1
|
De Landtsheer S, Badkas A, Kulms D, Sauter T. Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity. Brief Bioinform 2024; 25:bbae567. [PMID: 39494610 PMCID: PMC11532660 DOI: 10.1093/bib/bbae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Collapse
Affiliation(s)
- Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Njue AW, Omolo J, Ramos RS, Santos CBR, Kimani NM. Ergostanes from the mushroom Trametes versicolor and their cancer cell inhibition: In vitro and in silico evaluation. Steroids 2024; 212:109511. [PMID: 39303896 DOI: 10.1016/j.steroids.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In this study, five steroid compounds were isolated from the fruiting bodies mushroom Trametes versicolor. The compounds, 9,19-cyclolanostane-3,29-diol (3), ergosta-7,22-dien-3-acetate (4), and ergosta-8(14),22-dien-3β,5α,6β,7α-tetrol (5), were identified from T. versicolor for the first time. The five compounds were evaluated for their activity against cancer cell lines. Compound 5α,8α-epidioxyergosta-6,22-dien-3β-ol (1) was found to be the most effective against most of the cancer cell lines tested. In silico studies showed that compound 1 has good binding affinities to different cancer targets, namely cyclin-dependent kinase 2 (cdk2), human cyclin-dependent kinase 6 (cdk6), Human Topo IIa ATPase/AMP-PNP, anti-apoptotic protein Bcl-2, and Vegfr-2. It's also druglike based on Lipinski's rule of five and it's ADME/Tox properties. Therefore, compound 1 is a good candidate in the management of cancer. These results further show that T. versicolor is a potential source of drugs or drug leads for cancer treatment.
Collapse
Affiliation(s)
- Alice W Njue
- Department of Chemistry, Egerton University, Njoro, Kenya.
| | - Josiah Omolo
- Department of Chemistry, Egerton University, Njoro, Kenya
| | - Ryan S Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil; Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Cleydson B R Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil; Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| |
Collapse
|
3
|
Tretyakova E, Smirnova A, Babkov D, Kazakova O. Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel. Molecules 2024; 29:3532. [PMID: 39124937 PMCID: PMC11313996 DOI: 10.3390/molecules29153532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Natural compounds, including diterpenoids, play a critical role in various biological processes and are recognized as valuable components in cancer treatment. Isocyanides multicomponent reactions (IsMCRs) are one of the effective methods to obtain adducts at the carboxyl group with a peptide-like substituent. In this study, dehydroabietic acid and levopimaric acid diene adducts as the starting scaffolds were modified by the multicomponent Passerini (P-3CR) and Ugi (U-4CR) reactions to afford α-acyloxycarboxamides and α-acylaminocarboxamides. A group of twenty novel diterpene hybrids was subjected to NCI in vitro assessment, and a consistent structure-activity relationship was established. Eleven of the synthesized derivatives inhibited the growth of cancer cells of 4 to 39 cell lines in one dose assay, and the most active were derivatives 3d, 9d, and 10d holding a fragment of 1a,4a-dehydroquinopimaric acid. They were selected for a five-dose analysis and demonstrated a significant antiproliferative effect towards human cancer cell lines. The outstanding cytotoxic activity was observed for the P-3CR product 3d with growth inhibitory at submicromolar and micromolar concentrations (GI50 = 0.42-3 μM) against the most sensitive cell lines. The U-4CR products 9d and 10d showed selective activity against all leukemia cell lines with GI50 in the range of 1-17 µM and selectivity indexes of 5.49 and 4.72, respectively. Matrix COMPARE analysis using the GI50 vector showed a moderate positive correlation of compound 3d with standard anticancer agents that can influence kinase receptors and epidermal growth factor receptors (EGFRs). The ADMET analysis acknowledges the favorable prognosis using compounds as potential anticancer agents. The obtained results indicate that these new hybrids could be useful for the further development of anticancer drugs, and 1a,4a-dehydroquinopimaric acid derivatives could be recommended for in-depth studies and the synthesis of new antitumor analogs on their basis.
Collapse
Affiliation(s)
- Elena Tretyakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054 Ufa, Russia; (A.S.); (O.K.)
| | - Anna Smirnova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054 Ufa, Russia; (A.S.); (O.K.)
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054 Ufa, Russia; (A.S.); (O.K.)
| |
Collapse
|
4
|
Ramírez-Prada J, Rocha-Ortiz JS, Orozco MI, Moreno P, Guevara M, Barreto M, Burbano ME, Robledo S, Crespo-Ortiz MDP, Quiroga J, Abonia R, Cuartas V, Insuasty B. New pyridine-based chalcones and pyrazolines with anticancer, antibacterial, and antiplasmodial activities. Arch Pharm (Weinheim) 2024; 357:e2400081. [PMID: 38548680 DOI: 10.1002/ardp.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/04/2024]
Abstract
New pyridine-based chalcones 4a-h and pyrazolines 5a-h (N-acetyl), 6a-h (N-phenyl), and 7a-h (N-4-chlorophenyl) were synthesized and evaluated by the National Cancer Institute (NCI) against 60 different human cancer cell lines. Pyrazolines 6a, 6c-h, and 7a-h satisfied the pre-determined threshold inhibition criteria, obtaining that compounds 6c and 6f exhibited high antiproliferative activity, reaching submicromolar GI50 values from 0.38 to 0.45 μM, respectively. Moreover, compound 7g (4-CH3) exhibited the highest cytostatic activity of these series against different cancer cell lines from leukemia, nonsmall cell lung, colon, ovarian, renal, and prostate cancer, with LC50 values ranging from 5.41 to 8.35 μM, showing better cytotoxic activity than doxorubicin. Furthermore, the compounds were tested for antibacterial and antiplasmodial activities. Chalcone 4c was the most active with minimal inhibitory concentration (MIC) = 2 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA), while the pyrazoline 6h showed a MIC = 8 μg/mL against Neisseria gonorrhoeae. For anti-Plasmodium falciparum activity, the chalcones display higher activity with EC50 values ranging from 10.26 to 10.94 μg/mL. Docking studies were conducted against relevant proteins from P. falciparum, exhibiting the minimum binding energy with plasmepsin II. In vivo toxicity assay in Galleria mellonella suggests that most compounds are low or nontoxic.
Collapse
Affiliation(s)
- Jonathan Ramírez-Prada
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Juan S Rocha-Ortiz
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Marta I Orozco
- Biotechnology and Bacterial Infections Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Pedro Moreno
- Group of Bioinformatics, Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Miguel Guevara
- Group of Bioinformatics, Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Mauricio Barreto
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Maria E Burbano
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Sara Robledo
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Biotechnology and Bacterial Infections Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
- Microbiology and Infectious Diseases Research Group, Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, Colombia
- Center for Bioinformatics and Photonics-CIBioFI, Cali, Colombia
| |
Collapse
|
5
|
Rodríguez DF, Lipez KJ, Stashenko E, Díaz I, Cobo J, Palma A. Alternative and efficient one-pot three-component synthesis of substituted 2-aryl-4-styrylquinazolines/4-styrylquinazolines from synthetically available 1-(2-aminophenyl)-3-arylprop-2-en-1-ones: characterization and evaluation of their antiproliferative activities. RSC Adv 2024; 14:20951-20965. [PMID: 38957579 PMCID: PMC11218040 DOI: 10.1039/d4ra03702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
In this study, an alternative and efficient one-pot three-component synthesis approach to develop a new series of (E)-2-aryl-4-styrylquinazolines and (E)-4-styrylquinazolines is described. According to this approach, the target compounds were synthesized straightforward in high yields and in short reaction times from substituted 1-(2-aminophenyl)-3-arylprop-2-en-1-ones via its well-Cu(OAc)2-mediated cyclocondensation reactions with aromatic aldehydes or its well-catalyst-free cyclocondensation reactions with trimethoxy methane (trimethyl orthoformate), and ammonium acetate under aerobic conditions. This is an operationally simple, valuable, and direct method to synthesize 2-aryl- and non-C2-substituted quinazolines containing a styryl framework at C4 position from cheap and synthetically available starting materials. All the synthesized compounds were submitted to the US National Cancer Institute for in vitro screening. The bromo- and chloro-substituted quinazolines 5c and 5d displayed a potent antitumor activity against all the tested subpanel tumor cell lines with IC50 (MG-MID) values of 5.25 and 5.50 μM, and a low cytotoxic effect with LC50 (MG-MID) values of 91.20 and 84.67 μM, respectively, indicating a low toxicity of these compounds to normal human cell lines, as required for potential antitumor agents.
Collapse
Affiliation(s)
- Diego Fernando Rodríguez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| | - Kelly Johanna Lipez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander Colombia
| | - Iván Díaz
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén Spain
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén Spain
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| |
Collapse
|
6
|
Xue Y, Friedl V, Ding H, Wong CK, Stuart JM. Single-cell signatures identify microenvironment factors in tumors associated with patient outcomes. CELL REPORTS METHODS 2024; 4:100799. [PMID: 38889686 PMCID: PMC11228369 DOI: 10.1016/j.crmeth.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.
Collapse
Affiliation(s)
- Yuanqing Xue
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Verena Friedl
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Hongxu Ding
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Christopher K Wong
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Joshua M Stuart
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA.
| |
Collapse
|
7
|
Moreno LM, Quiroga J, Abonia R, Crespo MDP, Aranaga C, Martínez-Martínez L, Sortino M, Barreto M, Burbano ME, Insuasty B. Synthesis of Novel Triazine-Based Chalcones and 8,9-dihydro-7 H-pyrimido[4,5- b][1,4]diazepines as Potential Leads in the Search of Anticancer, Antibacterial and Antifungal Agents. Int J Mol Sci 2024; 25:3623. [PMID: 38612435 PMCID: PMC11012124 DOI: 10.3390/ijms25073623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 04/14/2024] Open
Abstract
This study presents the synthesis of four series of novel hybrid chalcones (20,21)a-g and (23,24)a-g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28-33)a-g and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,d-g, 24a-g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e-g, 33a,b,e-g exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 μM and LC50 values in the range of 4.09 μM to >100 μM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25-62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 μg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe.
Collapse
Affiliation(s)
- Leydi M. Moreno
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, Cali 760042, Colombia; (J.Q.); (R.A.)
| | - Jairo Quiroga
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, Cali 760042, Colombia; (J.Q.); (R.A.)
| | - Rodrigo Abonia
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, Cali 760042, Colombia; (J.Q.); (R.A.)
| | - María del P. Crespo
- Grupo de Biotecnología e Infecciones Bacterianas, Departamento de Microbiología, Universidad del Valle, Cali 760042, Colombia;
- Grupo de Microbiología y Enfermedades Infecciosas, Departamento de Microbiología, Universidad del Valle, Cali 760042, Colombia; (M.B.); (M.E.B.)
| | - Carlos Aranaga
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia;
- Grupo de Investigación Traslacional en Enfermedades Infecciosas, Escuela de Biomedicina, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Luis Martínez-Martínez
- Unidad de Microbiología Clínica, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, 14004 Córdoba, Spain;
| | - Maximiliano Sortino
- Área de Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Mauricio Barreto
- Grupo de Microbiología y Enfermedades Infecciosas, Departamento de Microbiología, Universidad del Valle, Cali 760042, Colombia; (M.B.); (M.E.B.)
| | - María E. Burbano
- Grupo de Microbiología y Enfermedades Infecciosas, Departamento de Microbiología, Universidad del Valle, Cali 760042, Colombia; (M.B.); (M.E.B.)
| | - Braulio Insuasty
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, Cali 760042, Colombia; (J.Q.); (R.A.)
| |
Collapse
|
8
|
Nemoto Y, Kuroda K, Oyama R, Mori M, Shimajiri S, Tanaka F. Case report: Pathological complete response of pregnancy associated pulmonary enteric adenocarcinoma to chemoradiotherapy. Front Oncol 2024; 14:1290757. [PMID: 38463225 PMCID: PMC10924307 DOI: 10.3389/fonc.2024.1290757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Pulmonary enteric adenocarcinoma (PEAC) is a rare lung adenocarcinoma with morphological features similar to those of primary and metastatic colorectal adenocarcinoma. To date, only a few studies have reported the therapeutic effects of chemoradiotherapy on PEAC. This report describes the case of a 28-year-old woman with pregnancy-related PEAC who presented with left shoulder pain. A superior sulcus tumor was identified in the left thoracic cavity, and the biopsy indicated more than 50% intestinal differentiation components. Moreover, immunohistochemical staining revealed positive CDX2 and CK7 expression. Positron emission tomography-computed tomography, upper endoscopy, colonoscopy, and small intestinal capsule endoscopy revealed no gastrointestinal malignancies. The patient was diagnosed with locally advanced PEAC (clinical stage T4N0M0; stage IIIA). Therefore, the patient was treated with preoperative chemoradiotherapy and underwent gross total resection during surgery. Pathological evaluation of the specimen revealed no residual tumor, indicating that the chemoradiotherapy for PEAC was highly effective. One subsequent brain metastasis was also resected, and the patient has not experienced recurrence in 28 months since this resection and continues to be monitored regularly. This is the first pathologically confirmed report of the use of chemoradiotherapy (carboplatin [CBDCA] and paclitaxel [PTX]) for PEAC and its clinical efficacy. Unlike previous reports, the efficacy of this treatment is attributed to the use of PTX in preoperative chemotherapy and the p21- status of the patient, which may have increased sensitivity to chemoradiation therapy. Therefore, chemoradiotherapy (CBDCA + PTX) may be a viable treatment option for advanced intestinal lung adenocarcinoma.
Collapse
Affiliation(s)
- Yukiko Nemoto
- Second Department of Surgery (Chest Surgery), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Koji Kuroda
- Second Department of Surgery (Chest Surgery), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Rintaro Oyama
- Second Department of Surgery (Chest Surgery), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Masataka Mori
- Second Department of Surgery (Chest Surgery), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery (Chest Surgery), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
9
|
Grytsai O, Hamouda-Tekaya N, Botton T, Rocchi S, Benhida R, Ronco C. Design, Synthesis and Biological Evaluation of Novel Anticancer Amidinourea Analogues via Unexpected 1,3,5-Triazin-2-one Ring Opening. ChemMedChem 2024; 19:e202300493. [PMID: 38126619 DOI: 10.1002/cmdc.202300493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Amidinoureas are an understudied class of molecules with unique structural properties and biological activities. A simple methodology has been developed for the synthesis of aliphatic substituted amidinoureas via unexpected cycle opening of benzothiazolo-1,3,5-triazine-2-ones and transamination reaction of N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)aniline-1-carboxamide in good yields. A novel series of amidinoureas derivatives was designed, synthesized, and evaluated for its antiproliferative activity on an aggressive metastatic melanoma A375 cell line model. This evaluation reveals antiproliferative activities in the low micromolar range and establishes a first structure-activity relationship. In addition, analogues selected for their structural diversity were assayed on a panel of cancer cell lines through the DTP-NCI60, on which they showed effectiveness on various cancer types, with promising activities on melanoma cells for two hit compounds. This work paves the way for further optimization of this family of compounds towards the development of potent antimelanoma agents.
Collapse
Affiliation(s)
- Oleksandr Grytsai
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
| | - Nedra Hamouda-Tekaya
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Thomas Botton
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
- Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco
| | - Cyril Ronco
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
10
|
Hoon Lee J, Young Yoon H, Lee HJ, Min Kang D, Bak Y, Biazruchka I, Lim S, Kim S, Kyung Kim Y, Kim DH, Lee JS. Fluorescent Phenotyping of Blood Cells Using a Differential Sensing Strategy: Differentiating Physiological Aging Stages and Neuro-Degenerative Disease Drugs. Chemistry 2024; 30:e202302916. [PMID: 37902438 DOI: 10.1002/chem.202302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Blood continually contributes to the maintenance of homeostasis of the body and contains information regarding the health state of an individual. However, current hematological analyses predominantly rely on a limited number of CD markers and morphological analysis. In this work, differentially sensitive fluorescent compounds based on TCF scaffolds are introduced that are designed for fluorescent phenotyping of blood. Depending on their structures, TCF compounds displayed varied responses to reactive oxygen species, biothiols, redox-related biomolecules, and hemoglobin, which are the primary influential factors within blood. Contrary to conventional CD marker-based analysis, this unbiased fluorescent phenotyping method produces diverse fingerprints of the health state. Precise discrimination of blood samples from 37 mice was demonstrated based on their developmental stages, ranging from 10 to 19 weeks of age. Additionally, this fluorescent phenotyping method enabled the differentiation between drugs with distinct targets, serving as a simple yet potent tool for pharmacological analysis to understand the mode of action of various drugs.
Collapse
Affiliation(s)
- Jung Hoon Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - Hey Young Yoon
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), 02792, Seoul, Korea
| | - Yecheol Bak
- Chemical & Biological Integrative Research Center, Biomedical Division, Korea Institute of Science and Technology (KIST), 02792, Seoul, Korea
| | - Ina Biazruchka
- Chemical & Biological Integrative Research Center, Biomedical Division, Korea Institute of Science and Technology (KIST), 02792, Seoul, Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), 02792, Seoul, Korea
| | - Sehoon Kim
- Chemical & Biological Integrative Research Center, Biomedical Division, Korea Institute of Science and Technology (KIST), 02792, Seoul, Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), 02792, Seoul, Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Korea
| |
Collapse
|
11
|
Petrova AV, Khusnutdinova EF, Lobov AN, Zakirova LM, Ha NTT, Babkov DA. Selective synthesis of A-ring Е-arylidene derivatives from β-sitosterol and their activity. Nat Prod Res 2024; 38:52-59. [PMID: 35895012 DOI: 10.1080/14786419.2022.2103555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
A series of 24-ethylcholest-4-ene-3,6-dione 2E-arylidene-derivatives has been synthesized by a Claisen-Schmidt reaction from a natural phytosterol β-sitosterol with yields of 80-85%. The structure of the obtained compounds was confirmed by NMR spectroscopy, including two-dimensional correlation experiments. The synthesized compounds were evaluated for their in vitro cytotoxicity and α-glucosidase inhibitory activity. It was established that compound 3 with pyridin-3-ylmethylene moiety exhibited a selective cytotoxic effect against the U251 cancer cell line with 99.31% inhibition of cancer cell growth. Compounds with pyridin-4-ylmethylene 4 and furan-2-ylmethylene-5 fragments were the most active inhibitors of α-glucosidase with IC50 64.00 and 38.95 µM, being 3- and 5-times more active than acarbose. Binding mode to α-glucosidase and ADMET characteristics for the lead molecule 5 were proposed computationally. To sum up, an efficient approach to the derivatives with promising antidiabetic activity based on available natural product β-sitosterol is suggested.
Collapse
Affiliation(s)
- A V Petrova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - E F Khusnutdinova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - A N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - L M Zakirova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - N T T Ha
- Institute of Chemistry, Vietnamese Academy of Science and Technology, Hanoi, Viet Nam
| | - D A Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russian Federation
| |
Collapse
|
12
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
13
|
Morris J, Kunkel MW, White SL, Wishka DG, Lopez OD, Bowles L, Sellers Brady P, Ramsey P, Grams J, Rohrer T, Martin K, Dexheimer TS, Coussens NP, Evans D, Risbood P, Sonkin D, Williams JD, Polley EC, Collins JM, Doroshow JH, Teicher BA. Targeted Investigational Oncology Agents in the NCI-60: A Phenotypic Systems-based Resource. Mol Cancer Ther 2023; 22:1270-1279. [PMID: 37550087 PMCID: PMC10618733 DOI: 10.1158/1535-7163.mct-23-0267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
The NCI-60 human tumor cell line panel has proved to be a useful tool for the global cancer research community in the search for novel chemotherapeutics. The publicly available cell line characterization and compound screening data from the NCI-60 assay have significantly contributed to the understanding of cellular mechanisms targeted by new oncology agents. Signature sensitivity/resistance patterns generated for a given chemotherapeutic agent against the NCI-60 panel have long served as fingerprint presentations that encompass target information and the mechanism of action associated with the tested agent. We report the establishment of a new public NCI-60 resource based on the cell line screening of a large and growing set of 175 FDA-approved oncology drugs (AOD) plus >825 clinical and investigational oncology agents (IOA), representing a diverse set (>250) of therapeutic targets and mechanisms. This data resource is available to the public (https://ioa.cancer.gov) and includes the raw data from the screening of the IOA and AOD collection along with an extensive set of visualization and analysis tools to allow for comparative study of individual test compounds and multiple compound sets.
Collapse
Affiliation(s)
- Joel Morris
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Mark W. Kunkel
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Stephen L. White
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Donn G. Wishka
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Omar D. Lopez
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Lori Bowles
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Penny Sellers Brady
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Patricia Ramsey
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Julie Grams
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Tiffany Rohrer
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Karen Martin
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas S. Dexheimer
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Nathan P. Coussens
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - David Evans
- Target Validation and Screening Laboratory, Applied and Developmental Research Directorate, Frederick National, Laboratory for Cancer Research, Frederick, Maryland
| | - Prabhakar Risbood
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Dmitriy Sonkin
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - John D. Williams
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Eric C. Polley
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Jerry M. Collins
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | | |
Collapse
|
14
|
Workman P. The NCI-60 Human Tumor Cell Line Screen: A Catalyst for Progressive Evolution of Models for Discovery and Development of Cancer Drugs. Cancer Res 2023; 83:3170-3173. [PMID: 37779429 DOI: 10.1158/0008-5472.can-23-2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Following three decades of systematic primary empirical screening against mice bearing two transplantable murine leukemias, the NCI took the bold step of switching to a radically different approach-initial screening of 10,000 diverse compounds/year against a panel of 60 human tumor cell lines in vitro. The establishment of the "NCI-60" screen was announced in the landmark Cancer Research article by Alley and colleagues, published in 1988, which exemplified the technological basis for the new microculture screen, operating at unprecedented scale. The underlying concept was that NCI-60 might expedite the discovery of innovative cancer drugs, especially those with predicted activity against particular solid cancers-not then possible. We discuss how NCI-60 provided a major technological advance and delivered a successful legacy for cancer research and development. While not immediately cracking the thorny problem of model-to-human tumor type prediction, NCI-60 nevertheless provided the conceptual and methodologic foundation for subsequent, much larger-scale human cancer cell panel screens with detailed molecular annotation and sophisticated informatics. Now used in modern molecular target-based drug discovery, these panels help enable the implementation of contemporary biomarker-led precision oncology. See related article by Alley and colleagues, Cancer Res 1988;48:589-601.
Collapse
Affiliation(s)
- Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
15
|
Seo EJ, Khelifi D, Fayez S, Feineis D, Bringmann G, Efferth T, Dawood M. Molecular determinants of the response of cancer cells towards geldanamycin and its derivatives. Chem Biol Interact 2023; 383:110677. [PMID: 37586545 DOI: 10.1016/j.cbi.2023.110677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Geldanamycin is an ansamycin-derivative of a benzoquinone isolated from Streptomyces hygroscopicus. It inhibits tyrosine kinases and heat shock protein 90 (HSP90). Geldanamycin and 11 derivatives were subjected to molecular docking to HSP90, and 17-desmethoxy-17-N,N-dimethylamino-geldanamycin (17-DMAG) was the compound with the highest binding affinity (-7.73 ± 0.12 kcal/mol) and the lowest inhibition constant (2.16 ± 0.49 μM). Therefore, 17-DMAG was selected for further experiments in comparison to geldanamycin. Multidrug resistance (MDR) represents a major problem for successful cancer therapy. We tested geldanamycin and 17-DMAG against various drug-resistant cancer cell lines. Although geldanamycin and 17-DMAG inhibited the proliferation in all cell lines tested, multidrug-resistant P-glycoprotein-overexpressing CEM/ADR5000 cells were cross-resistant, ΔEGFR-overexpressing tumor cells and p53 knockout cells were sensitive to these two compounds. COMPARE and hierarchical cluster analyses were performed, and 60 genes were identified to predict the sensitivity or resistance of 59 NCI tumor cell lines towards geldanamycin and 17-DMAG. The distribution of cell lines according to their mRNA expression profiles indicated sensitivity or resistance to both compounds with statistical significance. Moreover, bioinformatic tools were used to study possible mechanisms of action of geldanamycin and 17-DMAG. Galaxy Cistrome analyses were carried out to predict transcription factor binding motifs in the promoter regions of the candidate genes. Interestingly, the NF-ĸB DNA binding motif (Rel) was identified as the top transcription factor. Furthermore, these 60 genes were subjected to Ingenuity Pathway Analysis (IPA) to study the signaling pathway interactions of these genes. Interestingly, IPA also revealed the NF-ĸB pathway as the top network among these genes. Finally, NF-ĸB reporter assays confirmed the bioinformatic prediction, and both geldanamycin and 17-DMAG significantly inhibited NF-κB activity after exposure for 24 h. In conclusion, geldanamycin and 17-DMAG exhibited cytotoxic activity against different tumor cell lines. Their activity was not restricted to HSP90 but indicated an involvement of the NF-KB pathway.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Daycem Khelifi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Germany; Department of Pharmacognosy, Ain-Shams University, Cairo, Egypt
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany; Department of Molecular Biology, Al-Neelain University, Khartoum, Sudan.
| |
Collapse
|
16
|
Tan L, Wang Y, Hu X, Du G, Tang X, Min L. Advances of Osteosarcoma Models for Drug Discovery and Precision Medicine. Biomolecules 2023; 13:1362. [PMID: 37759763 PMCID: PMC10527053 DOI: 10.3390/biom13091362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The management of osteosarcoma (OS) patients presents a significant clinical challenge. Despite progress in conventional and targeted therapies, the survival rate of OS patients remains limited largely due to therapy resistance and the high metastatic potential of the disease. OS models that accurately reflect the fundamental characteristics are vital to the innovation and validation of effective therapies. This review provides an insight into the advances and challenges in OS drug development, focusing on various preclinical models, including cell lines, 3D culture models, murine models, and canine models. The relevance, strengths, and limitations of each model in OS research are explored. In particular, we highlight a range of potential therapeutics identified through these models. These instances of successful drug development represent promising pathways for personalized OS treatment.
Collapse
Affiliation(s)
- Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Guifeng Du
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Reinhold WC, Wilson K, Elloumi F, Bradwell KR, Ceribelli M, Varma S, Wang Y, Duveau D, Menon N, Trepel J, Zhang X, Klumpp-Thomas C, Micheal S, Shinn P, Luna A, Thomas C, Pommier Y. CellMinerCDB: NCATS Is a Web-Based Portal Integrating Public Cancer Cell Line Databases for Pharmacogenomic Explorations. Cancer Res 2023; 83:1941-1952. [PMID: 37140427 PMCID: PMC10330642 DOI: 10.1158/0008-5472.can-22-2996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Major advances have been made in the field of precision medicine for treating cancer. However, many open questions remain that need to be answered to realize the goal of matching every patient with cancer to the most efficacious therapy. To facilitate these efforts, we have developed CellMinerCDB: National Center for Advancing Translational Sciences (NCATS; https://discover.nci.nih.gov/rsconnect/cellminercdb_ncats/), which makes available activity information for 2,675 drugs and compounds, including multiple nononcology drugs and 1,866 drugs and compounds unique to the NCATS. CellMinerCDB: NCATS comprises 183 cancer cell lines, with 72 unique to NCATS, including some from previously understudied tissues of origin. Multiple forms of data from different institutes are integrated, including single and combination drug activity, DNA copy number, methylation and mutation, transcriptome, protein levels, histone acetylation and methylation, metabolites, CRISPR, and miscellaneous signatures. Curation of cell lines and drug names enables cross-database (CDB) analyses. Comparison of the datasets is made possible by the overlap between cell lines and drugs across databases. Multiple univariate and multivariate analysis tools are built-in, including linear regression and LASSO. Examples have been presented here for the clinical topoisomerase I (TOP1) inhibitors topotecan and irinotecan/SN-38. This web application provides both substantial new data and significant pharmacogenomic integration, allowing exploration of interrelationships. SIGNIFICANCE CellMinerCDB: NCATS provides activity information for 2,675 drugs in 183 cancer cell lines and analysis tools to facilitate pharmacogenomic research and to identify determinants of response.
Collapse
Affiliation(s)
- William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kelli Wilson
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Michele Ceribelli
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- HiThru Analytics LLC, Princeton, NJ 08540, USA
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- ICF International Inc., Fairfax, VA 22031, USA
| | - Damien Duveau
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Nikhil Menon
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | | | - Samuel Micheal
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Craig Thomas
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Rommasi F. Identification, characterization, and prognosis investigation of pivotal genes shared in different stages of breast cancer. Sci Rep 2023; 13:8447. [PMID: 37231064 DOI: 10.1038/s41598-023-35318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
One of the leading causes of death (20.1 per 100,000 women per year), breast cancer is the most prevalent cancer in females. Statistically, 95% of breast cancer are categorized as adenocarcinomas, and 55% of all patients may go into invasive phases; however, it can be successfully treated in approximately 70-80% of cases if diagnosed in the nascent stages. The emergence of breast tumor cells which are intensely resistant to conventional therapies, along with the high rate of metastasis occurrence, has highlighted the importance of finding novel strategies and treatments. One of the most advantageous schemes to alleviate this complication is to identify the common differentially expressed genes (DEGs) among primary and metastatic cancerous cells to use resultants for designing new therapeutic agents which are able to target both primary and metastatic breast tumor cells. In this study, the gene expression dataset with accession number GSE55715 was analyzed containing two primary tumor samples, three bone-metastatic samples, and three normal samples to distinguish the up- and down regulated genes in each stage compared to normal cells as control. In the next step, the common upregulated genes between the two experimental groups were detected by Venny online tool. Moreover, gene ontology, functions and pathways, gene-targeting microRNA, and influential metabolites were determined using EnrichR 2021 GO, KEGG pathways miRTarbase 2017, and HMDB 2021, respectively. Furthermore, elicited from STRING protein-protein interaction networks were imported to Cytoscape software to identify the hub genes. Then, identified hub genes were checked to validate the study using oncological databases. The results of the present article disclosed 1263 critical common DEGs (573 upregulated + 690 downregulated), including 35 hub genes that can be broadly used as new targets for cancer treatment and as biomarkers for cancer detection by evaluation of expression level. Besides, this study opens a new horizon to reveal unknown aspects of cancer signaling pathways by providing raw data evoked from in silico experiments. This study's outcomes can also be widely utilized in further lab research since it contains diverse information on common DEGs of varied stages and metastases of breast cancer, their functions, structures, interactions, and associations.
Collapse
Affiliation(s)
- Foad Rommasi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Moreira VA, Cravo-Laureau C, de Carvalho ACB, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Microbial indicators along a metallic contamination gradient in tropical coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130244. [PMID: 36327839 DOI: 10.1016/j.jhazmat.2022.130244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The structure and diversity of microbial community inhabiting coastal sediments reflect the exposition to contaminants. Aiming to assess the changes in the microbiota from Sepetiba Bay (SB, Brazil) sediments, correlations between the 16S rRNA gene data (V4-V5 region), metal contamination factors (CF), and the ecological risk classification provided by the Quality Ratio (QR) index were considered. The results show that microbial diversity differs significantly between the less (SB external sector) and the most (SB internal sector) polluted sectors. Also, differences in the microbial community structure regarding the ecological risk classifications validated the QR index as a reliable tool to report the SB chronic contamination. Microbial indicator genera resistant to metals (Desulfatiglans, SEEP-SRB1, Spirochaeta 2, among others) presented mainly anaerobic metabolisms. These genera are related to the sulfate reducing and methanogenic metabolisms probably participating in the natural attenuation processes but also associated with greenhouse gas emissions. In contrast, microbial indicator genera sensitive to metals (Rubripirellula, Blastopirellula, Aquibacter, among others) presented mainly aerobic metabolisms. It is suggested that future works should investigate the metabolic functions to evaluate the influence of metallic contaminants on microbial community inhabiting SB sediment.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
20
|
Gouesbet G. Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods Mol Biol 2023; 2642:257-294. [PMID: 36944884 DOI: 10.1007/978-1-0716-3044-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
21
|
Ahmed F, Gi Ho S, Samantasinghar A, Memon FH, Rahim CSA, Soomro AM, Pratibha, Sunildutt N, Kim KH, Choi KH. Drug repurposing in psoriasis, performed by reversal of disease-associated gene expression profiles. Comput Struct Biotechnol J 2022; 20:6097-6107. [DOI: 10.1016/j.csbj.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
|
22
|
Multicomponent coupling and macrocyclization enabled by Rh(III)-catalyzed dual C–H activation: Macrocyclic oxime inhibitor of influenza H1N1. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Mirzayans R, Murray D. What Are the Reasons for Continuing Failures in Cancer Therapy? Are Misleading/Inappropriate Preclinical Assays to Be Blamed? Might Some Modern Therapies Cause More Harm than Benefit? Int J Mol Sci 2022; 23:13217. [PMID: 36362004 PMCID: PMC9655591 DOI: 10.3390/ijms232113217] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Over 50 years of cancer research has resulted in the generation of massive amounts of information, but relatively little progress has been made in the treatment of patients with solid tumors, except for extending their survival for a few months at best. Here, we will briefly discuss some of the reasons for this failure, focusing on the limitations and sometimes misunderstanding of the clinical relevance of preclinical assays that are widely used to identify novel anticancer drugs and treatment strategies (e.g., "synthetic lethality"). These include colony formation, apoptosis (e.g., caspase-3 activation), immunoblotting, and high-content multiwell plate cell-based assays, as well as tumor growth studies in animal models. A major limitation is that such assays are rarely designed to recapitulate the tumor repopulating properties associated with therapy-induced cancer cell dormancy (durable proliferation arrest) reflecting, for example, premature senescence, polyploidy and/or multinucleation. Furthermore, pro-survival properties of apoptotic cancer cells through phoenix rising, failed apoptosis, and/or anastasis (return from the brink of death), as well as cancer immunoediting and the impact of therapeutic agents on interactions between cancer and immune cells are often overlooked in preclinical studies. A brief review of the history of cancer research makes one wonder if modern strategies for treating patients with solid tumors may sometimes cause more harm than benefit.
Collapse
|
24
|
Identification of Novel miRNAs, Targeting Genes, Signaling Pathway, and the Small Molecule for Overcoming Oxaliplatin Resistance of Metastatic Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3825760. [PMID: 36193307 PMCID: PMC9526582 DOI: 10.1155/2022/3825760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
One of the globally common cancers is colorectal cancer (CRC). At present, a surgical approach remains a good option for CRC patients; however, 20% of surgically treated CRC patients experience metastasis. Currently, even the first-line used drug, oxaliplatin, remains inadequate for treating metastatic CRC, and its side effect of neurotoxicity is a major problem when treating CRC. The Gene Omnibus GSE42387 database contains gene expression profiles of parental and oxaliplatin-resistant LoVo cell lines. Differentially expressed genes (DEGs) between parental and oxaliplatin-resistance LoVo cells, protein-protein interactions (PPIs), and a pathway analysis were determined to identify overall biological changes by an online DAVID bioinformatics analysis. The ability of DEGs to predict overall survival (OS) and disease-free survival (DFS) was validated by the SPSS 22.0, using liver metastasis CRC patient samples of GSE41258. The bioinformatics web tools of the GEPIA, the Human Protein Atlas, WebGestalt, and TIMER platforms were used. In total, 218 DEGs were identified, among which 105 were downregulated and 113 were upregulated. After mapping the PPI networks and pathways, 60 DEGs were identified as hub genes (with high degrees). Six genes (TGFB1, CD36, THBS1, FABP1, PCK1, and IRS1) were involved with malaria, PPAR signaling, and the adipocytokine signaling pathway. High expressions of CD36 and PCK1 were associated with the poor survival of CRC patients in the GSE41258 database. We predicted specific micro (mi)RNAs that targeted the 3′ untranslated region (UTR) of PCK1 by using miRWalk. It was found that three miRNAs, viz., miR-7-5p, miR-20a-3p, and miR-636, may be upstream targets of those genes. High expression levels of miR-7-5p, miR-20a-3p, and miR-636 were associated with poor OS of CRC patients, and the small-molecule compound, mersalyl, is a promising drug for treating oxaliplatin-resistant CRC. In conclusion, miR-7-5p miR-20a-3p, and miR-636 targeted the PCK1 biomarker in the PPAR signaling pathway, which is involved in oxaliplatin-resistant CRC. Meanwhile, mersalyl was identified as a potential drug for overcoming oxaliplatin resistance in CRC. Our findings may provide novel directions and strategies for CRC therapies.
Collapse
|
25
|
Synthesis and Antitumor Activity of O- and N-Propylamino-Derivatives of Betulin. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
Relationship of micro-RNA, mRNA and eIF Expression in Tamoxifen-Adapted MCF-7 Breast Cancer Cells: Impact of miR-1972 on Gene Expression, Proliferation and Migration. Biomolecules 2022; 12:biom12070916. [PMID: 35883472 PMCID: PMC9312698 DOI: 10.3390/biom12070916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Tamoxifen-adapted MCF-7-Tam cells represent an in-vitro model for acquired tamoxifen resistance, which is still a problem in clinics. We here investigated the correlation of microRNA-, mRNA- and eukaryotic initiation factors (eIFs) expression in this model. Methods: MicroRNA- and gene expression were analyzed by nCounter and qRT-PCR technology; eIFs by Western blotting. Protein translation mode was determined using a reporter gene assay. Cells were transfected with a miR-1972-mimic. Results: miR-181b-5p,-3p and miR-455-5p were up-, miR-375, and miR-1972 down-regulated and are significant in survival analysis. About 5% of the predicted target genes were significantly altered. Pathway enrichment analysis suggested a contribution of the FoxO1 pathway. The ratio of polio-IRES driven to cap-dependent protein translation shifted towards cap-dependent initiation. Protein expression of eIF2A, -4G, -4H and -6 decreased, whereas eIF3H was higher in MCF-7-Tam. Significant correlations between tamoxifen-regulated miRNAs and eIFs were found in representative breast cancer cell lines. Transfection with a miR-1972-mimic reverses tamoxifen-induced expression for a subset of genes and increased proliferation in MCF-7, but reduced proliferation in MCF-7-Tam, especially in the presence of 4OH-tamoxifen. Migration was inhibited in MCF-7-Tam cells. Translation mode remained unaffected. Conclusions: miR-1972 contributes to the orchestration of gene-expression and physiological consequences of tamoxifen adaption.
Collapse
|
27
|
Chaudhari PJ, Bari SB, Surana SJ, Shirkhedkar AA, Bonde CG, Khadse SC, Ugale VG, Nagar AA, Cheke RS. Discovery and Anticancer Activity of Novel 1,3,4-Thiadiazole- and Aziridine-Based Indolin-2-ones via In Silico Design Followed by Supramolecular Green Synthesis. ACS OMEGA 2022; 7:17270-17294. [PMID: 35647471 PMCID: PMC9134430 DOI: 10.1021/acsomega.2c01198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/12/2023]
Abstract
Three crucial anticancer scaffolds, namely indolin-2-one, 1,3,4-thiadiazole, and aziridine, are explored to synthesize virtually screened target molecules based on the c-KIT kinase protein. The stem cell factor receptor c-KIT was selected as target because most U.S. FDA-approved receptor tyrosine kinase inhibitors bearing the indolin-2-one scaffold profoundly inhibit c-KIT. Molecular hybrids of indolin-2-one with 1,3,4-thiadiazole (IIIa-m) and aziridine (VIa and VIc) were afforded through a modified Schiff base green synthesis using β-cyclodextrin-SO3H in water as a recyclable proton-donor catalyst. A computational study found that indolin-2,3-dione forms a supramolecular inclusion complex with β-cyclodextrin-SO3H through noncovalent interactions. A molecular docking study of all the synthesized compounds was executed on the c-KIT kinase domain, and most compounds displayed binding affinities similar to that of Sunitinib. On the basis of the pharmacokinetic significance of the aryl thioether linkage in small molecules, 1,3,4-thiadiazole hybrids (IIIa-m) were extended to a new series of 3-((5-(phenylthio)-1,3,4-thiadiazol-2-yl)imino)indolin-2-ones (IVa-m) via thioetherification using bis(triphenylphosphine)palladium(II)dichloride as the catalyst for C-S bond formation. Target compounds were tested against NCI-60 human cancer cell lines for a single-dose concentration. Among all three series of indolin-2-ones, the majority of compounds demonstrated broad-spectrum activity toward various cancer cell lines. Compounds IVc and VIc were further evaluated for a five-dose anticancer study. Compound IVc showed a potent activity of IC50 = 1.47 μM against a panel of breast cancer cell lines, whereas compound VIc exhibited the highest inhibition for a panel of colon cancer cell lines at IC50 = 1.40 μM. In silico ADME property descriptors of all the target molecules are in an acceptable range. Machine learning algorithms were used to examine the metabolites and phase I and II regioselectivities of compounds IVc and VIc, and the results suggested that these two compounds could be potential leads for the treatment of cancer.
Collapse
Affiliation(s)
- Prashant J. Chaudhari
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
- . Tel: +91 954 578 09 64. Fax: +912563255189
| | - Sanjaykumar B. Bari
- Department
of Pharmaceutical Chemistry, H. R. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
| | - Sanjay J. Surana
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
| | - Atul A. Shirkhedkar
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
| | - Chandrakant G. Bonde
- Department
of Pharmaceutical Chemistry, School of Pharmacy and Technology Management, SVKM’s NMIMS, Dhule, Maharashtra 425405, India
| | - Saurabh C. Khadse
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
| | - Vinod G. Ugale
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
- Bioprospecting
group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India
| | - Akhil A. Nagar
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule, Maharashtra 425405, India
| | - Rameshwar S. Cheke
- Department
of Pharmaceutical Chemistry, Institute of
Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
28
|
Humayun A, Fornace AJ. GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:1-22. [PMID: 35505159 DOI: 10.1007/978-3-030-94804-7_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GADD45 is a gene family consisting of GADD45A, GADD45B, and GADD45G that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. Many of these roles are carried out via signaling mediated by p38 mitogen-activated protein kinases (MAPKs). The GADD45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction, as well as suppression of p38 activity in certain cases. In vivo, there are important tissue and cell type specific differences in the roles for GADD45 in MAPK signaling. In addition to being p53-regulated, GADD45A has also been found to contribute to p53 activation via p38. Like other stress and signaling proteins, GADD45 proteins show complex regulation and numerous effectors. More recently, aberrant GADD45 expression has been found in several human cancers, but the mechanisms behind these findings largely remain to be understood.
Collapse
Affiliation(s)
- Arslon Humayun
- Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Albert J Fornace
- Lombardi Comprehensive Cancer Center, Washington, DC, USA.
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
29
|
Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform 2022; 23:bbab408. [PMID: 34619752 PMCID: PMC8769705 DOI: 10.1093/bib/bbab408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
For an increasing number of preclinical samples, both detailed molecular profiles and their responses to various drugs are becoming available. Efforts to understand, and predict, drug responses in a data-driven manner have led to a proliferation of machine learning (ML) methods, with the longer term ambition of predicting clinical drug responses. Here, we provide a uniquely wide and deep systematic review of the rapidly evolving literature on monotherapy drug response prediction, with a systematic characterization and classification that comprises more than 70 ML methods in 13 subclasses, their input and output data types, modes of evaluation, and code and software availability. ML experts are provided with a fundamental understanding of the biological problem, and how ML methods are configured for it. Biologists and biomedical researchers are introduced to the basic principles of applicable ML methods, and their application to the problem of drug response prediction. We also provide systematic overviews of commonly used data sources used for training and evaluation methods.
Collapse
Affiliation(s)
- Farzaneh Firoozbakht
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Behnam Yousefi
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
- Sorbonne Université, École Doctorale Complexite du Vivant, Paris, France
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Giniyatullina GV, Petrova AV, Mustafin AG, Zileeva ZR, Kuzmina US, Vakhitova YV, Kazakova OB. Synthesis and Promising Cytotoxic Activity of Betulonic Acid Modified Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Akhat G. Mustafin
- Ufa Institute of Chemistry UFRC RAS Ufa 71 pr. Oktyabrya 450054 Russian Federation
| | - Zulfia R. Zileeva
- Institute of Biochemistry and Genetics UFRC RAS Ufa 71 pr. Oktyabrya 450054 Russian Federation
| | - Ulyana Sh. Kuzmina
- Institute of Biochemistry and Genetics UFRC RAS Ufa 71 pr. Oktyabrya 450054 Russian Federation
| | - Yulia V. Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS Ufa 71 pr. Oktyabrya 450054 Russian Federation
| | - Oxana B. Kazakova
- Ufa Institute of Chemistry UFRC RAS Ufa 71 pr. Oktyabrya 450054 Russian Federation
| |
Collapse
|
31
|
Smirnova I, Drăghici G, Kazakova O, Vlaia L, Avram S, Mioc A, Mioc M, Macaşoi I, Dehelean C, Voicu A, Şoica C. Hollongdione arylidene derivatives induce antiproliferative activity against melanoma and breast cancer through pro-apoptotic and antiangiogenic mechanisms. Bioorg Chem 2021; 119:105535. [PMID: 34906859 DOI: 10.1016/j.bioorg.2021.105535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
The use of natural compounds as starting point for semisynthetic derivatives has already been proven as a valuable source of active anticancer agents. Hollongdione (4,4,8,14-tetramethyl-18-norpregnan-3,20-dion), obtained by few steps from dammarane type triterpenoid dipterocarpol, was chemically modified at C2 and C21 carbon atoms by the Claisen-Schmidt aldol condensation to give a series of arylidene derivatives. The anticancer activity of the obtained compounds was assessed on NCI-60 cancer cell panel, revealing strong antiproliferative effects against a large variety of cancer cells. 2,21-Bis-[3-pyridinyl]-methylidenohollongdione 9 emerged as the most active derivative as indicated by its GI50 values in the micromolar range which, combined with its high selectivity index values, indicated its suitability for deeper biological investigation. The mechanisms involved in compound 9 antiproliferative activity, were investigated through in vitro (DAPI staining) and ex vivo (CAM assay) tests, which exhibited its apoptotic and antiangiogenic activities. In addition, compound 9 showed an overall inhibition of mitochondrial respiration. rtPCR analysis identified the more intimate activity at pro-survival/pro-apoptotic gene level. Collectively, the hollongdione derivative stand as a promising therapeutic option against melanoma and breast cancer provided that future in vivo analysis will certify its clinical efficacy.
Collapse
Affiliation(s)
- Irina Smirnova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - George Drăghici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation.
| | - Lavinia Vlaia
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Stefana Avram
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Marius Mioc
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Ioana Macaşoi
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Adrian Voicu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Codruța Şoica
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| |
Collapse
|
32
|
Diyana T, Furusawa G. An assimilatory sulfite reductase, CysI, negatively regulates the dormancy of Microbulbifer aggregans CCB-MM1 T. J Basic Microbiol 2021; 61:1124-1132. [PMID: 34796964 DOI: 10.1002/jobm.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Sulfur is one of the common and essential elements of all life. Sulfate, which is a major source of sulfur, plays an important role in synthesizing sulfur-containing amino acids, such as cysteine and methionine, organic compounds essential to all living organisms. Some investigations reported that the assimilatory sulfate reduction pathway (ASRP) involved in cysteine synthesis is crucial to entering bacterial dormancy in pathogens. Our previous investigation reported that the halophilic marine bacterium, Microbulbifer aggregans CCB-MM1T , possesses an ASRP and the dissimilatory sulfate reduction pathway (DSRP). The bacterium might use DSRP to generate energy required for entering its dormant. However, the role of the ASRP in the dormancy of M. aggregans CCB-MM1T was so far unknown. In this study, we found that genes involved in ASRP were downregulated in the dormancy. The disruption of the gene encoding an assimilatory sulfite reductase, cysI, suppressed a completely dormant state under low nutrient conditions. In addition, the cysI mutant showed cell aggregation at the middle-exponential phase under high nutrient conditions, indicating that the mutation might be stimulated to enter the dormancy. The wild-type phenotype of the bacterium was recovered by the addition of cysteine. These results suggested that cysteine concentration may play an important role in inducing the dormancy of M. aggregans.
Collapse
Affiliation(s)
- Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
33
|
Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation. Int J Mol Sci 2021; 22:ijms222010967. [PMID: 34681629 PMCID: PMC8536124 DOI: 10.3390/ijms222010967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins’ levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines.
Collapse
|
34
|
Kazakova O, Șoica C, Babaev M, Petrova A, Khusnutdinova E, Poptsov A, Macașoi I, Drăghici G, Avram Ș, Vlaia L, Mioc A, Mioc M, Dehelean C, Voicu A. 3-Pyridinylidene Derivatives of Chemically Modified Lupane and Ursane Triterpenes as Promising Anticancer Agents by Targeting Apoptosis. Int J Mol Sci 2021; 22:ijms221910695. [PMID: 34639035 PMCID: PMC8509773 DOI: 10.3390/ijms221910695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18–1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4′,6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
- Correspondence: (O.K.); (M.M.)
| | - Codruța Șoica
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marat Babaev
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Alexander Poptsov
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Ioana Macașoi
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - George Drăghici
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefana Avram
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, Faculty of Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (O.K.); (M.M.)
| | - Cristina Dehelean
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
35
|
Synthesis, Cytotoxicity, and α-glucosidase Inhibitory Activity of Triterpenic and Sitosterol Tetrazole Derivatives. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Khusnutdinova E, Petrova A, Zileeva Z, Kuzmina U, Zainullina L, Vakhitova Y, Babkov D, Kazakova O. Novel A-Ring Chalcone Derivatives of Oleanolic and Ursolic Amides with Anti-Proliferative Effect Mediated through ROS-Triggered Apoptosis. Int J Mol Sci 2021; 22:9796. [PMID: 34575964 PMCID: PMC8465963 DOI: 10.3390/ijms22189796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose-response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.
Collapse
Affiliation(s)
- Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Zulfia Zileeva
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Ulyana Kuzmina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Liana Zainullina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Yulia Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya St., 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| |
Collapse
|
37
|
Network pharmacology of triptolide in cancer cells: implications for transcription factor binding. Invest New Drugs 2021; 39:1523-1537. [PMID: 34213719 PMCID: PMC8541937 DOI: 10.1007/s10637-021-01137-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 01/29/2023]
Abstract
Background Triptolide is an active natural product, which inhibits cell proliferation, induces cell apoptosis, suppresses tumor metastasis and improves the effect of other therapeutic treatments in several cancer cell lines by affecting multiple molecules and signaling pathways, such as caspases, heat-shock proteins, DNA damage and NF-ĸB. Purpose We investigated the effect of triptolide towards NF-ĸB and GATA1. Methods We used cell viability assay, compare and cluster analyses of microarray-based mRNA transcriptome-wide expression data, gene promoter binding motif analysis, molecular docking, Ingenuity pathway analysis, NF-ĸB reporter cell assay, and electrophoretic mobility shift assay (EMSA) of GATA1. Results Triptolide inhibited the growth of drug-sensitive (CCRF-CEM, U87.MG) and drug-resistant cell lines (CEM/ADR5000, U87.MGΔEGFR). Hierarchical cluster analysis showed six major clusters in dendrogram. The sensitive and resistant cell lines were statistically significant (p = 0.65 × 10-2) distributed. The binding motifs of NF-κB (Rel) and of GATA1 proteins were significantly enriched in regions of 25 kb upstream promoter of all genes. IPA showed the networks, biological functions, and canonical pathways influencing the activity of triptolide towards tumor cells. Interestingly, upstream analysis for the 40 genes identified by compare analysis revealed ZFPM1 (friend of GATA protein 1) as top transcription regulator. However, we did not observe any effect of triptolide to the binding of GATA1 in vitro. We confirmed that triptolide inhibited NF-κB activity, and it strongly bound to the pharmacophores of IκB kinase β and NF-κB in silico. Conclusion Triptolide showed promising inhibitory effect toward NF-κB, making it a potential candidate for targeting NF-κB.
Collapse
|
38
|
Cuartas V, Aragón-Muriel A, Liscano Y, Polo-Cerón D, Crespo-Ortiz MDP, Quiroga J, Abonia R, Insuasty B. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: synthesis, DNA binding and molecular docking. RSC Adv 2021; 11:23310-23329. [PMID: 35479808 PMCID: PMC9036565 DOI: 10.1039/d1ra03509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023] Open
Abstract
Multidrug resistance to chemotherapy is a critical health problem associated with mutation of the therapeutic target. Therefore, the development of anticancer agents remains a challenge to overcome cancer cell resistance. Herein, a new series of quinazoline-based pyrimidodiazepines 16a-g were synthesized by the cyclocondensation reaction of 2-chloro-4-anilinoquinazoline-chalcones 14a-g with 2,4,5,6-tetraaminopyrimidine. All quinazoline derivatives 14a-g and 16a-g were selected by the U.S. National Cancer Institute (NCI) for testing their anticancer activity against 60 cancer cell lines of different panels of human tumors. Among the tested compounds, quinazoline-chalcone 14g displayed high antiproliferative activity with GI50 values between 0.622-1.81 μM against K-562 (leukemia), RPMI-8226 (leukemia), HCT-116 (colon cancer) LOX IMVI (melanoma), and MCF7 (breast cancer) cancer cell lines. Additionally, the pyrimidodiazepines 16a and 16c exhibited high cytostatic (TGI) and cytotoxic activity (LC50), where 16c showed high cytotoxic activity, which was 10.0-fold higher than the standard anticancer agent adriamycin/doxorubicin against ten cancer cell lines. COMPARE analysis revealed that 16c may possess a mechanism of action through DNA binding that is similar to that of CCNU (lomustine). DNA binding studies indicated that 14g and 16c interact with the calf thymus DNA by intercalation and groove binding, respectively. Compounds 14g, 16c and 16a displayed strong binding affinities to DNA, EGFR and VEGFR-2 receptors. None of the active compounds showed cytotoxicity against human red blood cells.
Collapse
Affiliation(s)
- Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665.,Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle Cali 760001 Colombia
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Universidad Santiago de Cali Cali 760035 Colombia
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle Cali 760001 Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Grupo de Biotecnología e Infecciones Bacterianas, Departamento de Microbiología, Universidad del Valle Cali 760043 Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665.,Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| |
Collapse
|
39
|
Durinikova E, Buzo K, Arena S. Preclinical models as patients' avatars for precision medicine in colorectal cancer: past and future challenges. J Exp Clin Cancer Res 2021; 40:185. [PMID: 34090508 PMCID: PMC8178911 DOI: 10.1186/s13046-021-01981-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a complex and heterogeneous disease, characterized by dismal prognosis and low survival rate in the advanced (metastatic) stage. During the last decade, the establishment of novel preclinical models, leading to the generation of translational discovery and validation platforms, has opened up a new scenario for the clinical practice of CRC patients. To bridge the results developed at the bench with the medical decision process, the ideal model should be easily scalable, reliable to predict treatment responses, and flexibly adapted for various applications in the research. As such, the improved benefit of novel therapies being tested initially on valuable and reproducible preclinical models would lie in personalized treatment recommendations based on the biology and genomics of the patient's tumor with the overall aim to avoid overtreatment and unnecessary toxicity. In this review, we summarize different in vitro and in vivo models, which proved efficacy in detection of novel CRC culprits and shed light into the biology and therapy of this complex disease. Even though cell lines and patient-derived xenografts remain the mainstay of colorectal cancer research, the field has been confidently shifting to the use of organoids as the most relevant preclinical model. Prioritization of organoids is supported by increasing body of evidence that these represent excellent tools worth further therapeutic explorations. In addition, novel preclinical models such as zebrafish avatars are emerging as useful tools for pharmacological interrogation. Finally, all available models represent complementary tools that can be utilized for precision medicine applications.
Collapse
Affiliation(s)
- Erika Durinikova
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Kristi Buzo
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
| |
Collapse
|
40
|
Synthesis and Cytotoxic Potential of 3-oxo-19β-Trifluoroacetoxy-18αH-oleane-28-oic Acid. MOLBANK 2021. [DOI: 10.3390/m1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Trifluoroacetic acid-promoted Wagner-Meerwein rearrangement of betulonic acid carboxamide led to the formation of the expected 19β,28-lactam along with a new germanicane-type 3-oxo-19β-trifluoroacetoxy-18αH-oleane-28-oic acid. The structure of this triterpenoid was confirmed by 2D NMR analyses. A primary evaluation of biological potency revealed an anticancer activity with GI50 < 5 μM against leukemia, colon cancer, breast cancer, and prostate cancer cell lines, while the parent compounds were not active.
Collapse
|
41
|
Synthesis and in vitro activity of oleanolic acid derivatives against Chlamydia trachomatis and Staphylococcus aureus. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02741-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv 2021; 4:4887-4897. [PMID: 33035330 DOI: 10.1182/bloodadvances.2020002271] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among myeloproliferative neoplasms, polycythemia vera (PV) and essential thrombocythemia (ET) are the 2 entities associated with the most chronic disease course. Leukemic evolution occurs rarely but has a grim prognosis. The interval between diagnosis and leukemic evolution is highly variable, from a few years to >20 years. We performed a molecular evaluation of 49 leukemic transformations of PV and ET by targeted next-generation sequencing. Using a hierarchical classification, we identified 3 molecular groups associated with a distinct time to leukemic transformation. Short-term transformations were mostly characterized by a complex molecular landscape and mutations in IDH1/2, RUNX1, and U2AF1 genes, whereas long-term transformations were associated with mutations in TP53, NRAS, and BCORL1 genes. Studying paired samples from chronic phase and transformation, we detected some mutations already present during the chronic phase, either with a significant allele burden (short-term transformation) or with a very low allele burden (especially TP53 mutations). However, other mutations were not detected even 1 year before leukemic transformation. Our results suggest that the leukemic transformation of PV and ET may be driven by distinct time-dependent molecular mechanisms.
Collapse
|
43
|
Mandal R, Becker S, Strebhardt K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers (Basel) 2021; 13:2181. [PMID: 34062779 PMCID: PMC8124690 DOI: 10.3390/cancers13092181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclin Dependent Kinase 9 (CDK9) is one of the most important transcription regulatory members of the CDK family. In conjunction with its main cyclin partner-Cyclin T1, it forms the Positive Transcription Elongation Factor b (P-TEFb) whose primary function in eukaryotic cells is to mediate the positive transcription elongation of nascent mRNA strands, by phosphorylating the S2 residues of the YSPTSPS tandem repeats at the C-terminus domain (CTD) of RNA Polymerase II (RNAP II). To aid in this process, P-TEFb also simultaneously phosphorylates and inactivates a number of negative transcription regulators like 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) Sensitivity-Inducing Factor (DSIF) and Negative Elongation Factor (NELF). Significantly enhanced activity of CDK9 is observed in multiple cancer types, which is universally associated with significantly shortened Overall Survival (OS) of the patients. In these cancer types, CDK9 regulates a plethora of cellular functions including proliferation, survival, cell cycle regulation, DNA damage repair and metastasis. Due to the extremely critical role of CDK9 in cancer cells, inhibiting its functions has been the subject of intense research, resulting the development of multiple, increasingly specific small-molecule inhibitors, some of which are presently in clinical trials. The search for newer generation CDK9 inhibitors with higher specificity and lower potential toxicities and suitable combination therapies continues. In fact, the Phase I clinical trials of the latest, highly specific CDK9 inhibitor BAY1251152, against different solid tumors have shown good anti-tumor and on-target activities and pharmacokinetics, combined with manageable safety profile while the phase I and II clinical trials of another inhibitor AT-7519 have been undertaken or are undergoing. To enhance the effectiveness and target diversity and reduce potential drug-resistance, the future of CDK9 inhibition would likely involve combining CDK9 inhibitors with inhibitors like those against BRD4, SEC, MYC, MCL-1 and HSP90.
Collapse
Affiliation(s)
- Ranadip Mandal
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Sven Becker
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Zhang P, Kitchen-Smith I, Xiong L, Stracquadanio G, Brown K, Richter PH, Wallace MD, Bond E, Sahgal N, Moore S, Nornes S, De Val S, Surakhy M, Sims D, Wang X, Bell DA, Zeron-Medina J, Jiang Y, Ryan AJ, Selfe JL, Shipley J, Kar S, Pharoah PD, Loveday C, Jansen R, Grochola LF, Palles C, Protheroe A, Millar V, Ebner DV, Pagadala M, Blagden SP, Maughan TS, Domingo E, Tomlinson I, Turnbull C, Carter H, Bond GL. Germline and Somatic Genetic Variants in the p53 Pathway Interact to Affect Cancer Risk, Progression, and Drug Response. Cancer Res 2021; 81:1667-1680. [PMID: 33558336 PMCID: PMC10266546 DOI: 10.1158/0008-5472.can-20-0177] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/25/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity. Here we hypothesize that cancer risk-associated germline variants interact with somatic TP53 mutational status to modify cancer risk, progression, and response to therapy. Focusing on a cancer risk SNP (rs78378222) with a well-documented ability to directly influence p53 activity as well as integration of germline datasets relating to cancer susceptibility with tumor data capturing somatically-acquired genetic variation provided supportive evidence for this hypothesis. Integration of germline and somatic genetic data enabled identification of a novel entry point for therapeutic manipulation of p53 activities. A cluster of cancer risk SNPs resulted in increased expression of prosurvival p53 target gene KITLG and attenuation of p53-mediated responses to genotoxic therapies, which were reversed by pharmacologic inhibition of the prosurvival c-KIT signal. Together, our results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and identify novel combinatorial therapies. SIGNIFICANCE: These results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and present novel therapeutic targets.
Collapse
Affiliation(s)
- Ping Zhang
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Isaac Kitchen-Smith
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Lingyun Xiong
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Giovanni Stracquadanio
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Katherine Brown
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Philipp H Richter
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Marsha D Wallace
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Elisabeth Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Natasha Sahgal
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Samantha Moore
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Svanhild Nornes
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Sarah De Val
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Mirvat Surakhy
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, North Carolina
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, North Carolina
| | - Jorge Zeron-Medina
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Yanyan Jiang
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford, United Kingdom
| | - Anderson J Ryan
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, Oxford, United Kingdom
| | - Joanna L Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Siddhartha Kar
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rick Jansen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, the Netherlands
| | | | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Protheroe
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Meghana Pagadala
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy S Maughan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hannah Carter
- Department of Medicine, University of California, San Diego, La Jolla, California.
| | - Gareth L Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom.
| |
Collapse
|
45
|
Karatas M, Chaikuad A, Berger B, Kubbutat MHG, Totzke F, Knapp S, Kunick C. 7-(2-Anilinopyrimidin-4-yl)-1-benzazepin-2-ones Designed by a "Cut and Glue" Strategy Are Dual Aurora A/VEGF-R Kinase Inhibitors. Molecules 2021; 26:molecules26061611. [PMID: 33799460 PMCID: PMC7998669 DOI: 10.3390/molecules26061611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Although overexpression and hyperactivity of protein kinases are causative for a wide range of human cancers, protein kinase inhibitors currently approved as cancer drugs address only a limited number of these enzymes. To identify new chemotypes addressing alternative protein kinases, the basic structure of a known PLK1/VEGF-R2 inhibitor class was formally dissected and reassembled. The resulting 7-(2-anilinopyrimidin-4-yl)-1-benzazepin-2-ones were synthesized and proved to be dual inhibitors of Aurora A kinase and VEGF receptor kinases. Crystal structures of two representatives of the new chemotype in complex with Aurora A showed the ligand orientation in the ATP binding pocket and provided the basis for rational structural modifications. Congeners with attached sulfamide substituents retained Aurora A inhibitory activity. In vitro screening of two members of the new kinase inhibitor family against the cancer cell line panel of the National Cancer Institute (NCI) showed antiproliferative activity in the single-digit micromolar concentration range in the majority of the cell lines.
Collapse
Affiliation(s)
- Mehmet Karatas
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (M.K.); (B.B.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, BMLS, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (A.C.); (S.K.)
- Institut für Pharmazeutische Chemie, Johann Wolfgang-Goethe-Universität, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Bianca Berger
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (M.K.); (B.B.)
| | | | - Frank Totzke
- Reaction Biology Europe GmbH, 79108 Freiburg, Germany; (M.H.G.K.); (F.T.)
| | - Stefan Knapp
- Structural Genomics Consortium, BMLS, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (A.C.); (S.K.)
- Institut für Pharmazeutische Chemie, Johann Wolfgang-Goethe-Universität, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (M.K.); (B.B.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
- Correspondence: ; Tel.: +49-531-391-2754
| |
Collapse
|
46
|
Kazakova O, Smirnova I, Tret’yakova E, Csuk R, Hoenke S, Fischer L. Cytotoxic Potential of a-Azepano- and 3-Amino-3,4-SeCo-Triterpenoids. Int J Mol Sci 2021; 22:ijms22041714. [PMID: 33567783 PMCID: PMC7914897 DOI: 10.3390/ijms22041714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Semi-synthetic triterpenoids, holding an amino substituted seven-membered A-ring (azepano-ring), which could be synthesized from triterpenic oximes through a Beckmann type rearrangement followed by a reduction of lactame fragment, are considered to be novel promising agents exhibiting anti-microbial, alpha-glucosidase, and butyrylcholinesterase inhibitory activities. In this study, in an attempt to develop new antitumor candidates, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives of betulin, oleanolic, ursolic, and glycyrrhetinic acids were evaluated for their cytotoxic activity against five human cancer cell lines and non-malignant mouse fibroblasts by means of a colorimetric sulforhodamine assay. Azepanoallobetulinic acid amide derivative 11 was the most cytotoxic compound of this series but showed little selectivity between the different human tumor cell lines. Flow cytometry experiments showed compound 11 to act mainly by apoptosis (44.3%) and late apoptosis (21.4%). The compounds were further screened at the National Cancer Institute towards a panel of 60 cancer cell lines. It was found that compounds 3, 4, 7, 8, 9, 11, 15, 16, 19, and 20 showed growth inhibitory (GI50) against the most sensitive cell lines at submicromolar concentrations (0.20–0.94 μM), and their cytotoxic activity (LC50) was also high (1–6 μM). Derivatives 3, 8, 11, 15, and 16 demonstrated a certain selectivity profile at GI50 level from 5.16 to 9.56 towards K-562, CCRF-CEM, HL-60(TB), and RPMI-8226 (Leukemia), HT29 (Colon cancer), and OVCAR-4 (Ovarian cancer) cell lines. Selectivity indexes of azepanoerythrodiol 3 at TGI level ranged from 5.93 (CNS cancer cell lines SF-539, SNB-19 and SNB-75) to 14.89 for HCT-116 (colon cancer) with SI 9.56 at GI50 level for the leukemia cell line K-562. The present study highlighted the importance of A-azepano-ring in the triterpenic core for the development of novel antitumor agents, and a future aim to increase the selectivity profile will thus lie in the area of modifications of azepano-triterpenic acids at their carboxyl group.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russia; (I.S.); (E.T.)
- Correspondence: (O.K.); (R.C.); Tel.: +7-347-235-6066 (O.K.); +49-345-5525-660 (R.C.)
| | - Irina Smirnova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russia; (I.S.); (E.T.)
| | - Elena Tret’yakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russia; (I.S.); (E.T.)
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (L.F.)
- Correspondence: (O.K.); (R.C.); Tel.: +7-347-235-6066 (O.K.); +49-345-5525-660 (R.C.)
| | - Sophie Hoenke
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (L.F.)
| | - Lucie Fischer
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (L.F.)
| |
Collapse
|
47
|
Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, Robert J, Sander C, Pommier Y, Reinhold WC. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res 2021; 49:D1083-D1093. [PMID: 33196823 DOI: 10.1093/nar/gkaa968] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
CellMiner Cross-Database (CellMinerCDB, discover.nci.nih.gov/cellminercdb) allows integration and analysis of molecular and pharmacological data within and across cancer cell line datasets from the National Cancer Institute (NCI), Broad Institute, Sanger/MGH and MD Anderson Cancer Center (MDACC). We present CellMinerCDB 1.2 with updates to datasets from NCI-60, Broad Cancer Cell Line Encyclopedia and Sanger/MGH, and the addition of new datasets, including NCI-ALMANAC drug combination, MDACC Cell Line Project proteomic, NCI-SCLC DNA copy number and methylation data, and Broad methylation, genetic dependency and metabolomic datasets. CellMinerCDB (v1.2) includes several improvements over the previously published version: (i) new and updated datasets; (ii) support for pattern comparisons and multivariate analyses across data sources; (iii) updated annotations with drug mechanism of action information and biologically relevant multigene signatures; (iv) analysis speedups via caching; (v) a new dataset download feature; (vi) improved visualization of subsets of multiple tissue types; (vii) breakdown of univariate associations by tissue type; and (viii) enhanced help information. The curation and common annotations (e.g. tissues of origin and identifiers) provided here across pharmacogenomic datasets increase the utility of the individual datasets to address multiple researcher question types, including data reproducibility, biomarker discovery and multivariate analysis of drug activity.
Collapse
Affiliation(s)
- Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,HiThru Analytics LLC, Princeton, NJ 08540, USA
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jacques Robert
- Inserm unité 1218, Université de Bordeaux, Bordeaux 33076, France
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Song Z, Wang M, Zhu Z, Tang G, Liu Y, Chai Y. Optimization of pretreatment methods for cerebrospinal fluid metabolomics based on ultrahigh performance liquid chromatography/mass spectrometry. J Pharm Biomed Anal 2021; 197:113938. [PMID: 33621718 DOI: 10.1016/j.jpba.2021.113938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Sample pretreatment of cerebrospinal fluid (CSF) in metabolomics plays an important role in metabolic profiling study, especially for samples related to central nervous system diseases. However, there is few study about optimization of CSF metabolomics pretreatment. Therefore, it is an urgent need to optimize CSF pretreatment in order to promote the extraction efficiency of metabolites. In this study, CSF samples were separately subjected to nine different protein precipitation solvents and five different reconstitution solvents to establish the most effective pretreatment method before hydrophilic interaction (HILIC) and reverse-phase (RP) ultrahigh performance liquid chromatography mass spectrometry (UPLC/MS) analysis. The optimal conditions for different sample pretreatment methods were analyzed based on coverage (number of detected potential metabolites), stability (the relative standard deviation (RSD) distribution of metabolites) and the reproducibility of the data. Our results suggested that using EtOH or MeOH-EtOH-ACN (1:1:1, v/v/v) as the protein precipitation solvents and H2O-MeOH-ACN (2:1:1, v/v/v) as the reconstitution solvent were optimal methods for T3 column analysis. For HILIC column analysis, using EtOH to precipitate protein and H2O-MeOH-ACN (2:1:1, v/v/v) to reconstitute or MeOH to precipitate and 5 %ACN to reconstitute performed best. This developed UPLC/MS pretreatment method could provide better protein precipitation solvents and reconstitution solvents for global CSF metabolic analysis, potentially facilitating the comprehensive understanding of many central nervous system diseases.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mian Wang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
49
|
Babaev M, Khusnutdinova E, Lobov A, Galimova Z, Petrova A, Rybalova T, Nguyen HTT, Meyers C, Prichard M, Kazakova O. Allobetulone rearrangement to l8αH,19βH-ursane triterpenoids with antiviral activity. Nat Prod Res 2020; 36:3286-3296. [PMID: 33287588 DOI: 10.1080/14786419.2020.1855159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Allobetulone E-ring rearrangement under treating with HClO4 in Ac2O under reflux afforded new triterpenoids: 3,28-diacetoxy-21-acetyl-2(3),20(21)-18α,19βH-ursandiene 3 and 3,28-diacetoxy-2(3),18(19)-oleandiene 4. 18α,19βH-Ursanes were transformed at A- and E-rings into indolo- and bis-furfurylidene 7 derivatives. Structure elucidation was performed using COSY, NOESY, HSQC and HMBC experiments, and X-Ray analysis for 3. The potential of newly obtained 18α,19βH-ursanes was evaluated against HCMV and HPV-11, the NCI-60 cancer cell panel and inhibition of α-glucosidase. All of the compounds have shown viral inhibition towards HCMV compared to standard drug Acyclovir. 3β-Acetoxy-21β-acetyl-20β,28-epoxy-18α,19βН-ursane 1 showed moderate activity (EC50 4.87 μM) towards the HCMV-resistant isolate (GDGr K17) compared to standard drug Cidofovir and was four times more potent than Ganciclovir. Compound 7 inhibited the cell growth of the three melanoma and one colon cancer cell. 3-Oxo-21β-acetyl-20β,28-epoxy-18α,19βН-ursane 5 and compound 7 inhibited α-glucosidase with IC50 28.0 µM and 4.0 µM being from 6 to 44 times more active than acarbose.
Collapse
Affiliation(s)
- Marat Babaev
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | | | - Alexander Lobov
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Zarema Galimova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | | | - Tatyana Rybalova
- N.N. Vorozhtzov, Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russian Federation
| | - Ha Thi Thu Nguyen
- Institute of Chemistry, Vietnamese Academy of Science and Technology, Cau Giay Dist, Hanoi, Vietnam
| | - Craig Meyers
- Penn State College of Medicine, Hershey, PA, USA
| | - Mark Prichard
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| |
Collapse
|
50
|
Naasani I. COMPARE Analysis, a Bioinformatic Approach to Accelerate Drug Repurposing against Covid-19 and Other Emerging Epidemics. SLAS DISCOVERY 2020; 26:345-351. [PMID: 33267713 PMCID: PMC8940772 DOI: 10.1177/2472555220975672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel bioinformatic approach for drug repurposing against emerging viral epidemics like Covid-19 is described. It exploits the COMPARE algorithm, a public program from the National Cancer Institute (NCI) to sort drugs according to their patterns of growth inhibitory profiles from a diverse panel of human cancer cell lines. The data repository of the NCI includes the growth inhibitory patterns of more than 55,000 molecules. When candidate drug molecules with ostensible anti-SARS-CoV-2 activities were used as seeds (e.g., hydroxychloroquine, ritonavir, and dexamethasone) in COMPARE, the analysis uncovered several molecules with fingerprints similar to the seeded drugs. Interestingly, despite the fact that the uncovered drugs were from various pharmacological classes (antiarrhythmic, nucleosides, antipsychotic, alkaloids, antibiotics, and vitamins), they were all reportedly known from published literature to exert antiviral activities via different modes, confirming that COMPARE analysis is efficient for predicting antiviral activities of drugs from various pharmacological classes. Noticeably, several of the uncovered drugs can be readily tested, like didanosine, methotrexate, vitamin A, nicotinamide, valproic acid, uridine, and flucloxacillin. Unlike pure in silico methods, this approach is biologically more relevant and able to pharmacologically correlate compounds regardless of their chemical structures. This is an untapped resource, reliable and readily exploitable for drug repurposing against current and future viral outbreaks.
Collapse
Affiliation(s)
- Imad Naasani
- Nanoco Life Sciences, Nanoco Technologies, Ltd., Manchester, UK
| |
Collapse
|