1
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes: A Rainbow of Photoreceptors. Annu Rev Microbiol 2024; 78:61-81. [PMID: 38848579 PMCID: PMC11578781 DOI: 10.1146/annurev-micro-041522-094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
2
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Hoshino H, Miyake K, Fushimi K, Narikawa R. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Protein Sci 2024; 33:e5132. [PMID: 39072823 DOI: 10.1002/pro.5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.
Collapse
Affiliation(s)
- Hiroki Hoshino
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Keita Miyake
- Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Keiji Fushimi
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Nagae T, Fujita Y, Tsuchida T, Kamo T, Seto R, Hamada M, Aoyama H, Sato-Tomita A, Fujisawa T, Eki T, Miyanoiri Y, Ito Y, Soeta T, Ukaji Y, Unno M, Mishima M, Hirose Y. Green/red light-sensing mechanism in the chromatic acclimation photosensor. SCIENCE ADVANCES 2024; 10:eadn8386. [PMID: 38865454 PMCID: PMC11168458 DOI: 10.1126/sciadv.adn8386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15-Z,anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15-E,syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.
Collapse
Affiliation(s)
- Takayuki Nagae
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuya Fujita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Tatsuya Tsuchida
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Ryoka Seto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjomachi, Saga 840-8502, Japan
| | - Masako Hamada
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Hiroshi Aoyama
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjomachi, Saga 840-8502, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takahiro Soeta
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjomachi, Saga 840-8502, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
5
|
Zhan ML, Zhao X, Li XD, Tan ZZ, Xu QZ, Zhou M, Zhao KH. Photoreversible Aggregation of the Biliprotein Containing the First and Second GAF Domains of a Cyanobacteriochrome All2699 in Nostoc sp. PCC7120. Biochemistry 2024; 63:1225-1233. [PMID: 38682295 DOI: 10.1021/acs.biochem.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.
Collapse
Affiliation(s)
- Min-Li Zhan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xi Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiao-Dan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zi-Zhu Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qian-Zhao Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
6
|
Kaeser G, Krauß N, Roughan C, Sauthof L, Scheerer P, Lamparter T. Phytochrome-Interacting Proteins. Biomolecules 2023; 14:9. [PMID: 38275750 PMCID: PMC10813442 DOI: 10.3390/biom14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Phytochromes are photoreceptors of plants, fungi, slime molds bacteria and heterokonts. These biliproteins sense red and far-red light and undergo light-induced changes between the two spectral forms, Pr and Pfr. Photoconversion triggered by light induces conformational changes in the bilin chromophore around the ring C-D-connecting methine bridge and is followed by conformational changes in the protein. For plant phytochromes, multiple phytochrome interacting proteins that mediate signal transduction, nuclear translocation or protein degradation have been identified. Few interacting proteins are known as bacterial or fungal phytochromes. Here, we describe how the interacting partners were identified, what is known about the different interactions and in which context of signal transduction these interactions are to be seen. The three-dimensional arrangement of these interacting partners is not known. Using an artificial intelligence system-based modeling software, a few predicted and modulated examples of interactions of bacterial phytochromes with their interaction partners are interpreted.
Collapse
Affiliation(s)
- Gero Kaeser
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Clare Roughan
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Luisa Sauthof
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; (L.S.); (P.S.)
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; (L.S.); (P.S.)
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| |
Collapse
|
7
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
8
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
9
|
Priyadarshini N, Steube N, Wiens D, Narikawa R, Wilde A, Hochberg GKA, Enomoto G. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00387-4. [PMID: 36781703 DOI: 10.1007/s43630-023-00387-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.
Collapse
Affiliation(s)
- Nibedita Priyadarshini
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albertstr. 19, 79104, Freiburg, Germany
| | - Niklas Steube
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Dennis Wiens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany. .,Faculty of Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Gen Enomoto
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany. .,Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
10
|
Gabriel E, Krauß N, Lamparter T. Evidence for evolutionary relationship between archaeplastidal and cyanobacterial phytochromes based on their chromophore pockets. Photochem Photobiol Sci 2022; 21:1961-1974. [PMID: 35906526 DOI: 10.1007/s43630-022-00271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. In plants, phytochromes play a central role in growth and differentiation during the entire life cycle. Phytochromes of plants and other groups of archaeplastida have a common evolutionary origin in prokaryotes, but the exact prokaryotic origin is as yet uncertain. Two possibilities are presently discussed: either, archaeplastidal phytochromes arose from the last eukaryotic common ancestor (LECA) or they arose from the cyanobacterial endosymbiont that gave rise to plastids. We first constructed standard phylogenetic trees based on N-terminal protein sequences of the chromophore module. As usual, variation of algorithms and parameters led to different trees. A relationship between cyanobacteria and archaeplastida was observed in 7 out of 36 trees. The lack of consistency between results obtained from variation of parameters of tree constructions reflects the uncertainty of archaeplastidal origin. To gain more information about a possible cyanobacterial and archaeplastidal relationship, we performed phylogenetic studies based on the amino acids that line the chromophore pockets. These amino acids are highly conserved and could provide more accurate information about long evolutionary time scales, but the reduction of traits could also lead to insignificant results. From 30 selected chromophore-binding amino acids, 6 were invariant. The subsequent studies were thus based on the information dependent on 24 or fewer amino acid positions. Again, multiple trees were constructed to get information about the robustness of relationships. The very low number of information-containing traits resulted in low bootstrap values and many indistinguishable leaves. However, the major groups fungi, bacteria, cyanobacteria, and plants remained united. Without exception, cyanobacteria and archaeplastida were always closely linked. In this respect, the results were more robust than those of the classic approach, based on long contiguous sequences. We therefore consider cyanobacteria as the most likely origin of archaeplastidal phytochromes.
Collapse
Affiliation(s)
- Eva Gabriel
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
11
|
Otsu T, Eki T, Hirose Y. A hybrid type of chromatic acclimation regulated by the dual green/red photosensory systems in cyanobacteria. PLANT PHYSIOLOGY 2022; 190:779-793. [PMID: 35751608 PMCID: PMC9434153 DOI: 10.1093/plphys/kiac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are phototrophic bacteria that perform oxygenic photosynthesis. They use a supermolecular light-harvesting antenna complex, the phycobilisome (PBS), to capture and transfer light energy to photosynthetic reaction centers. Certain cyanobacteria alter the absorption maxima and/or overall structure of their PBSs in response to the ambient light wavelength-a process called chromatic acclimation (CA). One of the most well-known CA types is the response to green and red light, which is controlled by either the RcaEFC or CcaSR photosensory system. Here, we characterized a hybrid type of CA in the cyanobacterium Pleurocapsa sp. Pasteur Culture Collection (PCC) 7319 that uses both RcaEFC and CcaSR systems. In vivo spectroscopy suggested that strain PCC 7319 alters the relative composition of green-absorbing phycoerythrin and red-absorbing phycocyanin in the PBS. RNA sequencing and promoter motif analyses suggested that the RcaEFC system induces a gene operon for phycocyanin under red light, whereas the CcaSR system induces a rod-membrane linker gene under green light. Induction of the phycoerythrin genes under green light may be regulated through a yet unidentified photosensory system called the Cgi system. Spectroscopy analyses of the isolated PBSs suggested that hemidiscoidal and rod-shaped PBSs enriched with phycoerythrin were produced under green light, whereas only hemidiscoidal PBSs enriched with phycocyanin were produced under red light. PCC 7319 uses the RcaEFC and CcaSR systems to regulate absorption of green or red light (CA3) and the amount of rod-shaped PBSs (CA1), respectively. Cyanobacteria can thus flexibly combine diverse CA types to acclimate to different light environments.
Collapse
Affiliation(s)
- Takuto Otsu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
12
|
Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. Microbiol Mol Biol Rev 2022; 86:e0010621. [PMID: 35727025 PMCID: PMC9491170 DOI: 10.1128/mmbr.00106-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that exhibit characteristic acclimation and developmental responses to dynamic changes in the external light environment. Photomorphogenesis is the tuning of cellular physiology, development, morphology, and metabolism in response to external light cues. The tuning of photosynthetic pigmentation, carbon fixation capacity, and cellular and filament morphologies to changes in the prevalent wavelengths and abundance of light have been investigated to understand the regulation and fitness implications of different aspects of cyanobacterial photomorphogenesis. Chromatic acclimation (CA) is the most common form of photomorphogenesis that has been explored in cyanobacteria. Multiple types of CA in cyanobacteria have been reported, and insights gained into the regulatory pathways and networks controlling some of these CA types. I examine the recent expansion of CA types that occur in nature and provide an overview of known regulatory factors involved in distinct aspects of cyanobacterial photomorphogenesis. Additionally, I explore lessons for cultivating success in scientific communities that can be drawn from a reflection on existing knowledge of and approaches to studying CA.
Collapse
|
13
|
Mondal S, Singh SP. Flow Cytometry-based Measurement of Reactive Oxygen Species in Cyanobacteria. Bio Protoc 2022; 12:e4417. [PMID: 35813020 PMCID: PMC9183968 DOI: 10.21769/bioprotoc.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria are Gram-negative oxygen-producing photosynthetic bacteria that are useful in the pharmaceutical and biofuel industries. Monitoring of oxidative stress under fluctuating environmental conditions is important for determining the fitness, survival, and growth of cyanobacteria in the laboratory as well as in large scale cultivation systems. Here, we provide a protocol developed using unicellular Synechococcus elongatus PCC 7942 and filamentous Fremyella diplosiphon BK14 cyanobacteria for high-throughput oxidative stress measurement by 2',7'-dichlorodihydrofluorescein-diacetate (DCFH-DA) and flow cytometry (FCM). We also provide details for the optimization of cell number, dye concentration, and FCM parameters for each organism before it can be utilized to quantify reactive oxygen species (ROS). FCM-based method can be used to measure ROS in a large population of cyanobacterial cells in a high-throughput manner. Graphical abstract.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | - Shailendra P. Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India,
*For correspondence:
| |
Collapse
|
14
|
Homologs of Phycobilisome Abundance Regulator PsoR Are Widespread across Cyanobacteria. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During chromatic acclimation (CA), cyanobacteria undergo shifts in their physiology and metabolism in response to changes in their light environment. Various forms of CA, which involves the tuning of light-harvesting accessory complexes known as phycobilisomes (PBS) in response to distinct wavelengths of light, have been recognized. Recently, a negative regulator of PBS abundance, PsoR, about which little was known, was identified. We used sequence analyses and bioinformatics to predict the role of PsoR in cyanobacteria and PBS regulation and to examine its presence in a diverse range of cyanobacteria. PsoR has sequence similarities to the β-CASP family of proteins involved in DNA and RNA processing. PsoR is a putative nuclease widespread across Cyanobacteria, of which over 700 homologs have been observed. Promoter analysis suggested that psoR is co-transcribed with upstream gene tcpA. Multiple transcription factors involved in global gene regulation and stress responses were predicted to bind to the psoR-tcpA promoter. The predicted protein–protein interactions with PsoR homologs included proteins involved in DNA and RNA metabolism, as well as a phycocyanin-associated protein predicted to interact with PsoR from Fremyella diplosiphon (FdPsoR). The widespread presence of PsoR homologs in Cyanobacteria and their ties to DNA- and RNA-metabolizing proteins indicated a potentially unique role for PsoR in CA and PBS abundance regulation.
Collapse
|
15
|
Identification of significant residues for intermediate accumulation in phycocyanobilin synthesis. Photochem Photobiol Sci 2022; 21:437-446. [PMID: 35394642 DOI: 10.1007/s43630-022-00198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Phycocyanobilin, the primary pigment of both light perception and light-harvesting in cyanobacteria, is synthesized from biliverdin IXα (BV) through intermediate 181, 182-dihydrobiliverdin (181, 182-DHBV) by a phycocyanobilin:ferredoxin oxidoreductase (PcyA). In our previous study, we discovered two PcyA homologs (AmPcyAc and AmPcyAp) derived from Acaryochloris marina MBIC 11017 (A. marina) that exceptionally uses chlorophyll d as the primary photosynthetic pigment, absorbing longer wavelength far-red light than chlorophyll a, the photosynthetic pigment found in most cyanobacteria. Biochemical characterization of the two PcyA homologs identified functional diversification of these two enzymes: AmPcyAc provides 181, 182-DHBV, and PCB to the cyanobacteriochrome (CBCR) photoreceptors, whereas, AmPcyAp specifically provides PCB to the light-harvesting phycobilisome subunit. In this study, we focused on the residues necessary for 181, 182-DHBV supply to the CBCR photoreceptors by AmPcyAc. Based on the SyPcyA structure, we concentrated on the 30 residues that constitute the substrate-binding pocket. Among them, we discovered that Leu151 and Val225 in AmPcyAc were both substituted with isoleucine. During the enzymatic reaction, the SyPcyA variant molecule, possessing V225I and L151I replacements, accumulates the 181, 182-DHBV and supplies it to a CBCR molecule derived from A. marina. It is worth noting that the substitution of Val225 with isoleucine was specifically conserved among the Acaryochloris genus. Collectively, we propose that the specific evolution of PcyA among the Acaryochloris genus may correlate with the acquisition of Chl. d synthetic ability and growth in long-wavelength far-red light environments.
Collapse
|
16
|
Murakami T, Takeuchi N, Mori H, Hirose Y, Edwards A, Irvine-Fynn T, Li Z, Ishii S, Segawa T. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. MICROBIOME 2022; 10:50. [PMID: 35317857 PMCID: PMC8941735 DOI: 10.1186/s40168-022-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cryoconite granules are mineral-microbial aggregates found on glacier surfaces worldwide and are hotspots of biogeochemical reactions in glacier ecosystems. However, despite their importance within glacier ecosystems, the geographical diversity of taxonomic assemblages and metabolic potential of cryoconite communities around the globe remain unclear. In particular, the genomic content of cryoconite communities on Asia's high mountain glaciers, which represent a substantial portion of Earth's ice masses, has rarely been reported. Therefore, in this study, to elucidate the taxonomic and ecological diversities of cryoconite bacterial consortia on a global scale, we conducted shotgun metagenomic sequencing of cryoconite acquired from a range of geographical areas comprising Polar (Arctic and Antarctic) and Asian alpine regions. RESULTS Our metagenomic data indicate that compositions of both bacterial taxa and functional genes are particularly distinctive for Asian cryoconite. Read abundance of the genes responsible for denitrification was significantly more abundant in Asian cryoconite than the Polar cryoconite, implying that denitrification is more enhanced in Asian glaciers. The taxonomic composition of Cyanobacteria, the key primary producers in cryoconite communities, also differs between the Polar and Asian samples. Analyses on the metagenome-assembled genomes and fluorescence emission spectra reveal that Asian cryoconite is dominated by multiple cyanobacterial lineages possessing phycoerythrin, a green light-harvesting component for photosynthesis. In contrast, Polar cryoconite is dominated by a single cyanobacterial species Phormidesmis priestleyi that does not possess phycoerythrin. These findings suggest that the assemblage of cryoconite bacterial communities respond to regional- or glacier-specific physicochemical conditions, such as the availability of nutrients (e.g., nitrate and dissolved organic carbon) and light (i.e., incident shortwave radiation). CONCLUSIONS Our genome-resolved metagenomics provides the first characterization of the taxonomic and metabolic diversities of cryoconite from contrasting geographical areas, highlighted by the distinct light-harvesting approaches of Cyanobacteria and nitrogen utilization between Polar and Asian cryoconite, and implies the existence of environmental controls on the assemblage of cryoconite communities. These findings deepen our understanding of the biodiversity and biogeochemical cycles of glacier ecosystems, which are susceptible to ongoing climate change and glacier decline, on a global scale. Video abstract.
Collapse
Affiliation(s)
- Takumi Murakami
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Aichi, Japan
| | - Arwyn Edwards
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, Aberystwyth, UK
| | - Tristram Irvine-Fynn
- Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, Aberystwyth, UK
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Sciences/Tien Shan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Satoshi Ishii
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN USA
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
17
|
Okuda Y, Miyoshi R, Kamo T, Fujisawa T, Nagae T, Mishima M, Eki T, Hirose Y, Unno M. Raman Spectroscopy of an Atypical C15-E,syn Bilin Chromophore in Cyanobacteriochrome RcaE. J Phys Chem B 2022; 126:813-821. [DOI: 10.1021/acs.jpcb.1c09652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuji Okuda
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
18
|
Petrescu DI, Dilbeck PL, Montgomery BL. Environmental Tuning of Homologs of the Orange Carotenoid Protein-Encoding Gene in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2022; 12:819604. [PMID: 35003049 PMCID: PMC8739951 DOI: 10.3389/fmicb.2021.819604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
The orange carotenoid protein (OCP) family of proteins are light-activated proteins that function in dissipating excess energy absorbed by accessory light-harvesting complexes, i.e., phycobilisomes (PBSs), in cyanobacteria. Some cyanobacteria contain multiple homologs of the OCP-encoding gene (ocp). Fremyella diplosiphon, a cyanobacterium studied for light-dependent regulation of PBSs during complementary chromatic acclimation (CCA), contains several OCP homologs – two full-length OCPs, three Helical Carotenoid Proteins (HCPs) with homology to the N-terminus of OCP, and one C-terminal domain-like carotenoid protein (CCP) with homology to the C-terminus of OCP. We examined whether these homologs are distinctly regulated in response to different environmental factors, which could indicate distinct functions. We observed distinct patterns of expression for some OCP, HCP, and CCP encoding genes, and have evidence that light-dependent aspects of ocp homolog expression are regulated by photoreceptor RcaE which controls CCA. RcaE-dependent transcriptional regulator RcaC is also involved in the photoregulation of some hcp genes. Apart from light, additional environmental factors associated with cellular redox regulation impact the mRNA levels of ocp homologs, including salt, cold, and disruption of electron transport. Analyses of conserved sequences in the promoters of ocp homologs were conducted to gain additional insight into regulation of these genes. Several conserved regulatory elements were found across multiple ocp homolog promoters that potentially control differential transcriptional regulation in response to a range of environmental cues. The impact of distinct environmental cues on differential accumulation of ocp homolog transcripts indicates potential functional diversification of this gene family in cyanobacteria. These genes likely enable dynamic cellular protection in response to diverse environmental stress conditions in F. diplosiphon.
Collapse
Affiliation(s)
- D Isabel Petrescu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Preston L Dilbeck
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Takahashi M, Mikami K. Blue–red chromatic acclimation in the red alga Pyropia yezoensis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Oren N, Timm S, Frank M, Mantovani O, Murik O, Hagemann M. Red/far-red light signals regulate the activity of the carbon-concentrating mechanism in cyanobacteria. SCIENCE ADVANCES 2021; 7:7/34/eabg0435. [PMID: 34407941 PMCID: PMC8373116 DOI: 10.1126/sciadv.abg0435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Desiccation-tolerant cyanobacteria can survive frequent hydration/dehydration cycles likely affecting inorganic carbon (Ci) levels. It was recently shown that red/far-red light serves as signal-preparing cells toward dehydration. Here, the effects of desiccation on Ci assimilation by Leptolyngbya ohadii isolated from Israel's Negev desert were investigated. Metabolomic investigations indicated a decline in ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity, and this was accelerated by far-red light. Far-red light negatively affected the Ci affinity of L. ohadii during desiccation and in liquid cultures. Similar effects were evident in the non-desiccation-tolerant cyanobacterium Synechocystis The Synechocystis Δcph1 mutant lacking the major phytochrome exhibited reduced photosynthetic Ci affinity when exposed to far-red light, whereas the mutant ΔsbtB lacking a Ci uptake inhibitory protein lost the far-red light inhibition. Collectively, these results suggest that red/far-red light perception likely via phytochromes regulates Ci uptake by cyanobacteria and that this mechanism contributes to desiccation tolerance in strains such as L. ohadii.
Collapse
Affiliation(s)
- Nadav Oren
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Strempelstr. 14, 18057 Rostock, Germany
- Department of Life, Light, and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Oliver Mantovani
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Omer Murik
- Medical Genetics Institute, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
- Department of Life, Light, and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
22
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
23
|
Brych A, Haas FB, Parzefall K, Panzer S, Schermuly J, Altmüller J, Engelsdorf T, Terpitz U, Rensing SA, Kiontke S, Batschauer A. Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genet Biol 2021; 152:103570. [PMID: 34004340 DOI: 10.1016/j.fgb.2021.103570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.
Collapse
Affiliation(s)
- Annika Brych
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Fabian B Haas
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Katharina Parzefall
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Jeanette Schermuly
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Timo Engelsdorf
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Stefan A Rensing
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Stephan Kiontke
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Alfred Batschauer
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany.
| |
Collapse
|
24
|
Kamo T, Eki T, Hirose Y. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling. PLANT & CELL PHYSIOLOGY 2021; 62:334-347. [PMID: 33386854 PMCID: PMC8112840 DOI: 10.1093/pcp/pcaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.
Collapse
Affiliation(s)
- Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| |
Collapse
|
25
|
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Proc Natl Acad Sci U S A 2021; 118:2024583118. [PMID: 33972439 DOI: 10.1073/pnas.2024583118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pK a, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.
Collapse
|
26
|
Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, Scheerer P, Krauß N. Phytochromes in Agrobacterium fabrum. FRONTIERS IN PLANT SCIENCE 2021; 12:642801. [PMID: 33995441 PMCID: PMC8117939 DOI: 10.3389/fpls.2021.642801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The focus of this review is on the phytochromes Agp1 and Agp2 of Agrobacterium fabrum. These are involved in regulation of conjugation, gene transfer into plants, and other effects. Since crystal structures of both phytochromes are known, the phytochrome system of A. fabrum provides a tool for following the entire signal transduction cascade starting from light induced conformational changes to protein interaction and the triggering of DNA transfer processes.
Collapse
Affiliation(s)
- Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Afaf Elkurdi
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Luisa Sauthof
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| |
Collapse
|
27
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
28
|
Altmayer S, Jähnigen S, Köhler L, Wiebeler C, Song C, Sebastiani D, Matysik J. Hydrogen Bond between a Tyrosine Residue and the C-Ring Propionate Has a Direct Influence on Conformation and Absorption of the Bilin Cofactor in Red/Green Cyanobacteriochromes. J Phys Chem B 2021; 125:1331-1342. [PMID: 33523656 DOI: 10.1021/acs.jpcb.0c08518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.
Collapse
Affiliation(s)
- Susanne Altmayer
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sascha Jähnigen
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
30
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
31
|
Nguyen AA, Joseph KL, Bussell AN, Pokhrel S, Karty JA, Kronfel CM, Kehoe DM, Schluchter WM. CpeT is the phycoerythrobilin lyase for Cys-165 on β-phycoerythrin from Fremyella diplosiphon and the chaperone-like protein CpeZ greatly improves its activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148284. [PMID: 32777305 DOI: 10.1016/j.bbabio.2020.148284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the β-subunit of PE. MS analyses of the recombinant β-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on β-PE.
Collapse
Affiliation(s)
- Adam A Nguyen
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Kes Lynn Joseph
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Adam N Bussell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Suman Pokhrel
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
32
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
33
|
Mondal S, Kumar V, Singh SP. Oxidative stress measurement in different morphological forms of wild-type and mutant cyanobacterial strains: Overcoming the limitation of fluorescence microscope-based method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110730. [PMID: 32464439 DOI: 10.1016/j.ecoenv.2020.110730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Monitoring of oxidative stress caused by a wide range of reactive oxygen species (ROS) is essential to have an idea about the fitness and growth of photosynthetic organisms. The imaging-based oxidative stress measurement in cyanobacteria using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) dye has the limitation of small sample size as the only selected number of cells are analyzed to measure the ROS levels. Here, we developed a method for oxidative stress measurement by DCFH-DA and flow cytometer (FCM) using unicellular Synechococcus elongatus PCC 7942 and filamentous Fremyella diplosiphon BK14 cyanobacteria. F. diplosiphon BK14 inherently possess high levels of ROS and showed higher sensitivity to hydrogen peroxide treatment in comparison to S. elongatus PCC 7942. We successfully measured oxidative stress in glutaredoxin lacking strain (Δgrx3) of S. elongatus PCC 7942, and wild-type Synechocystis sp. PCC 6803 using FCM based method. Importantly, ROS were not detected in these two strains of cyanobacteria by fluorescence microscope-based method due to their small spherical morphology. Δgrx3 strain showed high ROS levels in comparison to its wild-type strain. Treatment of abiotic factors such as high PAR in wild-type and Δgrx3 strains of S. elongatus PCC 7942, low PAR or low PAR + UVR in wild-type S. elongatus PCC 7942, and high PAR or high PAR + NaCl in Synechocystis sp. PCC 6803 increased oxidative stress. In summary, the FCM based method can measure ROS levels produced due to physiological conditions associated with genetic changes or abiotic stress in a large population of cells regardless of their morphology. Therefore, the present study shows the usefulness of the method in monitoring the health of organisms in a large scale cultivation system.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
34
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
35
|
Kashimoto T, Miyake K, Sato M, Maeda K, Matsumoto C, Ikeuchi M, Toyooka K, Watanabe S, Kanesaki Y, Narikawa R. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. J GEN APPL MICROBIOL 2020; 66:106-115. [PMID: 32147625 DOI: 10.2323/jgam.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cyanobacterium Acaryochloris marina MBIC 11017 (A. marina 11017) possesses chlorophyll d (Chl. d) peaking at 698 nm as photosystem reaction center pigments, instead of chlorophyll a (Chl. a) peaking at 665 nm. About 95% of the total chlorophylls is Chl. d in A. marina 11017. In addition, A. marina 11017 possesses phycobilisome (PBS) supercomplex to harvest orange light and to transfer the absorbing energy to the photosystems. In this context, A. marina 11017 utilizes both far-red and orange light as the photosynthetic energy source. In the present study, we incubated A. marina 11017 cells under monochromatic orange and far-red light conditions and performed transcriptional and morphological studies by RNA-seq analysis and electron microscopy. Cellular absorption spectra, transcriptomic profiles, and microscopic observations demonstrated that PBS was highly accumulated under an orange light condition relative to a far-red light condition. Notably, transcription of one cpcBA operon encoding the phycobiliprotein of the phycocyanin was up-regulated under the orange light condition, but another operon was constitutively expressed under both conditions, indicating functional diversification of these two operons for light harvesting. Taking the other observations into consideration, we could illustrate the photoacclimation processes of A. marina 11017 in response to orange and far-red light conditions in detail.
Collapse
Affiliation(s)
- Tomonori Kashimoto
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Keita Miyake
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science
| | - Kaisei Maeda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Department of Bioscience, Tokyo University of Agriculture
| | | | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| | | | | | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University.,NODAI Genome Research Center, Tokyo University of Agriculture
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
36
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
37
|
Rohnke BA, Rodríguez Pérez KJ, Montgomery BL. Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon. mBio 2020; 11:e01052-20. [PMID: 32457252 PMCID: PMC7251215 DOI: 10.1128/mbio.01052-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria use a carbon dioxide (CO2)-concentrating mechanism (CCM) that enhances their carbon fixation efficiency and is regulated by many environmental factors that impact photosynthesis, including carbon availability, light levels, and nutrient access. Efforts to connect the regulation of the CCM by these factors to functional effects on carbon assimilation rates have been complicated by the aqueous nature of cyanobacteria. Here, we describe the use of cyanobacteria in a semiwet state on glass fiber filtration discs-cyanobacterial discs-to establish dynamic carbon assimilation behavior using gas exchange analysis. In combination with quantitative PCR (qPCR) and transmission electron microscopy (TEM) analyses, we linked the regulation of CCM components to corresponding carbon assimilation behavior in the freshwater, filamentous cyanobacterium Fremyella diplosiphon Inorganic carbon (Ci) levels, light quantity, and light quality have all been shown to influence carbon assimilation behavior in F. diplosiphon Our results suggest a biphasic model of cyanobacterial carbon fixation. While behavior at low levels of CO2 is driven mainly by the Ci uptake ability of the cyanobacterium, at higher CO2 levels, carbon assimilation behavior is multifaceted and depends on Ci availability, carboxysome morphology, linear electron flow, and cell shape. Carbon response curves (CRCs) generated via gas exchange analysis enable rapid examination of CO2 assimilation behavior in cyanobacteria and can be used for cells grown under distinct conditions to provide insight into how CO2 assimilation correlates with the regulation of critical cellular functions, such as the environmental control of the CCM and downstream photosynthetic capacity.IMPORTANCE Environmental regulation of photosynthesis in cyanobacteria enhances organismal fitness, light capture, and associated carbon fixation under dynamic conditions. Concentration of carbon dioxide (CO2) near the carbon-fixing enzyme RubisCO occurs via the CO2-concentrating mechanism (CCM). The CCM is also tuned in response to carbon availability, light quality or levels, or nutrient access-cues that also impact photosynthesis. We adapted dynamic gas exchange methods generally used with plants to investigate environmental regulation of the CCM and carbon fixation capacity using glass fiber-filtered cells of the cyanobacterium Fremyella diplosiphon We describe a breakthrough in measuring real-time carbon uptake and associated assimilation capacity for cells grown in distinct conditions (i.e., light quality, light quantity, or carbon status). These measurements demonstrate that the CCM modulates carbon uptake and assimilation under low-Ci conditions and that light-dependent regulation of pigmentation, cell shape, and downstream stages of carbon fixation are critical for tuning carbon uptake and assimilation.
Collapse
Affiliation(s)
- Brandon A Rohnke
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Kiara J Rodríguez Pérez
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- University of Puerto Rico at Arecibo, Arecibo, Puerto Rico
| | - Beronda L Montgomery
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
38
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
39
|
Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light. Arch Microbiol 2020; 202:1317-1325. [PMID: 32140734 DOI: 10.1007/s00203-020-01835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
In this study, relationship between translucent property of yeast cell wall and occurrence of cyanobacteria inside the yeast vacuole was examined. Microscopic observations on fruit yeast Candida tropicalis showed occurrence of bacterium-like bodies inside the yeast vacuole. Appearance of vacuoles as distinct cavities indicated the perfect harvesting of light by the yeast's cell wall. Transmission electron microscopy observation showed electron-dense outer and electron-lucent inner layers in yeast cell wall. Cyanobacteria-specific 16S rRNA gene was amplified from total DNA of yeast. Cultivation of yeast in distilled water led to excision of intracellular bacteria which grew on cyanobacteria-specific medium. Examination of wet mount and Gram-stained preparations of excised bacteria showed typical bead-like trichomes. Amplification of cyanobacteria-specific genes, 16S rRNA, cnfR and dxcf, confirmed bacterial identity as Leptolyngbya boryana. These results showed that translucent cell wall of yeast has been engineered through evolution for receiving light for vital activities of cyanobacteria.
Collapse
|
40
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
41
|
Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J 2020; 287:4016-4031. [PMID: 31995844 DOI: 10.1111/febs.15230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.
Collapse
Affiliation(s)
- Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomonori Kashimoto
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Kaisei Maeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
42
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
43
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2019; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Sato T, Kikukawa T, Miyoshi R, Kajimoto K, Yonekawa C, Fujisawa T, Unno M, Eki T, Hirose Y. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome. J Biol Chem 2019; 294:18909-18922. [PMID: 31649035 DOI: 10.1074/jbc.ra119.010384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensors with diverse spectral sensitivities spanning the entire visible spectrum. They covalently bind bilin chromophores via conserved cysteine residues and undergo 15Z/15E bilin photoisomerization upon light illumination. CBCR subfamilies absorbing violet-blue light use an additional cysteine residue to form a second bilin-thiol adduct in a two-Cys photocycle. However, the process of second thiol adduct formation is incompletely understood, especially the involvement of the bilin protonation state. Here, we focused on the Oscil6304_2705 protein from the cyanobacterium Oscillatoria acuminata PCC 6304, which photoconverts between a blue-absorbing 15Z state ( 15Z Pb) and orange-absorbing 15E state ( 15E Po). pH titration analysis revealed that 15Z Pb was stable over a wide pH range, suggesting that bilin protonation is stabilized by a second thiol adduct. As revealed by resonance Raman spectroscopy, 15E Po harbored protonated bilin at both acidic and neutral pH, but readily converted to a deprotonated green-absorbing 15Z state ( 15Z Pg) at alkaline pH. Site-directed mutagenesis revealed that the conserved Asp-71 and His-102 residues are required for second thiol adduct formation in 15Z Pb and bilin protonation in 15E Po, respectively. An Oscil6304_2705 variant lacking the second cysteine residue, Cys-73, photoconverted between deprotonated 15Z Pg and protonated 15E Pr, similarly to the protochromic photocycle of the green/red CBCR subfamily. Time-resolved spectroscopy revealed 15Z Pg formation as an intermediate in the 15E Pr-to- 15Z Pg conversion with a significant solvent-isotope effect, suggesting the sequential occurrence of 15EP-to-15Z photoisomerization, deprotonation, and second thiol adduct formation. Our findings uncover the details of protochromic absorption changes underlying the two-Cys photocycle of violet-blue-absorbing CBCR subfamilies.
Collapse
Affiliation(s)
- Teppei Sato
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Takashi Kikukawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo 060-0810, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kousuke Kajimoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Chinatsu Yonekawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
45
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
46
|
Ueno Y, Nagao R, Shen JR, Akimoto S. Spectral Properties and Excitation Relaxation of Novel Fucoxanthin Chlorophyll a/ c-Binding Protein Complexes. J Phys Chem Lett 2019; 10:5148-5152. [PMID: 31424938 DOI: 10.1021/acs.jpclett.9b02093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fucoxanthin chlorophyll a/c-binding proteins (FCPs) are unique light harvesters for some photosynthetic organisms. There were several reports for the alterations of FCPs in response to light conditions. Here, we present the spectral profiles and excitation dynamics of novel FCP complexes isolated from the diatom Chaetoceros gracilis. Under a red-light condition, C. gracilis cells expressed three types of FCP complexes, two of which are very similar to FCP complexes found in the white-light grown cells, and one of which is the novel FCP complex. The combination of steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra revealed that, compared to other types of FCP complexes, the novel FCP complexes exhibited red-shifted absorption and fluorescence spectra and fast decay of excitation. This finding will provide new insights into not only the light-harvesting strategies of diatoms but also the diversity of light adaptation machinery for photosynthetic organisms.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
47
|
Fushimi K, Narikawa R. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol 2019; 57:39-46. [DOI: 10.1016/j.sbi.2019.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
48
|
Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Int J Mol Sci 2019; 20:ijms20122935. [PMID: 31208089 PMCID: PMC6628166 DOI: 10.3390/ijms20122935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023] Open
Abstract
Cyanobacteria have cyanobacteriochromes (CBCRs), which are photoreceptors that bind to a linear tetrapyrrole chromophore and sense UV-to-visible light. A recent study revealed that the dual-Cys CBCR AM1_1186g2 covalently attaches to phycocyanobilin and exhibits unique photoconversion between a Pr form (red-absorbing dark state, λmax = 641 nm) and Pb form (blue-absorbing photoproduct, λmax = 416 nm). This wavelength separation is larger than those of the other CBCRs, which is advantageous for optical tools. Nowadays, bioimaging and optogenetics technologies are powerful tools for biological research. In particular, the utilization of far-red and near-infrared light sources is required for noninvasive applications to mammals because of their high potential to penetrate into deep tissues. Biliverdin (BV) is an intrinsic chromophore and absorbs the longest wavelength among natural linear tetrapyrrole chromophores. Although the BV-binding photoreceptors are promising platforms for developing optical tools, AM1_1186g2 cannot efficiently attach BV. Herein, by rationally introducing several replacements, we developed a BV-binding AM1_1186g2 variant, KCAP_QV, that exhibited reversible photoconversion between a Pfr form (far-red-absorbing dark state, λmax = 691 nm) and Pb form (λmax = 398 nm). This wavelength separation reached 293 nm, which is the largest among the known phytochrome and CBCR photoreceptors. In conclusion, the KCAP_QV molecule developed in this study can offer an alternative platform for the development of unique optical tools.
Collapse
|
49
|
|
50
|
Hirose Y, Chihong S, Watanabe M, Yonekawa C, Murata K, Ikeuchi M, Eki T. Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. MOLECULAR PLANT 2019; 12:715-725. [PMID: 30818037 DOI: 10.1016/j.molp.2019.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacteria have evolved various photoacclimation processes to perform oxygenic photosynthesis under different light environments. Chromatic acclimation (CA) is a widely recognized and ecologically important type of photoacclimation, whereby cyanobacteria alter the absorbing light colors of a supermolecular antenna complex called the phycobilisome. To date, several CA variants that regulate the green-absorbing phycoerythrin (PE) and/or the red-absorbing phycocyanin (PC) within the hemi-discoidal form of phycobilisome have been characterized. In this study, we identified a unique CA regulatory gene cluster encoding yellow-green-absorbing phycoerythrocyanin (PEC) and a rod-membrane linker protein (CpcL) for the rod-shaped form of phycobilisome. Using the cyanobacterium Leptolyngbya sp. PCC 6406, we revealed novel CA variants regulating PEC (CA7) and the rod-shaped phycobilisome (CA0), which maximize yellow-green light-harvesting capacity and balance the excitation of photosystems, respectively. Analysis of the distribution of CA gene clusters in 445 cyanobacteria genomes revealed eight CA variants responding to green and red light, which are classified based on the presence of PEC, PE, cpcL, and CA photosensor genes. Phylogenetic analysis further suggested that the emergence of CA7 was a single event and preceded that of heterocystous strains, whereas the acquisition of CA0 occurred multiple times. Taken together, these results offer novel insights into the diversity and evolution of the complex cyanobacterial photoacclimation mechanisms.
Collapse
Affiliation(s)
- Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| | - Song Chihong
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Mai Watanabe
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Chinatsu Yonekawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihiko Eki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|