1
|
Zhang YH, Xue CM, Chen BT, Ouyang P, Ling C. Comparing three emerging industrial cell factories: Pseudomonas putida KT2440, Halomonas bluephagenesis TD01, and Zymomonas mobilis ZM4. Curr Opin Biotechnol 2025; 92:103255. [PMID: 39837196 DOI: 10.1016/j.copbio.2024.103255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025]
Abstract
Nonmodel microbes with unique advantages are emerging as industrial platforms, driven by advances in genetic engineering and omics technologies. Notable examples include the versatile soil bacterium Pseudomonas putida KT2440, the halophilic Halomonas bluephagenesis TD01, and the ethanologenic Zymomonas mobilis ZM4. While all three primarily use the Entner-Doudoroff pathway for glucose metabolism, they differ in various metabolic pathways and product synthesis. This review summarizes and compares their central carbon metabolism, advancements in genome engineering tools, and progress in scaling industrial applications from lab scale, to pilot scale, to full-scale commercial production. Understanding their similarities and differences informs future research on optimizing industrial applications and may guide the development of new microbial hosts.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Ming Xue
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Bai-Tao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pengfei Ouyang
- PhaBuilder Biotech Co. Ltd., Zhaoquan Ying,, Shunyi District, Beijing 101309, China.
| | - Chen Ling
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
2
|
Ha K, Ryu S, Trinh CT. Alpha-ketoacid decarboxylases: Diversity, structures, reaction mechanisms, and applications for biomanufacturing of platform chemicals and fuels. Biotechnol Adv 2025; 81:108531. [PMID: 39955038 DOI: 10.1016/j.biotechadv.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In living cells, alpha-ketoacid decarboxylases (KDCs, EC 4.1.1.-) are a class of enzymes that convert alpha-ketoacids into aldehydes through decarboxylation. These aldehydes serve as either drop-in chemicals or precursors for the biosynthesis of alcohols, carboxylic acids, esters, and alkanes. These compounds play crucial roles in cellular metabolism and fitness and the bioeconomy, facilitating the sustainable and renewable biomanufacturing of platform chemicals and fuels. This review explores the diversity and classification of KDCs, detailing their structures, mechanisms, and functions. We highlight recent advancements in repurposing KDCs to enhance their efficiency and robustness for biomanufacturing. Additionally, we present modular KDC-dependent metabolic pathways for the microbial biosynthesis of aldehydes, alcohols, carboxylic acids, esters, and alkanes. Finally, we discuss recent developments in the modular cell engineering technology that can potentially be applied to harness the diversity of KDC-dependent pathways for biomanufacturing platform chemicals and fuels.
Collapse
Affiliation(s)
- Khanh Ha
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
3
|
Park J, Park S, Evelina G, Kim S, Jin YS, Chi WJ, Kim IJ, Kim SR. Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass. Molecules 2024; 29:5695. [PMID: 39683854 DOI: 10.3390/molecules29235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including Komagataella phaffii, are unable to utilize xylose effectively. To address this limitation, we engineered a K. phaffii strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the XYL1, XYL2, and XYL3 genes, resulting in a strain with a strong promoter for XYL2 and weaker promoters for XYL1 and XYL3. This engineered strain exhibited superior growth, achieving 14 g cells/L and a maximal growth rate of 0.4 g cells/L-h in kenaf hydrolysate, outperforming a native strain by 17%. This study is the first to report the introduction of the xylose oxidoreductase pathway into K. phaffii, demonstrating its potential as an industrial platform for producing yeast protein and other products from cellulosic biomass.
Collapse
Affiliation(s)
- Jongbeom Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Grace Evelina
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghee Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Jung Kim
- Department of Food Science & Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52825, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Wei Y, Li J, Wang C, Yang J, Shen W. Development of a starch-fermenting Zymomonas mobilis strain for bioethanol production. Microb Cell Fact 2024; 23:301. [PMID: 39523337 PMCID: PMC11552318 DOI: 10.1186/s12934-024-02539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Biorefinery using microorganisms to produce biofuels and value-added biochemicals derived from renewable biomass offers a promising alternative to meet our sustainable energy and environmental goals. The ethanologenic strain Zymomonas mobilis is considered as an excellent chassis for constructing microbial cell factories for diverse biochemicals due to its outstanding industrial characteristics in ethanol production, high specific productivity, and Generally Recognized as Safe (GRAS) status. Nonetheless, the restricted substrate range constrains its application. RESULTS The truncated ice nucleation protein InaK from Pseudomonas syringae was used as an autotransporter passenger, and α-amylase was fused to the C- terminal of InaK to equip the ethanol-producing bacterium with the capability to ferment renewable biomass. Western blot and flow cytometry analysis confirmed that the amylase was situated on the outer membrane. Whole-cell activity assays demonstrated that the amylase maintained its activity on the cell surface. The recombinant Z. mobilis facilitated the hydrolysis of starch into oligosaccharides and enabled the streamlining of simultaneous saccharification and fermentation (SSF) processes. In a 5% starch medium under SSF, recombinant strains containing Peno reached a maximum titer of 13.61 ± 0.12 g/L within 48 h. This represents an increase of 111.0% compared to the control strain's titer of titer of 6.45 ± 0.25 g/L. CONCLUSIONS By fusing the truncated ice nucleation protein InaK with α-amylase, we achieved efficient expression and surface display of the enzyme on Z. mobilis. This fusion protein exhibited remarkable enzymatic activity. Its presence enabled a cost-effective bioproduction process using starch as the sole carbon source, and it significantly reduced the required cycle time for SSF. This study not only provides an excellent Z. mobilis chassis for sustainable bioproduction from starch but also highlights the potential of Z. mobilis to function as an effective cellular factory for producing high-value products from renewable biomass.
Collapse
Affiliation(s)
- Yingchi Wei
- Institute of Synthetic Biology, School of Life and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Changhui Wang
- Institute of Synthetic Biology, School of Life and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jiangke Yang
- Institute of Synthetic Biology, School of Life and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Wei Shen
- Institute of Synthetic Biology, School of Life and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
5
|
Qiao J, Fang Y, Li Z, Li J, Cai J, Liu W, Wang H, Zhu X, Zhang X. Experimental evolution reveals an effective avenue for d-lactic acid production from glucose-xylose mixtures via enhanced Glk activity and a cAMP-independent CRP mutation. Biotechnol Bioeng 2024; 121:3514-3526. [PMID: 39082641 DOI: 10.1002/bit.28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 10/17/2024]
Abstract
d-Lactic acid holds significant industrial importance due to its versatility and serves as a crucial component in the synthesis of environmentally friendly and biodegradable thermal-resistant poly-lactic acid. This polymer exhibits promising potential as a substitute for nonbiodegradable, petroleum-based plastics. The production of d-lactic acid from lignocellulosic biomass, a type of biorenewable and nonfood resources, can lower costs and improve product competitiveness. Glucose and xylose are the most abundant sugar monomers in lignocellulosic biomass materials. Despite Escherichia coli possessing native xylose catabolic pathways and transport, their ability to effectively utilize xylose is often hindered in the presence of glucose. Here, the E. coli strain Rec1.0, previously engineered to overcome carbon catabolite repression, was selected as the initial strain for reengineering to produce d-lactic acid. An adaptive evolution approach was employed to achieve highly efficient fermentation of glucose-xylose mixtures. The resulting strain, QJL010, could produce d-lactic acid of 87.5 g/L with a carbon yield of 0.99 mol/mol. Notably, the consumption rates of glucose and xylose reached 0.75 and 0.82 g/gDCW/h, respectively. Further analysis revealed that increased Glk activity, resulting from glk mutations (A142V and R188H), along with their upregulated expression, contributed to an elevated glucose consumption rate. Additionally, a CRP G141D mutation, cAMP-independent, stimulated the expression of the xylR, xylE, and galABC* genes, resulting in an accelerated xylose consumption rate. These findings provide valuable support for the utilization of E. coli platform strains in the production of value-added chemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Jiale Qiao
- College of Chemistry and Life Sciences, Changchun University of Technology, Changchun, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Fang
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhishuai Li
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhui Li
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weidong Liu
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Honglei Wang
- College of Chemistry and Life Sciences, Changchun University of Technology, Changchun, China
| | - Xinna Zhu
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Laboratory of Microbial Metabolic Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
6
|
Shi J, Guo X, Liu C, Wang Y, Chen X, Wu G, Ding J, Zhang T. Molecular insight into the potential functional role of pseudoenzyme GFOD1 via interaction with NKIRAS2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1256-1266. [PMID: 38946427 PMCID: PMC11612644 DOI: 10.3724/abbs.2024105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 07/02/2024] Open
Abstract
The glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family includes a variety of oxidoreductases with a wide range of substrates that utilize NAD or NADP as redox cofactor. Human contains two members of this family, namely glucose-fructose oxidoreductase domain-containing protein 1 and 2 (GFOD1 and GFOD2). While GFOD1 exhibits low tissue specificity, it is notably expressed in the brain, potentially linked to psychiatric disorders and severe diseases. Nevertheless, the specific function, cofactor preference, and enzymatic activity of GFOD1 remain largely unknown. In this work, we find that GFOD1 does not bind to either NAD or NADP. Crystal structure analysis unveils that GFOD1 exists as a typical homodimer resembling other family members, but lacks essential residues required for cofactor binding, suggesting that it may function as a pseudoenzyme. Exploration of GFOD1-interacting partners in proteomic database identifies NF-κB inhibitor-interacting Ras-like 2 (NKIRAS2) as one potential candidate. Co-immunoprecipitation (co-IP) analysis indicates that GFOD1 interacts with both GTP- and GDP-bound forms of NKIRAS2. The predicted structural model of the GFOD1-NKIRAS2 complex is validated in cells using point mutants and shows that GFOD1 selectively recognizes the interswitch region of NKIRAS2. These findings reveal the distinct structural properties of GFOD1 and shed light on its potential functional role in cellular processes.
Collapse
Affiliation(s)
- Jiawen Shi
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
| | - Xinyi Guo
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
| | - Chan Liu
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
| | - Yilun Wang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
| | - Xiaobao Chen
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
| | - Guihua Wu
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
| | - Jianping Ding
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Tianlong Zhang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai UniversitySixth People’s Hospital of NantongShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityNantong226011China
- China-Japan Friendship Medical Research InstituteShanghai UniversityShanghai200444China
| |
Collapse
|
7
|
Li Z, Waghmare PR, Dijkhuizen L, Meng X, Liu W. Research advances on the consolidated bioprocessing of lignocellulosic biomass. ENGINEERING MICROBIOLOGY 2024; 4:100139. [PMID: 39629327 PMCID: PMC11611046 DOI: 10.1016/j.engmic.2024.100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 12/07/2024]
Abstract
Lignocellulosic biomass is an abundant and renewable bioresource for the production of biofuels and biochemical products. The classical biorefinery process for lignocellulosic degradation and conversion comprises three stages, i.e., pretreatment, enzymatic saccharification, and fermentation. However, the complicated pretreatment process, high cost of cellulase production, and insufficient production performance of fermentation strains have restricted the industrialization of biorefinery. Consolidated bioprocessing (CBP) technology combines the process of enzyme production, enzymatic saccharification, and fermentation in a single bioreactor using a specific microorganism or a consortium of microbes and represents another approach worth exploring for the production of chemicals from lignocellulosic biomass. The present review summarizes the progress made in research of CBP technology for lignocellulosic biomass conversion. In this review, different CBP strategies in lignocellulose biorefinery are reviewed, including CBP with natural lignocellulose-degrading microorganisms as the chassis, CBP with biosynthetic microorganisms as the chassis, and CBP with microbial co-culturing systems. This review provides new perspectives and insights on the utilization of low-cost feedstock lignocellulosic biomass for production of biochemicals.
Collapse
Affiliation(s)
- Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| | - Pankajkumar R. Waghmare
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| | - Lubbert Dijkhuizen
- CarbExplore Research BV, Groningen, the Netherlands
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
8
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
9
|
Dvořák P, Burýšková B, Popelářová B, Ebert BE, Botka T, Bujdoš D, Sánchez-Pascuala A, Schöttler H, Hayen H, de Lorenzo V, Blank LM, Benešík M. Synthetically-primed adaptation of Pseudomonas putida to a non-native substrate D-xylose. Nat Commun 2024; 15:2666. [PMID: 38531855 DOI: 10.1038/s41467-024-46812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Barbora Burýšková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Cnr College Rd & Cooper Rd, St Lucia, QLD, QLD 4072, Australia
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Dalimil Bujdoš
- APC Microbiome Ireland, University College Cork, College Rd, Cork, T12 YT20, Ireland
- School of Microbiology, University College Cork, College Rd, Cork, T12 Y337, Ireland
| | - Alberto Sánchez-Pascuala
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hannah Schöttler
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
10
|
Behrendt G, Vlachonikolou M, Tietgens H, Bettenbrock K. Construction and comparison of different vehicles for heterologous gene expression in Zymomonas mobilis. Microb Biotechnol 2024; 17:e14381. [PMID: 38264843 PMCID: PMC10832546 DOI: 10.1111/1751-7915.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 01/25/2024] Open
Abstract
Zymomonas mobilis has the potential to be an optimal chassis for the production of bulk chemicals derived from pyruvate. However, a lack of available standardized and characterized genetic tools hinders both efficient engineering of Z. mobilis and progress in basic research on this organism. In this study, a series of different shuttle vectors were constructed based on the replication mechanisms of the native Z. mobilis plasmids pZMO1, pZMOB04, pZMOB05, pZMOB06, pZMO7 and p29191_2 and on the broad host range replication origin of pBBR1. These plasmids as well as genomic integration sites were characterized for efficiency of heterologous gene expression, stability without selection and compatibility. We were able to show that a wide range of expression levels could be achieved by using different plasmid replicons. The expression levels of the constructs were consistent with the relative copy numbers, as determined by quantitative PCR. In addition, most plasmids are compatible and could be combined. To avoid plasmid loss, antibiotic selection is required for all plasmids except the pZMO7-based plasmid, which is stable also without selection pressure. Stable expression of reporter genes without the need for selection was also achieved by genomic integration. All modules were adapted to the modular cloning toolbox Zymo-Parts, allowing easy reuse and combination of elements. This work provides an overview of heterologous gene expression in Z. mobilis and adds a rich set of standardized genetic elements to an efficient cloning system, laying the foundation for future engineering and research in this area.
Collapse
Affiliation(s)
- Gerrich Behrendt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Maria Vlachonikolou
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Helga Tietgens
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katja Bettenbrock
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
11
|
Li K, Xia J, Liu CG, Zhao XQ, Bai FW. Intracellular accumulation of c-di-GMP and its regulation on self-flocculation of the bacterial cells of Zymomonas mobilis. Biotechnol Bioeng 2023; 120:3234-3243. [PMID: 37526330 DOI: 10.1002/bit.28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Zymomonas mobilis is an emerging chassis for being engineered to produce bulk products due to its unique glycolysis through the Entner-Doudoroff pathway with less ATP produced for lower biomass accumulation and higher product yield. When self-flocculated, the bacterial cells are more productive, since they can self-immobilize within bioreactors for high density, and are more tolerant to stresses for higher product titers, but this morphology needs to be controlled properly to avoid internal mass transfer limitation associated with their strong self-flocculation. Herewith we explored the regulation of cyclic diguanosine monophosphate (c-di-GMP) on self-flocculation of the bacterial cells through activating cellulose biosynthesis. While ZMO1365 and ZMO0919 with GGDEF domains for diguanylate cyclase activity catalyze c-di-GMP biosynthesis, ZMO1487 with an EAL domain for phosphodiesterase activity catalyzes c-di-GMP degradation, but ZMO1055 and ZMO0401 contain the dual domains with phosphodiesterase activity predominated. Since c-di-GMP is synthesized from GTP, the intracellular accumulation of this signal molecule through deactivating phosphodiesterase activity is preferred for activating cellulose biosynthesis to flocculate the bacterial cells, because such a strategy exerts less perturbance on intracellular processes regulated by GTP. These discoveries are significant for not only engineering unicellular Z. mobilis strains with the self-flocculating morphology to boost production but also understanding mechanism underlying c-di-GMP biosynthesis and degradation in the bacterium.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Wu Y, Hu J, Du Y, Lu G, Li Y, Feng Y, Chen L, Tu Y, Xiang M, Gui Y, Shu T, Yu L. Mechanistic Insights into the Halophilic Xylosidase Xylo-1 and Its Role in Xylose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15375-15387. [PMID: 37773011 DOI: 10.1021/acs.jafc.3c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The Xylo-1 xylosidase, which belongs to the GH43 family, exhibits a high salt tolerance. The present study demonstrated that the catalytic activity of Xylo-1 increased by 195% in the presence of 5 M NaCl. Additionally, the half-life of Xylo-1 increased 25.9-fold in the presence of 1 M NaCl. Through comprehensive analysis including circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations, we elucidated that the presence of Na+ ions increased the contact frequency between the surface acidic amino acids and the surrounding water molecules. This resulted in the stabilization of the surrounding hydration layer of Xylo-1. Additionally, Na+ ions also stabilized the substrate-binding conformation and the fluctuation of water molecules within the active site, which enhanced the catalytic activity of Xylo-1 by increasing the nucleophilic attack by the water molecules. Ultimately, the optimal reaction conditions for the production of xylose by synergistic catalysis with Xylo-1 and xylanase were determined. The results demonstrated that the conversion yield of the method was high for various sources of xylan, indicating the method could have potential industrial applications. This study explored the structure-activity relationship of catalysis in Xylo-1 under high-salt conditions, provides novel insights into the mechanism of halophilic enzymes, and serves as a reference for the industrial application of Xylo-1.
Collapse
Affiliation(s)
- Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiayue Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yikai Du
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Gen Lu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yujia Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liting Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuhao Tu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Mengxiong Xiang
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yifan Gui
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Tong Shu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
13
|
Huang XY, Ao TJ, Zhang X, Li K, Zhao XQ, Champreda V, Runguphan W, Sakdaronnarong C, Liu CG, Bai FW. Developing high-dimensional machine learning models to improve generalization ability and overcome data insufficiency for mixed sugar fermentation simulation. BIORESOURCE TECHNOLOGY 2023:129375. [PMID: 37352987 DOI: 10.1016/j.biortech.2023.129375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Biorefinery can be promoted by building accurate machine learning models. This work proposed a strategy to enhance model's generalization ability and overcome insufficient data conditions for mixed sugar fermentation simulation. Multiple inputs single output models, using initial glucose, initial xylose, and time together as inputs, have higher generalization ability than single input single output models with time as sole input in predicting glucose, xylose, ethanol, or biomass separately. Multiple inputs multiple outputs models, integrating outputs, enhanced model accuracy and resulted in an average R2 at 0.99. To overcome data insufficiency conditions, consensus yeast (CY) model, through consolidating data from 4 yeasts, obtained R2 at 0.90. By adjusting the pretrained CY model, the model can save more than 50% data and get R2 at 0.95 and 0.93 for yeast and bacterial fermentation simulation. The strategy can expand the application range and save costs of data curation for ANN models.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25, Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170 Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
15
|
Huang J, Wang X, Chen X, Li H, Chen Y, Hu Z, Yang S. Adaptive Laboratory Evolution and Metabolic Engineering of Zymomonas mobilis for Bioethanol Production Using Molasses. ACS Synth Biol 2023; 12:1297-1307. [PMID: 37036829 DOI: 10.1021/acssynbio.3c00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Molasses with abundant sugars is widely used for bioethanol production. Although the ethanologenic bacterium Zymomonas mobilis can use glucose, fructose, and sucrose for ethanol production, levan production from sucrose reduces the ethanol yield of molasses fermentation. To increase ethanol production from sucrose-rich molasses, Z. mobilis was adapted in molasses, sucrose, and fructose in parallel. Adaptation in fructose is the most effective route to generate an evolved strain F74 with improved molasses utilization, which is majorly due to a G99S mutation in Glf for enhanced fructose import. Subsequent sacB deletion and sacC overexpression in F74 to divert sucrose metabolism from levan production to ethanol production further enhanced ethanol productivity 28.6% to 1.35 g/L/h. The efficient utilization of molasses by diverting sucrose metabolic flux through adaptation and genome engineering not only generated an excellent ethanol producer using molasses but also provided the strategy for developing microbial cell factories.
Collapse
Affiliation(s)
- Ju Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangyu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhousheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
16
|
Zhang K, Zhang W, Qin M, Li Y, Wang H. Characterization and Application of the Sugar Transporter Zmo0293 from Zymomonas mobilis. Int J Mol Sci 2023; 24:ijms24065888. [PMID: 36982961 PMCID: PMC10055971 DOI: 10.3390/ijms24065888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for the commercial production of desirable bioproducts. Sugar transporters are responsible for the import of substrate sugars and the conversion of ethanol and other products. Glucose-facilitated diffusion protein Glf is responsible for facilitating the diffusion of glucose uptake in Z. mobilis. However, another sugar transporter-encoded gene, ZMO0293, is poorly characterized. We employed gene deletion and heterologous expression mediated by the CRISPR/Cas method to investigate the role of ZMO0293. The results showed that deletion of the ZMO0293 gene slowed growth and reduced ethanol production and the activities of key enzymes involved in glucose metabolism in the presence of high concentrations of glucose. Moreover, ZMO0293 deletion caused different transcriptional changes in some genes of the Entner Doudoroff (ED) pathway in the ZM4-ΔZM0293 strain but not in ZM4 cells. The integrated expression of ZMO0293 restored the growth of the glucose uptake-defective strain Escherichia coli BL21(DE3)-ΔptsG. This study reveals the function of the ZMO0293 gene in Z. mobilis in response to high concentrations of glucose and provides a new biological part for synthetic biology.
Collapse
Affiliation(s)
- Kun Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Mengxing Qin
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Li
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hailei Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Cao LY, Liu CG, Yang SH, Bai FW. Regulation of biofilm formation in Zymomonas mobilis to enhance stress tolerance by heterologous expression of pfs and luxS. Front Bioeng Biotechnol 2023; 11:1130405. [PMID: 36845188 PMCID: PMC9945106 DOI: 10.3389/fbioe.2023.1130405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Zymomonas mobilis is a potential alternative of Saccharomyces cerevisiae to produce cellulosic ethanol with strengths in cofactor balance, but its lower tolerance to inhibitors in the lignocellulosic hydrolysate restricts the application. Although biofilm can improve bacteria stress tolerance, regulating biofilm formation in Z. mobilis is still a challenge. In this work, we constructed a pathway by heterologous expressing pfs and luxS from Escherichia coli in Z. mobilis to produce AI-2 (autoinducer 2), a universal quorum-sensing signal molecule, to control cell morphology for enhancing stress tolerance. Unexpectedly, the results suggested that neither endogenous AI-2 nor exogenous AI-2 promoted biofilm formation, while heterologous expression of pfs can significantly raise biofilm. Therefore, we proposed that the main factor in assisting biofilm formation was the product accumulated due to heterologous expression of pfs, like methylated DNA. Consequently, ZM4::pfs produced more biofilm, which presented an enhanced tolerance to acetic acid. All these findings provide a novel strategy to improve the stress tolerance of Z. mobilis by enhancing biofilm formation for efficient production of lignocellulosic ethanol and other value-added chemical products.
Collapse
Affiliation(s)
- Lian-Ying Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Chen-Guang Liu,
| | - Shi-Hui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biorefinery to produce value-added biochemicals offers a promising alternative to meet our sustainable energy and environmental goals. Acetoin is widely used in the food and cosmetic industries as taste and fragrance enhancer. The generally regarded as safe (GRAS) bacterium Zymomonas mobilis produces acetoin as an extracellular product under aerobic conditions. In this study, metabolic engineering strategies were applied including redistributing the carbon flux to acetoin and manipulating the NADH levels. To improve the acetoin level, a heterologous acetoin pathway was first introduced into Z. mobilis, which contained genes encoding acetolactate synthase (Als) and acetolactate decarboxylase (AldC) driven by a strong native promoter Pgap. Then a gene encoding water-forming NADH oxidase (NoxE) was introduced for NADH cofactor balance. The recombinant Z. mobilis strain containing both an artificial acetoin operon and the noxE greatly enhanced acetoin production with maximum titer reaching 8.8 g/L and the productivity of 0.34 g∙L−1∙h−1. In addition, the strategies to delete ndh gene for redox balance by native I-F CRISPR-Cas system and to redirect carbon from ethanol production to acetoin biosynthesis through a dcas12a-based CRISPRi system targeting pdc gene laid a foundation to help construct an acetoin producer in the future. This study thus provides an informative strategy and method to harness the NADH levels for biorefinery and synthetic biology studies in Z. mobilis.
Collapse
|
19
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
21
|
Liu L, Li JT, Li SH, Liu LP, Wu B, Wang YW, Yang SH, Chen CH, Tan FR, He MX. The potential use of Zymomonas mobilis for the food industry. Crit Rev Food Sci Nutr 2022; 64:4134-4154. [PMID: 36345974 DOI: 10.1080/10408398.2022.2139221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zymomonas mobilis is a gram-negative facultative anaerobic spore, which is generally recognized as a safe. As a promising ethanologenic organism for large-scale bio-ethanol production, Z. mobilis has also shown a good application prospect in food processing and food additive synthesis for its unique physiological characteristics and excellent industrial characteristics. It not only has obvious advantages in food processing and becomes the biorefinery chassis cell for food additives, but also has a certain healthcare effect on human health. Until to now, most of the research is still in theory and laboratory scale, and further research is also needed to achieve industrial production. This review summarized the physiological characteristics and advantages of Z. mobilis in food industry for the first time and further expounds its research status in food industry from three aspects of food additive synthesis, fermentation applications, and prebiotic efficacy, it will provide a theoretical basis for its development and applications in food industry. This review also discussed the shortcomings of its practical applications in the current food industry, and explored other ways to broaden the applications of Z. mobilis in the food industry, to promote its applications in food processing.
Collapse
Affiliation(s)
- Lu Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
- College of Food and Bioengineering, Chengdu University, Chengdu, P.R. China
| | - Jian-Ting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Sheng-Hao Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Lin-Pei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Yan-Wei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Shi-Hui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei, P.R. China
| | - Cheng-Han Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Fu-Rong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Ming-Xiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
- College of Food and Bioengineering, Chengdu University, Chengdu, P.R. China
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, P.R. China
- Chengdu National Agricultural Science and Technology Center, Chengdu, P.R. China
| |
Collapse
|
22
|
Guo Y, Liu G, Ning Y, Li X, Hu S, Zhao J, Qu Y. Production of cellulosic ethanol and value-added products from corn fiber. BIORESOUR BIOPROCESS 2022; 9:81. [PMID: 38647596 PMCID: PMC10991675 DOI: 10.1186/s40643-022-00573-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Corn fiber, a by-product from the corn processing industry, mainly composed of residual starch, cellulose, and hemicelluloses, is a promising raw material for producing cellulosic ethanol and value-added products due to its abundant reserves and low costs of collection and transportation. Now, several technologies for the production of cellulosic ethanol from corn fiber have been reported, such as the D3MAX process, Cellerate™ process, etc., and part of the technologies have also been used in industrial production in the United States. The ethanol yields range from 64 to 91% of the theoretical maximum, depending on different production processes. Because of the multicomponent of corn fiber and the complex structures highly substituted by a variety of side chains in hemicelluloses of corn fiber, however, there are many challenges in cellulosic ethanol production from corn fiber, such as the low conversion of hemicelluloses to fermentable sugars in enzymatic hydrolysis, high production of inhibitors during pretreatment, etc. Some technologies, including an effective pretreatment process for minimizing inhibitors production and maximizing fermentable sugars recovery, production of enzyme preparations with suitable protein compositions, and the engineering of microorganisms capable of fermenting hexose and pentose in hydrolysates and inhibitors tolerance, etc., need to be further developed. The process integration of cellulosic ethanol and value-added products also needs to be developed to improve the economic benefits of the whole process. This review summarizes the status and progresses of cellulosic ethanol production and potential value-added products from corn fiber and presents some challenges in this field at present.
Collapse
Affiliation(s)
- Yingjie Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Yanchun Ning
- Research Institute of Jilin Petrochemical Company, PetroChina, No. 27, Zunyidong Road, Jilin City, 132021, Jilin, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Shiyang Hu
- Research Institute of Jilin Petrochemical Company, PetroChina, No. 27, Zunyidong Road, Jilin City, 132021, Jilin, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| |
Collapse
|
23
|
Yi X, Wu J, Jiang H, Zhao Y, Mei J. Kinase expression enhances phenolic aldehydes conversion and ethanol fermentability of Zymomonas mobilis. Bioprocess Biosyst Eng 2022; 45:1319-1329. [PMID: 35786774 DOI: 10.1007/s00449-022-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
Kinases modulate the various physiological activities of microbial fermenting strains including the conversion of lignocellulose-derived phenolic aldehydes (4-hydroxyaldehyde, vanillin, and syringaldehyde). Here, we comprehensively investigated the gene transcriptional profiling of the kinases under the stress of phenolic aldehydes for ethanologenic Zymomonas mobilis using DNA microarray. Among 47 kinase genes, three genes of ZMO0003 (adenylylsulfate kinase), ZMO1162 (histidine kinase), and ZMO1391 (diacylglycerol kinase), were differentially expressed against 4-hydroxybenzaldehyde and vanillin, in which the overexpression of ZMO1162 promoted the phenolic aldehydes conversion and ethanol fermentability. The perturbance originated from plasmid-based expression of ZMO1162 gene contributed to a unique expression profiling of genome-encoding genes under all three phenolic aldehydes stress. Differentially expressed ribosome genes were predicted as one of the main contributors to phenolic aldehydes conversion and thus finally enhanced ethanol fermentability for Z. mobilis ZM4. The results provided an insight into the kinases on regulation of phenolic aldehydes conversion and ethanol fermentability for Z. mobilis ZM4, as well as the target object for rational design of robust biorefinery strains.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China.
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
| | - Jianfang Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - He Jiang
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - Yan Zhao
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - Jun Mei
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| |
Collapse
|
24
|
Improved Hydrogen Peroxide Stress Resistance of Zymomonas mobilis NADH Dehydrogenase (ndh) and Alcohol Dehydrogenase (adhB) Mutants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unintended shifts in stress resistance of microbial strains with engineered central metabolism may impact their growth and production performance under oxidative, lignocellulosic, solvent, and other stress conditions, and as such, must be taken into account in bioprocess design. In the present work, we studied oxidative stress resistance in mutant strains of the facultatively anaerobic, ethanologenic bacterium Zymomonas mobilis with modified respiratory (inactivated NADH dehydrogenase Ndh, by disruption of ndh) and ethanologenic (inactivated iron-containing alcohol dehydrogenase isoenzyme ADH II, by disruption of adhB) catabolism, using exogenously added H2O2 in the concentration range of 2–6 mM as the oxidative stressor. Both mutations improved H2O2 resistance and enhanced catalase activity by a factor of 2–5, while the overexpression of Ndh had an opposite effect. Strains with a catalase-negative background were unable to grow already at 1 mM hydrogen peroxide, and their H2O2 resistance did not depend on AdhB or Ndh expression levels. Hence, the improved resistance of the ndh and adhB mutants to H2O2 resulted from their elevated catalase activity. The interrelation between these mutations, the catabolic redox balance, catalase activity, and oxidative stress defense in Z. mobilis is discussed.
Collapse
|
25
|
Deciphering Molecular Mechanism Underlying Self-Flocculation of Zymomonas mobilis for Robust Production. Appl Environ Microbiol 2022; 88:e0239821. [PMID: 35465724 DOI: 10.1128/aem.02398-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis metabolizes sugar anaerobically through the Entner-Doudoroff pathway with less ATP generated for lower biomass accumulation to direct more sugar for product formation with improved yield, making it a suitable host to be engineered as microbial cell factories for producing bulk commodities with major costs from feedstock consumption. Self-flocculation of the bacterial cells presents many advantages, such as enhanced tolerance to environmental stresses, a prerequisite for achieving high product titers by using concentrated substrates. ZM401, a self-flocculating mutant developed from ZM4, the unicellular model strain of Z. mobilis, was employed in this work to explore the molecular mechanism underlying this self-flocculating phenotype. Comparative studies between ZM401 and ZM4 indicate that a frameshift caused by a single nucleotide deletion in the poly-T tract of ZMO1082 fused the putative gene with the open reading frame of ZMO1083, encoding the catalytic subunit BcsA of the bacterial cellulose synthase to catalyze cellulose biosynthesis. Furthermore, the single nucleotide polymorphism mutation in the open reading frame of ZMO1055, encoding a bifunctional GGDEF-EAL protein with apparent diguanylate cyclase/phosphodiesterase activities, resulted in the Ala526Val substitution, which consequently compromised in vivo specific phosphodiesterase activity for the degradation of cyclic diguanylic acid, leading to intracellular accumulation of the signaling molecule to activate cellulose biosynthesis. These discoveries are significant for engineering other unicellular strains from Z. mobilis with the self-flocculating phenotype for robust production. IMPORTANCE Stress tolerance is a prerequisite for microbial cell factories to be robust in production, particularly for biorefinery of lignocellulosic biomass to produce biofuels, bioenergy, and bio-based chemicals for sustainable socioeconomic development, since various inhibitors are released during the pretreatment to destroy the recalcitrant lignin-carbohydrate complex for sugar production through enzymatic hydrolysis of the cellulose component, and their detoxification is too costly for producing bulk commodities. Although tolerance to individual stress has been intensively studied, the progress seems less significant since microbial cells are inevitably suffering from multiple stresses simultaneously under production conditions. When self-flocculating, microbial cells are more tolerant to multiple stresses through the general stress response due to enhanced quorum sensing associated with the morphological change for physiological and metabolic advantages. Therefore, elucidation of the molecular mechanism underlying such a self-flocculating phenotype is significant for engineering microbial cells with the unique multicellular morphology through rational design to boost their production performance.
Collapse
|
26
|
Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill. ENERGIES 2022. [DOI: 10.3390/en15093007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lignin pellets were produced using a single pellet system as well as a laboratory-scale pellet mill. The feedstock used in this work was lignin isolated from poplar wood (Populus tremuloides) using a direct saccharification process. An investigation was performed on the influence of the initial moisture content on the dimensions, impact and water resistance, fines content, mechanical durability, calorific value, and ash content, and, finally, the ultimate analysis was performed. These properties were then compared to pellets made from softwood bark using the same pelletization unit. Lignin pellets were then manufactured using four different types of additives (corn oil, citric acid, glycerol, and d-xylose) and ultimately, they were stored in two different conditions prior being tested. In general, manufacturing pellets that were entirely made of lignin generated samples with an overall higher hydrophobicity and higher calorific value. However, the ash and sulfur content of the lignin pellets (1.58% and 0.32% in scenario 2, respectively) were slightly higher than the expected CANplus certification values for Grade A pellets of ≤0.7%, and ≤0.04%, respectively. This study intends to show that lignin could be used to produce this new kind of pellets, pending that the initial material has a low ash and moisture content.
Collapse
|
27
|
Yan X, Wang X, Yang Y, Wang Z, Zhang H, Li Y, He Q, Li M, Yang S. Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production. BIORESOURCE TECHNOLOGY 2022; 349:126878. [PMID: 35189331 DOI: 10.1016/j.biortech.2022.126878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Inhibitors in lignocellulosic hydrolysates are toxic to Zymomonas mobilis and reduce its bioethanol production. This study revealed cysteine supplementation enhanced furfural tolerance in Z. mobilis with a 2-fold biomass increase. Transcriptomic study illustrated that cysteine biosynthesis pathway was down-regulated while cysteine catabolism was up-regulated with cysteine supplementation. Mutants for genes involved in cysteine metabolism were constructed, and metabolites in cysteine metabolic pathway including methionine, glutathione, NaHS, glutamate, and pyruvate were supplemented into media. Cysteine supplementation boosted glutathione synthesis or H2S release effectively in Z. mobilis leading to the reduced accumulation of reactive oxygen species (ROS) induced by furfural, while pyruvate and glutamate produced in the H2S generation pathway promoted cell growth by serving as the carbon or nitrogen source. Finally, cysteine supplementation was confirmed to enhance Z. mobilis tolerance against ethanol, acetate, and corncob hydrolysate with an enhanced ethanol productivity from 0.38 to 0.55 g-1∙L-1∙h-1.
Collapse
Affiliation(s)
- Xiongying Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haoyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
28
|
Sharma J, Kumar V, Prasad R, Gaur NA. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnol Adv 2022; 56:107925. [DOI: 10.1016/j.biotechadv.2022.107925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
|
29
|
Shi LL, Zheng Y, Tan BW, Li ZJ. Establishment of a carbon-efficient xylulose cleavage pathway in Escherichia coli to metabolize xylose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN. Bioengineered microbial platforms for biomass-derived biofuel production - A review. CHEMOSPHERE 2022; 288:132528. [PMID: 34637864 DOI: 10.1016/j.chemosphere.2021.132528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Global warming issues, rapid fossil fuel diminution, and increasing worldwide energy demands have diverted accelerated attention in finding alternate sources of biofuels and energy to combat the energy crisis. Bioconversion of lignocellulosic biomass has emerged as a prodigious way to produce various renewable biofuels such as biodiesel, bioethanol, biogas, and biohydrogen. Ideal microbial hosts for biofuel synthesis should be capable of using high substrate quantity, tolerance to inhibiting substances and end-products, fast sugar transportation, and amplified metabolic fluxes to yielding enhanced fermentative bioproduct. Genetic manipulation and microbes' metabolic engineering are fascinating strategies for the economical production of next-generation biofuel from lignocellulosic feedstocks. Metabolic engineering is a rapidly developing approach to construct robust biofuel-producing microbial hosts and an important component for future bioeconomy. This approach has been widely adopted in the last decade for redirecting and revamping the biosynthetic pathways to obtain a high titer of target products. Biotechnologists and metabolic scientists have produced a wide variety of new products with industrial relevance through metabolic pathway engineering or optimizing native metabolic pathways. This review focuses on exploiting metabolically engineered microbes as promising cell factories for the enhanced production of advanced biofuels.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
31
|
Kinetic data analysis and mathematical modeling of intra (wild type vs. engineered) and inter species (Saccharomyces cerevisiae vs. Zymomonas mobilis) dependency for bioethanol production from glucose, xylose or their combination. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. BIORESOURCE TECHNOLOGY 2022; 344:126212. [PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Somayeh Dehhaghi
- Department of Agricultural Extension and Education, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
33
|
Martien JI, Trujillo EA, Jacobson TB, Tatli M, Hebert AS, Stevenson DM, Coon JJ, Amador-Noguez D. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis. mSystems 2021; 6:e0098721. [PMID: 34783580 PMCID: PMC8594446 DOI: 10.1128/msystems.00987-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Edna A. Trujillo
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Braga A, Gomes D, Rainha J, Amorim C, Cardoso BB, Gudiña EJ, Silvério SC, Rodrigues JL, Rodrigues LR. Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds. BIORESOUR BIOPROCESS 2021; 8:128. [PMID: 38650193 PMCID: PMC10992037 DOI: 10.1186/s40643-021-00483-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Zymomonas mobilis is a well-recognized ethanologenic bacterium with outstanding characteristics which make it a promising platform for the biotechnological production of relevant building blocks and fine chemicals compounds. In the last years, research has been focused on the physiological, genetic, and metabolic engineering strategies aiming at expanding Z. mobilis ability to metabolize lignocellulosic substrates toward biofuel production. With the expansion of the Z. mobilis molecular and computational modeling toolbox, the potential of this bacterium as a cell factory has been thoroughly explored. The number of genomic, transcriptomic, proteomic, and fluxomic data that is becoming available for this bacterium has increased. For this reason, in the forthcoming years, systems biology is expected to continue driving the improvement of Z. mobilis for current and emergent biotechnological applications. While the existing molecular toolbox allowed the creation of stable Z. mobilis strains with improved traits for pinpointed biotechnological applications, the development of new and more flexible tools is crucial to boost the engineering capabilities of this bacterium. Novel genetic toolkits based on the CRISPR-Cas9 system and recombineering have been recently used for the metabolic engineering of Z. mobilis. However, they are mostly at the proof-of-concept stage and need to be further improved.
Collapse
Affiliation(s)
- Adelaide Braga
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Daniela Gomes
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - João Rainha
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cláudia Amorim
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Beatriz B Cardoso
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo J Gudiña
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara C Silvério
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana L Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lígia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
35
|
Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters. Metab Eng 2021; 69:262-274. [PMID: 34883244 DOI: 10.1016/j.ymben.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/02/2023]
Abstract
Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.
Collapse
|
36
|
Lou J, Wang J, Yang Y, Yang Q, LI R, Hu M, He Q, Du J, Wang X, Li M, Yang S. Development and characterization of efficient xylose utilization strains of Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:231. [PMID: 34863266 PMCID: PMC8645129 DOI: 10.1186/s13068-021-02082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Efficient use of glucose and xylose is a key for the economic production of lignocellulosic biofuels and biochemicals, and different recombinant strains have been constructed for xylose utilization including those using Zymomonas mobilis as the host. However, the xylose utilization efficiency still needs to be improved. In this work, the strategy of combining metabolic engineering and adaptive laboratory evolution (ALE) was employed to develop recombinant Z. mobilis strains that can utilize xylose efficiently at high concentrations, and NGS-based genome resequencing and RNA-Seq transcriptomics were performed for strains evolved after serial transfers in different media to understand the impact of xylose and differences among strains with different xylose-utilization capabilities at molecular level. RESULTS Heterologous genes encoding xylose isomerase and xylulokinase were evaluated, which were then introduced into xylose-utilizing strain Z. mobilis 8b to enhance its capacity of xylose utilization. The results demonstrated that the effect of three xylose isomerases on xylose utilization was different, and the increase of copy number of xylose metabolism genes can improve xylose utilization. Among various recombinant strains constructed, the xylose utilization capacity of the recombinant strain 8b-RsXI-xylB was the best, which was further improved through continuous adaption with 38 transfers over 100 days in 50 g/L xylose media. The fermentation performances of the parental strain 8b, the evolved 8b-S38 strain with the best xylose utilization capability, and the intermediate strain 8b-S8 in different media were compared, and the results showed that only 8b-S38 could completely consume xylose at 50 g/L and 100 g/L concentrations. In addition, the xylose consumption rate of 8b-S38 was faster than that of 8b at different xylose concentrations from 50 to 150 g/L, and the ethanol yield increased by 16 ~ 40%, respectively. The results of the mixed-sugar fermentation also demonstrated that 8b-S38 had a higher xylose consumption rate than 8b, and its maximum ethanol productivity was 1.2 ~ 1.4 times higher than that of 8b and 8b-S8. Whole-genome resequencing identified three common genetic changes in 8b-S38 compared with 8b and 8b-S8. RNA-Seq study demonstrated that the expression levels of genes encoding chaperone proteins, ATP-dependent proteases, phage shock proteins, ribosomal proteins, flagellar operons, and transcriptional regulators were significantly increased in xylose media in 8b-S38. The up-regulated expression of these genes may therefore contribute to the efficient xylose utilization of 8b-S38 by maintaining the normal cell metabolism and growth, repairing cellular damages, and rebalancing cellular energy to help cells resist the stressful environment. CONCLUSIONS This study provides gene candidates to improve xylose utilization, and the result of expressing an extra copy of xylose isomerase and xylulokinase improved xylose utilization also provides a direction for efficient xylose-utilization strain development in other microorganisms. In addition, this study demonstrated the necessity to combine metabolic engineering and ALE for industrial strain development. The recombinant strain 8b-S38 can efficiently metabolize xylose for ethanol fermentation at high xylose concentrations as well as in mixed sugars of glucose and xylose, which could be further developed as the microbial biocatalyst for the production of lignocellulosic biofuels and biochemicals.
Collapse
Affiliation(s)
- Jiyun Lou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jingwen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Runxia LI
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Mimi Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing, 100833 China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
37
|
Sun L, Wu B, Zhang Z, Yan J, Liu P, Song C, Shabbir S, Zhu Q, Yang S, Peng N, He M, Tan F. Cellulosic ethanol production by consortia of Scheffersomyces stipitis and engineered Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:221. [PMID: 34823583 PMCID: PMC8613960 DOI: 10.1186/s13068-021-02069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND As one of the clean and sustainable energies, lignocellulosic ethanol has achieved much attention around the world. The production of lignocellulosic ethanol does not compete with people for food, while the consumption of ethanol could contribute to the carbon dioxide emission reduction. However, the simultaneous transformation of glucose and xylose to ethanol is one of the key technologies for attaining cost-efficient lignocellulosic ethanol production at an industrial scale. Genetic modification of strains and constructing consortia were two approaches to resolve this issue. Compared with strain improvement, the synergistic interaction of consortia in metabolic pathways should be more useful than using each one separately. RESULTS In this study, the consortia consisting of suspended Scheffersomyces stipitis CICC1960 and Zymomonas mobilis 8b were cultivated to successfully depress carbon catabolite repression (CCR) in artificially simulated 80G40XRM. With this strategy, a 5.52% more xylose consumption and a 6.52% higher ethanol titer were achieved by the consortium, in which the inoculation ratio between S. stipitis and Z. mobilis was 1:3, compared with the Z. mobilis 8b mono-fermentation. Subsequently, one copy of the xylose metabolic genes was inserted into the Z. mobilis 8b genome to construct Z. mobilis FR2, leading to the xylose final-consumption amount and ethanol titer improvement by 15.36% and 6.81%, respectively. Finally, various corn stover hydrolysates with different sugar concentrations (glucose and xylose 60, 90, 120 g/L), were used to evaluate the fermentation performance of the consortium consisting of S. stipitis CICC1960 and Z. mobilis FR2. Fermentation results showed that a 1.56-4.59% higher ethanol titer was achieved by the consortium compared with the Z. mobilis FR2 mono-fermentation, and a 46.12-102.14% higher ethanol titer was observed in the consortium fermentation when compared with the S. stipitis CICC1960 mono-fermentation. Furthermore, qRT-PCR analysis of xylose/glucose transporter and other genes responsible for CCR explained the reason why the initial ratio inoculation of 1:3 in artificially simulated 80G40XRM had the best fermentation performance in the consortium. CONCLUSIONS The fermentation strategy used in this study, i.e., using a genetically modified consortium, had a superior performance in ethanol production, as compared with the S. stipitis CICC1960 mono-fermentation and the Z. mobilis FR2 mono-fermentation alone. This result showed that this strategy has potential for future lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Lingling Sun
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Zengqin Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jing Yan
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Panting Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chao Song
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Samina Shabbir
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qili Zhu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610221 China
| | - Furong Tan
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041 China
| |
Collapse
|
38
|
Enhancing Secretion of Endoglucanase in Zymomonas mobilis by Disturbing Peptidoglycan Synthesis. Appl Environ Microbiol 2021; 88:e0216121. [PMID: 34818110 DOI: 10.1128/aem.02161-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis (Z. mobilis) is a potential candidate for consolidated bioprocessing (CBP) strain in lignocellulosic biorefinery. However, the low-level secretion of cellulases limits this CBP process, and the mechanism of protein secretion affected by cell wall peptidoglycan is also not well understood. Here we constructed several Penicillin Binding Proteins (PBPs)-deficient strains derivated from Z. mobilis S192 to perturb the cell wall peptidoglycan network and investigated the effects of peptidoglycan on the endoglucanase secretion. Results showed that extracellular recombinant endoglucanase production was significantly enhanced in PBPs mutant strains, notably, △1089/0959 (4.09-fold) and △0959 (5.76-fold) in comparison to parent strains. Besides, for PBPs-deficient strains, the growth performance was not significantly inhibited but with enhanced antibiotic sensitivity and reduced inhibitor tolerance, otherwise, cell morphology was altered obviously. The concentration of intracellular soluble peptidoglycan was increased, especially for single gene deletion. Outer membrane permeability of PBPs-deficient strains was also improved, notably, △1089/0959 (1.14-fold) and △0959 (1.07-fold), which might explain the increased endoglucanase extracellular secretion. Our finding indicated that PBPs-deficient Z. mobilis is capable of increasing endoglucanase extracellular secretion via cell wall peptidoglycan disturbance and it will provide a foundation for the development of CBP technology in Z. mobilis in the future. IMPORTANCE Cell wall peptidoglycan has the function to maintain cell robustness, and also acts as the barrier to secret recombinant proteins from the cytoplasm to extracellular space in Z. mobilis and other bacterias. Herein, we perturb the peptidoglycan synthesis network via knocking out PBPs (ZMO0197, ZMO0959, ZMO1089) in order to enhance recombinant endoglycanase extracellular secretion in Z. mobilis S912. This study can not only lay the foundation for understanding the regulatory network of cell wall synthesis but also provide guidance for the construction of CBP strains in Z. mobilis.
Collapse
|
39
|
Kaewchana A, Techaparin A, Boonchot N, Thanonkeo P, Klanrit P. Improved high-temperature ethanol production from sweet sorghum juice using Zymomonas mobilis overexpressing groESL genes. Appl Microbiol Biotechnol 2021; 105:9419-9431. [PMID: 34787692 DOI: 10.1007/s00253-021-11686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/11/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Zymomonas mobilis may encounter various types of stress during ethanol fermentation, which reduces ethanol production efficiency. This situation may be mitigated by molecular chaperones, including the chaperonin GroESL, which confers enhanced protection against various stresses. In this study, we successfully developed a Z. mobilis strain R301 that harbors groESL genes and can be used for high-temperature ethanol production from sweet sorghum juice. Sequence analyses of GroES and GroEL from Z. mobilis TISTR548 demonstrated conserved residues at specific positions within GroES and conserved glycine-glycine-methionine (GGM) repeats at the C-terminus of GroEL. The Z. mobilis wild-type and R301 strains were then evaluated for their tolerance to stresses, including high temperatures, high sugar concentrations, and high ethanol concentrations up to 40°C, 300 g/L, and 13% (v/v), respectively. Z. mobilis R301 exhibited better growth performance than the wild-type strain under all stress conditions. This is the first report on ethanol production at 40°C by recombinant Z. mobilis using sweet sorghum juice; this strain produced an ethanol concentration of 41.66 g/L, with a productivity of 0.87 g/L/h and a theoretical ethanol yield of 88.9%. Overexpression of groESL resulted in increased ethanol production, with values approximately 11% higher than those of the wild type at 40°C. Additionally, at 37°C, Z. mobilis R301 gave a higher theoretical ethanol yield (92.6%) than that shown in previous research. This work illustrates the potential for future enhancement of industrial-scale ethanol production at high temperatures utilizing Z. mobilis R301 in the bioconversion of sweet sorghum juice, a promising energy crop. KEY POINTS: • The groESL-overexpressing Z. mobilis strain was successfully constructed. • The recombinant Z. mobilis exhibited higher stress tolerance than the wild-type strain. • Overexpression of groESL genes improved ethanol production efficiency at high temperatures.
Collapse
Affiliation(s)
- Anchittha Kaewchana
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atiya Techaparin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nongluck Boonchot
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.,Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
40
|
Sui X, Wang X, Liu T, Ye Q, Wu B, Hu G, Yang S, He M, Peng N. Endogenous CRISPR-assisted microhomology-mediated end joining enables rapid genome editing in Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:208. [PMID: 34689795 PMCID: PMC8543907 DOI: 10.1186/s13068-021-02056-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Zymomonas mobilis is a natural ethanologen with many desirable characteristics, making it an ideal platform for future biorefineries. Recently, an endogenous CRISPR-based genome editing tool has been developed for this species. However, a simple and high-efficient genome editing method is still required. RESULTS We developed a novel gene deletion tool based on the endogenous subtype I-F CRISPR-Cas system and the microhomology-mediated end joining (MMEJ) pathway. This tool only requires a self-interference plasmid carrying the mini-CRISPR (Repeat-Spacer-Repeat) expression cassette, where the spacer matches the target DNA. Transformation of the self-interference plasmid leads to target DNA damage and subsequently triggers the endogenous MMEJ pathway to repair the damaged DNA, leaving deletions normally smaller than 500 bp. Importantly, the MMEJ repair efficiency was increased by introducing mutations at the second repeat of the mini-CRISPR cassette expressing the guide RNA. Several genes have been successfully deleted via this method, and the phenotype of a σ28 deletion mutant generated in this study was characterized. Moreover, large fragment deletions were obtained by transformation of the self-interference plasmids expressing two guide RNAs in tandem. CONCLUSIONS Here, we report the establishment of an efficient gene deletion tool based on the endogenous subtype I-F CRISPR-Cas system and the MMEJ pathway in Zymomonas mobilis. We achieved single gene deletion and large-fragment knockout using this tool. In addition, we further promoted the editing efficiency by modifying the guide RNA expression cassette and selecting lower GC% target sites. Our study has provided an effective method for genetic manipulation in Z. mobilis.
Collapse
Affiliation(s)
- Xin Sui
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaojie Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, Sichuan, People's Republic of China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
41
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
42
|
Godoy P, García-Franco A, Recio MI, Ramos JL, Duque E. Synthesis of aromatic amino acids from 2G lignocellulosic substrates. Microb Biotechnol 2021; 14:1931-1943. [PMID: 34403199 PMCID: PMC8449653 DOI: 10.1111/1751-7915.13844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida is a highly solvent‐resistant microorganism and useful chassis for the production of value‐added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two‐step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan‐genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6‐phosphogluconate and subsequently metabolizes it through the Entner–Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked‐out to avoid the production of the dead‐end product xylonate. We generated a set of DOT‐T1E‐derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT‐T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l−1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.
Collapse
Affiliation(s)
- Patricia Godoy
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Ana García-Franco
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - María-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain.,BioEnterprise Master Program, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan-Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
43
|
Wu C, Spiller R, Dowe N, Bomble YJ, St John PC. Thermodynamic and Kinetic Modeling of Co-utilization of Glucose and Xylose for 2,3-BDO Production by Zymomonas mobilis. Front Bioeng Biotechnol 2021; 9:707749. [PMID: 34381766 PMCID: PMC8350737 DOI: 10.3389/fbioe.2021.707749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
Prior engineering of the ethanologen Zymomonas mobilis has enabled it to metabolize xylose and to produce 2,3-butanediol (2,3-BDO) as a dominant fermentation product. When co-fermenting with xylose, glucose is preferentially utilized, even though xylose metabolism generates ATP more efficiently during 2,3-BDO production on a BDO-mol basis. To gain a deeper understanding of Z. mobilis metabolism, we first estimated the kinetic parameters of the glucose facilitator protein of Z. mobilis by fitting a kinetic uptake model, which shows that the maximum transport capacity of glucose is seven times higher than that of xylose, and glucose is six times more affinitive to the transporter than xylose. With these estimated kinetic parameters, we further compared the thermodynamic driving force and enzyme protein cost of glucose and xylose metabolism. It is found that, although 20% more ATP can be yielded stoichiometrically during xylose utilization, glucose metabolism is thermodynamically more favorable with 6% greater cumulative Gibbs free energy change, more economical with 37% less enzyme cost required at the initial stage and sustains the advantage of the thermodynamic driving force and protein cost through the fermentation process until glucose is exhausted. Glucose-6-phosphate dehydrogenase (g6pdh), glyceraldehyde-3-phosphate dehydrogenase (gapdh) and phosphoglycerate mutase (pgm) are identified as thermodynamic bottlenecks in glucose utilization pathway, as well as two more enzymes of xylose isomerase and ribulose-5-phosphate epimerase in xylose metabolism. Acetolactate synthase is found as potential engineering target for optimized protein cost supporting unit metabolic flux. Pathway analysis was then extended to the core stoichiometric matrix of Z. mobilis metabolism. Growth was simulated by dynamic flux balance analysis and the model was validated showing good agreement with experimental data. Dynamic FBA simulations suggest that a high agitation is preferable to increase 2,3-BDO productivity while a moderate agitation will benefit the 2,3-BDO titer. Taken together, this work provides thermodynamic and kinetic insights of Z. mobilis metabolism on dual substrates, and guidance of bioengineering efforts to increase hydrocarbon fuel production.
Collapse
Affiliation(s)
- Chao Wu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Ryan Spiller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Nancy Dowe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Peter C St John
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
44
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
45
|
Yan Z, Zhang J, Bao J. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution. BIORESOURCE TECHNOLOGY 2021; 329:124926. [PMID: 33684841 DOI: 10.1016/j.biortech.2021.124926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Cellulosic ethanol fermentability of ethanologenic strain Zymomonas mobilis is severely inhibited by phenolic aldehydes generated from lignocellulose pretreatment. Here, a 198 days' laboratory adaptive evolution of Z. mobilis 8b in corn stover hydrolysate was conducted to increase its phenolic aldehydes tolerance and ethanol fermentability. The obtained Z. mobilis Z198 demonstrated a significantly improved conversion of the most toxic phenolic aldehyde (vanillin) by 6.3-fold and cellulosic ethanol production by 21.6%. The transcriptional analysis using qRT-PCR revealed that the gene ZMO3_RS07160 encoding SDR family oxidoreductase in Z. mobilis Z198 was significantly up-regulated by 11.7-fold. The overexpression of ZMO3_RS07160 in the parental Z. mobilis increased the ethanol fermentability to that of the adaptively evolved strain Z. mobilis Z198. This study provided a practical method to obtain a robust cellulosic ethanol fermenting strain, and a candidate gene for synthetic biology of biorefinery strains with strong phenolic aldehydes tolerance.
Collapse
Affiliation(s)
- Zhao Yan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
46
|
Felczak MM, Bowers RM, Woyke T, TerAvest MA. Zymomonas diversity and potential for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:112. [PMID: 33933155 PMCID: PMC8088579 DOI: 10.1186/s13068-021-01958-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Zymomonas mobilis is an aerotolerant α-proteobacterium, which has been genetically engineered for industrial purposes for decades. However, a comprehensive comparison of existing strains on the genomic level in conjunction with phenotype analysis has yet to be carried out. We here performed whole-genome comparison of 17 strains including nine that were sequenced in this study. We then compared 15 available Zymomonas strains for their natural abilities to perform under conditions relevant to biofuel synthesis. We tested their growth in anaerobic rich media, as well as growth, ethanol production and xylose utilization in lignocellulosic hydrolysate. We additionally compared their tolerance to isobutanol, flocculation characteristics, and ability to uptake foreign DNA by electroporation and conjugation. RESULTS Using clustering based on 99% average nucleotide identity (ANI), we classified 12 strains into four clusters based on sequence similarity, while five strains did not cluster with any other strain. Strains belonging to the same 99% ANI cluster showed similar performance while significant variation was observed between the clusters. Overall, conjugation and electroporation efficiencies were poor across all strains, which was consistent with our finding of coding potential for several DNA defense mechanisms, such as CRISPR and restriction-modification systems, across all genomes. We found that strain ATCC31821 (ZM4) had a more diverse plasmid profile than other strains, possibly leading to the unique phenotypes observed for this strain. ZM4 also showed the highest growth of any strain in both laboratory media and lignocellulosic hydrolysate and was among the top 3 strains for isobutanol tolerance and electroporation and conjugation efficiency. CONCLUSIONS Our findings suggest that strain ZM4 has a unique combination of genetic and phenotypic traits that are beneficial for biofuel production and propose investing future efforts in further engineering of ZM4 for industrial purposes rather than exploring new Zymomonas isolates.
Collapse
Affiliation(s)
- Magdalena M Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert M Bowers
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michaela A TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
47
|
Kerbs A, Mindt M, Schwardmann L, Wendisch VF. Sustainable Production of N-methylphenylalanine by Reductive Methylamination of Phenylpyruvate Using Engineered Corynebacterium glutamicum. Microorganisms 2021; 9:microorganisms9040824. [PMID: 33924554 PMCID: PMC8070496 DOI: 10.3390/microorganisms9040824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
N-alkylated amino acids occur widely in nature and can also be found in bioactive secondary metabolites such as the glycopeptide antibiotic vancomycin and the immunosuppressant cyclosporine A. To meet the demand for N-alkylated amino acids, they are currently produced chemically; however, these approaches often lack enantiopurity, show low product yields and require toxic reagents. Fermentative routes to N-alkylated amino acids like N-methyl-l-alanine or N-methylantranilate, a precursor of acridone alkaloids, have been established using engineered Corynebacterium glutamicum, which has been used for the industrial production of amino acids for decades. Here, we describe metabolic engineering of C. glutamicum for de novo production of N-methylphenylalanine based on reductive methylamination of phenylpyruvate. Pseudomonas putida Δ-1-piperideine-2-carboxylate reductase DpkA containing the amino acid exchanges P262A and M141L showed comparable catalytic efficiencies with phenylpyruvate and pyruvate, whereas the wild-type enzyme preferred the latter substrate over the former. Deletion of the anthranilate synthase genes trpEG and of the genes encoding branched-chain amino acid aminotransferase IlvE and phenylalanine aminotransferase AroT in a strain engineered to overproduce anthranilate abolished biosynthesis of l-tryptophan and l-phenylalanine to accumulate phenylpyruvate. Upon heterologous expression of DpkAP262A,M141L, N-methylphenylalanine production resulted upon addition of monomethylamine to the medium. In glucose-based minimal medium, an N-methylphenylalanine titer of 0.73 ± 0.05 g L−1, a volumetric productivity of 0.01 g L−1 h−1 and a yield of 0.052 g g−1 glucose were reached. When xylose isomerase gene xylA from Xanthomonas campestris and the endogenous xylulokinase gene xylB were expressed in addition, xylose as sole carbon source supported production of N-methylphenylalanine to a titer of 0.6 ± 0.04 g L−1 with a volumetric productivity of 0.008 g L−1 h−1 and a yield of 0.05 g g−1 xylose. Thus, a fermentative route to sustainable production of N-methylphenylalanine by recombinant C. glutamicum has been established.
Collapse
Affiliation(s)
- Anastasia Kerbs
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
| | - Melanie Mindt
- BU Bioscience, Wagenigen University and Research, 6700AA Wageningen, The Netherlands;
| | - Lynn Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
48
|
Yi X, Mei J, Lin L, Wang W. Overexpression of Dioxygenase Encoding Gene Accelerates the Phenolic Aldehyde Conversion and Ethanol Fermentability of Zymomonas mobilis. Appl Biochem Biotechnol 2021; 193:3017-3027. [PMID: 33826067 DOI: 10.1007/s12010-021-03551-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
NADH-dependent reductase enzyme catalyzes the phenolic aldehyde conversion and correspondingly improves the ethanol fermentability of the ethanologenic Zymomonas mobilis. This study constructed the transcriptional landscape of mono/dioxygenase genes in Z. mobilis ZM4 under the stress of the toxic phenolic aldehyde inhibitors of 4-hydroxybenzaldehyde, syringaldehyde, and vanillin. One specific dioxygenase encoding gene ZMO1721 was differentially expressed by 3.07-folds under the stress of 4-hydroxybenzaldehyde among the eleven mono/dioxygenase genes. The purified ZMO1721 shared 99.9% confidence and 48.0% identity with the oxidoreductase in Rhodoferax ferrireducens T118 was assayed and the NADH-dependent reduction activity was confirmed for phenolic aldehyde vanillin conversion. The ZMO1721 gene was then overexpressed in Z. mobilis ZM4 and the 4-hydroxybenzaldehyde conversion rate was accelerated. The cell growth, glucose consumption, and ethanol productivity of Z. mobilis ZM4 were also improved by ZMO1721 overexpression. The genes identified on improving phenolic aldehyde tolerance and ethanol fermentability in this study could be used as the synthetic biology tools for modification of ethanologenic strains.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China.
| | - Jun Mei
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - Ling Lin
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
49
|
Sarkar P, Goswami G, Mukherjee M, Das D. Heterologous expression of xylose specific transporter improves xylose utilization by recombinant Zymomonas mobilis strain in presence of glucose. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|