1
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Mulholland PJ, Padula AE, Wilhelm LJ, Park B, Grant KA, Ferguson BM, Cervera-Juanes R. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. Transl Psychiatry 2023; 13:364. [PMID: 38012158 PMCID: PMC10682415 DOI: 10.1038/s41398-023-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Larry J Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Byung Park
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kathleen A Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Betsy M Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Brosens N, Lesuis SL, Rao-Ruiz P, van den Oever MC, Krugers HJ. Shaping Memories Via Stress: A Synaptic Engram Perspective. Biol Psychiatry 2023:S0006-3223(23)01720-1. [PMID: 37977215 DOI: 10.1016/j.biopsych.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Cellular and Cognitive Neuroscience group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Sosa MKS, Boorman DC, Keay KA. The impact of sciatic nerve injury and social interactions testing on glucocorticoid receptor expression in catecholaminergic medullary cell populations. Brain Res 2023; 1819:148542. [PMID: 37604315 DOI: 10.1016/j.brainres.2023.148542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Paradoxically, while acute pain leads to transiently elevated corticosterone, chronic pain does not result in persistently elevated corticosterone. In the sciatic nerve chronic constriction injury (CCI) model of chronic pain, we have shown that the same nerve injury produces a range of behavioural outcomes, each associated with distinctive adaptations to the HPA-axis to achieve stable plasma corticosterone levels. We also demonstrated that CRF and GR expression in the paraventricular hypothalamus (PVH) was increased in rats that showed persistent changes to their social behaviours during Resident-Intruder testing ('Persistent Effect' rats) when compared to rats that showed no behavioural changes ('No Effect' rats). In this study, we investigated whether these changes were driven in part by altered sensitivity of the brainstem catecholaminergic pathways (known to regulate the PVH) to glucocorticoids. GR expression in adrenergic (C1,C2) and noradrenergic (A1,A2) cells was determined using immunohistochemistry in behaviourally tested CCI rats and in uninjured controls. We found no differences between Persistent Effect and No Effect rats in (1) the glucocorticoid sensitivity of these cells, or (2) the numbers of adrenergic and noradrenergic cells in each region. However, we discovered an overall reduction in GR expression in the non-catecholaminergic cells of these regions in both experimental groups when compared to uninjured controls, most likely attributable to the repeated Resident-Intruder testing. Taken together, these data suggest strongly that brainstem mechanisms are unlikely to play a key role in the rebalancing of the HPA-axis triggered by CCI, increasing the probability that these changes are driven by supra-hypothalamic regions.
Collapse
Affiliation(s)
- Maria K S Sosa
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales 2006, Australia
| | - Damien C Boorman
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
5
|
Davis SL, Latimer M, Rice M. Biomarkers of Stress and Inflammation in Children. Biol Res Nurs 2023; 25:559-570. [PMID: 37010976 PMCID: PMC10626617 DOI: 10.1177/10998004231168805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Background: Children are increasingly exposed to stressors that can affect their immune function. Given the possible negative effects of stress and inflammation on health, researchers need to use appropriate biomarkers to measure both the effects of stress and subsequent inflammatory responses. Purpose: The purpose of this paper is to briefly review stress and inflammatory pathways, identify biomarkers used to measure chronic stress and chronic inflammation particularly in children in clinical and community settings, and to discuss methodological considerations when measuring stress and inflammation in children. Discussion: Biomarkers of chronic stress can be classified as central, meaning they are made in the brain, or peripheral, meaning they are made in the peripheral tissues in response to central signals. The peripheral biomarker, cortisol, is most frequently used in the community setting. In addition, indirect measures, such as oxytocin, may complement the assessment of stress. Common biomarkers of chronic inflammation in children are C-reactive protein (CRP), TNF-α, and IL-6. Similarly, indirect biomarkers of chronic inflammation, such as IL-2 and IL-1β, may also be considered. Conclusions: Various types of specimens can be used to measure these biomarkers of stress and inflammation including blood, saliva, urine, sweat, hair, nails, and tears. Each type of specimen has different requirements for collection, storage, and assay. Future research would benefit from standardized biomarker levels across age and development in children and incorporation of other biomarkers.
Collapse
Affiliation(s)
- Sara L. Davis
- College of Nursing, University of South Alabama, Mobile, AL, USA
| | - Mary Latimer
- School of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marti Rice
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Juanes RC, Mulholland P, Padula A, Wilhelm L, Park B, Grant K, Ferguson B. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. RESEARCH SQUARE 2023:rs.3.rs-3315122. [PMID: 37790552 PMCID: PMC10543433 DOI: 10.21203/rs.3.rs-3315122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms including alternative promoters in KCNN3 that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to impact firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betsy Ferguson
- Oregon Health & Sciences University/Oregon National Primate Research Center
| |
Collapse
|
7
|
Moore SJ, Cazares VA, Temme SJ, Murphy GG. Age-related deficits in neuronal physiology and cognitive function are recapitulated in young mice overexpressing the L-type calcium channel, Ca V 1.3. Aging Cell 2023; 22:e13781. [PMID: 36703244 PMCID: PMC10014069 DOI: 10.1111/acel.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV 1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV 1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV 1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.
Collapse
Affiliation(s)
- Shannon J. Moore
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Victor A. Cazares
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyWilliams CollegeWilliamstownMassachusettsUSA
| | | | - Geoffrey G. Murphy
- Michigan Neuroscience InstituteAnn ArborMichiganUSA
- Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 2022; 18:100455. [PMID: 35601687 PMCID: PMC9118500 DOI: 10.1016/j.ynstr.2022.100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.
Collapse
Affiliation(s)
| | - Onno C. Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - E. Ron de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Khonacha SE, Mirbehbahani SH, Rahdar M, Davoudi S, Borjkhani M, Khodaghli F, Motamedi F, Janahmadia M. Kisspeptin-13 prevented the electrophysiological alterations induced by Amyloid-Beta pathology in rat: Possible involvement of stromal interaction molecules and pCREB. Brain Res Bull 2022; 184:13-23. [PMID: 35272006 DOI: 10.1016/j.brainresbull.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aβ-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aβ-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aβ treatment affected the action potential features. These electrophysiological changes induced by Aβ were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aβ injection into the entorhinal cortex, however, prevented the excitatory effect of Aβ on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aβ on spike parameters. In addition, the KP-13 application after Aβ treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aβ treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aβ.
Collapse
Affiliation(s)
- Shima Ebrahimi Khonacha
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Fariba Khodaghli
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadia
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Mifsud KR, Kennedy CLM, Salatino S, Sharma E, Price EM, Haque SN, Gialeli A, Goss HM, Panchenko PE, Broxholme J, Engledow S, Lockstone H, Cordero Llana O, Reul JMHM. Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors. Nat Commun 2021; 12:4737. [PMID: 34362910 PMCID: PMC8346558 DOI: 10.1038/s41467-021-24967-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid hormones (GCs) - acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) - are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.
Collapse
Affiliation(s)
- Karen R Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Clare L M Kennedy
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily M Price
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha N Haque
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Andriana Gialeli
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Polina E Panchenko
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oscar Cordero Llana
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
11
|
Jaszczyk A, Juszczak GR. Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 2021; 126:113-145. [PMID: 33727030 DOI: 10.1016/j.neubiorev.2021.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
The review integrates different experimental approaches including biochemistry, c-Fos expression, microdialysis (glutamate, GABA, noradrenaline and serotonin), electrophysiology and fMRI to better understand the effect of elevated level of glucocorticoids on the brain activity and metabolism. The available data indicate that glucocorticoids alter the dynamics of neuronal activity leading to context-specific changes including both excitation and inhibition and these effects are expected to support the task-related responses. Glucocorticoids also lead to diversification of available sources of energy due to elevated levels of glucose, lactate, pyruvate, mannose and hydroxybutyrate (ketone bodies), which can be used to fuel brain, and facilitate storage and utilization of brain carbohydrate reserves formed by glycogen. However, the mismatch between carbohydrate supply and utilization that is most likely to occur in situations not requiring energy-consuming activities lead to metabolic stress due to elevated brain levels of glucose. Excessive doses of glucocorticoids also impair the production of energy (ATP) and mitochondrial oxidation. Therefore, glucocorticoids have both adaptive and maladaptive effects consistently with the concept of allostatic load and overload.
Collapse
Affiliation(s)
- Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland.
| |
Collapse
|
12
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
13
|
D'Alessio L, Mesarosova L, Anink JJ, Kochen S, Solís P, Oddo S, Konopka H, Iyer AM, Mühlebner A, Lucassen PJ, Aronica E, van Vliet EA. Reduced expression of the glucocorticoid receptor in the hippocampus of patients with drug-resistant temporal lobe epilepsy and comorbid depression. Epilepsia 2020; 61:1595-1605. [PMID: 32652588 PMCID: PMC7496961 DOI: 10.1111/epi.16598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/16/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Objective Depressive disorders are common among about 50% of the patients with drug‐resistant temporal lobe epilepsy (TLE). The underlying etiology remains elusive, but hypothalamus‐pituitary‐adrenal (HPA) axis activation due to changes in glucocorticoid receptor (GR) protein expression could play an important role. Therefore, we set out to investigate expression of the GR in the hippocampus, an important brain region for HPA axis feedback, of patients with drug‐resistant TLE, with and without comorbid depression. Methods GR expression was studied using immunohistochemistry on hippocampal sections from well‐characterized TLE patients with depression (TLE + D, n = 14) and without depression (TLE − D, n = 12) who underwent surgery for drug‐resistant epilepsy, as well as on hippocampal sections from autopsy control cases (n = 9). Video–electroencephalography (EEG), magnetic resonance imaging (MRI), and psychiatric and memory assessments were performed prior to surgery. Results Abundant GR immunoreactivity was present in dentate gyrus granule cells and CA1 pyramidal cells of controls. In contrast, neuronal GR expression was lower in patients with TLE, particularly in the TLE + D group. Quantitative analysis showed a smaller GR+ area in TLE + D as compared to TLE − D patients and controls. Furthermore, the ratio between the number of GR+/NeuN+ cells was lower in patients with TLE + D as compared to TLE − D and correlated negatively with the depression severity based on psychiatric history. The expression of the GR was also lower in glial cells of TLE + D compared to TLE − D patients and correlated negatively to the severity of depression. Significance Reduced hippocampal GR expression may be involved in the etiology of depression in patients with TLE and could constitute a biological marker of depression in these patients.
Collapse
Affiliation(s)
- Luciana D'Alessio
- Universidad de Buenos Aires, IBCN-CONICET, Centro de Epilepsia Hospital Ramos Mejía y Hospital El Cruce, ENyS-CONICET, Buenos Aires, Argentina
| | - Lucia Mesarosova
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Silvia Kochen
- Universidad de Buenos Aires, IBCN-CONICET, Centro de Epilepsia Hospital Ramos Mejía y Hospital El Cruce, ENyS-CONICET, Buenos Aires, Argentina
| | - Patricia Solís
- Universidad de Buenos Aires, IBCN-CONICET, Centro de Epilepsia Hospital Ramos Mejía y Hospital El Cruce, ENyS-CONICET, Buenos Aires, Argentina
| | - Silvia Oddo
- Universidad de Buenos Aires, IBCN-CONICET, Centro de Epilepsia Hospital Ramos Mejía y Hospital El Cruce, ENyS-CONICET, Buenos Aires, Argentina
| | - Hector Konopka
- Universidad de Buenos Aires, IBCN-CONICET, Centro de Epilepsia Hospital Ramos Mejía y Hospital El Cruce, ENyS-CONICET, Buenos Aires, Argentina
| | - Anand M Iyer
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Angelika Mühlebner
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
de Souza-Talarico JN, Alves AR, Brucki SMD, Nitrini R, Lupien SJ, Suchecki D. Cortisol reactivity to a psychosocial stressor significantly increases the risk of developing Cognitive Impairment no Dementia five years later. Psychoneuroendocrinology 2020; 115:104601. [PMID: 32087524 DOI: 10.1016/j.psyneuen.2020.104601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) patients show high cortisol levels suggesting that biological mediators of stress may play a role in the neurodegenerative process of cognitive disorders. However, there is no consensus as to whether cortisol concentrations represent a risk factor for the development of cognitive impairment. We analyzed the potential association between the incidence of cognitive impairment and cortisol concentrations under basal and acute stress conditions in 129 individuals aged 50 years or older, with preserved cognitive and functional abilities. All participants were recruited in 2011 for assessment of cognitive performance and cortisol levels. Cortisol was analyzed in saliva samples collected during two typical and consecutive days, in the morning, afternoon, and night, and also during exposure to an acute psychosocial stressor (Trier Social Stress Test - TSST). After a five-year follow-up, 69 of these volunteers were reassessed for cognitive performance, functional evaluation, memory complaints, and depression. The incidence of cognitive impairment not dementia (CIND) was 26.1 %, and was positively associated with greater TSST-induced cortisol release (responsiveness) [(95 % CI = 1.001-1.011; B = 0.006), p = 0.023]. Moreover, five years before diagnosis, participants who later developed CIND had greater responsiveness to TSST (p = 0.019) and lower cortisol awakening response (CAR: p = 0.018), as compared to those who did not develop CIND. These findings suggest that higher psychosocial stress responsiveness profiles may represent a preclinical sign of cognitive impairment.
Collapse
Affiliation(s)
| | - Andrea Regiani Alves
- Department of Medical-Surgical Nursing, School of Nursing, Universidade de São Paulo, São Paulo, 05403 000, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Faculty of Medicine, Universidade de São Paulo, São Paulo, 05403 000, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Faculty of Medicine, Universidade de São Paulo, São Paulo, 05403 000, Brazil
| | - Sonia J Lupien
- Centre for Studies on Human Stress, Mental Health Research Centre Fernand Seguin, Hospital Louis H. Lafontaine, Université de Montréal, Montréal, QC, H1N 3V2, Canada
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil
| |
Collapse
|
15
|
Nasrin Faraji, Shiravi A, Bahari Z, Shirvani H, Meftahi GH. Basolateral Amygdala α1-Adrenergic Receptor Suppression Attenuates Stress-Induced Anxiety-Like Behavior and Spine Morphology Impairment on Hippocampal CA1 Pyramidal Neurons. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Feld GB, Born J. Neurochemical mechanisms for memory processing during sleep: basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology 2020; 45:31-44. [PMID: 31443105 PMCID: PMC6879745 DOI: 10.1038/s41386-019-0490-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Sleep is essential for memory formation. Active systems consolidation maintains that memory traces that are initially stored in a transient store such as the hippocampus are gradually redistributed towards more permanent storage sites such as the cortex during sleep replay. The complementary synaptic homeostasis theory posits that weak memory traces are erased during sleep through a competitive down-selection mechanism, ensuring the brain's capability to learn new information. We discuss evidence from neuropharmacological experiments in humans to show how major neurotransmitters and neuromodulators are implicated in these memory processes. As to the major excitatory neurotransmitter glutamate that plays a prominent role in inducing synaptic consolidation, we show that these processes, while strengthening cortical memory traces during sleep, are insufficient to explain the consolidation of hippocampus-dependent declarative memories. In the inhibitory GABAergic system, we will offer insights how drugs may alter the intricate interplay of sleep oscillations that have been identified to be crucial for strengthening memories during sleep. Regarding the dopaminergic reward system, we will show how it is engaged during sleep replay, but that dopaminergic neuromodulation likely plays a side role for enhancing relevant memories during sleep. Also, we briefly go into basic evidence on acetylcholine and cortisol whose low tone during slow wave sleep (SWS) is crucial in supporting hippocampal-to-neocortical memory transmission. Finally, we will outline how these insights can be used to improve treatment of neuropsychiatric disorders focusing mainly on anxiety disorders, depression, and addiction that are strongly related to memory processing.
Collapse
Affiliation(s)
- Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
18
|
Blankenship SL, Botdorf M, Riggins T, Dougherty LR. Lasting effects of stress physiology on the brain: Cortisol reactivity during preschool predicts hippocampal functional connectivity at school age. Dev Cogn Neurosci 2019; 40:100736. [PMID: 31770714 PMCID: PMC6974891 DOI: 10.1016/j.dcn.2019.100736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
Prolonged exposure to glucocorticoid stress hormones, such as cortisol in humans, has been associated with structural and functional changes in the hippocampus. The majority of research demonstrating these associations in humans has been conducted in adult, clinical, or severely maltreated populations, with little research investigating these effects in young or more typically developing populations. The present study sought to address this gap by investigating longitudinal associations between preschool (3−5 years) and concurrent (5–9 years) cortisol reactivity to a laboratory stressor and hippocampal functional connectivity during a passive viewing fMRI scan. Results showed that, after controlling for concurrent cortisol reactivity, greater total cortisol release in response to a stressor during preschool predicted increased anterior and posterior hippocampal connectivity with the precuneus and cingulate gyrus at school-age. These findings are consistent with literature from adult and non-human investigations and suggest lasting impacts of early stress physiology on the brain.
Collapse
Affiliation(s)
- Sarah L Blankenship
- Department of Psychology, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Morgan Botdorf
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Lea R Dougherty
- Department of Psychology, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
19
|
Foster TC. Senescent neurophysiology: Ca 2+ signaling from the membrane to the nucleus. Neurobiol Learn Mem 2019; 164:107064. [PMID: 31394200 DOI: 10.1016/j.nlm.2019.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca2+) signaling including an increase in the Ca2+-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca2+-dependent synaptic plasticity. Dysregulation of intracellular Ca2+ and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca2+-dysregulation involves a decrease in Ca2+ influx through NMDA receptors and an increase release of Ca2+ from internal Ca2+ stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca2+ signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience and Genetics and Genomics Program, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Brain Mineralocorticoid Receptors and Resilience to Stress. VITAMINS AND HORMONES 2019; 109:341-359. [DOI: 10.1016/bs.vh.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
21
|
Matos TM, Souza-Talarico JND. How stress mediators can cumulatively contribute to Alzheimer's disease An allostatic load approach. Dement Neuropsychol 2019; 13:11-21. [PMID: 31073376 PMCID: PMC6497016 DOI: 10.1590/1980-57642018dn13-010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Allostatic load is defined as the frequent activation of the neuroendocrine, immunological, metabolic and cardiovascular systems, which makes individuals more susceptible to stress-related health problems. According to this model, physiological dysregulations start to emerge decades before diseases manifest. Consequently, stress research has shifted its attention to anticipating the degree of this dysregulation to better understand the impact of stress hormones and other biomarkers on disease progression. In view of the growing number of studies that demonstrate the influence of modifiable risk factors on cognitive decline, in addition to the effects of chronic stress mediators, the objective of the present review was to present an overview of the development of cognitive changes based on studies on stress and its mediators.
Collapse
Affiliation(s)
- Tatiane Martins Matos
- Nurse, Master of Science from the School of Nursing, University of
São Paulo (EE-USP), SP, Brazil
| | - Juliana Nery De Souza-Talarico
- Professor at the Department of Medical-Surgical Nursing, School of
Nursing, University of São Paulo (EE-USP), SP, Brazil. PhD In the Area of
Neurobiology of Stress and Cognition
| |
Collapse
|
22
|
Antoni FA. Magnocellular Vasopressin and the Mechanism of "Glucocorticoid Escape". Front Endocrinol (Lausanne) 2019; 10:422. [PMID: 31297096 PMCID: PMC6607413 DOI: 10.3389/fendo.2019.00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
It is now widely accepted that magnocellular vasopressinergic neurons in the supraoptic and paraventricular nuclei participate in the control of adrenocorticotropin secretion by the anterior pituitary gland. However, it remains to be explored in further detail, when and how these multifunctional neurons are involved in the control of anterior pituitary function. This paper highlights the role of magnocellular vasopressin in the hypothalamic pituitary adrenocortical axis with special reference to escape from glucocorticoid feedback inhibition. The signaling mechanisms underlying glucocorticoid escape by pituitary corticotrope cells, as well as the wider physiologic and pathologic contexts in which escape is known to occur-namely strenuous exercise, and autoimmune inflammation will be considered. It is proposed that by inducing escape from glucocorticoid feedback inhibition at the pituitary level, magnocellular vasopressin is critically important for the anti-inflammatory, and immunosuppressant actions of endogenous corticosteroids.
Collapse
|
23
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Hua YG, Yang QQ, Yang Y, Wang MJ, Chu WC, Bai PY, Cui DY, Zhang E, Liu HM. Metal-free synthesis of 1,2-amino alcohols by one-pot olefin aziridination and acid ring-opening. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
26
|
Lalonde R, Strazielle C. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity. Rev Neurosci 2018; 28:617-648. [PMID: 28609296 DOI: 10.1515/revneuro-2016-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
Collapse
Affiliation(s)
| | - Catherine Strazielle
- , Laboratoire 'Stress, Immunité, Pathogènes' EA 7300 and Service de Microscopie Electronique, Faculté de Médecine
| |
Collapse
|
27
|
Riis-Vestergaard MI, van Ast V, Cornelisse S, Joëls M, Haushofer J. The effect of hydrocortisone administration on intertemporal choice. Psychoneuroendocrinology 2018; 88:173-182. [PMID: 29306836 DOI: 10.1016/j.psyneuen.2017.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023]
Abstract
Intertemporal choices - decisions involving trade-offs of outcomes at different points in time - are often made under stress. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, resulting in the release of corticosteroids. Recent studies provide evidence that corticosteroids can induce rapid non-genomic effects focused on immediate resolution of the stressful situation, followed by slower genomic effects focused on long-term recovery after stress. It remains unknown, however, how corticosteroids affect intertemporal choice. We randomly assigned healthy men to receive either 10 mg hydrocortisone or a placebo before measuring intertemporal choice. To target time-dependent effects, hydrocortisone was administered either 195 or 15 min before choice elicitation, while a placebo was administered at the other timepoint, in a double-blind design. Intertemporal choices were elicited by offering subjects decisions between small rewards available sooner vs. large rewards available later. We demonstrate a time-dependent effect of hydrocortisone administration on intertemporal choice: when tested 15 min after hydrocortisone administration, subjects showed a strongly increased preference for the small, soon reward over the larger, delayed reward. In contrast, this effect was not found when testing occurred 195 min after hydrocortisone administration. Together, these results suggest that the physiological effects of acute, but not delayed, stress may increase temporal discounting.
Collapse
Affiliation(s)
- Michala Iben Riis-Vestergaard
- Department of Psychology and Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, USA; Busara Center for Behavioral Economics, Nairobi, Kenya.
| | - Vanessa van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandra Cornelisse
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Johannes Haushofer
- Department of Psychology and Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, USA; Busara Center for Behavioral Economics, Nairobi, Kenya; Department of Economics, Princeton University, Princeton, NJ, USA; National Bureau of Economic Research, Cambridge, MA, USA.
| |
Collapse
|
28
|
Bronson DR, Preuss T. Cellular Mechanisms of Cortisol-Induced Changes in Mauthner-Cell Excitability in the Startle Circuit of Goldfish. Front Neural Circuits 2017; 11:68. [PMID: 29033795 PMCID: PMC5625080 DOI: 10.3389/fncir.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.
Collapse
Affiliation(s)
- Daniel R Bronson
- The Graduate Center, City University of New York, New York, NY, United States
| | - Thomas Preuss
- Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
29
|
Gunn BG, Baram TZ. Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 2017; 40:667-679. [PMID: 28916130 DOI: 10.1016/j.tins.2017.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.
Collapse
Affiliation(s)
- B G Gunn
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - T Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA.
| |
Collapse
|
30
|
Foy MR, Foy JG, Levine S, Thompson RF. Manipulation of Pituitary-Adrenal Activity Affects Neural Plasticity in Rodent Hippocampus. Psychol Sci 2017. [DOI: 10.1111/j.1467-9280.1990.tb00198.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hormones secreted from the pituitary-adrenal system during stress affect learning and memory processes. The phenomenon of long-term potentiation (LTP) is a robust example of neuronal plasticity and has become widely regarded as a possible physiological substrate for learning and memory in the mammalian brain. The current study supports our previous finding that stress impairs LTP in the in vitro hippocampal slice. In addition, manipulation of the pituitary-adrenal axis by dexamethasone (DEX), a synthetic glucocorticoid that blocks the pituitary-adrenal response to stress, appears to influence the temporal patterns of the development of the neuronal plastic changes which occur immediately after tetanus (post-tetanic potentiation period, or PTP). Since the stress-induced impairment of LTP occurs, regardless of DEX treatment, we suggest the action of DEX is to modulate the temporal pattern of the PTP/LTP interaction in response to stress.
Collapse
Affiliation(s)
- Michael R. Foy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA
| | | | - Seymour Levine
- Department of Psychiatry, Stanford University, Stanford, CA
| | - Richard F. Thompson
- Department of Psychology, University of Southern California, Los Angeles, CA
| |
Collapse
|
31
|
Kluen LM, Agorastos A, Wiedemann K, Schwabe L. Noradrenergic Stimulation Impairs Memory Generalization in Women. J Cogn Neurosci 2017; 29:1279-1291. [PMID: 28253079 DOI: 10.1162/jocn_a_01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.
Collapse
|
32
|
Vogel S, Schwabe L. Stress in the zoo: Tracking the impact of stress on memory formation over time. Psychoneuroendocrinology 2016; 71:64-72. [PMID: 27240149 DOI: 10.1016/j.psyneuen.2016.04.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Although stress is well known to modulate human memory, precisely how memory formation is altered by a stressful encounter remains unclear. Stress effects on cognition are mainly mediated by the rapidly acting sympathetic nervous system, resulting in the release of catecholamines, and the slower acting hypothalamus-pituitary-adrenal axis secreting cortisol, which induces its effects on cognition through fast, non-genomic actions and delayed, genomic actions. Importantly, these different waves of the physiological stress response are thought to dynamically alter neural processing in brain regions important for memory such as the amygdala and the hippocampus. However, the precise time course of stress effects on memory formation is still unclear. To track the development of stress effects on memory over time, we tested individuals who underwent a stressful experience or a control procedure before a 2-h walk through a zoo, while an automatic camera continuously photographed the events they encoded. In a recognition memory test one week later, participants were presented with target photographs of their own zoo tour and lure photographs from an alternate tour. Stressed participants showed better memory for the experimental treatment than control participants, and this memory enhancement for the stressful encounter itself was directly linked to the sympathetic stress response. Moreover, stress enhanced memory for events encoded 41-65min after stressor onset, which was associated with the cortisol stress response, most likely arising from non-genomic cortisol actions. However, memory for events encoded long after the stressor, when genomic cortisol actions had most likely developed, remained unchanged. Our findings provide novel insights into how stress effects on memory formation develop over time, depending on the activity of major physiological stress response systems.
Collapse
Affiliation(s)
- Susanne Vogel
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany.
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany.
| |
Collapse
|
33
|
Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze. Neurobiol Learn Mem 2016; 132:29-39. [DOI: 10.1016/j.nlm.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 11/20/2022]
|
34
|
Wulsin AC, Solomon MB, Privitera MD, Danzer SC, Herman JP. Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy. Physiol Behav 2016; 166:22-31. [PMID: 27195458 DOI: 10.1016/j.physbeh.2016.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/04/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
Epilepsy is a common neurological disease, affecting 2.4million people in the US. Among the many different forms of the disease, temporal lobe epilepsy (TLE) is one of the most frequent in adults. Recent studies indicate the presence of a hyperactive hypothalamopituitary- adrenocortical (HPA) axis and elevated levels of glucocorticoids in TLE patients. Moreover, in these patients, stress is a commonly reported trigger of seizures, and stress-related psychopathologies, including depression and anxiety, are highly prevalent. Elevated glucocorticoids have been implicated in the development of stress-related psychopathologies. Similarly, excess glucocorticoids have been found to increase neuronal excitability, epileptiform activity and seizure susceptibility. Thus, patients with TLE may generate abnormal stress responses that both facilitate ictal discharges and increase vulnerability for the development of comorbid psychopathologies. Here, we will examine the evidence that the HPA axis is disrupted in TLE, consider potential mechanisms by which this might occur, and discuss the implications of HPA dysfunction for seizuretriggering and psychiatric comorbidities.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States.
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael D Privitera
- Department of Neurology, Neuroscience Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
35
|
Pearson-Leary J, Osborne DM, McNay EC. Role of Glia in Stress-Induced Enhancement and Impairment of Memory. Front Integr Neurosci 2016; 9:63. [PMID: 26793072 PMCID: PMC4707238 DOI: 10.3389/fnint.2015.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/05/2015] [Indexed: 12/20/2022] Open
Abstract
Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | - Ewan C McNay
- Behavioral Neuroscience and Biology, University at Albany Albany, NY, USA
| |
Collapse
|
36
|
de Kloet ER, Molendijk ML. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast 2016; 2016:6503162. [PMID: 27034848 PMCID: PMC4806646 DOI: 10.1155/2016/6503162] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive "coping" was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.
Collapse
Affiliation(s)
- E. R. de Kloet
- Division of Medical Pharmacology and Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
- Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - M. L. Molendijk
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
37
|
Osborne DM, Pearson-Leary J, McNay EC. The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front Neurosci 2015; 9:164. [PMID: 25999811 PMCID: PMC4422005 DOI: 10.3389/fnins.2015.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022] Open
Abstract
Acute stress causes rapid release of norepinephrine (NE) and glucocorticoids (GCs), both of which bind to hippocampal receptors. This release continues, at varying concentrations, for several hours following the stressful event, and has powerful effects on hippocampally-dependent memory that generally promote acquisition and consolidation while impairing retrieval. Several studies have characterized the brain's energy usage both at baseline and during memory processing, but there are few data on energy requirements of memory processes under stressful conditions. Because memory is enhanced by emotional arousal such as during stress, it is likely that molecular memory processes under these conditions differ from those under non-stressful conditions that do not activate the hypothalamic-pituitary-adrenal (HPA) axis. Mobilization of peripheral and central energy stores during stress may increase hippocampal glucose metabolism that enhances salience and detail to facilitate memory enhancement. Several pathways activated by the HPA axis affect neural energy supply and metabolism, and may also prevent detrimental damage associated with chronic stress. We hypothesize that alterations in hippocampal metabolism during stress are key to understanding the effects of stress hormones on hippocampally-dependent memory formation. Second, we suggest that the effects of stress on hippocampal metabolism are bi-directional: within minutes, NE promotes glucose metabolism, while hours into the stress response GCs act to suppress metabolism. These bi-directional effects of NE and GCs on glucose metabolism may occur at least in part through direct modulation of glucose transporter-4. In contrast, chronic stress and prolonged elevation of hippocampal GCs cause chronically suppressed glucose metabolism, excitotoxicity and subsequent memory deficits.
Collapse
Affiliation(s)
| | - Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany Albany, NY, USA ; Biology, University at Albany Albany, NY, USA
| |
Collapse
|
38
|
Chronic stress impairs α1-adrenoceptor-induced endocannabinoid-dependent synaptic plasticity in the dorsal raphe nucleus. J Neurosci 2015; 34:14560-70. [PMID: 25355210 DOI: 10.1523/jneurosci.1310-14.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha 1-adrenergic receptors (α1-ARs) control the activity of dorsal raphe nucleus (DRn) serotonin (5-HT) neurons and play crucial role in the regulation of arousal and stress homoeostasis. However, the precise role of these receptors in regulating glutamate synapses of rat DRn 5-HT neurons and whether chronic stress exposure alters such regulation remain unknown. In the present study, we examined the impact of chronic restraint stress on α1-AR-mediated regulation of glutamate synapses onto DRn 5-HT neurons. We found that, in the control condition, activation of α1-ARs induced an inward current and long-term depression (LTD) of glutamate synapses of DRn 5-HT neurons. The α1-AR LTD was initiated by postsynaptic α1-ARs but mediated by a decrease in glutamate release. The presynaptic expression of the α1-AR LTD was signaled by retrograde endocannabinoids (eCBs). Importantly, we found that chronic exposure to restraint stress profoundly reduced the magnitude of α1-AR LTD but had no effect on the amplitude of α1-AR-induced inward current. Chronic restraint stress also reduced the CB1 receptor-mediated inhibition of EPSC and the eCB-mediated depolarization-induced suppression of excitation. Collectively, these results indicate that chronic restraint stress impairs the α1-AR LTD by reducing the function of presynaptic CB1 receptors and reveal a novel mechanism by which noradrenaline controls synaptic strength and plasticity in the DRn. They also provide evidence that chronic stress impairs eCB signaling in the DRn, which may contribute, at least in part, to the dysregulation of the stress homeostasis.
Collapse
|
39
|
Dolcos F. The fast and the slow sides of cortisol's effects on emotional interference and sustained attention. Front Neurosci 2014; 8:268. [PMID: 25278824 PMCID: PMC4166312 DOI: 10.3389/fnins.2014.00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/10/2014] [Indexed: 01/28/2023] Open
Affiliation(s)
- Florin Dolcos
- Psychology Department, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
40
|
Abstract
Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.
Collapse
Affiliation(s)
- E Ron de Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research, Leiden University and Department of Endocrinology and Metabolism, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| |
Collapse
|
41
|
Pillai AG, Henckens MJAG, Fernández G, Joëls M. Delayed effects of corticosterone on slow after-hyperpolarization potentials in mouse hippocampal versus prefrontal cortical pyramidal neurons. PLoS One 2014; 9:e99208. [PMID: 24901987 PMCID: PMC4047100 DOI: 10.1371/journal.pone.0099208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/12/2014] [Indexed: 11/22/2022] Open
Abstract
The rodent stress hormone corticosterone changes neuronal activity in a slow and persistent manner through transcriptional regulation. In the rat dorsal hippocampus, corticosterone enhances the amplitude of calcium-dependent potassium currents that cause a lingering slow after-hyperpolarization (sAHP) at the end of depolarizing events. In this study we compared the putative region-dependency of the delayed effects of corticosterone (approximately 5 hrs after treatment) on sAHP as well as other active and passive properties of layer 2/3 pyramidal neurons from three prefrontal areas, i.e. the lateral orbitofrontal, prelimbic and infralimbic cortex, with the hippocampus of adult mice. In agreement with previous studies, corticosterone increased sAHP amplitude in the dorsal hippocampus with depolarizing steps of increasing amplitude. However, in the lateral orbitofrontal, prelimbic and infralimbic cortices we did not observe any modifications of sAHP amplitude after corticosterone treatment. Properties of single action potentials or % ratio of the last spike interval with respect to the first spike interval, an indicator of accommodation in an action potential train, were not significantly affected by corticosterone in all brain regions examined. Lastly, corticosterone treatment did not induce any lasting changes in passive membrane properties of hippocampal or cortical neurons. Overall, the data indicate that corticosterone slowly and very persistently increases the sAHP amplitude in hippocampal pyramidal neurons, while this is not the case in the cortical regions examined. This implies that changes in excitability across brain regions reached by corticosterone may vary over a prolonged period of time after stress.
Collapse
Affiliation(s)
- Anup G. Pillai
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Marloes J. A. G. Henckens
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Dep. Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Myers B, McKlveen JM, Herman JP. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 2014; 35:180-196. [PMID: 24361584 PMCID: PMC4422101 DOI: 10.1016/j.yfrne.2013.12.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Environmental stimuli that signal real or potential threats to homeostasis lead to glucocorticoid secretion by the hypothalamic-pituitary-adrenocortical (HPA) axis. Glucocorticoids promote energy redistribution and are critical for survival and adaptation. This adaptation requires the integration of multiple systems and engages key limbic-neuroendocrine circuits. Consequently, glucocorticoids have profound effects on synaptic physiology, circuit regulation of stress responsiveness, and, ultimately, behavior. While glucocorticoids initiate adaptive processes that generate energy for coping, prolonged or inappropriate glucocorticoid secretion becomes deleterious. Inappropriate processing of stressful information may lead to energetic drive that does not match environmental demand, resulting in risk factors for pathology. Thus, dysregulation of the HPA axis may promote stress-related illnesses (e.g. depression, PTSD). This review summarizes the latest developments in central glucocorticoid actions on synaptic, neuroendocrine, and behavioral regulation. Additionally, these findings will be discussed in terms of the energetic integration of stress and the importance of context-specific regulation of glucocorticoids.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - Jessica M McKlveen
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| |
Collapse
|
43
|
Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep. Psychoneuroendocrinology 2013; 38:2962-72. [PMID: 24035099 DOI: 10.1016/j.psyneuen.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/31/2013] [Accepted: 08/21/2013] [Indexed: 11/21/2022]
Abstract
Corticosteroids are known to modulate the consolidation of memories during sleep, specifically in the hippocampus-dependent declarative memory system. However, effects of the major human corticosteroid cortisol are conveyed via two different receptors, i.e., mineralocorticoid (MRs) and glucocorticoid receptors (GRs) whose specific contributions to memory consolidation are unclear. Whereas a shift in the balance between MR and GR activation toward predominant GR activation has been found to impair sleep-dependent consolidation of declarative memories, the effect of predominant MR activation is not well characterized. Here, we examined differential corticosteroid receptor contributions to memory consolidation during post-learning sleep in two placebo-controlled double-blind studies in humans, by comparing the effects of the selective MR agonist fludrocortisone (0.2 mg, orally, Study 1) and of hydrocortisone (22 mg, intravenously, Study 2) with strong binding affinity to both MR and GR. We hypothesized increased activation of MRs during sleep to enhance declarative memory consolidation, but the joint MR/GR activation to impair it. Participants (16 men in each study) learned a declarative (word pair associates) and a procedural task (mirror tracing) before a 7-h period of nocturnal retention sleep, with the substances administered before sleep (Study 1) and during sleep (Study 2), respectively. As hypothesized, retention of word pairs, but not of mirror tracing skill, was selectively enhanced by the MR agonist fludrocortisone. An impairing effect of hydrocortisone on word pair retention remained non-significant possibly reflecting that hydrocortisone administration failed to establish robust predominance of GR activation. Our results show that predominant MR activation benefits declarative memory consolidation presumably by enhancing the sleep-dependent reactivation of hippocampal memories and resultant synaptic plastic processes. The effect is counteracted by additional GR activation. Insufficient MR activation, like GR overactivation, might be a factor contributing to memory impairment in pathological conditions.
Collapse
|
44
|
Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM, Thibault O, Landfield PW. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation? Eur J Pharmacol 2013; 739:74-82. [PMID: 24291098 DOI: 10.1016/j.ejphar.2013.10.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022]
Abstract
It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer's disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.
Collapse
Affiliation(s)
- J C Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - E M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - K-C Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - I Kadish
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - N M Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - C M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - O Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - P W Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States.
| |
Collapse
|
45
|
Haushofer J, Cornelisse S, Seinstra M, Fehr E, Joëls M, Kalenscher T. No effects of psychosocial stress on intertemporal choice. PLoS One 2013; 8:e78597. [PMID: 24250800 PMCID: PMC3826744 DOI: 10.1371/journal.pone.0078597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/23/2013] [Indexed: 01/13/2023] Open
Abstract
Intertemporal choices - involving decisions which trade off instant and delayed outcomes - are often made under stress. It remains unknown, however, whether and how stress affects intertemporal choice. We subjected 142 healthy male subjects to a laboratory stress or control protocol, and asked them to make a series of intertemporal choices either directly after stress, or 20 minutes later (resulting in four experimental groups). Based on theory and evidence from behavioral economics and cellular neuroscience, we predicted a bidirectional effect of stress on intertemporal choice, with increases in impatience or present bias immediately after stress, but decreases in present bias or impatience when subjects are tested 20 minutes later. However, our results show no effects of stress on intertemporal choice at either time point, and individual differences in stress reactivity (changes in stress hormone levels over time) are not related to individual differences in intertemporal choice. Together, we did not find support for the hypothesis that psychosocial laboratory stressors affect intertemporal choice.
Collapse
Affiliation(s)
- Johannes Haushofer
- Department of Economics, University of Zürich, Zürich, Switzerland
- Department of Economics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (JH); (SC)
| | - Sandra Cornelisse
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JH); (SC)
| | - Maayke Seinstra
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ernst Fehr
- Department of Economics, University of Zürich, Zürich, Switzerland
| | - Marian Joëls
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
de Kloet ER. Lifetime achievement from a brain-adrenal perspective: on the CRF-urocortin-glucocorticoid balance. J Chem Neuroanat 2013; 54:42-9. [PMID: 24161414 DOI: 10.1016/j.jchemneu.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/15/2013] [Indexed: 01/06/2023]
Abstract
This contribution dedicated to Wylie Vale is focused on the action of the glucocorticoid hormone aimed to counterbalance the stress response orchestrated by the corticotrophin releasing factor (CRF) and urocortin (Ucn) family of peptides. It appears that the release and action of these stress hormones themselves are subjected to intrinsic self-regulatory feedback loops that operate as checks and balances in stress adaptation. One of these feedback loops is operated by the mineralocorticoid (MR) and glucocorticoid receptors (GR) that mediate in complementary fashion the action of endogenous cortisol/corticosterone in brain circuits underlying the onset and termination of the stress response. By affecting appraisal processes MR has an important role in coordinating emotional expression and cognitive flexibility with the onset of the stress response, while GR's role is prominent in the management of behavioral and physiological adaptations during the recovery phase. Genetic variation in interaction with environmental input and experience-related factors can modulate this balance between susceptibility and recovery governed by a balanced MR:GR signaling. Thanks to the Wylie Vale School of scientists a parallel balanced regulation between the CRF/CRF-1 and Ucn/CRF-2 receptor systems is being uncovered, leading inexorably to the question: how do the CRF/Ucn and glucocorticoid systems interact in multiple brain sites to maintain homeostasis and health?
Collapse
Affiliation(s)
- E R de Kloet
- Medical Pharmacology, LACDR, Leiden University, Leiden, The Netherlands; Department of Endocrinology & Metabolism, Leiden University, Medical Center, Leiden, The Netherlands.
| |
Collapse
|
47
|
Flattening plasma corticosterone levels increases the prevalence of serotonergic dorsal raphe neurons inhibitory responses to nicotine in adrenalectomised rats. Brain Res Bull 2013; 98:10-22. [DOI: 10.1016/j.brainresbull.2013.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
|
48
|
Joëls M, Pasricha N, Karst H. The interplay between rapid and slow corticosteroid actions in brain. Eur J Pharmacol 2013; 719:44-52. [PMID: 23886619 DOI: 10.1016/j.ejphar.2013.07.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 11/26/2022]
Abstract
Stress causes the release of many transmitters and hormones, including corticosteroids. These molecules enter the brain and exert their effects through the mineralo- and glucocorticoid receptor. The former receptor plays an important role in neuronal stability. However, it also mediates rapid non-genomic corticosteroid effects that in synergy with other stress mediators activate limbic cells and promote behavioral choices allowing the organism to quickly respond to the imminent danger. Glucocorticoid receptors primarily mediate slow genomic effects, for instance in the hippocampus and prefrontal cortex, which are thought to contribute to contextual and higher cognitive aspects of behavioral performance several hours after stress. Rapid and slow effects interact and collectively contribute to successful behavioral adaptation. Long-term disturbances in the release pattern of corticosteroid hormones and in the responsiveness of their receptors give rise to structural and functional changes in neuronal properties which may contribute to the expression of psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - Natasha Pasricha
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Henk Karst
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
49
|
de Kloet ER. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur J Pharmacol 2013; 719:53-62. [PMID: 23876452 DOI: 10.1016/j.ejphar.2013.04.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 01/18/2023]
Abstract
This contribution is focused on the action of the naturally occurring corticosteroids, cortisol and corticosterone, which are secreted from the adrenals in hourly pulses and after stress with the goal to maintain resilience and health. To achieve this goal the action of the corticosteroids displays an impressive diversity, because it is cell-specific and context-dependent in coordinating the individual's response to changing environments. These diverse actions of corticosterone are mediated by mineralocorticoid- and glucocorticoid-receptors that operate as a binary system in concert with neurotransmitter and neuropeptide signals to activate and inhibit stress reactions, respectively. Classically MR and GR are gene transcription factors, but recently these receptors appear to mediate also rapid non-genomic actions on excitatory neurotransmission suggesting that they integrate functions over time. Hence the balance of receptor-mediated actions is crucial for homeostasis. This balanced function of mineralo- and glucocorticoid-receptors can be altered epigenetically by a history of traumatic (early) life events and the experience of repeated stressors as well as by predisposing genetic variants in signaling pathways of these receptors. One of these variants, mineralocorticoid receptor haplotype 2, is associated with dispositional optimism in appraisal of environmental challenges. Imbalance in receptor-mediated corticosterone actions was found to leave a genomic signature highlighting the role of master switches such as cAMP response element-binding protein and mammalian target of rapamycin to compromise health, and to promote vulnerability to disease. Diabetic encephalopathy is a pathology of imbalanced corticosterone action, which can be corrected in its pre-stage by a brief treatment with the antiglucocorticoid mifepristone.
Collapse
Affiliation(s)
- E R de Kloet
- Department of Medical Pharmacology, Leiden Academic Center for Drug Research & Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
50
|
Jeanneteau F, Chao MV. Are BDNF and glucocorticoid activities calibrated? Neuroscience 2013; 239:173-95. [PMID: 23022538 PMCID: PMC3581703 DOI: 10.1016/j.neuroscience.2012.09.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of 'BDNF therapies', however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitates stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles shared by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects.
Collapse
Affiliation(s)
- F Jeanneteau
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|