1
|
Artola M, Aerts JMFG, van der Marel GA, Rovira C, Codée JDC, Davies GJ, Overkleeft HS. From Mechanism-Based Retaining Glycosidase Inhibitors to Activity-Based Glycosidase Profiling. J Am Chem Soc 2024; 146:24729-24741. [PMID: 39213505 PMCID: PMC11403624 DOI: 10.1021/jacs.4c08840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Activity-based protein profiling (ABPP) is an effective technology for the identification and functional annotation of enzymes in complex biological samples. ABP designs are normally directed to an enzyme active site nucleophile, and within the field of Carbohydrate-Active Enzymes (CAZymes), ABPP has been most successful for those enzymes that feature such a residue: retaining glycosidases (GHs). Several mechanism-based covalent and irreversible retaining GH inhibitors have emerged over the past sixty years. ABP designs based on these inhibitor chemistries appeared since the turn of the millennium, and we contributed to the field by designing a suite of retaining GH ABPs modeled on the structure and mode of action of the natural product, cyclophellitol. These ABPs enable the study of both exo- and endo-acting retaining GHs in human health and disease, for instance in genetic metabolic disorders in which retaining GHs are deficient. They are also finding increasing use in the study of GHs in gut microbiota and environmental microorganisms, both in the context of drug (de)toxification in the gut and that of biomass polysaccharide processing for future sustainable energy and chemistries. This account comprises the authors' view on the history of mechanism-based retaining GH inhibitor design and discovery, on how these inhibitors served as blueprints for retaining GH ABP design, and on some current and future developments on how cyclophellitol-based ABPs may drive the discovery of retaining GHs and their inhibitors.
Collapse
Affiliation(s)
- Marta Artola
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | | | - Carme Rovira
- Departament de Química Inorgànica I Orgànica & IQTCUB, Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08020, Spain
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Gideon J Davies
- Department of Chemistry, The University York, Heslington, York YO10 5DD, United Kingdom
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
2
|
Zhang S, Tang Q, Zhang X, Chen X. Proximitomics by Reactive Species. ACS CENTRAL SCIENCE 2024; 10:1135-1147. [PMID: 38947200 PMCID: PMC11212136 DOI: 10.1021/acscentsci.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
The proximitome is defined as the entire collection of biomolecules spatially in the proximity of a biomolecule of interest. More broadly, the concept of the proximitome can be extended to the totality of cells proximal to a specific cell type. Since the spatial organization of biomolecules and cells is essential for almost all biological processes, proximitomics has recently emerged as an active area of scientific research. One of the growing strategies for proximitomics leverages reactive species-which are generated in situ and spatially confined, to chemically tag and capture proximal biomolecules and cells for systematic analysis. In this Outlook, we summarize different types of reactive species that have been exploited for proximitomics and discuss their pros and cons for specific applications. In addition, we discuss the current challenges and future directions of this exciting field.
Collapse
Affiliation(s)
- Shaoran Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qi Tang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
| | - Xu Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xing Chen
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, People’s
Republic of China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
3
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
4
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Abe A, Kamiya M. A versatile toolbox for investigating biological processes based on quinone methide chemistry: From self-immolative linkers to self-immobilizing agents. Bioorg Med Chem 2021; 44:116281. [PMID: 34216983 DOI: 10.1016/j.bmc.2021.116281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 11/26/2022]
Abstract
Quinone methide (QM) species have been included in the design of various functional molecules. In this review, we present a comprehensive overview of bioanalytical tools based on QM chemistry. In the first part, we focus on self-immolative linkers that have been incorporated into functional molecules such as prodrugs and fluorescent probes. In the latter half, we outline how the highly electrophilic property of QMs, enabling them to react rapidly with neighboring nucleophiles, has been applied to develop inhibitors or labeling probes for enzymes, as well as self-immobilizing fluorogenic probes with high spatial resolution. This review systematically summarizes the versatile QM toolbox available for investigating biological processes.
Collapse
Affiliation(s)
- Atsuki Abe
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Bian Y, Ding W, Hu L, Zhu X, Sun Y, Sheng Z. Magneto-Revealing and Acceleration of Hidden Kirkendall Effect in Galvanic Replacement Reaction. J Phys Chem Lett 2021; 12:5294-5300. [PMID: 34061538 DOI: 10.1021/acs.jpclett.1c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rate and product control are crucial for a chemical process and are useful in a wide range of applications. Traditionally, thermodynamic parameters, such as temperature or pressure, have been used to control the chemical reactions. Here, by using the fabrication of a hollow MnxFeyO4 nanostructure as a model system, we report an experimental tuning of both chemical reaction rate and product by a high magnetic field. A 12 times magneto-acceleration of the galvanic replacement (GR) reaction was observed. Moreover, it is first demonstrated that a magnetic field can unravel and accelerate the hidden Kirkendall effect (KE) in addition to the pristine GR reaction. With coaction of magneto-tuned KE and GR, not only the rate but also the composition as well as magnetic property of the products could be modulated. These observations suggest that not only is a magnetic field a variable parameter that cannot be ignored, but also it can effectively control both rate and product in a chemical reaction, which provides a new route for chemical process controlling and shape/composition designing in material synthesis.
Collapse
Affiliation(s)
- Yuecheng Bian
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wei Ding
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lin Hu
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoguang Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yuping Sun
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhigao Sheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
8
|
Noguchi K, Shimomura T, Ohuchi Y, Ishiyama M, Shiga M, Mori T, Katayama Y, Ueno Y. β-Galactosidase-Catalyzed Fluorescent Reporter Labeling of Living Cells for Sensitive Detection of Cell Surface Antigens. Bioconjug Chem 2020; 31:1740-1744. [PMID: 32538077 DOI: 10.1021/acs.bioconjchem.0c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to detect cell surface proteins using fluorescent-dye-labeled antibodies is crucial for the reliable identification of many cell types. However, the different types of cell surface proteins used to identify cells are currently limited in number because they need to be expressed at high levels to exceed background cellular autofluorescence, especially in the shorter-wavelength region. Herein we report on a new method, quinone methide-based catalyzed labeling for signal amplification (CLAMP), in which the fluorescence signal is amplified by an enzymatic reaction that strongly facilitates the detection of cell surface proteins on living cells. We used β-galactosidase as an amplification enzyme and designed a substrate for it, called MUGF, that contains a fluoromethyl group. Upon removal of the galactosyl group in MUGF by β-galactosidase labeling of the target cell surface proteins, the resulting product containing the quinone methide group was found to be both cell-membrane-permeable and reactive with intracellular nucleophiles, thereby providing fluorescent adducts. Using this method, we successfully detected several cell surface proteins, including programmed death ligand 1 protein, which is difficult to detect using conventional fluorescent-dye-labeled antibodies.
Collapse
Affiliation(s)
- Katsuya Noguchi
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Takashi Shimomura
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Yuya Ohuchi
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Munetaka Ishiyama
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Masanobu Shiga
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yuichiro Ueno
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| |
Collapse
|
9
|
Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Directing Quinone Methide-Dependent Alkylation and Cross-Linking of Nucleic Acids with Quaternary Amines. Bioconjug Chem 2020; 31:1486-1496. [PMID: 32298588 PMCID: PMC7242154 DOI: 10.1021/acs.bioconjchem.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.
Collapse
Affiliation(s)
- Mark A. Hutchinson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Blessing D. Deeyaa
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Shane R. Byrne
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Sierra J. Williams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| |
Collapse
|
10
|
Deeyaa BD, Rokita SE. Migratory ability of quinone methide-generating acridine conjugates in DNA. Org Biomol Chem 2020; 18:1671-1678. [DOI: 10.1039/d0ob00081g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conversion of a bisquinone methide–acridine conjugate to its monofunctional analogue releases the constraints that limit migration of its reversible adducts within DNA.
Collapse
|
11
|
Abstract
Biomedical use cases for self-immolative polymers.
Collapse
Affiliation(s)
- Yue Xiao
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Xuyu Tan
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
| | - Zhaohui Li
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Ke Zhang
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
| |
Collapse
|
12
|
Song H, Li Y, Chen Y, Xue C, Xie H. Highly Efficient Multiple‐Labeling Probes for the Visualization of Enzyme Activities. Chemistry 2019; 25:13994-14002. [DOI: 10.1002/chem.201903458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Heng Song
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuyao Li
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yefeng Chen
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Chenghong Xue
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
13
|
Shi Y, Zhu R, Xue Z, Han J, Han S. An in cellulo-activated multicolor cell labeling approach used to image dying cell clearance. Analyst 2019; 144:4687-4693. [DOI: 10.1039/c9an00904c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dying cell clearance is critical for myriad biological processes such as tissue homeostasis.
Collapse
Affiliation(s)
- Yilong Shi
- State key Laboratory of Cellular Stress Biology
- Innovation Center for Cell Signalling Network
- School of Life Sciences
- Xiamen University
- Xiamen, Fujian
| | - Rui Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| | - Zhongwei Xue
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology
- Innovation Center for Cell Signalling Network
- School of Life Sciences
- Xiamen University
- Xiamen, Fujian
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| |
Collapse
|
14
|
A front-face 'SNi synthase' engineered from a retaining 'double-SN2' hydrolase. Nat Chem Biol 2017; 13:874-881. [DOI: 10.1038/nchembio.2394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/08/2017] [Indexed: 01/13/2023]
|
15
|
Marques ARA, Willems LI, Herrera Moro D, Florea BI, Scheij S, Ottenhoff R, van Roomen CPAA, Verhoek M, Nelson JK, Kallemeijn WW, Biela-Banas A, Martin OR, Cachón-González MB, Kim NN, Cox TM, Boot RG, Overkleeft HS, Aerts JMFG. A Specific Activity-Based Probe to Monitor Family GH59 Galactosylceramidase, the Enzyme Deficient in Krabbe Disease. Chembiochem 2017; 18:402-412. [DOI: 10.1002/cbic.201600561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- André R. A. Marques
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
- Present address: Institute of Biochemistry; Christian-Albrechts-University of Kiel; Otto-Hahn-Platz 9 24098 Kiel Germany
| | - Lianne I. Willems
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteeinweg 55 2300 RA Leiden The Netherlands
- Present address: Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby V5A 1S6 BC Canada
| | - Daniela Herrera Moro
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Bogdan I. Florea
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteeinweg 55 2300 RA Leiden The Netherlands
| | - Saskia Scheij
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Roelof Ottenhoff
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Cindy P. A. A. van Roomen
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Marri Verhoek
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jessica K. Nelson
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Wouter W. Kallemeijn
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Anna Biela-Banas
- Institute of Organic and Analytical Chemistry; Université D'Orléans; Rue de Chartres B. P. 6759 45100 Orléans France
| | - Olivier R. Martin
- Institute of Organic and Analytical Chemistry; Université D'Orléans; Rue de Chartres B. P. 6759 45100 Orléans France
| | - M. Begoña Cachón-González
- Department of Medicine; University of Cambridge; Addenbrooke's Hospital; Hills Road Cambridge CB2 2QQ UK
| | - Nee Na Kim
- Department of Medicine; University of Cambridge; Addenbrooke's Hospital; Hills Road Cambridge CB2 2QQ UK
| | - Timothy M. Cox
- Department of Medicine; University of Cambridge; Addenbrooke's Hospital; Hills Road Cambridge CB2 2QQ UK
| | - Rolf G. Boot
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteeinweg 55 2300 RA Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| |
Collapse
|
16
|
Lumba MA, Willis LM, Santra S, Rana R, Schito L, Rey S, Wouters BG, Nitz M. A β-galactosidase probe for the detection of cellular senescence by mass cytometry. Org Biomol Chem 2017; 15:6388-6392. [DOI: 10.1039/c7ob01227f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzyme substrates for mass cytometry applications enable new dimensions in multiparametric cellular assays.
Collapse
Affiliation(s)
- M. A. Lumba
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - L. M. Willis
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - S. Santra
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - R. Rana
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - L. Schito
- Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research
- University Health Network
- Toronto
- Canada
| | - S. Rey
- Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research
- University Health Network
- Toronto
- Canada
| | - B. G. Wouters
- Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research
- University Health Network
- Toronto
- Canada
| | - M. Nitz
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| |
Collapse
|
17
|
Mao W, Xia L, Wang Y, Xie H. A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection. Chem Asian J 2016; 11:3493-3497. [DOI: 10.1002/asia.201601344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Yaqun Wang
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
18
|
Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M, Urano Y. Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution. Angew Chem Int Ed Engl 2016; 55:9620-4. [PMID: 27400827 DOI: 10.1002/anie.201603328] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/11/2022]
Abstract
The LacZ gene, which encodes Escherichia coli β-galactosidase, is widely used as a marker for cells with targeted gene expression or disruption. However, it has been difficult to detect lacZ-positive cells in living organisms or tissues at single-cell resolution, limiting the utility of existing lacZ reporters. Herein we present a newly developed fluorogenic β-galactosidase substrate suitable for labeling live cells in culture, as well as in living tissues. This precisely functionalized fluorescent probe exhibited dramatic activation of fluorescence upon reaction with the enzyme, remained inside cells by anchoring itself to intracellular proteins, and provided single-cell resolution. Neurons labeled with this probe preserved spontaneous firing, which was enhanced by application of ligands of receptors expressed in the cells, suggesting that this probe would be applicable to investigate functions of targeted cells in living tissues and organisms.
Collapse
Affiliation(s)
- Tomohiro Doura
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,PRESTO, Japan, Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Fumiaki Obata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshifumi Yamaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,PRESTO, Japan, Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Takashi Matsuda
- School of Life Science, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance, Tsukuba, Ibaraki, 305-8577, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,CREST, Japan, Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,CREST, Japan, Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
19
|
Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M, Urano Y. Detection ofLacZ-Positive Cells in Living Tissue with Single-Cell Resolution. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomohiro Doura
- Graduate School of Medicine; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Mako Kamiya
- Graduate School of Medicine; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- PRESTO, Japan, Science and Technology Agency; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Fumiaki Obata
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yoshifumi Yamaguchi
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- PRESTO, Japan, Science and Technology Agency; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Takeshi Y. Hiyama
- Division of Molecular Neurobiology; National Institute for Basic Biology; 5-1 Higashiyama Myodaiji-cho, Okazaki Aichi 444-8787 Japan
- School of Life Science; The Graduate University for Advanced Studies; 5-1 Higashiyama Myodaiji-cho, Okazaki Aichi 444-8787 Japan
| | - Takashi Matsuda
- School of Life Science; The Graduate University for Advanced Studies; 5-1 Higashiyama Myodaiji-cho, Okazaki Aichi 444-8787 Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance; Tsukuba Ibaraki 305-8577 Japan
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki, 305-8577 Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology; National Institute for Basic Biology; 5-1 Higashiyama Myodaiji-cho, Okazaki Aichi 444-8787 Japan
- School of Life Science; The Graduate University for Advanced Studies; 5-1 Higashiyama Myodaiji-cho, Okazaki Aichi 444-8787 Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- CREST, Japan, Agency for Medical Research and Development; 1-7-1 Otemachi Chiyoda-ku Tokyo 100-0004 Japan
| | - Yasuteru Urano
- Graduate School of Medicine; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- CREST, Japan, Agency for Medical Research and Development; 1-7-1 Otemachi Chiyoda-ku Tokyo 100-0004 Japan
| |
Collapse
|
20
|
Polaske NW, Kelly BD, Ashworth-Sharpe J, Bieniarz C. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates. Bioconjug Chem 2016; 27:660-6. [DOI: 10.1021/acs.bioconjchem.5b00652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan W. Polaske
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Brian D. Kelly
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Julia Ashworth-Sharpe
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Christopher Bieniarz
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| |
Collapse
|
21
|
Delespaul W, Peeters Y, Herdewijn P, Robben J. A novel helper phage for HaloTag-mediated co-display of enzyme and substrate on phage. Biochem Biophys Res Commun 2015; 460:245-9. [PMID: 25772618 DOI: 10.1016/j.bbrc.2015.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Phage display is an established technique for the molecular evolution of peptides and proteins. For the selection of enzymes based on catalytic activity however, simultaneous coupling of an enzyme and its substrate to the phage surface is required. To facilitate this process of co-display, we developed a new helper phage displaying HaloTag, a modified haloalkane dehalogenase that binds specifically and covalently to functionalized haloalkane ligands. The display of functional HaloTag was demonstrated by capture on streptavidin-coated magnetic beads, after coupling a biotinylated haloalkane ligand, or after on-phage extension of a DNA oligonucleotide primer with a biotinylated nucleotide by phi29 DNA polymerase. We also achieved co-display of HaloTag and phi29 DNA polymerase, thereby opening perspectives for the molecular evolution of this enzyme (and others) towards new substrate specificities.
Collapse
Affiliation(s)
- Wouter Delespaul
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| | - Yves Peeters
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medicinal Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| |
Collapse
|
22
|
Su YC, Cheng TC, Leu YL, Roffler SR, Wang JY, Chuang CH, Kao CH, Chen KC, Wang HE, Cheng TL. PET imaging of β-glucuronidase activity by an activity-based 124I-trapping probe for the personalized glucuronide prodrug targeted therapy. Mol Cancer Ther 2014; 13:2852-63. [PMID: 25277385 DOI: 10.1158/1535-7163.mct-14-0212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta-glucuronidase (βG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image βG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of βG activity for medical usage is not yet available. Here, we developed a radioactive βG activity-based trapping probe for positron emission tomography (PET). We generated a (124)I-tyramine-conjugated difluoromethylphenol beta-glucuronide probe (TrapG) to form (124)I-TrapG that could be selectively activated by βG for subsequent attachment of (124)I-tyramine to nucleophilic moieties near βG-expressing sites. We estimated the specificity of a fluorescent FITC-TrapG, the cytotoxicity of tyramine-TrapG, and the serum half-life of (124)I-TrapG. βG targeting of (124)I-TrapG in vivo was examined by micro-PET. The biodistribution of (131)I-TrapG was investigated in different organs. Finally, we imaged the endogenous βG activity and assessed its correlation with therapeutic efficacy of 9-aminocamptothecin glucuronide (9ACG) prodrug in native tumors. FITC-TrapG showed specific trapping at βG-expressing CT26 (CT26/mβG) cells but not in CT26 cells. The native TrapG probe possessed low cytotoxicity. (124)I-TrapG preferentially accumulated in CT26/mβG but not CT26 cells. Meanwhile, micro-PET and whole-body autoradiography results demonstrated that (124)I-TrapG signals in CT26/mβG tumors were 141.4-fold greater than in CT26 tumors. Importantly, Colo205 xenografts in nude mice that express elevated endogenous βG can be monitored by using infrared glucuronide trapping probes (NIR-TrapG) and suppressed by 9ACG prodrug treatment. (124)I-TrapG exhibited low cytotoxicity allowing long-term monitoring of βG activity in vivo to aid in the optimization of prodrug targeted therapy.
Collapse
Affiliation(s)
- Yu-Cheng Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ta-Chun Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ling Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Han Kao
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Tian-Lu Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Willems LI, Jiang J, Li KY, Witte MD, Kallemeijn WW, Beenakker TJN, Schröder SP, Aerts JMFG, van der Marel GA, Codée JDC, Overkleeft HS. From Covalent Glycosidase Inhibitors to Activity-Based Glycosidase Probes. Chemistry 2014; 20:10864-72. [DOI: 10.1002/chem.201404014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Stubbs KA. Activity-based proteomics probes for carbohydrate-processing enzymes: current trends and future outlook. Carbohydr Res 2014; 390:9-19. [DOI: 10.1016/j.carres.2014.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 11/27/2022]
|
25
|
Botvinovskaya AV, Kostrikina IA, Buneva VN, Nevinsky GA. Systemic lupus erythematosus: molecular cloning of several recombinant DNase monoclonal kappa light chains with different catalytic properties. J Mol Recognit 2014; 26:450-60. [PMID: 23996487 DOI: 10.1002/jmr.2286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of three patients with systemic lupus erythematosus was used. Phage particles displaying DNA binding light chains were isolated by affinity chromatography on DNA-cellulose, and the fraction eluted by an acidic buffer (pH 2.6) was used for preparation of individual monoclonal light chains (MLChs, 28 kDa). Thirty three of 687 individual colonies obtained were randomly chosen for study of MLCh DNase activity. Nineteen of 33 clones contained MLChs with DNase activity. Four preparations of MLChs were expressed in Escherichia coli in soluble form, purified by metal chelating chromatography followed by gel filtration, and studied in detail. Detection of DNase activity after SDS-PAGE in a gel containing DNA demonstrated that the four MLChs are not contaminated by canonical DNases. The MLChs demonstrated one or two pH optima. They were inactive after the dialysis against ethylenediaminetetraacetic acid but could be activated by several externally added metal ions; the ratio of relative activity in the presence of Mg(2+) , Mn(2+) , Ni(2+) , Ca(2+) , Zn(2+) , and Co(2+) was individual for each MLCh preparation. K(+) and Na(+) inhibited the DNase activity of various MLChs at different concentrations. Hydrolysis of DNA by all four MLCh was saturable and consistent with Michaelis-Menten kinetics. These clones are the first examples of recombinant MLChs possessing high affinity for DNA (Km = 3-9 nM) and demonstrating high kcat values (3.4-6.9 min(-1) ). These observations suggest that the systemic lupus erythematosus light chain repertoire can serve as a source of new types of DNases.
Collapse
Affiliation(s)
- Alina V Botvinovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
26
|
Tsumuraya T, Fujii I. Directed Evolution of Hydrolytic Antibodies in Phage-displayed Combinatorial Libraries. CHEM LETT 2014. [DOI: 10.1246/cl.131220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| | - Ikuo Fujii
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| |
Collapse
|
27
|
Juríček M, Strutt NL, Barnes JC, Butterfield AM, Dale EJ, Baldridge KK, Stoddart JF, Siegel JS. Induced-fit catalysis of corannulene bowl-to-bowl inversion. Nat Chem 2014; 6:222-8. [PMID: 24557137 DOI: 10.1038/nchem.1842] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/09/2013] [Indexed: 01/07/2023]
Abstract
Stereoelectronic complementarity between the active site of an enzyme and the transition state of a reaction is one of the tenets of enzyme catalysis. This report illustrates the principles of enzyme catalysis (first proposed by Pauling and Jencks) through a well-defined model system that has been fully characterized crystallographically, computationally and kinetically. Catalysis of the bowl-to-bowl inversion processes that pertain to corannulene is achieved by combining ground-state destabilization and transition-state stabilization within the cavity of an extended tetracationic cyclophane. This synthetic receptor fulfils a role reminiscent of a catalytic antibody by stabilizing the planar transition state for the bowl-to-bowl inversion of (ethyl)corannulene (which accelerates this process by a factor of ten at room temperature) by an induced-fit mechanism first formulated by Koshland.
Collapse
Affiliation(s)
- Michal Juríček
- Center for the Chemistry of Integrated Systems, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Nathan L Strutt
- Center for the Chemistry of Integrated Systems, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Jonathan C Barnes
- Center for the Chemistry of Integrated Systems, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Anna M Butterfield
- Organic Chemistry Institute (OCI), University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | - Edward J Dale
- Center for the Chemistry of Integrated Systems, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Kim K Baldridge
- 1] Organic Chemistry Institute (OCI), University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland [2] School of Pharmaceutical Science and Technology, Tianjin University (A210/Building 24), 92 Weijin Road, Nankai District, Tianjin, 300072 PRC, China
| | - J Fraser Stoddart
- Center for the Chemistry of Integrated Systems, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Jay S Siegel
- 1] Organic Chemistry Institute (OCI), University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland [2] School of Pharmaceutical Science and Technology, Tianjin University (A210/Building 24), 92 Weijin Road, Nankai District, Tianjin, 300072 PRC, China
| |
Collapse
|
28
|
Lo LC, Chu CY, Lin FA, Pan YR, Li YK, Lin JJ. Synthesis of Activity Probes for β-Xylosidase. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Lo LC, Wang HY, Wang ZJ. Design and Synthesis of an Activity Probe for Protein Tyrosine Phosphatases. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
White KA, Zegelbone PM. Directed evolution of a probe ligase with activity in the secretory pathway and application to imaging intercellular protein-protein interactions. Biochemistry 2013; 52:3728-39. [PMID: 23614685 DOI: 10.1021/bi400268m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, we reported a new method for intracellular protein labeling in living cells called PRIME (probe incorporation mediated by enzymes). PRIME uses a mutant of Escherichia coli lipoic acid ligase (LplA) to catalyze covalent probe ligation onto a 13-amino acid peptide recognition sequence. While our first demonstration labeled proteins with a coumarin fluorophore, subsequent engineering produced alkyl azide and trans-cyclooctene ligases as well as an interaction-dependent form of the coumarin PRIME method (ID-PRIME). One major limitation of the PRIME methodologies is that LplA mutants have very low activity in the secretory pathway. Here, we extend PRIME labeling to oxidizing compartments such as the endoplasmic reticulum and the cell surface. We used yeast-display evolution and four rounds of selection to isolate LplA mutants with improved picolyl azide ligation activity. Then we compared the ligation activities of the evolved mutants both in vitro and on the mammalian cell surface. We characterized the picolyl azide ligation activity of the most active LplA variant in vitro, in the endoplasmic reticulum, and at the mammalian cell surface. Finally, we used the optimized LplA variant to label neurexin and neuroligin interactions at the mammalian cell surface in just 5 min. Compared to another method for imaging these protein-protein interactions (GFP recomplementation across synapses), our optimized ID-PRIME ligase is faster, more sensitive, and does not trap interacting proteins in a complex (nontrapping).
Collapse
Affiliation(s)
- Katharine A White
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
31
|
Chauvigné-Hines LM, Anderson LN, Weaver HM, Brown JN, Koech PK, Nicora CD, Hofstad BA, Smith RD, Wilkins MJ, Callister SJ, Wright AT. Suite of activity-based probes for cellulose-degrading enzymes. J Am Chem Soc 2012; 134:20521-32. [PMID: 23176123 PMCID: PMC3538167 DOI: 10.1021/ja309790w] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome-producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry and to increase enzyme active site inclusion for liquid chromatography-mass spectrometry (LC-MS) analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose-degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose-degrading systems and facilitates a greater understanding of the organismal role associated with biofuel development.
Collapse
Affiliation(s)
| | | | - Holly M. Weaver
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Joseph N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Phillip K. Koech
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Beth A. Hofstad
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Michael J. Wilkins
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352
| |
Collapse
|
32
|
Kai H, Hinou H, Naruchi K, Matsushita T, Nishimura SI. Macrocyclic Mechanism-Based Inhibitor for Neuraminidases. Chemistry 2012; 19:1364-72. [DOI: 10.1002/chem.201200859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 10/24/2012] [Indexed: 01/13/2023]
|
33
|
Chen L, Luo A, Zhang Y, Liu F, Jiang Y, Xu Q, Chen X, Hu Q, Chen SF, Chen KJ, Kuo HC. Optimization of the single-phased white phosphor of Li2SrSiO4: Eu2+, Ce3+ for light-emitting diodes by using the combinatorial approach assisted with the Taguchi method. ACS COMBINATORIAL SCIENCE 2012; 14:636-44. [PMID: 23095104 DOI: 10.1021/co300058x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The best performance of the phosphor Li(2)SrSiO(4): Eu(2+), Ce(3+) in terms of luminescence efficiency (LE), color rendering index (CRI) and color temperature (Tc) for light-emitting diode application was optimized with combinatorial approach. The combinatorial libraries were synthesized with solution-based method and the scale-up samples were synthesized with conventional solid-reaction method. Crystal structure was investigated by using the X-ray diffraction spectrometer. The emission spectra of each sample in combinatorial libraries were measured in situ by using a fiber optic spectrometer. Fluorescence spectrometers were used to record excitation and emission spectra of bulk samples. White light generation was tuned up by tailoring Eu(2+) and Ce(3+) concentrations in the single-phased host of Li(2)SrSiO(4) under near-ultraviolet excitation, but it exhibited low efficiency of luminescence and poor color rendering index. The effects of each level of the Eu(2+) and Ce(3+) concentrations on LE, CRI, and Tc were evaluated with the Taguchi method. The optimum levels of the interaction pairs between Eu(2+) and Ce(3+) concentration on LE, CRI, and Tc were [2, 1] (0.006 M, 0.003 M), [1, 2] (0.003 M, 0.006 M), and [3, 1] (0.009 M, 0.00 3M), respectively. The thermal stability of luminescence, the external quantum efficiency (QE), luminance, chromaticity coordinates, correlated color temperature, color purity including the composition ratio of RGB in white light, and color rendering index of the white light emission of phosphor were evaluated comprehensively from a bulk sample.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
- Semiconductor and Optoelectronic Technology Engineering Research Center of Anhui Province, Wuhu 241000, China
| | - Anqi Luo
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yao Zhang
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fayong Liu
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Jiang
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qingsheng Xu
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinhui Chen
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qingzhuo Hu
- School of Materials Science
and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shi-Fu Chen
- Department of Chemistry, Huaibei Normal University, Huaibei 235000, China
| | - Kuo-Ju Chen
- Department of Photonic & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hao-Chung Kuo
- Department of Photonic & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
34
|
Chen SH, Kuo YT, Singh G, Cheng TL, Su YZ, Wang TP, Chiu YY, Lai JJ, Chang CC, Jaw TS, Tzou SC, Liu GC, Wang YM. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling. Inorg Chem 2012; 51:12426-35. [PMID: 23116118 DOI: 10.1021/ic301827p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.
Collapse
Affiliation(s)
- Shih-Hsien Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , 100 Shih-Chuan first Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Geibel B, Merschky M, Rether C, Schmuck C. Artificial Enzyme Mimics. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Cheng TC, Roffler SR, Tzou SC, Chuang KH, Su YC, Chuang CH, Kao CH, Chen CS, Harn IH, Liu KY, Cheng TL, Leu YL. An Activity-Based Near-Infrared Glucuronide Trapping Probe for Imaging β-Glucuronidase Expression in Deep Tissues. J Am Chem Soc 2012; 134:3103-10. [DOI: 10.1021/ja209335z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ta-Chun Cheng
- Graduate Institute
of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shey-Cherng Tzou
- Department
of Biomedical Science
and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Hsiang Chuang
- Department
of Biomedical Science
and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Su
- Institute
of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute
of Microbiology and
Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hung Chuang
- Institutes
of Basic Medical
Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Han Kao
- Graduate Institute
of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Shu Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - I-Hong Harn
- Department
of Biomedical Science
and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Yi Liu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan,
Taiwan
| | - Tian-Lu Cheng
- Department
of Biomedical Science
and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Ling Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan,
Taiwan
| |
Collapse
|
37
|
Ezzine A, M'Hirsi el Adab S, Bouhaouala-Zahar B, Hmila I, Baciou L, Marzouki MN. Efficient expression of the anti-AahI' scorpion toxin nanobody under a new functional form in a Pichia pastoris system. Biotechnol Appl Biochem 2012; 59:15-21. [DOI: 10.1002/bab.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/06/2011] [Indexed: 01/22/2023]
|
38
|
Chen L, Chu CI, Chen KJ, Chen PY, Hu SF, Liu RS. An intelligent approach to the discovery of luminescent materials using a combinatorial approach combined with Taguchi methodology. LUMINESCENCE 2011; 26:229-38. [DOI: 10.1002/bio.1318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022]
Affiliation(s)
| | - Cheng-I Chu
- Department of Chemistry; National Taiwan University; Taipei
| | - Kuo-Ju Chen
- Institute of Electro-optical Science and Technology; National Taiwan Normal University; Taipei; Taiwan
| | - Po-Yuan Chen
- Institute of Electro-optical Science and Technology; National Taiwan Normal University; Taipei; Taiwan
| | - Shu-Fen Hu
- Department of Physics; National Taiwan Normal University; Taipei; Taiwan
| | - Ru-Shi Liu
- Department of Chemistry; National Taiwan University; Taipei
| |
Collapse
|
39
|
Yanagida H, Matsuura T, Kazuta Y, Yomo T. In vitro selection of proteins that undergo covalent labeling with small molecules by thiol-disulfide exchange by using ribosome display. Chembiochem 2011; 12:962-9. [PMID: 21384482 DOI: 10.1002/cbic.201000620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Indexed: 11/10/2022]
Abstract
There is a great deal of interest in proteins that can bind covalently to target molecules, as they allow unambiguous experiments by tight binding to molecules of interest. Here, we report the generation of proteins that undergo covalent labeling with small molecules through in vitro selection by using ribosome display. Selection was performed from a mutant library of the WW domain with a biotinylated peptide as its binding target, in which the biotin and the peptide are connected by a disulfide bond. After five rounds of selection, we identified mutants carrying a particular cysteine mutation. The binding target reacted specifically with the selected mutant, even in the presence of other proteins, and resulted in the generation of biotin- or peptide-labeled WW domains by thiol-disulfide exchange. When the mutant was fused to a protein of interest, the fusion protein was also labeled with biotin. Thus, the characteristics of the selected mutant should be suitable as a tag sequence that can be covalently labeled with small synthetic molecules. These results indicate that the rapid and efficient generation of such proteins is possible by ribosome display.
Collapse
Affiliation(s)
- Hayato Yanagida
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
40
|
Witte MD, van der Marel GA, Aerts JMFG, Overkleeft HS. Irreversible inhibitors and activity-based probes as research tools in chemical glycobiology. Org Biomol Chem 2011; 9:5908-26. [DOI: 10.1039/c1ob05531c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Kwan DH, Chen H, Ratananikom K, Hancock SM, Watanabe Y, Kongsaeree PT, Samuels AL, Withers SG. Self‐Immobilizing Fluorogenic Imaging Agents of Enzyme Activity. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201005705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David H. Kwan
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | - Hong‐Ming Chen
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | | | - Susan M. Hancock
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | - Yoichiro Watanabe
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | | | - A. Lacey Samuels
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | - Stephen G. Withers
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| |
Collapse
|
42
|
Kwan DH, Chen H, Ratananikom K, Hancock SM, Watanabe Y, Kongsaeree PT, Samuels AL, Withers SG. Self‐Immobilizing Fluorogenic Imaging Agents of Enzyme Activity. Angew Chem Int Ed Engl 2010; 50:300-3. [DOI: 10.1002/anie.201005705] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David H. Kwan
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | - Hong‐Ming Chen
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | | | - Susan M. Hancock
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | - Yoichiro Watanabe
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | | | - A. Lacey Samuels
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| | - Stephen G. Withers
- Departments of Chemistry and Botany, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada), Fax: (+1) 604‐822‐8869
| |
Collapse
|
43
|
Zhang K, He J, Yang M, Yen M, Yin J. Identifying natural product biosynthetic genes from a soil metagenome by using T7 phage selection. Chembiochem 2010; 10:2599-606. [PMID: 19780075 DOI: 10.1002/cbic.200900297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Keya Zhang
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, GCIS E505A, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
44
|
Weinstain R, Baran PS, Shabat D. Activity-Linked Labeling of Enzymes by Self-Immolative Polymers. Bioconjug Chem 2009; 20:1783-91. [DOI: 10.1021/bc9002037] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roy Weinstain
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel, and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Phil S. Baran
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel, and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel, and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
45
|
Sunbul M, Marshall NJ, Zou Y, Zhang K, Yin J. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. J Mol Biol 2009; 387:883-98. [PMID: 19340948 DOI: 10.1016/j.jmb.2009.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3'-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.
Collapse
Affiliation(s)
- Murat Sunbul
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
46
|
Zou Y, Yin J. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display. Bioorg Med Chem Lett 2008; 18:5664-7. [DOI: 10.1016/j.bmcl.2008.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/22/2008] [Accepted: 08/22/2008] [Indexed: 11/29/2022]
|
47
|
Chaput JC, Woodbury NW, Stearns LA, Williams BAR. Creating protein biocatalysts as tools for future industrial applications. Expert Opin Biol Ther 2008; 8:1087-98. [PMID: 18613761 DOI: 10.1517/14712598.8.8.1087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Biocatalysts provide an economical and energy-efficient alternative to traditional chemical manufacturing processes. For processes where biocatalysts currently do not exist or existing protein catalysts function poorly, there is a tremendous need to discover new protein catalysts that function in industrial settings. The protein engineering community has traditionally relied on cell-based techniques in 96-well format to evolve new catalysts or improve existing enzymes. OBJECTIVE This review examines recent progress made in many display technologies, providing powerful alternatives for generating novel enzymes with altered specificity or altogether new types of function. METHODS Library creation methods and display technologies that are commonly used in conjunction with enzyme evolution are discussed. CONCLUSION We conclude with an expert opinion on future trans-disciplinary approaches that combine directed evolution with computational design as novel platforms for rapidly discovering new types of catalytic function.
Collapse
Affiliation(s)
- John C Chaput
- Center for BioOptical Nanotechnology, The Biodesign Institute, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-5201, USA.
| | | | | | | |
Collapse
|
48
|
Lu CP, Ren CT, Wu SH, Chu CY, Lo LC. Development of an Activity-Based Probe for Steroid Sulfatases. Chembiochem 2007; 8:2187-90. [DOI: 10.1002/cbic.200700279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Reshetnyak AV, Armentano MF, Ponomarenko NA, Vizzuso D, Durova OM, Ziganshin R, Serebryakova M, Govorun V, Gololobov G, Morse HC, Friboulet A, Makker SP, Gabibov AG, Tramontano A. Routes to covalent catalysis by reactive selection for nascent protein nucleophiles. J Am Chem Soc 2007; 129:16175-82. [PMID: 18044899 DOI: 10.1021/ja076528m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactivity-based selection strategies have been used to enrich combinatorial libraries for encoded biocatalysts having revised substrate specificity or altered catalytic activity. This approach can also assist in artificial evolution of enzyme catalysis from protein templates without bias for predefined catalytic sites. The prevalence of covalent intermediates in enzymatic mechanisms suggests the universal utility of the covalent complex as the basis for selection. Covalent selection by phosphonate ester exchange was applied to a phage display library of antibody variable fragments (scFv) to sample the scope and mechanism of chemical reactivity in a naive molecular library. Selected scFv segregated into structurally related covalent and noncovalent binders. Clones that reacted covalently utilized tyrosine residues exclusively as the nucleophile. Two motifs were identified by structural analysis, recruiting distinct Tyr residues of the light chain. Most clones employed Tyr32 in CDR-L1, whereas a unique clone (A.17) reacted at Tyr36 in FR-L2. Enhanced phosphonylation kinetics and modest amidase activity of A.17 suggested a primitive catalytic site. Covalent selection may thus provide access to protein molecules that approximate an early apparatus for covalent catalysis.
Collapse
Affiliation(s)
- Andrey V Reshetnyak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, Miklukho-Maklaya str, Moscow, 117871, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kochetkov NK. Catalytic antibodies: prospects for the use in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n12abeh000439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|