2005] [Accepted: 11/08/2005] [Indexed: 12/15/2022]
Abstract
HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4+ T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo.
Collapse
Affiliation(s)
- Jiyang Jiang
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
49
|
Hu K, Clément JF, Abrahamyan L, Strebel K, Bouvier M, Kleiman L, Mouland AJ. A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virol Methods 2005; 128:93-103. [PMID: 15951029 PMCID: PMC7112859 DOI: 10.1016/j.jviromet.2005.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 12/03/2022]
Abstract
A sensitive reporter assay to measure human immunodeficiency virus type 1 (HIV-1) protease (PR) activity is described in this manuscript. This assay measures PR activity as a function of the resonance energy transfer (RET) between a donor molecule [humanized sea pansy Renilla reniformis luciferase (hRLuc)] and an energy acceptor molecule, humanized green fluorescent protein (hGFP2) when expressed in mammalian cells. This is a naturally occurring phenomenon and is an emerging and powerful technology that has significant advantages over alternative in vitro PR assays. The HIV-1 Gag-p2/Gag-p7 (p2/p7) PR site was inserted between hGFP2 and hRLuc. The newly created vector, hRLuc-p2/p7-hGFP2 was co-expressed with an HIV-1 codon-optimized PR+ or PR- Gag/Pol expressor. Expression of the hRLuc-p2/p7-hGFP2 alone or with the PR- Gag-Pol expressor generated a BRET2 indicating that the PR cleavage site was not cleaved, whereas the inclusion of the PR+ Gag-Pol produced a significant reduction in the BRET2. The inclusion of PR inhibitors Saquinavir or Amprenavir, or the expression of a p2/p7 PR substrate mutant also blocked the cleavage to result in a stable BRET2 signal. Because the HIV-1 auxiliary protein Vif has been shown to modulate the HIV-1p2/p7 cleavage, this assay was then validated in studies in which Vif was expressed. When Vif was overexpressed along with hRLuc-p2/p7-hGFP2 and PR+ Gag-Pol, the decrease in BRET2 was abrogated in a dose-dependent manner, demonstrating that supraphysiologic levels of Vif block p2/p7 cleavage. An accumulation of a Gag processing intermediate was observed, indicating that p2/p7 cleavage was negatively affected. Overexpression of an RNA-binding-defective Staufen protein or a related dsRNA-binding protein TRBP had no effect on PR cleavage activity as shown by Western and BRET2 analyses. The p2/p7 processing data were confirmed by Western blot analyses. BRET is non-invasive and occurs within live cells, is measured in real time, and is not restricted to cellular compartments making it an especially attractive technology to identify small bioactive inhibitory molecules. This PR BRET2 biosensor assay can be adapted for high throughput screening of new HIV-1 PR inhibitors. It can be employed to screen for antiviral compounds that also target the proteases of other viruses.
Collapse
Affiliation(s)
- Kimberly Hu
- HIV-1 RNA Trafficking Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, 3999 Côte-Ste-Catherine Road, Montréal, Qué., Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
50
|
Bouzide A, Sauvé G, Yelle J. Lysine derivatives as potent HIV protease inhibitors. Discovery, synthesis and structure-activity relationship studies. Bioorg Med Chem Lett 2005; 15:1509-13. [PMID: 15713418 DOI: 10.1016/j.bmcl.2004.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
A screening assay program on HIV-protease was carried out on more than fifty commercially available N-protected amino acids and has revealed that those with a long side chain such as lysine, ornithine and arginine exhibited significant inhibition of HIV protease enzyme. The presence of an Fmoc group was found to be essential to obtain micromolar inhibitors and the addition of an alkyl group at the Nalpha-position resulted in the discovery of the lead compound 11 displaying a 5 nM inhibition constant. Although this new inhibitor series is not categorized among those mimicking the substrate with a non-hydrolyzable transition-state isoster, it was found very specific to inhibit HIV protease enzyme in comparison to the mammalian aspartyl proteases pepsin, renin and cathepsin. Furthermore, these inhibitors did not show any cytotoxicity at a concentration below 75 microM.
Collapse
|