1
|
Song J, Kawakami K, Ariga K. Localized assembly in biological activity: Origin of life and future of nanoarchitectonics. Adv Colloid Interface Sci 2025; 339:103420. [PMID: 39923322 DOI: 10.1016/j.cis.2025.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The concept of nanoarchitectonics has emerged as a post-nanotechnology paradigm in the field of functional materials development. This concept entails the construction of functional material systems at the nanoscale, based on the knowledge acquired from nanotechnology. In biological systems, advanced nanoarchitectonics is achieved through precise structural organization governed by spatial localization, a process facilitated by localized assembly mechanisms. A thorough understanding of the principles of localized assembly is crucial for the creation of complex, asymmetric, hierarchical organizations that are similar in structure and function to living organisms. This review explores the concept of localized assembly, highlighting its biological inspiration, providing representative examples, and discussing its contributions to nanoarchitectonics. Key examples include assemblies using biological materials, those mimicking cellular functions, and those occurring within cells. Additionally, the role of interfacial interactions and liquid-liquid phase separation in localized assembly is emphasized. Particularly, the utilization of liquid-liquid phase separation demonstrates a remarkable capacity for forming intricate compartmentalized structures without discernible membranes, paving the way for multifunctional, localized systems. These localized assemblies are fundamental to essential biological functions and provide valuable insights into the molecular mechanisms underlying the origin of cells and life. Such understanding holds significant promise for advancing materials nanoarchitectonics, particularly in biomedical applications.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
2
|
Kim Y, Gräsing D, Alia A, Wiebeler C, Matysik J. Solid-State NMR Analysis of the Dynamics of Cofactors: Comparison of Heliobacterial and Purple Bacterial Reaction Centers. J Phys Chem B 2024; 128:11525-11545. [PMID: 39514084 DOI: 10.1021/acs.jpcb.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of Heliobacillus (Hb.) mobilis (HbRCs) and the purple bacterium Rhodobacter (R.) sphaeroides (PbRCs). It is assumed that heliobacteria were among the first phototrophic organisms; therefore, their RC can be regarded as ancient. They are constructed homodimerically with perfect C2 symmetry, enabling ET over both branches of cofactors. Modern RCs of R. sphaeroides wild-type (WT) have higher redox power and are functionally highly asymmetric. The dynamics of the cofactors in both RCs has been explored using nuclear hyperpolarization, induced by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Based on the individual incorporation of 13C positions of the cofactors (through supplementation by 13C-δ-aminolevulinic acid), photo-CIDNP magic-angle spinning (MAS) NMR experiments provide access to the local dynamics of the cofactors along the ET path over a broad range of time scales. Theoretical analysis of the dynamic deformation of these macrocycles is also discussed in terms of function. The dynamics observed in HbRCs appears to be correlated to ET. The cofactors in PbRC are significantly less dynamic than those in the HbRC. Relevance for efficiency and redox properties are discussed.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Schultz JD, Parker KA, Therien MJ, Beratan DN. Efficiency Limits of Energy Conversion by Light-Driven Redox Chains. J Am Chem Soc 2024; 146:32805-32815. [PMID: 39530335 DOI: 10.1021/jacs.4c13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conversion of absorbed sunlight to spatially separated electron-hole pairs is a crucial outcome of natural photosynthesis. Many organisms achieve near-unit quantum yields of charge separation (one electron-hole pair per incident photon) by dissipating as heat more than half of the light energy that is deposited in the primary donor. Might alternative choices have been made by Nature that would sacrifice quantum yield in favor of producing higher energy electron/hole pairs? Here, we use a multisite electron hopping model to address the kinetic and thermodynamic compromises that can be made in electron transfer chains, with the aim of understanding Nature's choices and opportunities in bioinspired energy-converting systems. We find that if the electron-transfer coordinates are even weakly coupled to a high-frequency vibrational mode, substantial energy dissipation is necessary to achieve the maximum possible energy storage in an electron-transfer chain. Since high-frequency vibronic coupling is common in physiological redox cofactors, we posit that biological reaction centers have recruited a strategy to convert light energy into redox potential with the near-optimum energy efficiency that is possible in an electron-transfer chain. Our simulations also find that charge separation in electron-transfer chains is subject to a minimum intercofactor separation distance, beneath which energy-dissipating charge recombination is unavoidable. We find that high quantum yield and low energy dissipation can thus be realized simultaneously for multistep electron transfer if recombination pathways are uncoupled from high-frequency vibrations and if the cofactors are held at small-to-intermediate distances apart (ca. 3 to 8 Å edge-to-edge). Our analysis informs the design of bioinspired light-harvesting structures that may exceed 60% energy efficiency, as opposed to the ∼30% efficiency achieved in natural photosynthesis.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kelsey A Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Zhao L, Wang B. Encapsulating Proton Inside C 60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X +@C 60 (X + = H +, H 3O + and NH 4+). Int J Mol Sci 2024; 25:12014. [PMID: 39596081 PMCID: PMC11593435 DOI: 10.3390/ijms252212014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Confining protons into an enclosed carbon cage is expected to give rise to unique electronic properties for both the inner proton and the outer cage. In this work, we systematically investigated the geometric and electronic structures of cationic X+@C60 (X+ = H+, H3O+, and NH4+), and their corresponding neutral species (X = H2O, NH3), by quantum chemical density functional theory calculations. We show that C60 can trap H2O, NH3, H3O+ and NH4+ at the cage center and only slightly influence their geometries. The single proton clings to the inner wall of C60, forming a C-H chemical bond. The encapsulated neutral species almost do not change the electronic structure of the C60, while the internal cations have obvious effects. The charge transfer effect from the inner species to the C60 cage was found for all X@C60 (X = H2O, NH3) (about 0.0 e), X+@C60 (X+ = H3O+, NH4+) (about 0.5 e) and H+@C60 (about 1.0 e) systems. Encapsulating different forms of protons also regulates the fundamental physico-chemical properties of the hollow C60, such as the HOMO-LUMO gaps, infrared spectra, and electrostatic potential, etc., which are discussed in detail. These findings provide a theoretical insight into protons' applications, especially in energy.
Collapse
Affiliation(s)
| | - Bo Wang
- School of Science, Northeast Electric Power University, Jilin 131200, China;
| |
Collapse
|
5
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Noji T, Saito K, Ishikita H. Absence of a link between stabilized charge-separated state and structural changes proposed from crystal structures of a photosynthetic reaction center. Commun Chem 2024; 7:192. [PMID: 39215069 PMCID: PMC11364808 DOI: 10.1038/s42004-024-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Structural differences between illuminated and unilluminated crystal structures led to the proposal that the charge-separated state was stabilized by structural changes in its membrane extrinsic protein subunit H in a bacterial photosynthetic reaction center [Katona, G. et al. Nat. Struct. Mol. Biol. 2005, 12, 630-631]. Here, we explored the proposal by titrating all titratable sites and calculating the redox potential (Em) values in these crystal structures. Contrary to the expected charge-separated states, Em for quinone, Em(QA/QA•-), is even lower in the proposed charge-separated structure than in the ground-state structure. The subunit-H residues, which were proposed to exhibit electron-density changes in the two crystal structures, contribute to an Em(QA/QA•-) difference of only <0.5 mV. Furthermore, the protonation states of the titratable residues in the entire reaction center are practically identical in the two structures. These findings indicate that the proposed structural differences are irrelevant to explaining the significant prolongation of the charge-separated-state lifetime.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Ogata D, Koide S, Kishi H, Yuasa J. Direct observation of electron transfer in solids through X-ray crystallography. Nat Commun 2024; 15:4412. [PMID: 38782903 PMCID: PMC11116525 DOI: 10.1038/s41467-024-48599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Nanoscale electron transfer (ET) in solids is fundamental to the design of multifunctional nanomaterials, yet its process is not fully understood. Herein, through X-ray crystallography, we directly observe solid-state ET via a crystal-to-crystal process. We first demonstrate the creation of a robust and flexible electron acceptor/acceptor (A/A) double-wall nanotube crystal ([(Zn2+)4(LA)4(LA=O)4]n) with a large window (0.90 nm × 0.92 nm) through the one-dimensional porous crystallization of heteroleptic Zn4 metallocycles ((Zn2+)4(LA)4(LA=O)4) with two different acceptor ligands (2,7-bis((1-ethyl-1H-imidazol-2-yl)ethynyl)acridine (LA) and 2,7-bis((1-ethyl-1H-imidazol-2-yl)ethynyl)acridin-9(10H)-one (LA=O)) in a slow-oxidation-associated crystallization procedure. We then achieve the bottom-up construction of the electron donor incorporated-A/A nanotube crystal ([(D)2⊂(Zn2+)4(LA)4(LA=O)4]n) through the subsequent absorption of electron donor guests (D = tetrathiafulvalene (TTF) and ferrocene (Fc)). Finally, we remove electrons from the electron donor guests inside the nanotube crystal through facile ET in the solid state to accumulate holes inside the nanotube crystal ([(D•+)2⊂(Zn2+)4(LA)4(LA=O)4]n), where the solid-state ET process (D - e- → D•+) is thus observed directly by X-ray crystallography.
Collapse
Affiliation(s)
- Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shota Koide
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hiroyuki Kishi
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
8
|
Xing C, Qi Z, Zhou B, Yan D, Fang WH. Solid-State Photochemical Cascade Process Boosting Smart Ultralong Room-Temperature Phosphorescence in Bismuth Halides. Angew Chem Int Ed Engl 2024; 63:e202402634. [PMID: 38466630 DOI: 10.1002/anie.202402634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Molecular ultralong room-temperature phosphorescence (RTP), exhibiting multiple stimuli-responsive characteristics, has garnered considerable attention due to its potential applications in light-emitting devices, sensors, and information safety. This work proposes the utilization of photochemical cascade processes (PCCPs) in molecular crystals to design a stepwise smart RTP switch. By harnessing the sequential dynamics of photo-burst movement (induced by [2+2] photocycloaddition) and photochromism (induced by photogenerated radicals) in a bismuth (Bi)-based metal-organic halide (MOH), a continuous and photo-responsive ultralong RTP can be achieved. Furthermore, utilizing the same Bi-based MOH, diverse application demonstrations, such as multi-mode anti-counterfeiting and information encryption, can be easily implemented. This work thus not only serves as a proof-of-concept for the development of solid-state PCCPs that integrate photosalient effect and photochromism with light-chemical-mechanical energy conversion, but also lays the groundwork for designing new Bi-based MOHs with dynamically responsive ultralong RTP.
Collapse
Affiliation(s)
- Chang Xing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Bo Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
9
|
Begam K, Aksu H, Dunietz BD. Antioxidative Triplet Excitation Energy Transfer in Bacterial Reaction Center Using a Screened Range Separated Hybrid Functional. J Phys Chem B 2024. [PMID: 38687467 DOI: 10.1021/acs.jpcb.3c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Excess energy absorbed by photosystems (PSs) can result in photoinduced oxidative damage. Transfer of such energy within the core pigments of the reaction center in the form of triplet excitation is important in regulating and preserving the functionality of PSs. In the bacterial reaction center (BRC), the special pair (P) is understood to act as the electron donor in a photoinduced charge transfer process, triggering the charge separation process through the photoactive branch A pigments that experience a higher polarizing environment. At this work, triplet excitation energy transfer (TEET) in BRC is studied using a computational perspective to gain insights into the roles of the dielectric environment and interpigment orientations. We find in agreement with experimental observations that TEET proceeds through branch B. The TEET process toward branch B pigment is found to be significantly faster than the hypothetical process proceeding through branch A pigments with ps and ms time scales, respectively. Our calculations find that conformational differences play a major role in this branch asymmetry in TEET, where the dielectric environment asymmetry plays only a secondary role in directing the TEET to proceed through branch B. We also address TEET processes asserting the role of carotenoid as the final triplet energy acceptor and in a mutant form, where the branch pigments adjacent to P are replaced by bacteriopheophytins. The necessary electronic excitation energies and electronic state couplings are calculated by the recently developed polarization-consistent framework combining a screened range-separated hybrid functional and a polarizable continuum mode. The polarization-consistent potential energy surfaces are used to parametrize the quantum mechanical approach, implementing Fermi's golden rule expression of the TEET rate calculations.
Collapse
Affiliation(s)
- Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Huseyin Aksu
- Department of Physics, Faculty of Science at Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
10
|
Fufina TY, Vasilieva LG. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Biophys Rev 2023; 15:921-937. [PMID: 37974998 PMCID: PMC10643783 DOI: 10.1007/s12551-023-01109-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 11/19/2023] Open
Abstract
For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.
Collapse
Affiliation(s)
- T. Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| | - L. G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| |
Collapse
|
11
|
Rohani L, Lamichhane HP, Hastings G. Calculated vibrational properties of pigments in protein binding sites 2: Semiquinones in photosynthetic proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122518. [PMID: 36996613 DOI: 10.1016/j.saa.2023.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[QA- - QA] Fourier transform infrared difference spectra have previously been obtained using purple bacterial reaction centers from Rhodobacter sphaeroides with unlabeled, 18O and 13C isotope labeled phylloquinone (PhQ, also known as vitamin K1) incorporated into the QA protein binding site (Breton, (1997), Proc. Natl. Acad. Sci. USA94 11318-11323). The nature of the bands in these spectra and the isotope induced band shifts are poorly understood, especially for the phyllosemiquinone anion (PhQ-) state. To aid in the interpretation of the bands in these experimental spectra, ONIOM type QM/MM vibrational frequency calculations were undertaken. Calculations were also undertaken for PhQ- in solution. Surprisingly, both sets of calculated spectra are similar and agree well with the experimental spectra. This similarity suggests pigment-protein interactions do not perturb the electronic structure of the semiquinone in the QA binding site. This is not found to be the case for the neutral PhQ species in the same protein binding site. PhQ also occupies the A1 protein binding site in photosystem I, and the vibrational properties of PhQ- in the QA and A1 binding sites are compared and shown to exhibit considerable differences. These differences probably arise because of changes in the degree of asymmetry of hydrogen bonding of PhQ- in the A1 and QA binding sites.
Collapse
Affiliation(s)
- Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Hari P Lamichhane
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Sugo Y, Ishikita H. Mechanism of Asparagine-Mediated Proton Transfer in Photosynthetic Reaction Centers. Biochemistry 2023; 62:1544-1552. [PMID: 37083399 PMCID: PMC10194076 DOI: 10.1021/acs.biochem.3c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB•- is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide -NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol -OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB•- in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
13
|
Wei RJ, Khaniya U, Mao J, Liu J, Batista VS, Gunner MR. Tools for analyzing protonation states and for tracing proton transfer pathways with examples from the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2023; 156:101-112. [PMID: 36307598 DOI: 10.1007/s11120-022-00973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Samaei A, Deshmukh SS, Protheroe C, Nyéki S, Tremblay-Ethier RA, Kálmán L. Photoactivation and conformational gating for manganese binding and oxidation in bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148928. [PMID: 36216075 DOI: 10.1016/j.bbabio.2022.148928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
The influence of illumination history of native bacterial reaction centers (BRCs) on the ability of binding and photo-induced oxidation of manganous ions was investigated in the pH range between 8.0 and 9.4. Binding of manganous ions to a buried site required 6 to 11-fold longer incubation periods, depending on the pH, in dark-adapted BRCs than in BRCs that were previously illuminated prior to manganese binding. The intrinsic electron transfer from the bound manganese ion to the photo-oxidized primary electron donor was found to be limited by a 2 to 5-fold slower precursor conformational step in the dark-adapted samples for the same pH range. The conformational gating could be eliminated by photoactivation, namely if the BRCs were illuminated prior to binding. Unlike in Photosystem II, photoactivation in BRCs did not involve cluster assembly. Photoactivation with manganese already bound was only possible at elevated detergent concentration. In addition, also exclusively in dark-adapted BRCs, a marked breaking point in the Arrhenius-plot was discovered around 15 °C at pH 9.4 indicating a change in the reaction mechanism, most likely caused by the change of orientation of the 2-acetyl group of the inactive bacteriochlorophyll monomer located near the manganese binding site.
Collapse
Affiliation(s)
- Ali Samaei
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | | | - Sarah Nyéki
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Allen JP, Chamberlain KD, Williams JC. Identification of amino acid residues in a proton release pathway near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2023; 155:23-34. [PMID: 36197600 DOI: 10.1007/s11120-022-00968-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Insight into control of proton transfer, a crucial attribute of cellular functions, can be gained from investigations of bacterial reaction centers. While the uptake of protons associated with the reduction of the quinone is well characterized, the release of protons associated with the oxidized bacteriochlorophyll dimer has been poorly understood. Optical spectroscopy and proton release/uptake measurements were used to examine the proton release characteristics of twelve mutant reaction centers, each containing a change in an amino acid residue near the bacteriochlorophyll dimer. The mutant reaction centers had optical spectra similar to wild-type and were capable of transferring electrons to the quinones after light excitation of the bacteriochlorophyll dimer. They exhibited a large range in the extent of proton release and in the slow recovery of the optical signal for the oxidized dimer upon continuous illumination. Key roles were indicated for six amino acid residues, Thr L130, Asp L155, Ser L244, Arg M164, Ser M190, and His M193. Analysis of the results points to a hydrogen-bond network that contains these residues, with several additional residues and bound water molecules, forming a proton transfer pathway. In addition to proton transfer, the properties of the pathway are proposed to be responsible for the very slow charge recombination kinetics observed after continuous illumination. The characteristics of this pathway are compared to proton transfer pathways near the secondary quinone as well as those found in photosystem II and cytochrome c oxidase.
Collapse
Affiliation(s)
- J P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - K D Chamberlain
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - J C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| |
Collapse
|
16
|
Magyar M, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev PH, Garab G. Characterization of the Rate-Limiting Steps in the Dark-To-Light Transitions of Closed Photosystem II: Temperature Dependence and Invariance of Waiting Times during Multiple Light Reactions. Int J Mol Sci 2022; 24:ijms24010094. [PMID: 36613535 PMCID: PMC9820552 DOI: 10.3390/ijms24010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA quinone acceptor molecule, generated only an F1(<Fm) fluorescence level; (ii) to produce the maximum (Fm) level, additional excitations were required, which, however, (iii) were effective only with sufficiently long Δτ waiting times between consecutive STSFs. Detailed studies revealed the gradual formation of the light-adapted charge-separated state, PSIIL. The data presented here substantiate this assignment: (i) the Δτ1/2 half-increment rise (or half-waiting) times of the diuron-treated isolated PSII core complexes (CCs) of Thermostichus vulcanus and spinach thylakoid membranes displayed similar temperature dependences between 5 and −80 °C, with substantially increased values at low temperatures; (ii) the Δτ1/2 values in PSII CC were essentially invariant on the Fk−to-Fk+1 (k = 1−4) increments both at 5 and at −80 °C, indicating the involvement of the same physical mechanism during the light-adaptation process of PSIIL. These data are in harmony with the earlier proposed role of dielectric relaxation processes in the formation of the light-adapted charge-separated state and in the variable chlorophyll-a fluorescence of PSII.
Collapse
Affiliation(s)
- Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
- Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
17
|
Néron S, Morency M, Malveau C, Maris T, Iftimie R, Wuest JD. Diphenoquinhydrones and Related Hydrogen-Bonded Charge-Transfer Complexes. J Org Chem 2022; 87:15796-15805. [PMID: 36354749 DOI: 10.1021/acs.joc.2c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Benzoquinone and hydroquinone cocrystallize to form quinhydrone, a 1:1 complex with a characteristic structure in which the components are positioned by hydrogen bonds and charge-transfer interactions. We have found that analogous diphenoquinhydrones can be made by combining 4,4'-diphenoquinones with the corresponding 4,4'-dihydroxybiphenyls. In addition, mixed diphenoquinhydrones can be assembled from components with different substituents, and mismatched quinhydrones can be made from benzoquinones and dihydroxybiphenyls. In all cases, the components of the resulting structures are linked in alternation by O-H···O hydrogen bonds to form essentially planar chains, which stack to produce layers in which π-donors and π-acceptors are aligned by charge-transfer interactions. Geometric parameters, computational studies, and spectroscopic properties of diphenoquinhydrones show that the key intermolecular interactions are stronger than those in simple quinhydrone analogues. These findings demonstrate that the principles of modular construction underlying the formation of classical quinhydrones can be generalized to produce a broad range of hydrogen-bonded charge-transfer materials in which the components are positioned by design.
Collapse
Affiliation(s)
- Sébastien Néron
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Cédric Malveau
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
18
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
19
|
Sugo Y, Tamura H, Ishikita H. Electron Transfer Route between Quinones in Type-II Reaction Centers. J Phys Chem B 2022; 126:9549-9558. [PMID: 36374126 PMCID: PMC9707520 DOI: 10.1021/acs.jpcb.2c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II (PSII), the photoinduced charge separation is terminated by an electron transfer between the primary (QA) and secondary (QB) quinones. Here, we investigate the electron transfer route, calculating the superexchange coupling (HQA-QB) for electron transfer from QA to QB in the protein environment. HQA-QB is significantly larger in PbRC than in PSII. In superexchange electron tunneling, the electron transfer via unoccupied molecular orbitals of the nonheme Fe complex (QA → Fe → QB) is pronounced in PbRC, whereas the electron transfer via occupied molecular orbitals (Fe → QB followed by QA → Fe) is pronounced in PSII. The significantly large HQA-QB is caused by a water molecule that donates the H-bond to the ligand Glu-M234 in PbRC. The corresponding water molecule is absent in PSII due to the existence of D1-Tyr246. HQA-QB increases in response to the Ser-L223···QB H-bond formation caused by an extension of the H-bond network, which facilitates charge delocalization over the QB site. This explains the observed discrepancy in the QA-to-QB electron transfer between PbRC and PSII, despite their structural similarity.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
20
|
Kanda T, Ishikita H. Energetics of the Electron Transfer Pathways in the Homodimeric Photosynthetic Reaction Center. Biochemistry 2022; 61:2621-2627. [PMID: 36322126 PMCID: PMC9671125 DOI: 10.1021/acs.biochem.2c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Indexed: 11/06/2022]
Abstract
Photosynthetic reaction centers from a green sulfur bacterium (GsbRC), the PscA/PscA proteins, and photosystem I (PSI), PsaA/PsaB proteins, share structural similarities. Here, we report the redox potential (Em) values of GsbRC by solving the linear Poisson-Boltzmann equation and considering the protonation states of all titratable sites in the entire GsbRC protein and identify the factors that shift the Em values with respect to PSI. The Em values for one-electron reduction of the accessory (A-1) and adjacent (A0) chlorophylls in GsbRC are 100-250 mV higher than those in PSI, whereas the Em values for the Fe4S4 cluster (FX) are at the same level. The PsaA-Trp697/PsaB-Trp677 pair in PSI, which forms the A1-quinone binding site, is replaced with PscA-Arg638 in GsbRC. PsaB-Asp575 in PSI, which is responsible for the Em difference between A1A and A1B quinones in PSI, is absent in GsbRC. These discrepancies also contribute to the upshift in Em(A-1) and Em(A0) in GsbRC with respect to PSI. It seems likely that the upshifted Em for chlorophylls in GsbRC ultimately originates from the characteristics of the electrostatic environment that corresponds to the A1 site of PSI.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
21
|
Zamora RA, López-Ortiz M, Sales-Mateo M, Hu C, Croce R, Maniyara RA, Pruneri V, Giannotti MI, Gorostiza P. Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer. ACS NANO 2022; 16:15155-15164. [PMID: 36067071 DOI: 10.1021/acsnano.2c06454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.
Collapse
Affiliation(s)
- Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Montserrat Sales-Mateo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Chen Hu
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rinu Abraham Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
22
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
23
|
Arora A, Singh K. Click Chemistry Mediated by Photochemical Energy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amandeep Arora
- Department of Natural and Applied Science University of Dubuque 2000 University Ave. Dubuque, IA 52001 USA
| | - Kamaljeet Singh
- TLC Pharmaceutical Standards 130 Pony Drive, Newmarket ON Canada L3Y 7B6 USA
| |
Collapse
|
24
|
Båth P, Banacore A, Börjesson P, Bosman R, Wickstrand C, Safari C, Dods R, Ghosh S, Dahl P, Ortolani G, Björg Ulfarsdottir T, Hammarin G, García Bonete MJ, Vallejos A, Ostojić L, Edlund P, Linse JB, Andersson R, Nango E, Owada S, Tanaka R, Tono K, Joti Y, Nureki O, Luo F, James D, Nass K, Johnson PJM, Knopp G, Ozerov D, Cirelli C, Milne C, Iwata S, Brändén G, Neutze R. Lipidic cubic phase serial femtosecond crystallography structure of a photosynthetic reaction centre. Acta Crystallogr D Struct Biol 2022; 78:698-708. [PMID: 35647917 PMCID: PMC9159286 DOI: 10.1107/s2059798322004144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 03/28/2024] Open
Abstract
Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Å resolution when exposed to XFEL radiation, which is an improvement of 0.15 Å over previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.
Collapse
Affiliation(s)
- Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Analia Banacore
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Tinna Björg Ulfarsdottir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - María-José García Bonete
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Lucija Ostojić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Johanna-Barbara Linse
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fangjia Luo
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daniel James
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Philip J. M. Johnson
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Christopher Milne
- SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundbergslaboratoriet Box 462, 405 30 Göteborg, Sweden
| |
Collapse
|
25
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
26
|
Khaniya U, Mao J, Wei RJ, Gunner MR. Characterizing Protein Protonation Microstates Using Monte Carlo Sampling. J Phys Chem B 2022; 126:2476-2485. [PMID: 35344367 PMCID: PMC8997239 DOI: 10.1021/acs.jpcb.2c00139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins are polyelectrolytes with acidic and basic amino acids Asp, Glu, Arg, Lys, and His, making up ≈25% of the residues. The protonation state of residues, cofactors, and ligands defines a "protonation microstate". In an ensemble of proteins some residues will be ionized and others neutral, leading to a mixture of protonation microstates rather than in a single one as is often assumed. The microstate distribution changes with pH. The protein environment also modifies residue proton affinity so microstate distributions change in different reaction intermediates or as ligands are bound. Particular protonation microstates may be required for function, while others exist simply because there are many states with similar energy. Here, the protonation microstates generated in Monte Carlo sampling in MCCE are characterized in HEW lysozyme as a function of pH and bacterial photosynthetic reaction centers (RCs) in different reaction intermediates. The lowest energy and highest probability microstates are compared. The ΔG, ΔH, and ΔS between the four protonation states of Glu35 and Asp52 in lysozyme are shown to be calculated with reasonable precision. At pH 7 the lysozyme charge ranges from 6 to 10, with 24 accepted protonation microstates, while RCs have ≈50,000. A weighted Pearson correlation analysis shows coupling between residue protonation states in RCs and how they change when the quinone in the QB site is reduced. Protonation microstates can be used to define input MD parameters and provide insight into the motion of protons coupled to reactions.
Collapse
Affiliation(s)
- Umesh Khaniya
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Junjun Mao
- Department of Physics, City College of New York, New York, New York 10031, United States
| | - Rongmei Judy Wei
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - M R Gunner
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States.,Department of Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
27
|
Nho HW, Adhikari A, Kwon OH. Ultrafast Excited-State Proton Transfer of a Cationic Superphotoacid in a Nanoscopic Water Pool. J Phys Chem B 2022; 126:1275-1283. [PMID: 35119852 DOI: 10.1021/acs.jpcb.1c09070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excited-state proton transfer (ESPT) of a cationic superphotoacid, N-methyl-7-hydroxyquinolium, was studied within the water pool of an anionic aerosol-OT (AOT), bis(2-ethylhexyl) sulfosuccinate, reverse micelle (RM). Previously, we had found that the cationic photoacid residing at the anionic AOT interface was conducive to ESPT to the bound water having concentric heterogeneity on the time scale of hundreds of picoseconds to nanoseconds. In our present study, on the time scale of hundreds of femtoseconds to a few tens of picoseconds, the photoacid underwent an ultrafast ESPT influenced by mobile water constituting the core of the RM. The two subpopulations of the core water molecules that determine the ultrafast biphasic deprotonation of the photoacid on time scales differing by an order of magnitude were identified. The core water molecules solvating the counteranion of the photoacid showed a higher basicity than typical water clusters in bulk resulting in ESPT on a subpicosecond time scale. Bare water clusters sensed by the photoacid showed a slower ESPT, over several picoseconds, as typically limited by the rotational motion of water molecules for similar types of the photoacid.
Collapse
Affiliation(s)
- Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Aniruddha Adhikari
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
28
|
Policht VR, Niedringhaus A, Willow R, Laible PD, Bocian DF, Kirmaier C, Holten D, Mančal T, Ogilvie JP. Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center. SCIENCE ADVANCES 2022; 8:eabk0953. [PMID: 34985947 PMCID: PMC8730630 DOI: 10.1126/sciadv.abk0953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC. We find that specific vibronic coherence processes can readily reveal weak exciton transitions. While the functional relevance of such processes is unclear, they provide a spectroscopic tool that uses vibrations as a window for observing excited state structure and dynamics elsewhere in the BRC via vibronic coupling. Vibronic coherence transfer reveals the upper exciton of the “special pair” that was weakly visible in previous 2DES experiments.
Collapse
Affiliation(s)
- Veronica R. Policht
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Andrew Niedringhaus
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Rhiannon Willow
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Jennifer P. Ogilvie
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
29
|
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, Brzezinski P. The respiratory supercomplex from C. glutamicum. Structure 2021; 30:338-349.e3. [PMID: 34910901 DOI: 10.1016/j.str.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
30
|
Ohmine I, Saito S. Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ohmine
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
31
|
Li C, Adler C, Krivtsov I, Mitoraj D, Leiter R, Kaiser U, Beranek R, Dietzek B. Ultrafast anisotropic exciton dynamics in a water-soluble ionic carbon nitride photocatalyst. Chem Commun (Camb) 2021; 57:10739-10742. [PMID: 34585184 DOI: 10.1039/d1cc03812e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast transient absorption anisotropy spectroscopy (TAA) reveals the orientational dynamics of light-induced excitations in a water soluble poly(heptazine imide). The results provide insights into the fast charge transfer processes in the material.
Collapse
Affiliation(s)
- Chunyu Li
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany. .,Leibniz Institute of Photonic Technology (Leibniz-IPHT), Research Department Functional Interfaces, Albert-Einstein-Strasse 9, Jena 07745, Germany
| | - Christiane Adler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany.
| | - Igor Krivtsov
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany.
| | - Dariusz Mitoraj
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany.
| | - Robert Leiter
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany
| | - Radim Beranek
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany.
| | - Benjamin Dietzek
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany. .,Leibniz Institute of Photonic Technology (Leibniz-IPHT), Research Department Functional Interfaces, Albert-Einstein-Strasse 9, Jena 07745, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany
| |
Collapse
|
32
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
33
|
Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2021; 118:2103203118. [PMID: 34301911 PMCID: PMC8325351 DOI: 10.1073/pnas.2103203118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structures of photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II show large structural similarity. However, the proposed mechanisms of proton transfer toward the terminal electron acceptor quinone (QB) are not consistent. In particular, not His-L190, which is an H-bond partner of QB, but rather Glu-L212, which is ∼6 Å away from QB, was assumed to be the direct proton donor for QB. We demonstrate that the H-bond between His-L190 and QB is a low-barrier H-bond, which facilitates proton transfer from singly protonated His-L190 to QB. Furthermore, Glu-L212 is not a direct H-bond donor for QB. However, it facilitates proton transfer toward deprotonated His-L190 via water molecules after QBH2 forms and leaves the PbRC. In photosynthetic reaction centers from purple bacteria (PbRCs) from Rhodobacter sphaeroides, the secondary quinone QB accepts two electrons and two protons via electron-coupled proton transfer (PT). Here, we identify PT pathways that proceed toward the QB binding site, using a quantum mechanical/molecular mechanical approach. As the first electron is transferred to QB, the formation of the Grotthuss-like pre-PT H-bond network is observed along Asp-L213, Ser-L223, and the distal QB carbonyl O site. As the second electron is transferred, the formation of a low-barrier H-bond is observed between His-L190 at Fe and the proximal QB carbonyl O site, which facilitates the second PT. As QBH2 leaves PbRC, a chain of water molecules connects protonated Glu-L212 and deprotonated His-L190 forms, which serves as a pathway for the His-L190 reprotonation. The findings of the second pathway, which does not involve Glu-L212, and the third pathway, which proceeds from Glu-L212 to His-L190, provide a mechanism for PT commonly used among PbRCs.
Collapse
|
34
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
35
|
Poluektov OG, Utschig LM. Quantum Sensing of Electron Transfer Pathways in Natural Photosynthesis Using Time-Resolved High-Field Electron Paramagnetic Resonance/Electron-Nuclear Double Resonance Spectroscopy. J Phys Chem B 2021; 125:4025-4030. [PMID: 33877826 DOI: 10.1021/acs.jpcb.1c00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthetic integral membrane reaction center (RC) proteins capture and convert sunlight into chemical energy via efficient charge separation achieved through a series of rapid, photoinitiated electron transfer steps. These fast electron transfers create an entangled spin qubit (radical) pair that contains detailed information about the weak magnetic interactions, structure, and dynamics of localized protein environments involved in charge separation events. Herein, we investigate how these entangled electron spin qubits interact with nuclear spins of the protein environment using the high spectral resolution of 130 GHz electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Spectroscopic interrogation enabled the observation and probing of protons located in the electron transfer pathway between the membrane-spanning electron pair P+QA- (where P+ is the primary donor, a special pair of bacteriochlorophylls, and QA is the primary quinone acceptor) in the bacterial RC. Spectroscopic analysis reveals hydrogen-bonding interactions involved in regulating the route that light-induced electrons travel through the RC protein during charge separation.
Collapse
Affiliation(s)
- Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
36
|
Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, Meier-Credo J, Liauw P, Chan A, Tajkhorshid E, Langer JD, Stoll R, Krieger-Liszkay A, Engel BD, Rudack T, Schuller JM, Nowaczyk MM. Structural insights into photosystem II assembly. NATURE PLANTS 2021; 7:524-538. [PMID: 33846594 PMCID: PMC8094115 DOI: 10.1038/s41477-021-00895-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.
Collapse
Affiliation(s)
- Jure Zabret
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Bohn
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sandra K Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Madeline Möller
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Pasqual Liauw
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Aaron Chan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany.
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany.
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
37
|
Ultrafast structural changes within a photosynthetic reaction centre. Nature 2021; 589:310-314. [PMID: 33268896 DOI: 10.1038/s41586-020-3000-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.
Collapse
|
38
|
Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, Hunter CN. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. SCIENCE ADVANCES 2021; 7:7/3/eabe2631. [PMID: 33523887 PMCID: PMC7806223 DOI: 10.1126/sciadv.abe2631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023]
Abstract
The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David A Farmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Canniffe
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
39
|
Jiang E, Huo J, Luo Y, Li Z, Zhang X, Bao J, Yan X, He G, Zhang N. Influence of electric field on nanoconfined proton behaviours: A molecular dynamics simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Deshmukh SS, Kálmán L. Tuning the redox potential of the primary electron donor in bacterial reaction centers by manganese binding and light-induced structural changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148285. [PMID: 32777306 DOI: 10.1016/j.bbabio.2020.148285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The influence of transition metal binding on the charge storage ability of native bacterial reaction centers (BRCs) was investigated. Binding of manganous ions uniquely prevented the light-induced conformational changes that would yield to long lifetimes of the charge separated state and the drop of the redox potential of the primary electron donor (P). The lifetimes of the stable charge pair in the terminal conformations were shortened by 50-fold and 7-fold upon manganous and cupric ion binding, respectively. Nickel and zinc binding had only marginal effects. Binding of manganese not only prevented the drop of the potential of P/P+ but also elevated it by up to 117 mV depending on where the metal was binding. With variable conditions, facilitating either manganese binding or light-induced structural changes a controlled tuning of the potential of P/P+ in multiple steps was demonstrated in a range of ~200 mV without the need of a mutation or synthesis. Under the selected conditions, manganese binding was achieved without its photochemical oxidation thus, the energized but still native BRCs can be utilized in photochemistry that is not reachable with regular BRCs. A 42 Å long hydrophobic tunnel was identified that became obstructed upon manganese binding and its likely role is to deliver protons from the hydrophobic core to the surface during conformational changes.
Collapse
Affiliation(s)
| | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
41
|
Zabelin AA, Khristin AM, Shkuropatova VA, Khatypov RA, Shkuropatov AY. Primary electron transfer in Rhodobacter sphaeroides R-26 reaction centers under dehydration conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148238. [PMID: 32533935 DOI: 10.1016/j.bbabio.2020.148238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10-2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P⁎ to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA- state with essentially 100% yield. P+HA- decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA- (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P⁎ decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA- decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P⁎ and P+HA- to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA- to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
42
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
43
|
Modafferi D, Zazubovich V, Kálmán L. Bound detergent molecules in bacterial reaction centers facilitate detection of tetryl explosive. PHOTOSYNTHESIS RESEARCH 2020; 145:145-157. [PMID: 32632533 DOI: 10.1007/s11120-020-00770-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Bacterial reaction centers (BRC) from Rhodobacter sphaeroides were found to accelerate, about 100-fold, the reaction between tetryl (2,4,6-trinitrophenylmethylnitramine) explosive and n-lauryl-N-N-dimethylamine-N-oxide (LDAO) that results in the formation of picric acid-like product with characteristic UV-VIS absorption spectrum with peaks at 345 and 415 nm. Moreover, this product also affects the spectra of BRC cofactors in the NIR spectral region and stabilizes the conformational changes associated with slow charge recombination. The evolution of the NIR absorption changes correlated with the kinetics of the product formation. Comparison between the wild-type and the R26 carotenoid-less strain indicates that tetryl-LDAO reaction is roughly five times faster for R26, which allows for identifying the carotenoid binding site as the optimal reaction site. Another, less-defined reaction site is located in the BRC's hydrophobic cavity. These effects are highly selective for tetryl and not observed for several other widespread nitric explosives; slowed-down charge recombination allows for distinguishing between tetryl and QB-site herbicides. The current limit of detection is in the ppb range or ~ 100 nM. Details of the molecular mechanisms of the reactions and perspectives of using these effects in bioassays or biosensors for explosives detection are also discussed.
Collapse
Affiliation(s)
- Daniel Modafferi
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Valter Zazubovich
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada.
| | - László Kálmán
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
44
|
Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. DATA 2020. [DOI: 10.3390/data5020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this theoretical work, we analyse the kinetics of charge recombination reaction after a light excitation of the Reaction Centres extracted from the photosynthetic bacterium Rhodobacter sphaeroides and reconstituted in small unilamellar phospholipid vesicles. Due to the compartmentalized nature of liposomes, vesicles may exhibit a random distribution of both ubiquinone molecules and the Reaction Centre protein complexes that can produce significant differences on the local concentrations from the average expected values. Moreover, since the amount of reacting species is very low in compartmentalized lipid systems the stochastic approach is more suitable to unveil deviations of the average time behaviour of vesicles from the deterministic time evolution.
Collapse
|
45
|
Haldar S, Dutta AK. A Multilayer Approach to the Equation of Motion Coupled-Cluster Method for the Electron Affinity. J Phys Chem A 2020; 124:3947-3962. [DOI: 10.1021/acs.jpca.0c01793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Soumi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
46
|
The study of conformational changes in photosystem II during a charge separation. J Mol Model 2020; 26:75. [PMID: 32152736 DOI: 10.1007/s00894-020-4332-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.
Collapse
|
47
|
Wu R, Bao DL, Yan L, Wang Y, Ren J, Zhang YF, Huan Q, Zhang YY, Du S, Pantelides ST, Gao HJ. Direct Visualization of Hydrogen-Transfer Intermediate States by Scanning Tunneling Microscopy. J Phys Chem Lett 2020; 11:1536-1541. [PMID: 32011142 DOI: 10.1021/acs.jpclett.0c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen atoms bonded within molecular cavities often undergo tunneling or thermal-transfer processes that play major roles in diverse physical phenomena. Such transfers may or may not entail intermediate states. The existence of such fleeting states is typically determined by indirect means, while their direct visualization has not been achieved, largely because their concentrations under equilibrium conditions are negligible. Here we use density-functional-theory calculations and scanning-tunneling-microscopy (STM) image simulations to predict that, under specially designed nonequilibrium conditions of voltage-enhanced high transfer rates, the cis-intermediate of the two-hydrogen transfer process in metal-free naphthalocyanine molecules adsorbed on Ag(111) surfaces would be visualizable in a composite image of double-C morphology. As guided by the theoretical predictions, at adjusted scanning temperature and bias, STM experiments achieve a direct visualization of the cis-intermediate. This work demonstrates a practical way to directly visualize elusive intermediates, which enhances understanding of the quantum dynamics of hydrogen atoms.
Collapse
Affiliation(s)
- Rongting Wu
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - De-Liang Bao
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physics and Astronomy & Department of Electrical Engineering and Computer Science , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Linghao Yan
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yeliang Wang
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Junhai Ren
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yan-Fang Zhang
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Qing Huan
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yu-Yang Zhang
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physics and Astronomy & Department of Electrical Engineering and Computer Science , Vanderbilt University , Nashville , Tennessee 37235 , United States
- Key Laboratory for Vacuum Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Shixuan Du
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Key Laboratory for Vacuum Physics , Chinese Academy of Sciences , Beijing 100049 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Sokrates T Pantelides
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physics and Astronomy & Department of Electrical Engineering and Computer Science , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Hong-Jun Gao
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Key Laboratory for Vacuum Physics , Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
48
|
Chatterjee P, Biswas S, Chakraborty T. Hydrogen Bonding Effects on Vibrational Dynamics and Photochemistry in Selected Binary Molecular Complexes. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Paul S, Roy U, Böckers M, Neugebauer J, Alia A, Matysik J. 15N photo-CIDNP MAS NMR analysis of a bacterial photosynthetic reaction center of Rhodobacter sphaeroides wildtype. J Chem Phys 2019; 151:195101. [PMID: 31757137 DOI: 10.1063/1.5128783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect has been studied in a quinone-depleted uniformly (u-)13C,15N-labeled photosynthetic reaction center (RC) protein from purple bacterium Rhodobacter (R.) sphaeroides wild type (WT). As a method for investigation, solid-state 15N NMR under magic-angle spinning (MAS) is applied under both continuous illumination (steady state) and nanosecond-laser flashes (time-resolved). While all previous 15N photo-CIDNP MAS NMR studies on the purple bacterial RC used the carotenoid-less mutant R26, this is the first using WT samples. The absence of further photo-CIDNP mechanisms (compared to R26) and various couplings (compared to 13C NMR experiments on 13C-labeled samples) allows the simplification of the spin-system. We report 15N signals of the three cofactors forming the spin-correlated radical pair (SCRP) and, based on density-functional theory calculations, their assignment. The simulation of photo-CIDNP intensities and time-resolved 15N photo-CIDNP MAS NMR data matches well to the frame of the mechanistic interpretation. Three spin-chemical processes, namely, radical pair mechanism, three spin mixing, and differential decay, generate emissive (negative) 15N polarization in the singlet decay channel and absorptive (positive) polarization in the triplet decay channel of the SCRP. The absorptive 15N polarization of the triplet decay channel is transiently obscured during the lifetime of the triplet state of the carotenoid (3Car); therefore, the observed 15N signals are strongly emissive. Upon decay of 3Car, the transiently obscured polarization becomes visible by reducing the excess of emissive polarization. After the decline of 3Car, the remaining nuclear hyperpolarization decays with nuclear T1 relaxation kinetics.
Collapse
Affiliation(s)
- Shubhajit Paul
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Upasana Roy
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Michael Böckers
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Johannes Neugebauer
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16, D-04107 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| |
Collapse
|
50
|
Yu Q, Carpenter WB, Lewis NHC, Tokmakoff A, Bowman JM. High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton. J Phys Chem B 2019; 123:7214-7224. [PMID: 31361141 DOI: 10.1021/acs.jpcb.9b05723] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hydrated excess proton is a common species in aqueous chemistry, which complexes with water in a variety of structures. The infrared spectrum of the aqueous proton is particularly sensitive to this array of structures, which manifests as continuous IR absorption from 1000 to 3000 cm-1 known as the "proton continuum". Because of the extreme breadth of the continuum and strong anharmonicity of the involved vibrational modes, this spectrum has eluded straightforward interpretation and simulation. Using protonated water hexamer clusters from reactive molecular dynamics trajectories, and focusing on their central H+(H2O)2 structures' spectral contribution, we reproduce the linear IR spectrum of the aqueous proton with a high-level local monomer quantum method and highly accurate many-body potential energy surface. The accuracy of this approach is first verified in the vibrational spectra of the two isomers of the protonated water hexamer in the gas phase. We then apply this approach to 800 H+(H2O)6 clusters, also written as [H+(H2O)2](H2O)4, drawn from multistate empirical valence bond simulations of the bulk liquid to calculate the infrared spectrum of the aqueous proton complex. Incorporation of anharmonic effects to the vibrational potential and quantum mechanical treatment of the proton produces a better agreement to the infrared spectrum compared to that of the double-harmonic approximation. We assess the correlation of the proton stretching mode with different atomistic coordinates, finding the best correlation with ⟨ROH⟩, the expectation value of the proton-oxygen distance ROH. We also decompose the IR spectrum based on normal mode vibrations and ⟨ROH⟩ to provide insight on how different frequency regions in the continuum report on different configurations, vibrational modes, and mode couplings.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - William B Carpenter
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|