1
|
Zea DJ, Teppa E, Marino-Buslje C. Easy Not Easy: Comparative Modeling with High-Sequence Identity Templates. Methods Mol Biol 2023; 2627:83-100. [PMID: 36959443 DOI: 10.1007/978-1-0716-2974-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Homology modeling is the most common technique to build structural models of a target protein based on the structure of proteins with high-sequence identity and available high-resolution structures. This technique is based on the idea that protein structure shows fewer changes than sequence through evolution. While in this scenario single mutations would minimally perturb the structure, experimental evidence shows otherwise: proteins with high conformational diversity impose a limit of the paradigm of comparative modeling as the same protein sequence can adopt dissimilar three-dimensional structures. These cases present challenges for modeling; at first glance, they may seem to be easy cases, but they have a complexity that is not evident at the sequence level. In this chapter, we address the following questions: Why should we care about conformational diversity? How to consider conformational diversity when doing template-based modeling in a practical way?
Collapse
Affiliation(s)
- Diego Javier Zea
- Laboratory of Computational and Quantitative Biology, LCQB, UMR 7238 CNRS, IBPS, Sorbonne Université, Paris, France
| | - Elin Teppa
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
2
|
Helbing T, Kirchner M, Becker J, Göttlich R. Separation of the Thorpe‐Ingold and Reactive Rotamer Effect by Using the Formation of Bicyclic Aziridinium Ions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tim Helbing
- Justus Liebig Universitat Giessen Biology and Chemistry Heinrich-Buff-Ring 17 35392 Giessen GERMANY
| | | | - Jonathan Becker
- Justus Liebig Universitat Giessen Biology and Chemistry GERMANY
| | - Richard Göttlich
- University of Giessen: Justus Liebig Universitat Giessen Biology and Chemistry Heinrich-Buff-Ring 17 35392 Gießen GERMANY
| |
Collapse
|
3
|
Wu Y, Zhang S, Song W, Liu J, Chen X, Hu G, Zhou Y, Liu L, Wu J. Enhanced Catalytic Efficiency of L‐amino Acid Deaminase Achieved by a Shorter Hydride Transfer Distance. ChemCatChem 2021. [DOI: 10.1002/cctc.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yaoyun Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Sheng Zhang
- Tianrui Chemical Co. Ltd Department of Chemistry Quzhou 324400 P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Guipeng Hu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Yiwen Zhou
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jing Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
4
|
Ghosh AK, Raghavaiah J, Shahabi D, Yadav M, Anson BJ, Lendy EK, Hattori SI, Higashi-Kuwata N, Mitsuya H, Mesecar AD. Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure-Activity Relationship, and X-ray Structural Studies. J Med Chem 2021; 64:14702-14714. [PMID: 34528437 PMCID: PMC8457330 DOI: 10.1021/acs.jmedchem.1c01214] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/31/2022]
Abstract
Here, we report the synthesis, structure-activity relationship studies, enzyme inhibition, antiviral activity, and X-ray crystallographic studies of 5-chloropyridinyl indole carboxylate derivatives as a potent class of SARS-CoV-2 chymotrypsin-like protease inhibitors. Compound 1 exhibited a SARS-CoV-2 3CLpro inhibitory IC50 value of 250 nM and an antiviral EC50 value of 2.8 μM in VeroE6 cells. Remdesivir, an RNA-dependent RNA polymerase inhibitor, showed an antiviral EC50 value of 1.2 μM in the same assay. Compound 1 showed comparable antiviral activity with remdesivir in immunocytochemistry assays. Compound 7d with an N-allyl derivative showed the most potent enzyme inhibitory IC50 value of 73 nM. To obtain molecular insight into the binding properties of these molecules, X-ray crystal structures of compounds 2, 7b, and 9d-bound to SARS-CoV 3CLpro were determined, and their binding properties were compared.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jakka Raghavaiah
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dana Shahabi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Monika Yadav
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brandon J. Anson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Emma K. Lendy
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shin-ichiro Hattori
- Departments of Hematology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Nobuyo Higashi-Kuwata
- Departments of Hematology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | - Hiroaki Mitsuya
- Departments of Hematology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo 162-8655, Japan
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Minasov G, Rosas-Lemus M, Shuvalova L, Inniss NL, Brunzelle JS, Daczkowski CM, Hoover P, Mesecar AD, Satchell KJF. Mn 2+ coordinates Cap-0-RNA to align substrates for efficient 2'- O-methyl transfer by SARS-CoV-2 nsp16. Sci Signal 2021; 14:scisignal.abh2071. [PMID: 34131072 PMCID: PMC8432954 DOI: 10.1126/scisignal.abh2071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virally encoded 2′-O-methyltransferases catalyze the last step in the capping of viral RNAs, which protects the RNAs from degradation and prevents them from triggering host defenses. Minasov et al. report structures of the SARS-CoV-2 methyltransferase, a heterodimeric complex of the enzyme nsp16 and its coactivator nsp10, in complex with a short, capped RNA (instead of the RNA cap analogs used to generate previous structures), the methyl donor SAM, and divalent metal cations. The metal ions and a four-residue insert of nsp16 were important for precisely aligning the RNA substrate in the active site for efficient catalysis. This insert is present in coronavirus but not in mammalian methyltransferases, suggesting this site as a potential target for the design of coronavirus-specific methyltransferase inhibitors. Capping of viral messenger RNAs is essential for efficient translation, for virus replication, and for preventing detection by the host cell innate response system. The SARS-CoV-2 genome encodes the 2′-O-methyltransferase nsp16, which, when bound to the coactivator nsp10, uses S-adenosylmethionine (SAM) as a donor to transfer a methyl group to the first ribonucleotide of the mRNA in the final step of viral mRNA capping. Here, we provide biochemical and structural evidence that this reaction requires divalent cations, preferably Mn2+, and a coronavirus-specific four-residue insert. We determined the x-ray structures of the SARS-CoV-2 2′-O-methyltransferase (the nsp16-nsp10 heterodimer) in complex with its reaction substrates, products, and divalent metal cations. These structural snapshots revealed that metal ions and the insert stabilize interactions between the capped RNA and nsp16, resulting in the precise alignment of the ribonucleotides in the active site. Comparison of available structures of 2′-O-methyltransferases with capped RNAs from different organisms revealed that the four-residue insert unique to coronavirus nsp16 alters the backbone conformation of the capped RNA in the binding groove, thereby promoting catalysis. This insert is highly conserved across coronaviruses, and its absence in mammalian methyltransferases makes this region a promising site for structure-guided drug design of selective coronavirus inhibitors.
Collapse
Affiliation(s)
- George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, IL 60439, USA
| | - Courtney M Daczkowski
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paul Hoover
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA
| | - Andrew D Mesecar
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Nature 2021; 593:460-464. [PMID: 33953398 DOI: 10.1038/s41586-021-03513-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023]
Abstract
Disulfide bonds between cysteine residues are important post-translational modifications in proteins that have critical roles for protein structure and stability, as redox-active catalytic groups in enzymes or allosteric redox switches that govern protein function1-4. In addition to forming disulfide bridges, cysteine residues are susceptible to oxidation by reactive oxygen species, and are thus central not only to the scavenging of these but also to cellular signalling and communication in biological as well as pathological contexts5,6. Oxidized cysteine species are highly reactive and may form covalent conjugates with, for example, tyrosines in the active sites of some redox enzymes7,8. However, to our knowledge, regulatory switches with covalent crosslinks other than disulfides have not previously been demonstrated. Here we report the discovery of a covalent crosslink between a cysteine and a lysine residue with a NOS bridge that serves as an allosteric redox switch in the transaldolase enzyme of Neisseria gonorrhoeae, the pathogen that causes gonorrhoea. X-ray structure analysis of the protein in the oxidized and reduced state reveals a loaded-spring mechanism that involves a structural relaxation upon redox activation, which is propagated from the allosteric redox switch at the protein surface to the active site in the protein interior. This relaxation leads to a reconfiguration of key catalytic residues and elicits an increase in enzymatic activity of several orders of magnitude. The redox switch is highly conserved in related transaldolases from other members of the Neisseriaceae; for example, it is present in the transaldolase of Neisseria meningitides (a pathogen that is the primary cause of meningitis and septicaemia in children). We surveyed the Protein Data Bank and found that the NOS bridge exists in diverse protein families across all domains of life (including Homo sapiens) and that it is often located at catalytic or regulatory hotspots. Our findings will inform strategies for the design of proteins and peptides, as well as the development of new classes of drugs and antibodies that target the lysine-cysteine redox switch9,10.
Collapse
|
7
|
Silverstein TP. How enzymes harness highly unfavorable proton transfer reactions. Protein Sci 2021; 30:735-744. [PMID: 33554401 DOI: 10.1002/pro.4037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/12/2022]
Abstract
Acid-base reactions that are exceedingly unfavorable under standard conditions can be catalytically important at enzyme active sites. For example, in triose phosphate isomerase, a glutamate side chain (nominal pKa ≈ 4 in solution) can in fact deprotonate a CH group that is vicinal to a carbonyl (pKa ≈ 18 in solution). This is true because of three distinct interactions: (a) ground state pKa shifts due to environment polarity and electrostatics; (b) dramatic increases in effective molarity due to optimization of proximity and orientation; and (c) transition state pKa shifts due to binding interactions and the formation of strong low barrier hydrogen bonds. In this report, we review the literature showing that the sum of these three effects supplies more than enough free energy to push forward proton transfer reactions that under standard conditions are exceedingly nonspontaneous and slow.
Collapse
|
8
|
|
9
|
Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M. NMR-Based Methods for Protein Analysis. Anal Chem 2021; 93:1866-1879. [PMID: 33439619 DOI: 10.1021/acs.analchem.0c03830] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a well-established method for analyzing protein structure, interaction, and dynamics at atomic resolution and in various sample states including solution state, solid state, and membranous environment. Thanks to rapid NMR methodology development, the past decade has witnessed a growing number of protein NMR studies in complex systems ranging from membrane mimetics to living cells, which pushes the research frontier further toward physiological environments and offers unique insights in elucidating protein functional mechanisms. In particular, in-cell NMR has become a method of choice for bridging the huge gap between structural biology and cell biology. Herein, we review the recent developments and applications of NMR methods for protein analysis in close-to-physiological environments, with special emphasis on in-cell protein structural determination and the analysis of protein dynamics, both difficult to be accessed by traditional methods.
Collapse
Affiliation(s)
- Yunfei Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
10
|
Urbina AS, Boulos VM, Zeller M, Mendes de Oliveira D, Ben-Amotz D. Binding-Induced Unfolding of 1-Bromopropane in α-Cyclodextrin. J Phys Chem B 2020; 124:11015-11021. [PMID: 33205979 DOI: 10.1021/acs.jpcb.0c08630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman multivariate curve resolution vibrational spectroscopy and X-ray crystallography are used to quantify changes in the gauche-trans conformational equilibrium of 1-bromopropane (1-BP) upon binding to α-cyclodextrin (α-CD). Both conformers of 1-BP are found to bind to α-CD, although binding favors the unfolded trans conformation. Temperature-dependent measurements of the binding-induced change in the 1-BP conformation equilibrium constant indicate that the trans conformer is both enthalpically and entropically stabilized in the host cavity.
Collapse
Affiliation(s)
- Andres S Urbina
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Victoria M Boulos
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
12
|
Borg AJE, Beerens K, Pfeiffer M, Desmet T, Nidetzky B. Stereo-electronic control of reaction selectivity in short-chain dehydrogenases: Decarboxylation, epimerization, and dehydration. Curr Opin Chem Biol 2020; 61:43-52. [PMID: 33166830 DOI: 10.1016/j.cbpa.2020.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022]
Abstract
Sugar nucleotide-modifying enzymes of the short-chain dehydrogenase/reductase type use transient oxidation-reduction by a tightly bound nicotinamide cofactor as a common strategy of catalysis to promote a diverse set of reactions, including decarboxylation, single- or double-site epimerization, and dehydration. Although the basic mechanistic principles have been worked out decades ago, the finely tuned control of reactivity and selectivity in several of these enzymes remains enigmatic. Recent evidence on uridine 5'-diphosphate (UDP)-glucuronic acid decarboxylases (UDP-xylose synthase, UDP-apiose/UDP-xylose synthase) and UDP-glucuronic acid-4-epimerase suggests that stereo-electronic constraints established at the enzyme's active site control the selectivity, and the timing of the catalytic reaction steps, in the conversion of the common substrate toward different products. The mechanistic idea of stereo-electronic control is extended to epimerases and dehydratases that deprotonate the Cα of the transient keto-hexose intermediate. The human guanosine 5'-diphosphate (GDP)-mannose 4,6-dehydratase was recently shown to use a minimal catalytic machinery, exactly as predicted earlier from theoretical considerations, for the β-elimination of water from the keto-hexose species.
Collapse
Affiliation(s)
- Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
13
|
Tsounis C, Lu X, Bedford NM, Subhash B, Thomsen L, Zhang Q, Ma Z, Ostrikov KK, Bendavid A, Scott JA, Amal R, Han Z. Valence Alignment of Mixed Ni-Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS NANO 2020; 14:11327-11340. [PMID: 32790322 DOI: 10.1021/acsnano.0c03380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the oxygen evolution reaction (OER). The hybrid Ni-Fe/er-VG catalyst exhibits excellent OER performance with a mass current of 4051 A g-1 (at overpotential η = 300 mV) and turnover frequency (TOF) of 4.8 s-1 (η = 400 mV), outperforming Ni-Fe deposited on pristine VG and other metal foam supports. Angle-dependent X-ray absorption spectroscopy shows that the edge-rich VG support can preferentially template Fe-O units with a specific valence orbital alignment interacting with the unoccupied density of states on the graphene edges. This graphene edge-metal interaction was shown to facilitate the formation of undersaturated and strained Fe-sites with high valence states, while promoting the formation of redox-activated Ni species, thus improving OER performance. These findings demonstrate rational design of the graphene edge-metal interface in electrocatalysts which can be used for various energy conversion and chemical synthesis reactions.
Collapse
Affiliation(s)
- Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Xunyu Lu
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Bijil Subhash
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Lars Thomsen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Qingran Zhang
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Zhipeng Ma
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
| | - Avi Bendavid
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
- School of Materials Science and Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Jason A Scott
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
14
|
Han C, Liu Y, Liu M, Wang S, Wang Q. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol 2020; 164:3361-3368. [PMID: 32888988 DOI: 10.1016/j.ijbiomac.2020.08.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Endoglucanases provide an attractive avenue for the bioconversion of lignocellulosic materials into fermentable sugars to supply cellulosic feedstock for biofuels and other value-added chemicals. Thermostable endoglucanases with high catalytic activity are preferred in practical processes. To improve the thermostability and activity of the thermostable β-1,4-endoglucanase CTendo45 isolated from the thermophilic fungus Chaetomium thermophilum, structure-based rational design was performed by using site-directed mutagenesis. When inactivated mutation of the unique N-glycosylation sequon (N88-E89-T90) was implemented and the conserved Y173 residue was substituted with phenylalanine, a double mutant T90A/Y173F demonstrated enzymatic activity that dramatically increased 2.12- and 1.82-fold towards CMC-Na and β-D-glucan, respectively. Additionally, T90A/Y173F exhibited extraordinary heat endurance after 300 min of incubation at elevated temperatures. This study provides a valid approach to the improvement of enzyme redesign protocols and the properties of this endoglucanase mutant distinguish it as an excellent candidate enzyme for industrial biomass conversion.
Collapse
Affiliation(s)
- Chao Han
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yifan Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengyu Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Siqi Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qunqing Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
15
|
Altered Cofactor Preference of Thermostable StDAPDH by a Single Mutation at K159. Int J Mol Sci 2020; 21:ijms21051788. [PMID: 32150965 PMCID: PMC7084900 DOI: 10.3390/ijms21051788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
D-amino acid production from 2-keto acid by reductive amination is an attractive pathway because of its high yield and environmental safety. StDAPDH, a meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum, was the first meso-DAPDH to show amination of 2-keto acids. Furthermore, StDAPDH shows excellent thermostability compared to other meso-DAPDHs. However, the cofactor of StDAPDH is NADP(H), which is less common than NAD(H) in industrial applications. Therefore, cofactor engineering for StDAPDH is needed. In this study, the highly conserved cofactor binding sites around the adenosine moiety of NADPH were targeted to determine cofactor specificity. Lysine residues within a loop were found to be critical for the cofactor specificity of StDAPDH. Replacement of lysine with arginine resulted in the activity of pyruvic acid with NADH as the cofactor. The affinity of K159R to pyruvic acid was equal with NADH or NADPH as the cofactor, regardless of the mutation. Molecular dynamics simulations revealed that the large steric hindrance of arginine and the interaction of the salt bridge between NADH and arginine may have restricted the free movement of NADH, which prompted the formation of a stable active conformation of mutant K159R. These results provide further understanding of the catalytic mechanism of StDAPDH and guidance for the cofactor engineering of StDAPDH.
Collapse
|
16
|
Mehrabi P, Schulz EC, Dsouza R, Müller-Werkmeister HM, Tellkamp F, Miller RJD, Pai EF. Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science 2019; 365:1167-1170. [DOI: 10.1126/science.aaw9904] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework’s dynamics and entropy constitute crucial components of the catalytic machinery.
Collapse
|
17
|
Sacquin-Mora S. Coarse-grain simulations on NMR conformational ensembles highlight functional residues in proteins. J R Soc Interface 2019; 16:20190075. [PMID: 31288649 DOI: 10.1098/rsif.2019.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dynamics are a key feature of protein function, and this is especially true of gating residues, which occupy cavity or tunnel lining positions in the protein structure, and will reversibly switch between open and closed conformations in order to control the diffusion of small molecules within a protein's internal matrix. Earlier work on globins and hydrogenases have shown that these gating residues can be detected using a multiscale scheme combining all-atom classic molecular dynamics simulations and coarse-grain calculations of the resulting conformational ensemble mechanical properties. Here, we show that the structural variations observed in the conformational ensembles produced by NMR spectroscopy experiments are sufficient to induce noticeable mechanical changes in a protein, which in turn can be used to identify residues important for function and forming a mechanical nucleus in the protein core. This new approach, which combines experimental data and rapid coarse-grain calculations and no longer needs to resort to time-consuming all-atom simulations, was successfully applied to five different protein families.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris , France
| |
Collapse
|
18
|
Li T, Stephen P, Zhu DW, Shi R, Lin SX. Crystal structures of human 17β-hydroxysteroid dehydrogenase type 1 complexed with estrone and NADP + reveal the mechanism of substrate inhibition. FEBS J 2019; 286:2155-2166. [PMID: 30768851 DOI: 10.1111/febs.14784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyses the last step in estrogen activation and is thus involved in estrogen-dependent diseases (EDDs). Unlike other 17β-HSD members, 17β-HSD1 undergoes a significant substrate-induced inhibition that we have previously reported. Here we solved the binary and ternary crystal structures of 17β-HSD1 in complex with estrone (E1) and cofactor analog NADP+ , demonstrating critical enzyme-substrate-cofactor interactions. These complexes revealed a reversely bound E1 in 17β-HSD1 that provides the basis of the substrate inhibition, never demonstrated in estradiol complexes. Structural analysis showed that His221 is the key residue responsible for the reorganization and stabilization of the reversely bound E1, leading to the formation of a dead-end complex, which exists widely in NADP(H)-preferred enzymes for the regulation of their enzymatic activity. Further, a new inhibitor is proposed that may inhibit 17β-HSD1 through the formation of a dead-end complex. This finding indicates a simple mechanism of enzyme regulation in the physiological background and introduces a pioneer inhibitor of 17β-HSD1 based on the dead-end inhibition model for efficiently targeting EDDs. DATABASES: Coordinates and structure factors of 17β-HSD1-E1 and 17β-HSD1-E1-NADP+ have been deposited in the Protein Data Bank with accession code 6MNC and 6MNE respectively. ENZYMES: 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) EC 1.1.1.62.
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Dao-Wei Zhu
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| |
Collapse
|
19
|
Ashraf NM, Krishnagopal A, Hussain A, Kastner D, Sayed AMM, Mok YK, Swaminathan K, Zeeshan N. Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macromol 2019; 126:229-237. [DOI: 10.1016/j.ijbiomac.2018.12.218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/15/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
|
20
|
Abstract
The native state of proteins is composed of conformers in dynamical equilibrium. In this chapter, different issues related to conformational diversity are explored using a curated and experimentally based database called CoDNaS (Conformational Diversity in the Native State). This database is a collection of redundant structures for the same sequence. CoDNaS estimates the degree of conformational diversity using different global and local structural similarity measures. It allows the user to explore how structural differences among conformers change as a function of several structural features providing further biological information. This chapter explores the measurement of conformational diversity and its relationship with sequence divergence. Also, it discusses how proteins with high conformational diversity could affect homology modeling techniques.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Diego Javier Zea
- Structural Bioinformatics Unit, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina.
| |
Collapse
|
21
|
Grüninger MJ, Buchholz PCF, Mordhorst S, Strack P, Müller M, Hubrich F, Pleiss J, Andexer JN. Chorismatases – the family is growing. Org Biomol Chem 2019; 17:2092-2098. [DOI: 10.1039/c8ob03038c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly discovered subfamily of chorismatases catalyses the same reaction as chorismate lyases (cleavage of chorismate to 4-hydroxybenzoate), but does not suffer from product inhibition.
Collapse
Affiliation(s)
- Mads J. Grüninger
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick Strack
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Florian Hubrich
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
22
|
Swingle MR, Honkanen RE. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development. Curr Med Chem 2019; 26:2634-2660. [PMID: 29737249 PMCID: PMC10013172 DOI: 10.2174/0929867325666180508095242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase, the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. METHODS This review is based on the literature searched in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. RESULTS PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate that the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20- 26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for an inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. CONCLUSION Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| |
Collapse
|
23
|
Bester SM, Guelta MA, Cheung J, Winemiller MD, Bae SY, Myslinski J, Pegan SD, Height JJ. Structural Insights of Stereospecific Inhibition of Human Acetylcholinesterase by VX and Subsequent Reactivation by HI-6. Chem Res Toxicol 2018; 31:1405-1417. [PMID: 30462502 DOI: 10.1021/acs.chemrestox.8b00294] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over 50 years ago, the toxicity of irreversible organophosphate inhibitors targeting human acetylcholinesterase (hAChE) was observed to be stereospecific. The therapeutic reversal of hAChE inhibition by reactivators has also been shown to depend on the stereochemistry of the inhibitor. To gain clarity on the mechanism of stereospecific inhibition, the X-ray crystallographic structures of hAChE inhibited by a racemic mixture of VX (P R/S) and its enantiomers were obtained. Beyond identifying hAChE structural features that lend themselves to stereospecific inhibition, structures of the reactivator HI-6 bound to hAChE inhibited by VX enantiomers of varying toxicity, or in its uninhibited state, were obtained. Comparison of hAChE in these pre-reactivation and post-reactivation states along with enzymatic data reveals the potential influence of unproductive reactivator poses on the efficacy of these types of therapeutics. The recognition of structural features related to hAChE's stereospecificity toward VX shed light on the molecular influences of toxicity and their effect on reactivators. In addition to providing a better understanding of the innate issues with current reactivators, an avenue for improvement of reactivators is envisioned.
Collapse
Affiliation(s)
- Stephanie M Bester
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , Georgia 30602 , United States
| | - Mark A Guelta
- Edgewood Chemical Biological Center, United States Army , Aberdeen Proving Ground, Aberdeen , Maryland 21010 , United States
| | - Jonah Cheung
- New York Structural Biology Center , New York , New York 10027 , United States
| | - Mark D Winemiller
- Edgewood Chemical Biological Center, United States Army , Aberdeen Proving Ground, Aberdeen , Maryland 21010 , United States
| | - Su Y Bae
- Edgewood Chemical Biological Center, United States Army , Aberdeen Proving Ground, Aberdeen , Maryland 21010 , United States
| | - James Myslinski
- Edgewood Chemical Biological Center, United States Army , Aberdeen Proving Ground, Aberdeen , Maryland 21010 , United States
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , Georgia 30602 , United States.,Edgewood Chemical Biological Center, United States Army , Aberdeen Proving Ground, Aberdeen , Maryland 21010 , United States
| | - Jude J Height
- Edgewood Chemical Biological Center, United States Army , Aberdeen Proving Ground, Aberdeen , Maryland 21010 , United States
| |
Collapse
|
24
|
Hua C, Li W, Han W, Wang Q, Bi P, Han C, Zhu L. Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis. Int J Biol Macromol 2018; 117:342-349. [DOI: 10.1016/j.ijbiomac.2018.05.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 01/19/2023]
|
25
|
Han C, Li W, Hua C, Sun F, Bi P, Wang Q. Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis. Int J Biol Macromol 2018; 116:691-697. [DOI: 10.1016/j.ijbiomac.2018.05.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023]
|
26
|
Venkat S, Chen H, Stahman A, Hudson D, McGuire P, Gan Q, Fan C. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. J Mol Biol 2018; 430:1901-1911. [PMID: 29733852 PMCID: PMC5988991 DOI: 10.1016/j.jmb.2018.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hao Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Denver Hudson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
27
|
NADP +-dependent cytosolic isocitrate dehydrogenase provides NADPH in the presence of cadmium due to the moderate chelating effect of glutathione. J Biol Inorg Chem 2018; 23:849-860. [PMID: 29923039 PMCID: PMC6060952 DOI: 10.1007/s00775-018-1581-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Cadmium (Cd2+) is toxic to living organisms because it causes the malfunction of essential proteins and induces oxidative stress. NADP+-dependent cytosolic isocitrate dehydrogenase (IDH) provides reducing energy to counteract oxidative stress via oxidative decarboxylation of isocitrate. Intriguingly, the effects of Cd2+ on the activity of IDH are both positive and negative, and to understand the molecular basis, we determined the crystal structure of NADP+-dependent cytosolic IDH in the presence of Cd2+. The structure includes two Cd2+ ions, one coordinated by active site residues and another near a cysteine residue. Cd2+ presumably inactivates IDH due to its high affinity for thiols, leading to a covalent enzyme modification. However, Cd2+ also activates IDH by providing a divalent cation required for catalytic activity. Inactivation of IDH by Cd2+ is less effective when the enzyme is activated with Cd2+ than Mg2+. Although reducing agents cannot restore activity following inactivation by Cd2+, they can maintain IDH activity by chelating Cd2+. Glutathione, a cellular sulphydryl reductant, has a moderate affinity for Cd2+, allowing IDH to be activated with residual Cd2+, unlike dithiothreitol, which has a much higher affinity. In the presence of Cd2+-consuming cellular antioxidants, cells must continually supply reductants to protect against oxidative stress. The ability of IDH to utilise Cd2+ to generate NADPH could allow cells to protect themselves against Cd2+.
Collapse
|
28
|
Engineering the conserved and noncatalytic residues of a thermostable β-1,4-endoglucanase to improve specific activity and thermostability. Sci Rep 2018; 8:2954. [PMID: 29440674 PMCID: PMC5811441 DOI: 10.1038/s41598-018-21246-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/01/2018] [Indexed: 12/18/2022] Open
Abstract
Endoglucanases are increasingly applied in agricultural and industrial applications as a key biocatalyst for cellulose biodegradation. However, the low performance in extreme conditions seriously challenges the enzyme’s commercial utilization. To obtain endoglucanases with substantially improved activity and thermostability, structure-based rational design was carried out based on the Chaetomium thermophilum β-1,4-endoglucanase CTendo45. In this study, five mutant enzymes were constructed by substitution of conserved and noncatalytic residues using site-directed mutagenesis. Mutants were constitutively expressed in Pichia pastoris, purified, and ultimately tested for enzymatic characteristics. Two single mutants, Y30F and Y173F, increased the enzyme’s specific activity 1.35- and 1.87-fold using carboxymethylcellulose sodium (CMC-Na) as a substrate, respectively. Furthermore, CTendo45 and mutants exhibited higher activity towards β-D-glucan than that of CMC-Na, and activities of Y173F and Y30F were also increased obviously against β-D-glucan. In addition, Y173F significantly improved the enzyme’s heat resistance at 80 °C and 90 °C. More interestingly, the double mutant Y30F/Y173F obtained considerably higher stability at elevated temperatures but failed to inherit the increased catalytic efficiency of its single mutant counterparts. This work gives an initial insight into the biological function of conserved and noncatalytic residues of thermostable endoglucanases and proposes a feasible path for the improvement of enzyme redesign proposals.
Collapse
|
29
|
Rueda AJV, Monzon AM, Ardanaz SM, Iglesias LE, Parisi G. Large scale analysis of protein conformational transitions from aqueous to non-aqueous media. BMC Bioinformatics 2018; 19:27. [PMID: 29382320 PMCID: PMC5791380 DOI: 10.1186/s12859-018-2044-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their aqueous forms. However, it is well established that the catalytic activity of proteins in organic solvents is much lower than in water. In order to explain this diminished activity and to further characterize the behaviour of proteins in non-aqueous environments, we performed a large-scale analysis (1737 proteins) of the conformational diversity of proteins crystallized in aqueous and co-crystallized or soaked in non-aqueous media. Results Using proteins’ experimentally determined conformational diversity taken from CoDNaS database, we found that proteins in non-aqueous media display much lower conformational diversity when compared to the corresponding conformers obtained in water. When conformational diversity is compared between conformers obtained in different non-aqueous media, their structural differences are larger and mostly independent of the presence of cognate ligands. We also found that conformers corresponding to non-aqueous media have larger but less flexible cavities, lower number of disordered regions and lower active-site residue mobility. Conclusions Our results show that non-aqueous media conformers have specific structural features and that they do not adopt extreme conformations found in aqueous media. This makes them clearly different from their corresponding aqueous conformers. Electronic supplementary material The online version of this article (10.1186/s12859-018-2044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Julia Velez Rueda
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Sebastián M Ardanaz
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Luis E Iglesias
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
30
|
McGillewie L, Ramesh M, Soliman ME. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases. Protein J 2017; 36:385-396. [PMID: 28762197 DOI: 10.1007/s10930-017-9735-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Collapse
Affiliation(s)
- Lara McGillewie
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Muthusamy Ramesh
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa.
| |
Collapse
|
31
|
Monzon AM, Zea DJ, Marino-Buslje C, Parisi G. Homology modeling in a dynamical world. Protein Sci 2017; 26:2195-2206. [PMID: 28815769 DOI: 10.1002/pro.3274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022]
Abstract
A key concept in template-based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well-established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure-function relationship. We show that protein families with low conformational diversity show a well-correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, B1876BXD, Bernal, Argentina
| | - Diego Javier Zea
- Structural Bioinformatics Unit, Fundación Instituto Leloir, CONICET, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - Cristina Marino-Buslje
- Structural Bioinformatics Unit, Fundación Instituto Leloir, CONICET, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, B1876BXD, Bernal, Argentina
| |
Collapse
|
32
|
Pitsawong W, Haynes CA, Koder RL, Rodgers DW, Miller AF. Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode for Catalytically Competent Nitroreductase. Structure 2017; 25:978-987.e4. [PMID: 28578873 DOI: 10.1016/j.str.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
Nitroreductase (NR) from Enterobacter cloacae reduces diverse nitroaromatics including herbicides, explosives, and prodrugs, and holds promise for bioremediation, prodrug activation, and enzyme-assisted synthesis. We solved crystal structures of NR complexes with bound substrate or analog for each of its two half-reactions. We complemented these with kinetic isotope effect (KIE) measurements elucidating H-transfer steps essential to each half-reaction. KIEs indicate hydride transfer from NADH to the flavin consistent with our structure of NR with the NADH analog nicotinic acid adenine dinucleotide (NAAD). The KIE on reduction of p-nitrobenzoic acid (p-NBA) also indicates hydride transfer, and requires revision of prior computational mechanisms. Our mechanistic information provided a structural restraint for the orientation of bound substrate, placing the nitro group closer to the flavin N5 in the pocket that binds the amide of NADH. KIEs show that solvent provides a proton, enabling accommodation of different nitro group placements, consistent with the broad repertoire of NR.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - Chad A Haynes
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | - Ronald L Koder
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA; Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
33
|
Cahn JKB, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases. ACS Synth Biol 2017; 6:326-333. [PMID: 27648601 DOI: 10.1021/acssynbio.6b00188] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).
Collapse
Affiliation(s)
- Jackson K. B. Cahn
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Caroline A. Werlang
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Armin Baumschlager
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Stephen L. Mayo
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
34
|
Monzon AM, Zea DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SCE, Parisi G. Conformational diversity analysis reveals three functional mechanisms in proteins. PLoS Comput Biol 2017; 13:e1005398. [PMID: 28192432 PMCID: PMC5330503 DOI: 10.1371/journal.pcbi.1005398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/28/2017] [Accepted: 02/02/2017] [Indexed: 02/02/2023] Open
Abstract
Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call "rigid" (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (CONICET), Bernal, Buenos Aires, Argentina
| | - Diego Javier Zea
- Bioinformatics Unit, Fundación Instituto Leloir (CONICET), Buenos Aires, Argentina
| | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (CONICET), Bernal, Buenos Aires, Argentina
| | - Tadeo E. Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (CONICET), Bernal, Buenos Aires, Argentina
| | - Sebastian Fernandez-Alberti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (CONICET), Bernal, Buenos Aires, Argentina
| | | | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (CONICET), Bernal, Buenos Aires, Argentina
| |
Collapse
|
35
|
Liu Q, Zhao C, Huang J, Chen L, Yang K, Gong L, Du Y, Yu C, Wu L, Li X, He Y. Enantioselectivity of d-amino acid oxidase in the presence of ionic liquids. RSC Adv 2017. [DOI: 10.1039/c7ra04687a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, enantioselectivities of d-amino acid oxidase (DAAO) in ten ionic liquids were investigated in detail.
Collapse
|
36
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
37
|
Yang G, Hong N, Baier F, Jackson CJ, Tokuriki N. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. Biochemistry 2016; 55:4583-93. [PMID: 27444875 DOI: 10.1021/acs.biochem.6b00561] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.
Collapse
Affiliation(s)
- Gloria Yang
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Nansook Hong
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Florian Baier
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
St. John SE, Anson BJ, Mesecar AD. X-Ray Structure and Inhibition of 3C-like Protease from Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:25961. [PMID: 27173881 PMCID: PMC4865815 DOI: 10.1038/srep25961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that infects pigs and can have mortality rates approaching 100% in piglets, causing serious economic impact. The 3C-like protease (3CL(pro)) is essential for the coronaviral life cycle and is an appealing target for the development of therapeutics. We report the expression, purification, crystallization and 2.10 Å X-ray structure of 3CL(pro) from PEDV. Analysis of the PEDV 3CL(pro) structure and comparison to other coronaviral 3CL(pro)'s from the same alpha-coronavirus phylogeny shows that the overall structures and active site architectures across 3CL(pro)'s are conserved, with the exception of a loop that comprises the protease S2 pocket. We found a known inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL(pro), (R)-16, to have inhibitor activity against PEDV 3CL(pro), despite that SARS-3CL(pro) and PEDV 3CL(pro) share only 45.4% sequence identity. Structural comparison reveals that the majority of residues involved in (R)-16 binding to SARS-3CL(pro) are conserved in PEDV-3CL(pro); however, the sequence variation and positional difference in the loop forming the S2 pocket may account for large observed difference in IC50 values. This work advances our understanding of the subtle, but important, differences in coronaviral 3CL(pro) architecture and contributes to the broader structural knowledge of coronaviral 3CL(pro)'s.
Collapse
Affiliation(s)
- Sarah E. St. John
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Centers for Cancer Research & Drug Discovery, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Brandon J. Anson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Andrew D. Mesecar
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Centers for Cancer Research & Drug Discovery, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
39
|
Carlin DA, Caster RW, Wang X, Betzenderfer SA, Chen CX, Duong VM, Ryklansky CV, Alpekin A, Beaumont N, Kapoor H, Kim N, Mohabbot H, Pang B, Teel R, Whithaus L, Tagkopoulos I, Siegel JB. Kinetic Characterization of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with Kinetic Constants. PLoS One 2016; 11:e0147596. [PMID: 26815142 PMCID: PMC4729467 DOI: 10.1371/journal.pone.0147596] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022] Open
Abstract
The use of computational modeling algorithms to guide the design of novel enzyme catalysts is a rapidly growing field. Force-field based methods have now been used to engineer both enzyme specificity and activity. However, the proportion of designed mutants with the intended function is often less than ten percent. One potential reason for this is that current force-field based approaches are trained on indirect measures of function rather than direct correlation to experimentally-determined functional effects of mutations. We hypothesize that this is partially due to the lack of data sets for which a large panel of enzyme variants has been produced, purified, and kinetically characterized. Here we report the kcat and KM values of 100 purified mutants of a glycoside hydrolase enzyme. We demonstrate the utility of this data set by using machine learning to train a new algorithm that enables prediction of each kinetic parameter based on readily-modeled structural features. The generated dataset and analyses carried out in this study not only provide insight into how this enzyme functions, they also provide a clear path forward for the improvement of computational enzyme redesign algorithms.
Collapse
Affiliation(s)
- Dylan Alexander Carlin
- Biophysics Graduate Group, University of California Davis, California, United States of America
| | - Ryan W. Caster
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | | | - Claire X. Chen
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Veasna M. Duong
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Carolina V. Ryklansky
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Alp Alpekin
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Nathan Beaumont
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Harshul Kapoor
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Nicole Kim
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Hosna Mohabbot
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Boyu Pang
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Rachel Teel
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Lillian Whithaus
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Ilias Tagkopoulos
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Computer Science, University of California Davis, Davis, California, United States of America
| | - Justin B. Siegel
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Chemistry, University of California Davis, Davis, California, United States of America
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Cahn JKB, Baumschlager A, Brinkmann-Chen S, Arnold FH. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes. Protein Eng Des Sel 2016; 29:31-8. [PMID: 26512129 PMCID: PMC4678007 DOI: 10.1093/protein/gzv057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/14/2022] Open
Abstract
NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli.
Collapse
Affiliation(s)
- J K B Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| | - A Baumschlager
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| | - S Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| | - F H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA
| |
Collapse
|
41
|
Neves RPP, Fernandes PA, Ramos MJ. Unveiling the Catalytic Mechanism of NADP+-Dependent Isocitrate Dehydrogenase with QM/MM Calculations. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui P. P. Neves
- UCIBIO,
REQUIMTE, Departamento
de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO,
REQUIMTE, Departamento
de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO,
REQUIMTE, Departamento
de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
42
|
Das A, Gerlits O, Parks JM, Langan P, Kovalevsky A, Heller WT. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Structure 2015; 23:2331-2340. [PMID: 26585512 DOI: 10.1016/j.str.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.
Collapse
Affiliation(s)
- Amit Das
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Oksana Gerlits
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
43
|
Daczkowski CM, Pegan SD, Harvey SP. Engineering the Organophosphorus Acid Anhydrolase Enzyme for Increased Catalytic Efficiency and Broadened Stereospecificity on Russian VX. Biochemistry 2015; 54:6423-33. [PMID: 26418828 DOI: 10.1021/acs.biochem.5b00624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme organophosphorus acid anhydrolase (OPAA), from Alteromonas sp. JD6.5, has been shown to rapidly catalyze the hydrolysis of a number of toxic organophosphorus compounds, including several G-type chemical nerve agents. The enzyme was cloned into Escherichia coli and can be produced up to approximately 50% of cellular protein. There have been no previous reports of OPAA activity on VR {Russian VX, O-isobutyl S-[2-(diethylamino)ethyl] methylphosphonothioate}, and our studies reported here show that wild-type OPAA has poor catalytic efficacy toward VR. However, via application of a structurally aided protein engineering approach, significant improvements in catalytic efficiency were realized via optimization of the small pocket within the OPAA's substrate-binding site. This optimization involved alterations at only three amino acid sites resulting in a 30-fold increase in catalytic efficiency toward racemic VR, with a strong stereospecificity toward the P(+) enantiomer. X-ray structures of this mutant as well as one of its predecessors provide potential structural rationales for their effect on the OPAA active site. Additionally, a fourth mutation at a site near the small pocket was found to relax the stereospecificity of the OPAA enzyme. Thus, it allows the altered enzyme to effectively process both VR enantiomers and should be a useful genetic background in which to seek further improvements in OPAA VR activity.
Collapse
Affiliation(s)
- Courtney M Daczkowski
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States.,U.S. Army Reserve 377th Sustainment Command Detachment 8 , Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Steven P Harvey
- U.S. Army Edgewood Chemical Biological Center , Aberdeen Proving Ground, Maryland 21010-5424, United States
| |
Collapse
|
44
|
Chen M, Jin Y, Penning TM. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency. Biochemistry 2015; 54:6343-51. [PMID: 26418565 DOI: 10.1021/acs.biochem.5b00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human steroid-5β-reductase (aldo-keto reductase 1D1, AKR1D1) stereospecifically reduces Δ(4)-3-ketosteroids to 5β-dihydrosteroids and is essential for steroid hormone metabolism and bile acid biosynthesis. Genetic defects in AKR1D1 cause bile acid deficiency that leads to life threatening neonatal hepatitis and cholestasis. The disease-associated P133R mutation caused significant decreases in catalytic efficiency with both the representative steroid (cortisone) and the bile acid precursor (7α-hydroxycholest-4-en-3-one) substrates. Pro133 is a second shell residue to the steroid binding channel and is distal to both the cofactor binding site and the catalytic center. Strikingly, the P133R mutation caused over a 40-fold increase in Kd values for the NADP(H) cofactors and increased the rate of release of NADP(+) from the enzyme by 2 orders of magnitude when compared to the wild type enzyme. By contrast the effect of the mutation on Kd values for steroids were 10-fold or less. The reduced affinity for the cofactor suggests that the mutant exists largely in the less stable cofactor-free form in the cell. Using stopped-flow spectroscopy, a significant reduction in the rate of the chemical step was observed in multiple turnover reactions catalyzed by the P133R mutant, possibly due to the altered position of NADPH. Thus, impaired NADPH binding and hydride transfer is the molecular basis for bile acid deficiency in patients with the P133R mutation. Results revealed that optimal cofactor binding is vulnerable to distant structural perturbation, which may apply to other disease-associated mutations in AKR1D1, all of which occur at conserved residues and are unstable.
Collapse
Affiliation(s)
- Mo Chen
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania , Philadelphia, Philadelphia, United States
| | - Yi Jin
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania , Philadelphia, Philadelphia, United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania , Philadelphia, Philadelphia, United States
| |
Collapse
|
45
|
Chen M, Jin Y, Penning TM. The rate-determining steps of aldo-keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1). Chem Biol Interact 2014; 234:360-5. [PMID: 25500266 DOI: 10.1016/j.cbi.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
Aldo-keto reductases (AKRs) are an expanding family of NAD(P)(H)-dependent oxidoreductases that catalyze the reduction of either carbonyl groups or α,β-unsaturated ketones on a variety of endogenous and exogenous substrates. The enzymes catalyze a sequential ordered bi-bi kinetic mechanism, in which cofactor is bound first and released last. Using human steroid 5β-reductase (AKR1D1) as a representative enzyme, the influence of substrate structure on the rate-limiting steps of AKR catalysis has been previously determined. The rate of the chemistry step was found to differ by two orders of magnitude when different steroid substrates were used in single turnover experiments with AKR1D1. This difference was reflected in multiple turnover experiments. C17-C21 steroid substrates exhibited a fast chemistry step followed by slow product release as suggested by "burst" phase kinetics. By contrast, C27 steroids have a slower chemical step that determines the rate of the reaction and "burst-phase" kinetics are no longer observed. Here we present single turnover kinetic experiments and find that they support the existence of two different binding poses for fast substrates due to their biphasic nature. We also re-interpret the loss of "burst-phase" kinetics in the multiple turnover experiments as due to long range effects of the steroid side-chain interacting with distal parts of the steroid pocket to perturb the reaction trajectory for hydride transfer and thus reduce kcat. The ability of steroid structure and hence binding pose to influence rate determination in steroid transforming AKRs is discussed as a general phenomenon.
Collapse
Affiliation(s)
- Mo Chen
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yi Jin
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
46
|
Neumann P, Tittmann K. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities. Curr Opin Struct Biol 2014; 29:122-33. [PMID: 25460275 DOI: 10.1016/j.sbi.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing.
Collapse
Affiliation(s)
- Piotr Neumann
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, Göttingen D-37077, Germany.
| | - Kai Tittmann
- Abteilung Molekulare Enzymologie, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, Göttingen D-37077, Germany.
| |
Collapse
|
47
|
Reprint of: fRMSDchiral: a novel algorithm to represent differences between positions of stereoisomers in complex with dissymmetric binding site. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:26-31. [PMID: 24929899 DOI: 10.1016/j.jchromb.2014.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 11/20/2022]
Abstract
The ability of molecules to distinguish between optical isomers is crucial for living systems. The change of position of one enantiomer in respect to the position of the second enantiomer within an asymmetric binding site may be analyzed on different levels. Root Mean Square Deviation (RMSD) may be used for such analyses with low precision. Additional fragment level variants of RMSD allow for more precise definition of differences in location of the main molecular features responsible for recognition of stereoisomers by a selector. Three fRMSDchiral parameters appear to be very useful to precisely quantify the change in orientations of stereoisomers. Proposed calculation emerges as interesting assistance in interpretation of consequences of formation differential interaction(s) responsible for a chiral recognition process.
Collapse
|
48
|
Tittmann K. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorg Chem 2014; 57:263-280. [PMID: 25267444 DOI: 10.1016/j.bioorg.2014.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Nature has evolved different strategies for the reversible cleavage of ketose phosphosugars as essential metabolic reactions in all domains of life. Prominent examples are the Schiff-base forming class I FBP and F6P aldolase as well as transaldolase, which all exploit an active center lysine to reversibly cleave the C3-C4 bond of fructose-1,6-bisphosphate or fructose-6-phosphate to give two 3-carbon products (aldolase), or to shuttle 3-carbon units between various phosphosugars (transaldolase). In contrast, transketolase and phosphoketolase make use of the bioorganic cofactor thiamin diphosphate to cleave the preceding C2-C3 bond of ketose phosphates. While transketolase catalyzes the reversible transfer of 2-carbon ketol fragments in a reaction analogous to that of transaldolase, phosphoketolase forms acetyl phosphate as final product in a reaction that comprises ketol cleavage, dehydration and phosphorolysis. In this review, common and divergent catalytic principles of these enzymes will be discussed, mostly, but not exclusively, on the basis of crystallographic snapshots of catalysis. These studies in combination with mutagenesis and kinetic analysis not only delineated the stereochemical course of substrate binding and processing, but also identified key catalytic players acting at the various stages of the reaction. The structural basis for the different chemical fates and lifetimes of the central enamine intermediates in all five enzymes will be particularly discussed, in addition to the mechanisms of substrate cleavage, dehydration and ring-opening reactions of cyclic substrates. The observation of covalent enzymatic intermediates in hyperreactive conformations such as Schiff-bases with twisted double-bond linkages in transaldolase and physically distorted substrate-thiamin conjugates with elongated substrate bonds to be cleaved in transketolase, which probably epitomize a canonical feature of enzyme catalysis, will be also highlighted.
Collapse
Affiliation(s)
- Kai Tittmann
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
49
|
Herdendorf TJ, Nelson SW. Catalytic mechanism of bacteriophage T4 Rad50 ATP hydrolysis. Biochemistry 2014; 53:5647-60. [PMID: 25137526 DOI: 10.1021/bi500558d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spontaneous double-strand breaks (DSBs) are one of the most deleterious forms of DNA damage, and their improper repair can lead to cellular dysfunction. The Mre11 and Rad50 proteins, a nuclease and an ATPase, respectively, form a well-conserved complex that is involved in the initial processing of DSBs. Here we examine the kinetic and catalytic mechanism of ATP hydrolysis by T4 Rad50 (gp46) in the presence and absence of Mre11 (gp47) and DNA. Single-turnover and pre-steady state kinetics on the wild-type protein indicate that the rate-limiting step for Rad50, the MR complex, and the MR-DNA complex is either chemistry or a conformational change prior to catalysis. Pre-steady state product release kinetics, coupled with viscosity steady state kinetics, also supports that the binding of DNA to the MR complex does not alter the rate-limiting step. The lack of a positive deuterium solvent isotope effect for the wild type and several active site mutants, combined with pH-rate profiles, implies that chemistry is rate-limiting and the ATPase mechanism proceeds via an asymmetric, dissociative-like transition state. Mutation of the Walker A/B and H-loop residues also affects the allosteric communication between Rad50 active sites, suggesting possible routes for cooperativity between the ATP active sites.
Collapse
Affiliation(s)
- Timothy J Herdendorf
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | | |
Collapse
|
50
|
Miller SP, Gonçalves S, Matias PM, Dean AM. Evolution of a transition state: role of Lys100 in the active site of isocitrate dehydrogenase. Chembiochem 2014; 15:1145-53. [PMID: 24797066 DOI: 10.1002/cbic.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/09/2022]
Abstract
An active site lysine essential to catalysis in isocitrate dehydrogenase (IDH) is absent from related enzymes. As all family members catalyze the same oxidative β-decarboxylation at the (2R)-malate core common to their substrates, it seems odd that an amino acid essential to one is not found in all. Ordinarily, hydride transfer to a nicotinamide C4 neutralizes the positive charge at N1 directly. In IDH, the negatively charged C4-carboxylate of isocitrate stabilizes the ground state positive charge on the adjacent nicotinamide N1, opposing hydride transfer. The critical lysine is poised to stabilize-and perhaps even protonate-an oxyanion formed on the nicotinamide 3-carboxamide, thereby enabling the hydride to be transferred while the positive charge at N1 is maintained. IDH might catalyze the same overall reaction as other family members, but dehydrogenation proceeds through a distinct, though related, transition state. Partial activation of lysine mutants by K(+) and NH4 (+) represents a throwback to the primordial state of the first promiscuous substrate family member.
Collapse
Affiliation(s)
- Stephen P Miller
- Biotechnology Institute, The University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108 (USA)
| | | | | | | |
Collapse
|