1
|
Getz LJ, Fairburn SR, Vivian Liu Y, Qian AL, Maxwell KL. Integrons are anti-phage defence libraries in Vibrio parahaemolyticus. Nat Microbiol 2025; 10:724-733. [PMID: 39870871 DOI: 10.1038/s41564-025-01927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes. Using bioinformatics, we discovered that previously characterized defences localize to integrons. Intrigued by this discovery, we cloned 57 integron gene cassettes and identified 9 previously unrecognized systems that mediate defence. Our work reveals that integrons are an important reservoir of defence systems in V. parahaemolyticus. As integrons are of ancient origin and are widely distributed among Proteobacteria, these results provide an approach for the discovery of anti-phage defence systems across a broad range of bacteria.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sam R Fairburn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Y Vivian Liu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy L Qian
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Vorobevskaia E, Loot C, Mazel D, Schlierf M. The recombination efficiency of the bacterial integron depends on the mechanical stability of the synaptic complex. SCIENCE ADVANCES 2024; 10:eadp8756. [PMID: 39671485 PMCID: PMC11641012 DOI: 10.1126/sciadv.adp8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Multiple antibiotic resistances are a major global health threat. The predominant tool for adaptation in Gram-negative bacteria is the integron. Under stress, it rearranges gene cassettes to offer an escape using the tyrosine recombinase IntI, recognizing folded DNA hairpins, the attC sites. Four recombinases and two attC sites form the synaptic complex. Yet, for unclear reasons, the recombination efficiency varies greatly. Here, we established an optical tweezers force spectroscopy assay to probe the synaptic complex stability and revealed, for seven combinations of attC sites, significant variability in the mechanical stability. We found a strong correlation between mechanical stability and recombination efficiency of attC sites in vivo, indicating a regulatory mechanism from the DNA structure to the macromolecular complex stability. Taking into account known forces during DNA metabolism, we propose that the variation of the integron in vivo recombination efficiency is mediated by the synaptic complex stability. We anticipate that further recombination processes are also affected by their corresponding mechanical stability.
Collapse
Affiliation(s)
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Michael Schlierf
- B CUBE, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062 Dresden, Germany
- Faculty of Physics, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Blanco P, Trigo da Roza F, Toribio-Celestino L, García-Pastor L, Caselli N, Morón Á, Ojeda F, Darracq B, Vergara E, Amaro F, San Millán Á, Skovgaard O, Mazel D, Loot C, Escudero J. Chromosomal integrons are genetically and functionally isolated units of genomes. Nucleic Acids Res 2024; 52:12565-12581. [PMID: 39385642 PMCID: PMC11551772 DOI: 10.1093/nar/gkae866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Integrons are genetic elements that increase the evolvability of bacteria by capturing new genes and stockpiling them in arrays. Sedentary chromosomal integrons (SCIs) can be massive and highly stabilized structures encoding hundreds of genes, whose function remains generally unknown. SCIs have co-evolved with the host for aeons and are highly intertwined with their physiology from a mechanistic point of view. But, paradoxically, other aspects, like their variable content and location within the genome, suggest a high genetic and functional independence. In this work, we have explored the connection of SCIs to their host genome using as a model the Superintegron (SI), a 179-cassette long SCI in the genome of Vibrio cholerae N16961. We have relocated and deleted the SI using SeqDelTA, a novel method that allows to counteract the strong stabilization conferred by toxin-antitoxin systems within the array. We have characterized in depth the impact in V. cholerae's physiology, measuring fitness, chromosome replication dynamics, persistence, transcriptomics, phenomics, natural competence, virulence and resistance against protist grazing. The deletion of the SI did not produce detectable effects in any condition, proving that-despite millions of years of co-evolution-SCIs are genetically and functionally isolated units of genomes.
Collapse
Affiliation(s)
- Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro Morón
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Ojeda
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Ester Vergara
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
4
|
Yang L, Yu P, Wang J, Zhao T, Zhao Y, Pan Y, Chen L. Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics. Foods 2024; 13:1674. [PMID: 38890902 PMCID: PMC11171697 DOI: 10.3390/foods13111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0-5.3 Mb), and they contained 4709-5610 predicted protein-encoding genes, of which 823-1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7-9), and heavy metal tolerance-related genes (n = 2-4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 μg/mL), kanamycin (KAN, 64 μg/mL), and streptomycin (STR, 16 μg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide.
Collapse
Affiliation(s)
- Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juanjuan Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taixia Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yong Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Blanco P, Hipólito A, García-Pastor L, Trigo da Roza F, Toribio-Celestino L, Ortega A, Vergara E, San Millán Á, Escudero J. Identification of promoter activity in gene-less cassettes from Vibrionaceae superintegrons. Nucleic Acids Res 2024; 52:2961-2976. [PMID: 38214222 PMCID: PMC11014356 DOI: 10.1093/nar/gkad1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alba Cristina Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid 28222, Spain
| | - José Antonio Escudero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
6
|
Richard E, Darracq B, Littner E, Millot GA, Conte V, Cokelaer T, Engelstädter J, Rocha EPC, Mazel D, Loot C. Belt and braces: Two escape ways to maintain the cassette reservoir of large chromosomal integrons. PLoS Genet 2024; 20:e1011231. [PMID: 38578806 PMCID: PMC11023631 DOI: 10.1371/journal.pgen.1011231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Integrons are adaptive devices that capture, stockpile, shuffle and express gene cassettes thereby sampling combinatorial phenotypic diversity. Some integrons called sedentary chromosomal integrons (SCIs) can be massive structures containing hundreds of cassettes. Since most of these cassettes are non-expressed, it is not clear how they remain stable over long evolutionary timescales. Recently, it was found that the experimental inversion of the SCI of Vibrio cholerae led to a dramatic increase of the cassette excision rate associated with a fitness defect. Here, we question the evolutionary sustainability of this apparently counter selected genetic context. Through experimental evolution, we find that the integrase is rapidly inactivated and that the inverted SCI can recover its original orientation by homologous recombination between two insertion sequences (ISs) present in the array. These two outcomes of SCI inversion restore the normal growth and prevent the loss of cassettes, enabling SCIs to retain their roles as reservoirs of functions. These results illustrate a nice interplay between gene orientation, genome rearrangement, bacterial fitness and demonstrate how integrons can benefit from their embedded ISs.
Collapse
Affiliation(s)
- Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, ED515, Paris, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, ED515, Paris, France
| | - Eloi Littner
- Sorbonne Université, ED515, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- DGA CBRN Defence, Vert-le-Petit, France
| | - Gael A. Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Valentin Conte
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, Plateforme Technologique Biomics, Paris, France
| | - Jan Engelstädter
- School of the Environment, The University of Queensland, Brisbane, Australia
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
7
|
Richard E, Darracq B, Littner E, Vit C, Whiteway C, Bos J, Fournes F, Garriss G, Conte V, Lapaillerie D, Parissi V, Rousset F, Skovgaard O, Bikard D, Rocha EPC, Mazel D, Loot C. Cassette recombination dynamics within chromosomal integrons are regulated by toxin-antitoxin systems. SCIENCE ADVANCES 2024; 10:eadj3498. [PMID: 38215203 DOI: 10.1126/sciadv.adj3498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Integrons are adaptive bacterial devices that rearrange promoter-less gene cassettes into variable ordered arrays under stress conditions, thereby sampling combinatorial phenotypic diversity. Chromosomal integrons often carry hundreds of silent gene cassettes, with integrase-mediated recombination leading to rampant DNA excision and integration, posing a potential threat to genome integrity. How this activity is regulated and controlled, particularly through selective pressures, to maintain such large cassette arrays is unknown. Here, we show a key role of promoter-containing toxin-antitoxin (TA) cassettes as systems that kill the cell when the overall cassette excision rate is too high. These results highlight the importance of TA cassettes regulating the cassette recombination dynamics and provide insight into the evolution and success of integrons in bacterial genomes.
Collapse
Affiliation(s)
- Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Eloi Littner
- Sorbonne Université, ED515, F-75005 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
- DGA CBRN Defence, 91710 Vert-le-Petit, France
| | - Claire Vit
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Clémence Whiteway
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Julia Bos
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Florian Fournes
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Geneviève Garriss
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Valentin Conte
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Delphine Lapaillerie
- University of Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS, UMR 5234, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
| | - Vincent Parissi
- University of Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS, UMR 5234, SFR TransBioMed, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
| | - François Rousset
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, 75015 Paris, France
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
| | - David Bikard
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, 75015 Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| |
Collapse
|
8
|
Loot C, Millot GA, Richard E, Littner E, Vit C, Lemoine F, Néron B, Cury J, Darracq B, Niault T, Lapaillerie D, Parissi V, Rocha EPC, Mazel D. Integron cassettes integrate into bacterial genomes via widespread non-classical attG sites. Nat Microbiol 2024; 9:228-240. [PMID: 38172619 DOI: 10.1038/s41564-023-01548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France.
| | - Gael A Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Eloi Littner
- Sorbonne Université, Collège Doctoral, Paris, France
- DGA CBRN Defence, Vert-le-Petit, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Claire Vit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bertrand Néron
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Jean Cury
- Université Paris-Saclay, Inria, Laboratoire de Recherche en Informatique, CNRS UMR 8623, Orsay, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Delphine Lapaillerie
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Vincent Parissi
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
9
|
Alam MT, Stern SR, Frison D, Taylor K, Tagliamonte MS, Nazmus SS, Paisie T, Hilliard NB, Jones RG, Iovine NM, Cherabuddi K, Mavian C, Myers P, Salemi M, Ali A, Morris JG. Seafood-Associated Outbreak of ctx-Negative Vibrio mimicus Causing Cholera-Like Illness, Florida, USA. Emerg Infect Dis 2023; 29:2141-2144. [PMID: 37735754 PMCID: PMC10521627 DOI: 10.3201/eid2910.230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Vibrio mimicus caused a seafood-associated outbreak in Florida, USA, in which 4 of 6 case-patients were hospitalized; 1 required intensive care for severe diarrhea. Strains were ctx-negative but carried genes for other virulence determinants (hemolysin, proteases, and types I-IV and VI secretion systems). Cholera toxin-negative bacterial strains can cause cholera-like disease.
Collapse
Affiliation(s)
| | | | - Devin Frison
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Katie Taylor
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Massimiliano S. Tagliamonte
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - S. Sakib Nazmus
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Taylor Paisie
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Nicole B. Hilliard
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Riley G. Jones
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Nicole M. Iovine
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Kartik Cherabuddi
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Carla Mavian
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Paul Myers
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Marco Salemi
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | | | | |
Collapse
|
10
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Balasubramanian D, López-Pérez M, Almagro-Moreno S. Cholera Dynamics and the Emergence of Pandemic Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:127-147. [PMID: 36792874 DOI: 10.1007/978-3-031-22997-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cholera is a severe diarrheal disease caused by the aquatic bacterium Vibrio cholerae. Interestingly, to date, only one major clade has emerged to cause pandemic disease in humans: the clade that encompasses the strains from the O1 and O139 serogroups. In this chapter, we provide a comprehensive perspective on the virulence factors and mobile genetic elements (MGEs) associated with the emergence of pandemic V. cholerae strains and highlight novel findings such as specific genomic background or interactions between MGEs that explain their confined distribution. Finally, we discuss pandemic cholera dynamics contextualizing them within the evolution of the bacterium.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
12
|
Krin E, Baharoglu Z, Sismeiro O, Varet H, Coppée JY, Mazel D. Systematic transcriptome analysis allows the identification of new type I and type II Toxin/Antitoxin systems located in the superintegron of Vibrio cholerae. Res Microbiol 2023; 174:103997. [PMID: 36347445 DOI: 10.1016/j.resmic.2022.103997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Vibrio cholerae N16961 genome encodes 18 type II Toxin/Antitoxin (TA) systems, all but one located inside gene cassettes of its chromosomal superintegron (SI). This study aims to investigate additional TA systems in this genome. We screened for all two-genes operons of uncharacterized function by analyzing previous RNAseq data. Assays on nine candidates, revealed one additional functional type II TA encoded by the VCA0497-0498 operon, carried inside a SI cassette. We showed that VCA0498 antitoxin alone and in complex with VCA0497 represses its own operon promoter. VCA0497-0498 is the second element of the recently identified dhiT/dhiA superfamily uncharacterized type II TA system. RNAseq analysis revealed that another SI cassette encodes a novel type I TA system: VCA0495 gene and its two associated antisense non-coding RNAs, ncRNA495 and ncRNA496. Silencing of both antisense ncRNAs lead to cell death, demonstrating the type I TA function. Both VCA0497 and VCA0495 toxins do not show any homology to functionally characterized toxins, however our preliminary data suggest that their activity may end up in mRNA degradation, directly or indirectly. Our findings increase the TA systems number carried in this SI to 19, preferentially located in its distal end, confirming their importance in this large cassette array.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Jean-Yves Coppée
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| |
Collapse
|
13
|
Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in Vibrio parahaemolyticus N10-18 Isolated from Aquatic Animal Ostrea gigas Thunberg. Foods 2022; 11:foods11233777. [PMID: 36496584 PMCID: PMC9741282 DOI: 10.3390/foods11233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p < 0.05). Comparative transcriptomic analysis revealed seven significantly altered metabolic pathways elicited by the stress. The zinc/Cd/mercury/lead transportation and efflux and the zinc ATP-binding cassette (ABC) transportation were greatly enhanced; metal and iron ABC transportation and thiamine metabolism were also up-regulated; conversely, propanoate metabolism and ribose and maltose ABC transportation were inhibited (p < 0.05). The results of this study demonstrate multiple strategies for the Cd tolerance in V. parahaemolyticus.
Collapse
|
14
|
Ma J, An N, Li W, Liu M, Li S. Antimicrobial resistance and molecular characterization of gene cassettes from class 1 integrons in Salmonella strains. J Med Microbiol 2022; 71. [PMID: 36069773 DOI: 10.1099/jmm.0.001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The emergence of antibiotic-resistant Salmonella isolates is a global concern and has been attributed to the indiscriminate use of antibiotics in humans and animals. Integrons are mobile gene elements closely related to bacterial drug resistance. Among them, class 1 integrons containing various resistance gene cassettes could play an important role in disseminating and maintaining antibiotic resistance in Salmonella isolates.Hypothesis. Salmonella class 1 integrons have a relationship with Salmonella drug resistance.Aim. This study aims to investigate the distribution of class 1 integrons and their variable regional molecular characteristics, as well as the diversity of the promoters and drug sensitivity among Salmonella strains.Methodology. A total of 111 Salmonella strains, collected between 2018 and 2020, underwent fully automated bacterial identification using the VITEK 2 Compact system and an antibiotic sensitivity test. PCR was employed to screen class 1 integrase genes (IntI1) and integron variable regions, while promoter type and variable region gene cassette characteristics were determined using sequencing analysis.Results. A total of 24 IntI1-positive strains were detected in 111 Salmonella strains. Moreover, IntI1-positive strains exhibited statistically significant resistance to ceftazidime, ciprofloxacin, levofloxacin, ceftriaxone, trimethoprim/sulfamethoxazole and azithromycin compared to integron-negative strains (P<0.05). The multidrug resistance rate of IntI1-positive strains was significantly higher than that of negative strains. Variable regions were observed in 6 of the 24 IntI1-positive strains. Four gene cassettes were detected, namely dfrA17-aadA5, dfrA12-aadA2, aadA22 and aar-3-dfrA27. Finally, 3 types of class 1 integron variable region promoters were identified in 24 strains, including PcW, PcH1 and PcWTGN-10; they are all relatively weak promoters.Conclusion. The integron and the drug resistance genes carried by integron have a certain relationship with drug resistance.
Collapse
Affiliation(s)
- Jie Ma
- Clinical Laboratory of Weifang People's Hospital, 151 Guangwen Street, Weifang, Shandong Province, PR China
| | - Na An
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong Province, PR China
| | - Wanxiang Li
- Clinical Laboratory of Weifang People's Hospital, 151 Guangwen Street, Weifang, Shandong Province, PR China
| | - Mi Liu
- Clinical Laboratory of Weifang People's Hospital, 151 Guangwen Street, Weifang, Shandong Province, PR China
| | - Shirong Li
- Clinical Laboratory of Weifang People's Hospital, 151 Guangwen Street, Weifang, Shandong Province, PR China
| |
Collapse
|
15
|
Behera DR, Nayak AK, Nayak SR, Nayak D, Swain S, Maharana PK, Biswal B, Pany S, Pati S, Pal BB. Genomic diversities of ctxB, tcpA and rstR alleles of Vibrio cholerae O139 strains isolated from Odisha, India. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:376-384. [PMID: 34668341 DOI: 10.1111/1758-2229.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The genome of Vibrio cholerae O139 strains has undergone cryptic changes since its first emergence in 1992 in South India. This study aimed to determine the presence of genotypic changes marked in ctxB, tcpA and rstR genes located within the CTX prophages among the strains of V. cholerae O139 isolated from 1999 to 2017 in Odisha. Antibiotic susceptibility test was conducted on 59 V. cholerae O139 strains. A conventional PCR assay was done for ctxB gene typing followed by sequencing along with identification of rstR and tcpA gene. Pulsed-field gel electrophoresis (PFGE) was carried out to reveal clonal variations among the V. cholerae O139 strains. Among V. cholerae O139 isolates more than 60% showed resistance to ampicillin, co-trimoxazole, furazolidone, streptomycin, neomycin and nalidixic acid. The ctxB sequencing and rstR allele-specific PCR assay revealed the presence of three genotypes 1, 3 and 4 with at least one copy of CTX Calc φ in addition to CTX ET and CTX Cl prophages in V. cholerae O139 isolates. PFGE analysis revealed 13 pulsotypes with two clades having 60% similarity among V. cholerae O139 strains. The circulating V. cholerae O139 strains in Odisha showed variation in genotypes with multiple clonal expansions over the years.
Collapse
Affiliation(s)
- Dipti Ranjan Behera
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Ashish Kumar Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Dilena Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Sipraswati Swain
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Pradeep Kumar Maharana
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Bhagyalaxmi Biswal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Swatishree Pany
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Sanghamitra Pati
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| |
Collapse
|
16
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
17
|
Néron B, Littner E, Haudiquet M, Perrin A, Cury J, Rocha EPC. IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms 2022; 10:700. [PMID: 35456751 PMCID: PMC9024848 DOI: 10.3390/microorganisms10040700] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Integrons are flexible gene-exchanging platforms that contain multiple cassettes encoding accessory genes whose order is shuffled by a specific integrase. Integrons embedded within mobile genetic elements often contain multiple antibiotic resistance genes that they spread among nosocomial pathogens and contribute to the current antibiotic resistance crisis. However, most integrons are presumably sedentary and encode a much broader diversity of functions. IntegronFinder is a widely used software to identify novel integrons in bacterial genomes, but has aged and lacks some useful functionalities to handle very large datasets of draft genomes or metagenomes. Here, we present IntegronFinder version 2. We have updated the code, improved its efficiency and usability, adapted the output to incomplete genome data, and added a few novel functions. We describe these changes and illustrate the relevance of the program by analyzing the distribution of integrons across more than 20,000 fully sequenced genomes. We also take full advantage of its novel capabilities to analyze close to 4000 Klebsiella pneumoniae genomes for the presence of integrons and antibiotic resistance genes within them. Our data show that K. pneumoniae has a large diversity of integrons and the largest mobile integron in our database of plasmids. The pangenome of these integrons contains a total of 165 different gene families with most of the largest families being related with resistance to numerous types of antibiotics. IntegronFinder is a free and open-source software available on multiple public platforms.
Collapse
Affiliation(s)
- Bertrand Néron
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris Cité, 75015 Paris, France; (B.N.); (A.P.)
| | - Eloi Littner
- Microbial Evolutionary Genomics, Institut Pasteur, Université de Paris Cité, CNRS UMR3525, 75015 Paris, France; (E.L.); (M.H.)
- DGA CBRN Defence, 91710 Vert-le-Petit, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Matthieu Haudiquet
- Microbial Evolutionary Genomics, Institut Pasteur, Université de Paris Cité, CNRS UMR3525, 75015 Paris, France; (E.L.); (M.H.)
- Ecole Doctorale FIRE–Programme Bettencourt, CRI, 75004 Paris, France
| | - Amandine Perrin
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris Cité, 75015 Paris, France; (B.N.); (A.P.)
- Microbial Evolutionary Genomics, Institut Pasteur, Université de Paris Cité, CNRS UMR3525, 75015 Paris, France; (E.L.); (M.H.)
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, Université de Paris Cité, CNRS UMR3525, 75015 Paris, France; (E.L.); (M.H.)
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS UMR 9015, INRIA, 91400 Orsay, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Université de Paris Cité, CNRS UMR3525, 75015 Paris, France; (E.L.); (M.H.)
| |
Collapse
|
18
|
Unbridled Integrons: A Matter of Host Factors. Cells 2022; 11:cells11060925. [PMID: 35326376 PMCID: PMC8946536 DOI: 10.3390/cells11060925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
Integrons are powerful recombination systems found in bacteria, which act as platforms capable of capturing, stockpiling, excising and reordering mobile elements called cassettes. These dynamic genetic machineries confer a very high potential of adaptation to their host and have quickly found themselves at the forefront of antibiotic resistance, allowing for the quick emergence of multi-resistant phenotypes in a wide range of bacterial species. Part of the success of the integron is explained by its ability to integrate various environmental and biological signals in order to allow the host to respond to these optimally. In this review, we highlight the substantial interconnectivity that exists between integrons and their hosts and its importance to face changing environments. We list the factors influencing the expression of the cassettes, the expression of the integrase, and the various recombination reactions catalyzed by the integrase. The combination of all these host factors allows for a very tight regulation of the system at the cost of a limited ability to spread by horizontal gene transfer and function in remotely related hosts. Hence, we underline the important consequences these factors have on the evolution of integrons. Indeed, we propose that sedentary chromosomal integrons that were less connected or connected via more universal factors are those that have been more successful upon mobilization in mobile genetic structures, in contrast to those that were connected to species-specific host factors. Thus, the level of specificity of the involved host factors network may have been decisive for the transition from chromosomal integrons to the mobile integrons, which are now widespread. As such, integrons represent a perfect example of the conflicting relationship between the ability to control a biological system and its potential for transferability.
Collapse
|
19
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
20
|
Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Commun Biol 2021; 4:946. [PMID: 34373573 PMCID: PMC8352920 DOI: 10.1038/s42003-021-02489-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Integrons are bacterial genetic elements that can capture mobile gene cassettes. They are mostly known for their role in the spread of antibiotic resistance cassettes, contributing significantly to the global resistance crisis. These resistance cassettes likely originated from sedentary chromosomal integrons, having subsequently been acquired and disseminated by mobilised integrons. However, their taxonomic and environmental origins are unknown. Here, we use cassette recombination sites (attCs) to predict the origins of those resistance cassettes now spread by mobile integrons. We modelled the structure and sequence homology of 1,978 chromosomal attCs from 11 different taxa. Using these models, we show that at least 27% of resistance cassettes have attCs that are structurally conserved among one of three taxa (Xanthomonadales, Spirochaetes and Vibrionales). Indeed, we found some resistance cassettes still residing in sedentary chromosomal integrons of the predicted taxa. Further, we show that attCs cluster according to host environment rather than host phylogeny, allowing us to assign their likely environmental sources. For example, the majority of β-lactamases and aminoglycoside acetyltransferases, the two most prevalent resistance cassettes, appear to have originated from marine environments. Together, our data represent the first evidence of the taxonomic and environmental origins of resistance cassettes spread by mobile integrons.
Collapse
|
21
|
Vit C, Richard E, Fournes F, Whiteway C, Eyer X, Lapaillerie D, Parissi V, Mazel D, Loot C. Cassette recruitment in the chromosomal Integron of Vibrio cholerae. Nucleic Acids Res 2021; 49:5654-5670. [PMID: 34048565 PMCID: PMC8191803 DOI: 10.1093/nar/gkab412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/16/2023] Open
Abstract
Integrons confer a rapid adaptation capability to bacteria. Integron integrases are able to capture and shuffle novel functions embedded in cassettes. Here, we investigated cassette recruitment in the Vibrio cholerae chromosomal integron during horizontal transfer. We demonstrated that the endogenous integrase expression is sufficiently triggered, after SOS response induction mediated by the entry of cassettes during conjugation and natural transformation, to mediate significant cassette insertions. These insertions preferentially occur at the attIA site, despite the presence of about 180 attC sites in the integron array. Thanks to the presence of a promoter in the attIA site vicinity, all these newly inserted cassettes are expressed and prone to selection. We also showed that the RecA protein is critical for cassette recruitment in the V. cholerae chromosomal integron but not in mobile integrons. Moreover, unlike the mobile integron integrases, that of V. cholerae is not active in other bacteria. Mobile integrons might have evolved from the chromosomal ones by overcoming host factors, explaining their large dissemination in bacteria and their role in antibioresistance expansion.
Collapse
Affiliation(s)
- Claire Vit
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France.,Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Egill Richard
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France.,Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Florian Fournes
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Clémence Whiteway
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Xavier Eyer
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Delphine Lapaillerie
- CNRS, UMR5234, Fundamental Microbiology and Pathogenicity laboratory, University of Bordeaux. Département de Sciences Biologiques et Médicales, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
| | - Vincent Parissi
- CNRS, UMR5234, Fundamental Microbiology and Pathogenicity laboratory, University of Bordeaux. Département de Sciences Biologiques et Médicales, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Céline Loot
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| |
Collapse
|
22
|
Cockram C, Thierry A, Gorlas A, Lestini R, Koszul R. Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol Cell 2020; 81:459-472.e10. [PMID: 33382984 DOI: 10.1016/j.molcel.2020.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.
Collapse
Affiliation(s)
- Charlotte Cockram
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France
| | - Agnès Thierry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France
| | - Aurore Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Roxane Lestini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS UMR7645 - INSERM U1182, IP Paris, 91128 Palaiseau Cedex, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France.
| |
Collapse
|
23
|
Escudero JA, Nivina A, Kemble HE, Loot C, Tenaillon O, Mazel D. Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions. eLife 2020; 9:58061. [PMID: 33319743 PMCID: PMC7790495 DOI: 10.7554/elife.58061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular examples of evolutionary innovation are scarce and generally involve point mutations. Innovation can occur through larger rearrangements, but here experimental data is extremely limited. Integron integrases innovated from double-strand- toward single-strand-DNA recombination through the acquisition of the I2 α-helix. To investigate how this transition was possible, we have evolved integrase IntI1 to what should correspond to an early innovation state by selecting for its ancestral activity. Using synonymous alleles to enlarge sequence space exploration, we have retrieved 13 mutations affecting both I2 and the multimerization domains of IntI1. We circumvented epistasis constraints among them using a combinatorial library that revealed their individual and collective fitness effects. We obtained up to 104-fold increases in ancestral activity with various asymmetrical trade-offs in single-strand-DNA recombination. We show that high levels of primary and promiscuous functions could have initially coexisted following I2 acquisition, paving the way for a gradual evolution toward innovation.
Collapse
Affiliation(s)
- José Antonio Escudero
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France.,Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,VISAVET Health Surveillance Centre. Universidad Complutense Madrid. Avenida Puerta de Hierro, Madrid, Spain
| | - Aleksandra Nivina
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Harry E Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, UMR 1137, Université Paris Diderot, Université Paris Nord, Paris, France
| | - Céline Loot
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, UMR 1137, Université Paris Diderot, Université Paris Nord, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France
| |
Collapse
|
24
|
Buongermino Pereira M, Österlund T, Eriksson KM, Backhaus T, Axelson-Fisk M, Kristiansson E. A comprehensive survey of integron-associated genes present in metagenomes. BMC Genomics 2020; 21:495. [PMID: 32689930 PMCID: PMC7370490 DOI: 10.1186/s12864-020-06830-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Integrons are genomic elements that mediate horizontal gene transfer by inserting and removing genetic material using site-specific recombination. Integrons are commonly found in bacterial genomes, where they maintain a large and diverse set of genes that plays an important role in adaptation and evolution. Previous studies have started to characterize the wide range of biological functions present in integrons. However, the efforts have so far mainly been limited to genomes from cultivable bacteria and amplicons generated by PCR, thus targeting only a small part of the total integron diversity. Metagenomic data, generated by direct sequencing of environmental and clinical samples, provides a more holistic and unbiased analysis of integron-associated genes. However, the fragmented nature of metagenomic data has previously made such analysis highly challenging. Results Here, we present a systematic survey of integron-associated genes in metagenomic data. The analysis was based on a newly developed computational method where integron-associated genes were identified by detecting their associated recombination sites. By processing contiguous sequences assembled from more than 10 terabases of metagenomic data, we were able to identify 13,397 unique integron-associated genes. Metagenomes from marine microbial communities had the highest occurrence of integron-associated genes with levels more than 100-fold higher than in the human microbiome. The identified genes had a large functional diversity spanning over several functional classes. Genes associated with defense mechanisms and mobility facilitators were most overrepresented and more than five times as common in integrons compared to other bacterial genes. As many as two thirds of the genes were found to encode proteins of unknown function. Less than 1% of the genes were associated with antibiotic resistance, of which several were novel, previously undescribed, resistance gene variants. Conclusions Our results highlight the large functional diversity maintained by integrons present in unculturable bacteria and significantly expands the number of described integron-associated genes.
Collapse
Affiliation(s)
- Mariana Buongermino Pereira
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - K Martin Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Centre for Sustainable Development, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Backhaus
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marina Axelson-Fisk
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
Xu L, Deng S, Wen W, Tang Y, Chen L, Li Y, Zhong G, Li J, Ting WJ, Fu B. Molecular typing, and integron and associated gene cassette analyses in Acinetobacter baumannii strains isolated from clinical samples. Exp Ther Med 2020; 20:1943-1952. [PMID: 32782503 PMCID: PMC7401295 DOI: 10.3892/etm.2020.8911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate the association between drug resistance and class I, II and III integrons in Acinetobacter baumannii (ABA). Multilocus sequence typing (MLST) is a tool used to analyze the homology among house-keeping gene clusters in ABA and ABA prevalence and further provides a theoretical basis for hospitals to control ABA infections. A total of 96 clinical isolates of non-repeating ABA were harvested, including 74 carbapenem-resistant ABA (CRABA) and 22 non-CRABA strains, and used for bacterial identification and drug susceptibility analysis. Variable regions were sequenced and analyzed. Then, 7 pairs of housekeeping genes were amplified and sequenced via MLST and sequence alignment was performed against the Pub MLST database to determine sequence types (STs) strains and construct different genotypic evolutionary diagrams. The detection rate of CRABA class I integrons was 13.51% (10/74); no class II and III integrons were detected. However, class I, II and III integrons were not detected in non-CRABA strains. The variable regions of 9 of 10 class I integrons were amplified and 10 gene cassettes including aacC1, aac1, aadDA1, aadA1a, aacA4, dfrA17, aadA5, aadA1, aadA22 and aadA23 were associated with drug resistance. The 96 ABA strains were divided into 21 STs: 74 CRABA strains containing 9 STs, primarily ST208 and ST1145 and 22 non-CRABA strains containing 18 STs, primarily ST1145. Class I integrons are a critical factor underlying drug resistance in ABA. CRABA and non-CRABA strains differ significantly; the former primarily contained ST208 and ST1145, and the latter contained ST1145. Most STs were concentrated in intensive care units (ICUs) and the department of Neurology, with the patients from the ICUs being the most susceptible to bacterial infection. In the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, ABA is potentially horizontally transmitted and MLST can be used for clinical ABA genotyping.
Collapse
Affiliation(s)
- Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Shufei Deng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Weihong Wen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yingxian Tang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Linjuan Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yuzhen Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Guoquan Zhong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jiehua Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Wei-Jen Ting
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Bishi Fu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China.,School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
26
|
Narendrakumar L, Gupta SS, Johnson JB, Ramamurthy T, Thomas S. Molecular Adaptations and Antibiotic Resistance inVibrio cholerae: A Communal Challenge. Microb Drug Resist 2019; 25:1012-1022. [DOI: 10.1089/mdr.2018.0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Kerala, India
- Research Scholar, University of Kerala, Kerala, India
| | | | - John B. Johnson
- Viral Disease Biology, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| | | | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| |
Collapse
|
27
|
Ghaly TM, Geoghegan JL, Alroy J, Gillings MR. High diversity and rapid spatial turnover of integron gene cassettes in soil. Environ Microbiol 2019; 21:1567-1574. [PMID: 30724441 DOI: 10.1111/1462-2920.14551] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/30/2019] [Indexed: 12/01/2022]
Abstract
Integrons are genetic elements that promote rapid adaptation in bacteria by capturing exogenous, mobile gene cassettes. Recently, a subset of gene cassettes has facilitated the global spread of antibiotic resistance. However, outside clinical settings, very little is known about their diversity and spatial ecology. To address this question, we sequenced integron gene cassettes from soils sampled across Australia and Antarctica. We recovered 44 970 open reading frames that encoded 27 215 unique proteins, representing an order of magnitude more cassettes than previous sequencing efforts. We found that cassettes have extremely high local richness, significantly greater than previously predicted, with estimates ranging from 4000 to 18 000 unique cassettes per 0.3 g of soil. We show that cassettes have a heterogeneous distribution across space, and that they exhibit rapid turnover with distance. Similarity between samples drops to between 0.1% and 10% at distances of as little as 100 m. Together, these data provide key insights into the ecology and size of the gene cassette metagenome.
Collapse
Affiliation(s)
- Timothy M Ghaly
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jemma L Geoghegan
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - John Alroy
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael R Gillings
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
28
|
Gong L, Yu P, Zheng H, Gu W, He W, Tang Y, Wang Y, Dong Y, Peng X, She Q, Xie L, Chen L. Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1. Mol Genet Genomics 2018; 294:417-430. [PMID: 30488322 DOI: 10.1007/s00438-018-1514-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/13/2018] [Indexed: 01/03/2023]
Abstract
Vibriocholerae, which is autochthonous to estuaries worldwide, can cause human cholera that is still pandemic in developing countries. A number of V. cholerae isolates of clinical and environmental origin worldwide have been subjected to genome sequencing to address their phylogenesis and bacterial pathogenesis, however, little genome information is available for V. cholerae isolates derived from estuaries, particularly in China. In this study, we determined the complete genome sequence of V. cholerae CHN108B (non-O1/O139 serogroup) isolated from the Yangtze River Estuary, China and performed comparative genome analysis between CHN108B and other eight representative V. cholerae isolates. The 4,168,545-bp V. cholerae CHN108B genome (47.2% G+C) consists of two circular chromosomes with 3,691 predicted protein-encoding genes. It has 110 strain-specific genes, the highest number among the eight representative V. cholerae whole genomes from serogroup O1: there are seven clinical isolates linked to cholera pandemics (1937-2010) and one environmental isolate from Brazil. Various mobile genetic elements (such as insertion sequences, prophages, integrative and conjugative elements, and super-integrons) were identified in the nine V. cholerae genomes of clinical and environmental origin, indicating that the bacterium undergoes extensive genetic recombination via lateral gene transfer. Comparative genomics also revealed different virulence and antimicrobial resistance gene patterns among the V. cholerae isolates, suggesting some potential virulence factors and the rising development of resistance among pathogenic V. cholerae. Additionally, draft genome sequences of multiple V. cholerae isolates recovered from the Yangtze River Estuary were also determined, and comparative genomics revealed many genes involved in specific metabolism pathways, which are likely shaped by the unique estuary environment. These results provide additional evidence of V. cholerae genome plasticity and will facilitate better understanding of the genome evolution and pathogenesis of this severe water-borne pathogen worldwide.
Collapse
Affiliation(s)
- Li Gong
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, People's Republic of China
| | - Wenyi Gu
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, People's Republic of China
| | - Wei He
- Shanghai Hanyu Bio-lab, Shanghai, People's Republic of China
| | - Yadong Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yue Dong
- University of Oklahoma, Norman, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Qunxin She
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Holm KO, Bækkedal C, Söderberg JJ, Haugen P. Complete Genome Sequences of Seven Vibrio anguillarum Strains as Derived from PacBio Sequencing. Genome Biol Evol 2018; 10:1127-1131. [PMID: 29635365 PMCID: PMC5905569 DOI: 10.1093/gbe/evy074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
We report here the complete genome sequences of seven Vibrio anguillarum strains isolated from multiple geographic locations, thus increasing the total number of genomes of finished quality to 11. The genomes were de novo assembled from long-sequence PacBio reads. Including draft genomes, a total of 44 V. anguillarum genomes are currently available in the genome databases. They represent an important resource in the study of, for example, genetic variations and for identifying virulence determinants. In this article, we present the genomes and basic genome comparisons of the 11 complete genomes, including a BRIG analysis, and pan genome calculation. We also describe some structural features of superintegrons on chromosome 2 s, and associated insertion sequence (IS) elements, including 18 new ISs (ISVa3 - ISVa20), both of importance in the complement of V. anguillarum genomes.
Collapse
Affiliation(s)
- Kåre Olav Holm
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT?-?The Arctic University of Norway, Tromsø, Norway
| | - Cecilie Bækkedal
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT?-?The Arctic University of Norway, Tromsø, Norway
| | - Jenny Johansson Söderberg
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT?-?The Arctic University of Norway, Tromsø, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT?-?The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
Abstract
Vibrio is a genus of ubiquitous heterotrophic bacteria found in aquatic environments. Although they are a small percentage of the bacteria in these environments, vibrios can predominate during blooms. Vibrios also play important roles in the degradation of polymeric substances, such as chitin, and in other biogeochemical processes. Vibrios can be found as free-living bacteria, attached to particles, or associated with other organisms in a mutualistic, commensal, or pathogenic relationship. This review focuses on vibrio ecology and genome plasticity, which confers an ability to adapt to new niches and is driven, at least in part, by horizontal gene transfer (HGT). The extent of HGT and its role in pathogen emergence are discussed based on genomic studies of environmental and pathogenic vibrios, mobile genetically encoded virulence factors, and mechanistic studies on the different modes of HGT.
Collapse
Affiliation(s)
- Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, F-29280 Plouzané, France.,Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique de Roscoff, CNRS UMR 8227, UPMC Paris 06, Sorbonne Universités, F-29688 Roscoff CEDEX, France;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| |
Collapse
|
31
|
Sulca MA, Orozco R, Alvarado DE. Antimicrobial resistance not related to 1,2,3 integrons and Superintegron in Vibrio spp. isolated from seawater sample of Lima (Peru). MARINE POLLUTION BULLETIN 2018; 131:370-377. [PMID: 29886960 DOI: 10.1016/j.marpolbul.2018.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial resistance (AMR) in microorganisms has been attributed to integrons, which have the ability to capture antimicrobial resistance gene cassettes and express them in their hosts. 170 strains of Vibrio spp. were isolated from Lima (Peru) seawater samples and identified by biochemical tests and PCR. AMR profiles were generated using 15 standard antibiotics. The presence of class 1, 2 and 3 integrons and Superintegron in these strains were also investigated by PCR. Ten species of Vibrio were identified with V. alginolyticus the most frequent. All strains were resistant to antibiotics, especially to penicillin group. No resistance to norfloxacin or tetracycline was observed. Class 1, 2 and 3 integrons were not found, only one Superintegron containing the mutT gene was identified in V. cholerae L22 strain. This indicated that AMR is not related to integrons as mentioned previously and that these strains can be reservoirs of resistance genes in marine environments.
Collapse
Affiliation(s)
- Marcos A Sulca
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Science, National University of San Marcos, Lima, Peru; Aquatic Microbiology Laboratory, Alexander von Humboldt Aquaculture Research Center - IMARPE, Lima, Peru.
| | - Rita Orozco
- Aquatic Microbiology Laboratory, Alexander von Humboldt Aquaculture Research Center - IMARPE, Lima, Peru
| | - Débora E Alvarado
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Science, National University of San Marcos, Lima, Peru
| |
Collapse
|
32
|
Mobaraki S, Aghazadeh M, Soroush Barhaghi MH, Yousef Memar M, Goli HR, Gholizadeh P, Samadi Kafil H. Prevalence of integrons 1, 2, 3 associated with antibiotic resistance in Pseudomonas aeruginosa isolates from Northwest of Iran. Biomedicine (Taipei) 2018; 8:2. [PMID: 29480797 PMCID: PMC5825915 DOI: 10.1051/bmdcn/2018080102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Background: The presence of Class 1, 2 and 3 integrons in clinical isolates of Pseudomonas aeruginosa with multi-drug resistance phenotype has rendered the organism as a new concern. Objective: This study aimed to investigate the prevalence of Class 1, 2 and 3 integrons in multi-drug resistant clinical isolates of Pseudomonas aeruginosa collected from hospitals in the city of Tabriz Materials and Methods: A total of 200 P. aeruginosa non-duplicated clinical isolates were collected from inpatients and outpatients in different wards of hospitals from May to November 2016. The bacteria were identified by conventional microbiological methods. Antibiotic susceptibility test was performed by disk diffusion method and the presence of integrons was analyzed by polymerase chain reaction (PCR). Results: Colistin was the most effective antibiotic, while 98% of the isolates were resistant to cefotaxime. Fifty-three percent of the isolates were recorded as multi-drug resistant (MDR) phenotype; however, 27.5% of the isolates were resistant to more than 8 antibiotics. In this study, 55 (27.5%), 51 (25.5%), and 30 (15%) clinical isolates of P. aeruginosa were positive for Class 1, 2 and 3 integrons, respectively. aac(6)II in Class I integrons and dfrA1 in ClassII and aacA7 in Class II integrons were the most prevalent genes. Resistance to aminoglycosides were the most common genes harbored by integrons. Conclusion: The results of this study showed that the prevalence of Class 1, 2 and 3 in integron genes in most P. aeruginosa strains islated from different parts and equipment used in the hospital. The role of these transferable genetic agents has been proven in the creation of resistance. Therefore, it is essential to use management practices to optimize the use of antibiotics, preferably based on the results of antibiogram and trace coding genes for antibiotic resistance.
Collapse
Affiliation(s)
- Shahram Mobaraki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran - Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Yousef Memar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hamid Reza Goli
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, I.R. Iran - Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran - Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genet 2017; 13:e1006838. [PMID: 28594826 PMCID: PMC5481146 DOI: 10.1371/journal.pgen.1006838] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/22/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution. Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae is commonly recovered from patient samples with predatory bacteriophages (phages), which impose strong selective pressure favoring phage resistant strains over their vulnerable counterparts. Here, we investigated the activity of PLEs (phage-inducible chromosomal island-like elements), a novel group of mobile genetic elements that have contributed to phage resistance in V. cholerae over the last 60 years. Surprisingly, we found that PLEs are protective against a single, prevalent phage type. We found that PLE activity reduces phage genome replication and accelerates the kinetics of bacterial cell lysis. Our study shows that mobile genetic elements play a key role in phage resistance in successful epidemic V. cholerae.
Collapse
|
34
|
Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes? Pathog Dis 2017; 75:3861975. [DOI: 10.1093/femspd/ftx059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
|
35
|
Differences in Integron Cassette Excision Dynamics Shape a Trade-Off between Evolvability and Genetic Capacitance. mBio 2017; 8:mBio.02296-16. [PMID: 28351923 PMCID: PMC5371416 DOI: 10.1128/mbio.02296-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons ensure a rapid and "on demand" response to environmental stresses driving bacterial adaptation. They are able to capture, store, and reorder functional gene cassettes due to site-specific recombination catalyzed by their integrase. Integrons can be either sedentary and chromosomally located or mobile when they are associated with transposons and plasmids. They are respectively called sedentary chromosomal integrons (SCIs) and mobile integrons (MIs). MIs are key players in the dissemination of antibiotic resistance genes. Here, we used in silico and in vivo approaches to study cassette excision dynamics in MIs and SCIs. We show that the orientation of cassette arrays relative to replication influences attC site folding and cassette excision by placing the recombinogenic strands of attC sites on either the leading or lagging strand template. We also demonstrate that stability of attC sites and their propensity to form recombinogenic structures also regulate cassette excision. We observe that cassette excision dynamics driven by these factors differ between MIs and SCIs. Cassettes with high excision rates are more commonly found on MIs, which favors their dissemination relative to SCIs. This is especially true for SCIs carried in the Vibrio genus, where maintenance of large cassette arrays and vertical transmission are crucial to serve as a reservoir of adaptive functions. These results expand the repertoire of known processes regulating integron recombination that were previously established and demonstrate that, in terms of cassette dynamics, a subtle trade-off between evolvability and genetic capacitance has been established in bacteria.IMPORTANCE The integron system confers upon bacteria a rapid adaptation capability in changing environments. Specifically, integrons are involved in the continuous emergence of bacteria resistant to almost all antibiotic treatments. The international situation is critical, and in 2050, the annual number of deaths caused by multiresistant bacteria could reach 10 million, exceeding the incidence of deaths related to cancer. It is crucial to increase our understanding of antibiotic resistance dissemination and therefore integron recombination dynamics to find new approaches to cope with the worldwide problem of multiresistance. Here, we studied the dynamics of recombination and dissemination of gene encoding cassettes carried on integrons. By combining in silico and in vivo analyses, we show that cassette excision is highly regulated by replication and by the intrinsic properties of cassette recombination sites. We also demonstrated differences in the dynamics of cassette recombination between mobile and sedentary chromosomal integrons (MIs and SCIs). For MIs, a high cassette recombination rate is favored and timed to conditions when generating diversity (upon which selection can act) allows for a rapid response to environmental conditions and stresses. In contrast, for SCIs, cassette excisions are less frequent, limiting cassette loss and ensuring a large pool of cassettes. We therefore confirm a role of SCIs as reservoirs of adaptive functions and demonstrate that the remarkable adaptive success of integron recombination system is due to its intricate regulation.
Collapse
|
36
|
Nivina A, Escudero JA, Vit C, Mazel D, Loot C. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res 2016; 44:7792-803. [PMID: 27496283 PMCID: PMC5027507 DOI: 10.1093/nar/gkw646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 01/29/2023] Open
Abstract
The integron is a bacterial recombination system that allows acquisition, stockpiling and expression of cassettes carrying protein-coding sequences, and is responsible for the emergence and rise of multiresistance in Gram-negative bacteria. The functionality of this system depends on the insertion of promoterless cassettes in correct orientation, allowing their expression from the promoter located upstream of the cassette array. Correct orientation is ensured by strand selectivity of integron integrases for the bottom strand of cassette recombination sites (attC), recombined in form of folded single-stranded hairpins. Here, we investigated the basis of such strand selectivity by comparing recombination of wild-type and mutated attC sites with different lengths, sequences and structures. We show that all three unpaired structural features that distinguish the bottom and top strands contribute to strand selectivity. The localization of Extra-Helical Bases (EHBs) directly favors integrase binding to the bottom strand. The Unpaired Central Spacer (UCS) and the Variable Terminal Structure (VTS) influence strand selectivity indirectly, probably through the stabilization of the bottom strand and the resulting synapse due to the nucleotide skew between the two strands. These results underscore the importance of the single-stranded nature of the attC site that allows such tight control over integron cassette orientation.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Antonio Escudero
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Claire Vit
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Didier Mazel
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Céline Loot
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| |
Collapse
|
37
|
Abstract
Similar to other genera and species of bacteria, whole genomic sequencing has revolutionized how we think about and address questions of basic Vibrio biology. In this review we examined 36 completely sequenced and annotated members of the Vibrionaceae family, encompassing 12 different species of the genera Vibrio, Aliivibrio, and Photobacterium. We reconstructed the phylogenetic relationships among representatives of this group of bacteria by using three housekeeping genes and 16S rRNA sequences. With an evolutionary framework in place, we describe the occurrence and distribution of primary and alternative sigma factors, global regulators present in all bacteria. Among Vibrio we show that the number and function of many of these sigma factors differs from species to species. We also describe the role of the Vibrio-specific regulator ToxRS in fitness and survival. Examination of the biochemical capabilities was and still is the foundation of classifying and identifying new Vibrio species. Using comparative genomics, we examine the distribution of carbon utilization patterns among Vibrio species as a possible marker for understanding bacteria-host interactions. Finally, we discuss the significant role that horizontal gene transfer, specifically, the distribution and structure of integrons, has played in Vibrio evolution.
Collapse
|
38
|
Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016; 40:592-609. [PMID: 27476076 DOI: 10.1093/femsre/fuw022] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe. This view is consistent with recent studies that demonstrate a contribution of distinct TA systems to virulence since their absence alters the course of the infection. TA loci are stress response modules that, therefore, could readjust pathogen metabolism to favor the generation of slow-growing or quiescent cells 'before' host defenses irreversibly block essential pathogen activities. Some toxins of these TA modules have been proposed as potential weapons used by the pathogen to act on host targets. We discuss all these aspects based on studies that support some TA modules as important regulators in the pathogen-host interface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco García-Del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
39
|
Sequences of a co-existing SXT element, a chromosomal integron (CI) and an IncA/C plasmid and their roles in multidrug resistance in a Vibrio cholerae O1 El Tor strain. Int J Antimicrob Agents 2016; 48:305-9. [PMID: 27470490 DOI: 10.1016/j.ijantimicag.2016.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/23/2022]
Abstract
The ongoing seventh cholera pandemic is attributed to Vibrio cholerae O1 El Tor biotype strains. Although antibiotic therapy ameliorates symptoms in patients and reduces pathogen transfer to the environment, multidrug resistance remains a major clinical threat. An O1 El Tor strain isolated from a patient in 1998 was intermediate or resistant to 13 antibiotics and could potentially produce extended-spectrum β-lactamase (ESBL), which is very rare in O1 strains. Using genome sequencing, three relevant genetic elements were identified in this strain: a hybrid SXT element (ICEVchCHN1307); a new IncA/C plasmid (pVC1307); and a chromosomal integron. Twenty antibiotic resistance genes were located on them, including blaTEM-1, blaCTX-M-14 and phenotypically silenced tetRA genes. These data elucidate the role of individual genetic components in antibiotic resistance and the accumulation of drug resistance genes in V. cholerae.
Collapse
|
40
|
Adesoji AT, Ogunjobi AA, Olatoye IO. Characterization of Integrons and Sulfonamide Resistance Genes among Bacteria from Drinking Water Distribution Systems in Southwestern Nigeria. Chemotherapy 2016; 62:34-42. [PMID: 27322615 DOI: 10.1159/000446150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/13/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. MATERIALS AND METHODS Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. RESULTS sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. CONCLUSIONS Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene.
Collapse
Affiliation(s)
- Ayodele T Adesoji
- Department of Biological Sciences, Federal University Dutsin-Ma, Dutsin-Ma, Nigeria
| | | | | |
Collapse
|
41
|
Cury J, Jové T, Touchon M, Néron B, Rocha EP. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 2016; 44:4539-50. [PMID: 27130947 PMCID: PMC4889954 DOI: 10.1093/nar/gkw319] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program – IntegronFinder – to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| | - Thomas Jové
- Univ. Limoges, INSERM, CHU Limoges, UMR_S 1092, F-87000 Limoges, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| | - Bertrand Néron
- Centre d'Informatique pour la Biologie, C3BI, Institut Pasteur, Paris, France
| | - Eduardo Pc Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| |
Collapse
|
42
|
Val ME, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H, Bland MJ, Possoz C, Koszul R, Skovgaard O, Mazel D. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. SCIENCE ADVANCES 2016; 2:e1501914. [PMID: 27152358 PMCID: PMC4846446 DOI: 10.1126/sciadv.1501914] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 05/04/2023]
Abstract
Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.
Collapse
Affiliation(s)
- Marie-Eve Val
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Martial Marbouty
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Francisco de Lemos Martins
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | | | - Harry Kemble
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Michael J. Bland
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Christophe Possoz
- Department of Genome Biology, Institute of Integrative Biology of the Cell (I2BC), Paris-Sud University, CEA, CNRS, Gif-sur-Yvette 91190, France
| | - Romain Koszul
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
- Corresponding author. E-mail: (D.M.); (O.S.)
| | - Didier Mazel
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
- Corresponding author. E-mail: (D.M.); (O.S.)
| |
Collapse
|
43
|
Abstract
The integron is a powerful system which, by capturing, stockpiling, and rearranging new functions carried by gene encoding cassettes, confers upon bacteria a rapid adaptation capability in changing environments. Chromosomally located integrons (CI) have been identified in a large number of environmental Gram-negative bacteria. Integron evolutionary history suggests that these sedentary CIs acquired mobility among bacterial species through their association with transposable elements and conjugative plasmids. As a result of massive antibiotic use, these so-called mobile integrons are now widespread in clinically relevant bacteria and are considered to be the principal agent in the emergence and rise of antibiotic multiresistance in Gram-negative bacteria. Cassette rearrangements are catalyzed by the integron integrase, a site-specific tyrosine recombinase. Central to these reactions is the single-stranded DNA nature of one of the recombination partners, the attC site. This makes the integron a unique recombination system. This review describes the current knowledge on this atypical recombination mechanism, its implications in the reactions involving the different types of sites, attC and attI, and focuses on the tight regulation exerted by the host on integron activity through the control of attC site folding. Furthermore, cassette and integrase expression are also highly controlled by host regulatory networks and the bacterial stress (SOS) response. These intimate connections to the host make the integron a genetically stable and efficient system, granting the bacteria a low cost, highly adaptive evolution potential "on demand".
Collapse
|
44
|
Abella J, Fahy A, Duran R, Cagnon C. Integron diversity in bacterial communities of freshwater sediments at different contamination levels. FEMS Microbiol Ecol 2015; 91:fiv140. [DOI: 10.1093/femsec/fiv140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/29/2022] Open
|
45
|
Orata FD, Kirchberger PC, Méheust R, Barlow EJ, Tarr CL, Boucher Y. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment. Genome Biol Evol 2015; 7:2941-54. [PMID: 26454015 PMCID: PMC4684700 DOI: 10.1093/gbe/evv193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vibrio metoecus is the closest relative of Vibrio cholerae, the causative agent of the potent diarrheal disease cholera. Although the pathogenic potential of this new species is yet to be studied in depth, it has been co-isolated with V. cholerae in coastal waters and found in clinical specimens in the United States. We used these two organisms to investigate the genetic interaction between closely related species in their natural environment. The genomes of 20 V. cholerae and 4 V. metoecus strains isolated from a brackish coastal pond on the US east coast, as well as 4 clinical V. metoecus strains were sequenced and compared with reference strains. Whole genome comparison shows 86-87% average nucleotide identity (ANI) in their core genes between the two species. On the other hand, the chromosomal integron, which occupies approximately 3% of their genomes, shows higher conservation in ANI between species than any other region of their genomes. The ANI of 93-94% observed in this region is not significantly greater within than between species, meaning that it does not follow species boundaries. Vibrio metoecus does not encode toxigenic V. cholerae major virulence factors, the cholera toxin and toxin-coregulated pilus. However, some of the pathogenicity islands found in pandemic V. cholerae were either present in the common ancestor it shares with V. metoecus, or acquired by clinical and environmental V. metoecus in partial fragments. The virulence factors of V. cholerae are therefore both more ancient and more widespread than previously believed. There is high interspecies recombination in the core genome, which has been detected in 24% of the single-copy core genes, including genes involved in pathogenicity. Vibrio metoecus was six times more often the recipient of DNA from V. cholerae as it was the donor, indicating a strong bias in the direction of gene transfer in the environment.
Collapse
Affiliation(s)
- Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul C Kirchberger
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Raphaël Méheust
- Unité Mixte de Recherche 7138, Evolution Paris-Seine, Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - E Jed Barlow
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl L Tarr
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Yan Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Kumar A, Bajaj A, Mathan Kumar R, Kaur G, Kaur N, Kumar Singh N, Manickam N, Mayilraj S. Taxonomic description and genome sequence of Rheinheimera mesophila sp. nov., isolated from an industrial waste site. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative gammaproteobacterium, designated IITR-13T, was isolated from a pesticide-contaminated soil and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, the strain showed the closest similarity (98.7 %) to Rheinheimera tangshanensis JA3-B52T followed by Rheinheimera texasensis A62-14BT (97.7 %) and Rheinheimera soli BD-d46T (97.3 %). The 16S rRNA gene sequence similarity of the novel strain to other members of the genus Rheinheimera was < 97.3 %. However, DNA–DNA hybridization between strain IITR-13T and the type strains of R. tangshanensis, R. texasensis and R. soli was 47.5 ± 0.6, 42.4 ± 0.4 and 39.8 ± 0.3 %, respectively; these values are less than 70 %, a threshold value for delineation of a novel species. The strain had C12 : 0 3-OH, C16 : 0, C17 : 1ω8c, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and C18 : 1ω6c as the major fatty acids. The major isoprenoid quinones detected for strain IITR-13T were ubiquinone Q-8 and menaquinone MK-7.The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and seven unknown phospholipids. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the novel strain should be assigned to a novel species, for which the name Rheinheimera mesophila sp. nov. is proposed, with the type strain IITR-13T ( = MTCC 12064T = DSM 29723T). Also, we report the draft genome sequence of Rheinheimera mesophila IITR-13T; the draft genome sequence includes 3 749 903 bases and comprises 3449 predicted coding sequences, with a G+C content of 47.8 %. It consists of 102 contigs (>1000 bp).
Collapse
Affiliation(s)
- Anand Kumar
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Abhay Bajaj
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicological Research (IITR), Lucknow 226 001, India
| | - Rajendran Mathan Kumar
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Gurwinder Kaur
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Navjot Kaur
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Nitin Kumar Singh
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Natesan Manickam
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicological Research (IITR), Lucknow 226 001, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| |
Collapse
|
47
|
Abella J, Bielen A, Huang L, Delmont TO, Vujaklija D, Duran R, Cagnon C. Integron diversity in marine environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015. [PMID: 26213132 DOI: 10.1007/s11356-015-5085-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Integrons are bacterial genetic elements known to be active vectors of antibiotic resistance among clinical bacteria. They are also found in bacterial communities from natural environments. Although integrons have become especially efficient for bacterial adaptation in the particular context of antibiotic usage, their role in natural environments in other contexts is still unknown. Indeed, most studies have focused on integrons and the spread of antibiotic resistance in freshwater or soil impacted by anthropogenic activities, with only few on marine environments. Notably, integrons show a wider diversity of both gene cassettes and integrase gene in natural environments than in clinical environments, suggesting a general role of integrons in bacterial adaptation. This article reviews the current knowledge on integrons in marine environments. We also present conclusions of our studies on polluted and nonpolluted backgrounds.
Collapse
Affiliation(s)
- Justine Abella
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| | - Ana Bielen
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Lionel Huang
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
- Euro Engineering, Technopole Hélioparc Bât Newton, 4 rue Jules Ferry, CS N 99207, 64053, Pau, Cedex 09, France
| | - Tom O Delmont
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biology Laboratory, Woods Hole, MA, USA
| | - Dušica Vujaklija
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Robert Duran
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France.
| |
Collapse
|
48
|
Wang Y, Wang H, Hay AJ, Zhong Z, Zhu J, Kan B. Functional RelBE-Family Toxin-Antitoxin Pairs Affect Biofilm Maturation and Intestine Colonization in Vibrio cholerae. PLoS One 2015; 10:e0135696. [PMID: 26275048 PMCID: PMC4537255 DOI: 10.1371/journal.pone.0135696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/26/2015] [Indexed: 11/19/2022] Open
Abstract
Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Amanda J. Hay
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zengtao Zhong
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (JZ); (BK)
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- * E-mail: (JZ); (BK)
| |
Collapse
|
49
|
Ayala JC, Wang H, Silva AJ, Benitez JA. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 2015; 97:630-45. [PMID: 25982817 DOI: 10.1111/mmi.13058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Expression of Vibrio cholerae genes required for the biosynthesis of exopolysacchide (vps) and protein (rbm) components of the biofilm matrix is enhanced by cyclic diguanylate (c-di-GMP). In a previous study, we reported that the histone-like nucleoid structuring (H-NS) protein represses the transcription of vpsA, vpsL and vpsT. Here we demonstrate that the regulator VpsT can disrupt repressive H-NS nucleoprotein complexes at the vpsA and vpsL promoters in the presence of c-di-GMP, while H-NS could disrupt the VpsT-promoter complexes in the absence of c-di-GMP. Chromatin immunoprecipitation-Seq showed a remarkable trend for H-NS to cluster at loci involved in biofilm development such as the rbmABCDEF genes. We show that the antagonistic relationship between VpsT and H-NS regulates the expression of the rbmABCDEF cluster. Epistasis analysis demonstrated that VpsT functions as an antirepressor at the rbmA/F, vpsU and vpsA/L promoters. Deletion of vpsT increased H-NS occupancy at these promoters while increasing the c-di-GMP pool had the opposite effect and included the vpsT promoter. The negative effect of c-di-GMP on H-NS occupancy at the vpsT promoter required the regulator VpsR. These results demonstrate that c-di-GMP activates the transcription of genes required for the biosynthesis of the biofilm matrix by triggering a coordinated VpsR- and VpsT-dependent H-NS antirepression cascade.
Collapse
Affiliation(s)
- Julio C Ayala
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, Alabama.,Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| | - Hongxia Wang
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia.,State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| |
Collapse
|
50
|
Comprehensive Functional Analysis of the 18 Vibrio cholerae N16961 Toxin-Antitoxin Systems Substantiates Their Role in Stabilizing the Superintegron. J Bacteriol 2015; 197:2150-9. [PMID: 25897030 DOI: 10.1128/jb.00108-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The role of chromosomal toxin-antitoxin (TA) systems, which are ubiquitous within the genomes of free-living bacteria, is still debated. We have scanned the Vibrio cholerae N16961 genome for class 2 TA genes and identified 18 gene pair candidates. Interestingly, all but one are located in the chromosome 2 superintegron (SI). The single TA found outside the SI is located on chromosome 1 and is related to the well-characterized HipAB family, which is known to play a role in antibiotic persistence. We investigated this clustering within the SI and its possible biological consequences by performing a comprehensive functional analysis on all of the putative TA systems. We demonstrate that the 18 TAs identified encode functional toxins and that their cognate antitoxins are able to neutralize their deleterious effects when expressed in Escherichia coli. In addition, we reveal that the 17 predicted TA systems of the SI are transcribed and expressed in their native context from their own promoters, a situation rarely found in integron cassettes. We tested the possibility of interactions between noncognate pairs of all toxins and antitoxins and found no cross-interaction between any of the different TAs. Although these observations do not exclude other roles, they clearly strengthen the role of TA systems in stabilizing the massive SI cassette array of V. cholerae. IMPORTANCE The chromosomal toxin-antitoxin systems have been shown to play various, sometimes contradictory roles, ranging from genomic stabilization to bacterial survival via persistence. Determining the interactions between TA systems hosted within the same bacteria is essential to understand the hierarchy between these different roles. We identify here the full set of class 2 TAs carried in the Vibrio cholerae N16961 genome and found they are all, with a single exception, located in the chromosome 2 superintegron. Their characterization, in terms of functionality, expression, and possible cross-interactions, supports their main role as being the stabilization of the 176-cassette-long array of the superintegron but does not exclude dual roles, such as stress response elements, persistence, and bacteriophage defense through abortive infection mechanisms.
Collapse
|