1
|
Hu Z, Martí J. Isomer-sourced structure iteration methods for in silico development of inhibitors: Inducing GTP-bound NRAS-Q61 oncogenic mutations to an "off-like" state. Comput Struct Biotechnol J 2024; 23:2418-2428. [PMID: 38882681 PMCID: PMC11176632 DOI: 10.1016/j.csbj.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The NRAS-mutant subset of melanoma represent some of the most aggressive and deadliest types associated with poor overall survival. Unfortunately, for more than 40 years, no therapeutic agent directly targeting NRAS mutations has been clinically approved. In this work, based on microsecond scale molecular dynamics simulations, the effect of Q61 mutations on NRAS conformational characteristics is revealed at the atomic level. The GTP-bound NRAS-Q61R and Q61K mutations show a specific targetable pocket between Switch-II and α-helix 3 whereas the NRAS-Q61L non-polar mutation category shows a different targetable pocket. Moreover, a new isomer-sourced structure iteration method has been developed for the in silico design of potential inhibitor prototypes for oncogenes. We show the possibility of a designed prototype HM-387 to target activated NRAS-Q61R and that it can gradually induce the transition from the activated NRAS-Q61R to an "off-like" state.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| |
Collapse
|
2
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
Yun SD, Scott E, Chang JY, Bahramimoghaddam H, Lynn M, Lantz C, Russell DH, Laganowsky A. Capturing RAS oligomerization on a membrane. Proc Natl Acad Sci U S A 2024; 121:e2405986121. [PMID: 39145928 PMCID: PMC11348296 DOI: 10.1073/pnas.2405986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.
Collapse
Affiliation(s)
- Sangho D. Yun
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | | | - Michael Lynn
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Carter Lantz
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX77843
| |
Collapse
|
4
|
Riley AK, Grant M, Snell A, Cromwell E, Vichas A, Moorthi S, Rominger C, Modukuri SP, Urisman A, Castel P, Wan L, Berger AH. The deubiquitinase USP9X regulates RIT1 protein abundance and oncogenic phenotypes. iScience 2024; 27:110499. [PMID: 39161959 PMCID: PMC11332844 DOI: 10.1016/j.isci.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
RIT1 is a rare and understudied oncogene in lung cancer. Despite structural similarity to other RAS GTPase proteins such as KRAS, oncogenic RIT1 activity does not appear to be tightly regulated by nucleotide exchange or hydrolysis. Instead, there is a growing understanding that the protein abundance of RIT1 is important for its regulation and function. We previously identified the deubiquitinase USP9X as a RIT1 dependency in RIT1-mutant cells. Here, we demonstrate that both wild-type and mutant forms of RIT1 are substrates of USP9X. Depletion of USP9X leads to decreased RIT1 protein stability and abundance and resensitizes cells to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in vitro and in vivo. Our work expands upon the current understanding of RIT1 protein regulation and presents USP9X as a key regulator of RIT1-driven oncogenic phenotypes.
Collapse
Affiliation(s)
- Amanda K. Riley
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Michael Grant
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Snell
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Elizabeth Cromwell
- Preclinical Modeling Shared Resource, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Athea Vichas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sitapriya Moorthi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Callie Rominger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shrikar P. Modukuri
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lixin Wan
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Pagba CV, Gupta AK, Dilsha K, Sadrpour P, Jakubec J, Prakash P, van der Hoeven D, Cho KJ, Gilbertson S, Gorfe AA. Biophysical and Biochemical Characterization of Structurally Diverse Small Molecule Hits for KRAS Inhibition. Chembiochem 2024; 25:e202300827. [PMID: 38349283 DOI: 10.1002/cbic.202300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Indexed: 03/08/2024]
Abstract
We describe six compounds as early hits for the development of direct inhibitors of KRAS, an important anticancer drug target. We show that these compounds bind to KRAS with affinities in the low micromolar range and exert different effects on its interactions with binding partners. Some of the compounds exhibit selective binding to the activated form of KRAS and inhibit signal transduction through both the MAPK or the phosphatidylinositide 3-kinase PI3K-protein kinase B (AKT) pathway in cells expressing mutant KRAS. Most inhibit intrinsic and/or SOS-mediated KRAS activation while others inhibit RAS-effector interaction. We propose these compounds as starting points for the development of non-covalent allosteric KRAS inhibitors.
Collapse
Affiliation(s)
- Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Kasuni Dilsha
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204, USA
| | - Parisa Sadrpour
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Jacob Jakubec
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St., Houston, Texas, 77030, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Scott Gilbertson
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| |
Collapse
|
6
|
Weinberg RA. It took a long, long time: Ras and the race to cure cancer. Cell 2024; 187:1574-1577. [PMID: 38552606 DOI: 10.1016/j.cell.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Discoveries of the roles of RAS oncogenes in cancer development four decades ago opened the door to proving that tumor development is driven by somatic mutations' altering the genomes of cancer cells. These discoveries led to illusions about the simplicity of cancer pathogenesis and how cancer could be cured.
Collapse
Affiliation(s)
- Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; MIT Department of Biology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Linehan A, O’Reilly M, McDermott R, O’Kane GM. Targeting KRAS mutations in pancreatic cancer: opportunities for future strategies. Front Med (Lausanne) 2024; 11:1369136. [PMID: 38576709 PMCID: PMC10991798 DOI: 10.3389/fmed.2024.1369136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Targeting the RAS pathway remains the holy grail of precision oncology. In the case of pancreatic ductal adenocarcinomas (PDAC), 90-92% harbor mutations in the oncogene KRAS, triggering canonical MAPK signaling. The smooth structure of the altered KRAS protein without a binding pocket and its affinity for GTP have, in the past, hampered drug development. The emergence of KRASG12C covalent inhibitors has provided renewed enthusiasm for targeting KRAS. The numerous pathways implicated in RAS activation do, however, lead to the development of early resistance. In addition, the dense stromal niche and immunosuppressive microenvironment dictated by oncogenic KRAS can influence treatment responses, highlighting the need for a combination-based approach. Given that mutations in KRAS occur early in PDAC tumorigenesis, an understanding of its pleiotropic effects is key to progress in this disease. Herein, we review current perspectives on targeting KRAS with a focus on PDAC.
Collapse
Affiliation(s)
- Anna Linehan
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Mary O’Reilly
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Grainne M. O’Kane
- Department of Medical Oncology, St James’s Hospital, Dublin, Ireland
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
8
|
Zhao Q, Shimada I, Nishida N. Real-Time Monitoring of RAS Activity Using In Vitro and In-Cell NMR Spectroscopy. Methods Mol Biol 2024; 2797:237-252. [PMID: 38570464 DOI: 10.1007/978-1-0716-3822-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.
Collapse
Affiliation(s)
- Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
9
|
Putar D, Čizmar A, Chao X, Šimić M, Šoštar M, Ćutić T, Mijanović L, Smolko A, Tu H, Cosson P, Weber I, Cai H, Filić V. IqgC is a potent regulator of macropinocytosis in the presence of NF1 and its loading to macropinosomes is dependent on RasG. Open Biol 2024; 14:230372. [PMID: 38263885 PMCID: PMC10806400 DOI: 10.1098/rsob.230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
RasG is a major regulator of macropinocytosis in Dictyostelium discoideum. Its activity is under the control of an IQGAP-related protein, IqgC, which acts as a RasG-specific GAP (GTPase activating protein). IqgC colocalizes with the active Ras at the macropinosome membrane during its formation and for some time after the cup closure. However, the loss of IqgC induces only a minor enhancement of fluid uptake in axenic cells that already lack another RasGAP, NF1. Here, we show that IqgC plays an important role in the regulation of macropinocytosis in the presence of NF1 by restricting the size of macropinosomes. We further provide evidence that interaction with RasG is indispensable for the recruitment of IqgC to forming macropinocytic cups. We also demonstrate that IqgC interacts with another small GTPase from the Ras superfamily, Rab5A, but is not a GAP for Rab5A. Since mammalian Rab5 plays a key role in early endosome maturation, we hypothesized that IqgC could be involved in macropinosome maturation via its interaction with Rab5A. Although an excessive amount of Rab5A reduces the RasGAP activity of IqgC in vitro and correlates with IqgC dissociation from endosomes in vivo, the physiological significance of the Rab5A-IqgC interaction remains elusive.
Collapse
Affiliation(s)
- Darija Putar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Anja Čizmar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Marija Šimić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Ćutić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Mijanović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Smolko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 1-Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Prognostic Factors, and Special Populations. Mediterr J Hematol Infect Dis 2024; 16:e2024007. [PMID: 38223486 PMCID: PMC10786126 DOI: 10.4084/mjhid.2024.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
This two-part review aims to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first section, as presented in this paper, reviews epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. Plasmablastic lymphoma (PBL) is a rare and aggressive form of lymphoma. Previous and modern studies have demonstrated a significant association between the human immunodeficiency virus (HIV) and the development of the disease. The limited occurrence of PBL contributes to a need for a more comprehensive understanding of the molecular mechanisms involved in its etiology. Consequently, the diagnostic procedure for PBL poses a significant difficulty. Among the group of CD20-negative large B-cell lymphomas, PBL can be correctly diagnosed by identifying its exact clinical characteristics, anatomical location, and morphological characteristics. PBL cells do not express CD20 or PAX5 but possess plasmacytic differentiation markers such as CD38, CD138, MUM1/IRF4, Blimp1, and XBP1. PBL must be distinguished from other B-cell malignancies that lack the CD20 marker, including primary effusion lymphoma, anaplastic lymphoma kinase-positive large B-cell lymphoma, and large B-cell lymphoma (LBCL). This condition is frequently associated with infections caused by the Epstein-Barr virus and genetic alterations involving the MYC gene. Despite advances in our comprehension of this disease, the prognosis remains dismal, resulting in a low overall survival rate, although recent reports suggest an apparent tendency towards substantial improvement.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Rome, Italy
| |
Collapse
|
11
|
Alexander P, Stephen AG. Affinity Measurement of Non-covalent Interactions of the Covalent KRAS G12C GDP Inhibitor MRTX849 to RAS Isoforms Using Surface Plasmon Resonance. Methods Mol Biol 2024; 2797:103-114. [PMID: 38570455 DOI: 10.1007/978-1-0716-3822-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Surface plasmon resonance (SPR) is an optical effect at an electron-rich surface that enables affinity measurements of biomolecules in real time. It is label free and versatile, not limited to proteins, nucleic acids, and small molecules. SPR is a widely accepted method to measure not only affinity of molecular interactions but also association and dissociation rates of such interactions. In this chapter, we describe a general method to measure the affinity of a small molecule drug, MRTX849, to GDP bound HRAS, KRAS, and NRAS.
Collapse
Affiliation(s)
- Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
12
|
Riley AK, Grant M, Snell A, Vichas A, Moorthi S, Urisman A, Castel P, Wan L, Berger AH. The deubiquitinase USP9X regulates RIT1 protein abundance and oncogenic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569313. [PMID: 38077017 PMCID: PMC10705424 DOI: 10.1101/2023.11.30.569313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
RIT1 is a rare and understudied oncogene in lung cancer. Despite structural similarity to other RAS GTPase proteins such as KRAS, oncogenic RIT1 activity does not appear to be tightly regulated by nucleotide exchange or hydrolysis. Instead, there is a growing understanding that the protein abundance of RIT1 is important for its regulation and function. We previously identified the deubiquitinase USP9X as a RIT1 dependency in RIT1-mutant cells. Here, we demonstrate that both wild-type and mutant forms of RIT1 are substrates of USP9X. Depletion of USP9X leads to decreased RIT1 protein stability and abundance and resensitizes cells to EGFR tyrosine kinase inhibitors. Our work expands upon the current understanding of RIT1 protein regulation and presents USP9X as a key regulator of RIT1-driven oncogenic phenotypes.
Collapse
Affiliation(s)
- Amanda K. Riley
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Michael Grant
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Snell
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Athea Vichas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sitapriya Moorthi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anatoly Urisman
- Department of Pathology, University of California San Francisco, CA, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lixin Wan
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Herbold Computational Biology Program, Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Lead contact:
| |
Collapse
|
13
|
Shin M, Yin HM, Shih YH, Nozaki T, Portman D, Toles B, Kolb A, Luk K, Isogai S, Ishida K, Hanasaka T, Parsons MJ, Wolfe SA, Burns CE, Burns CG, Lawson ND. Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Dev Cell 2023; 58:2614-2626.e7. [PMID: 37633272 PMCID: PMC10840978 DOI: 10.1016/j.devcel.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/30/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
The zebrafish is amenable to a variety of genetic approaches. However, lack of conditional deletion alleles limits stage- or cell-specific gene knockout. Here, we applied an existing protocol to establish a floxed allele for gata2a but failed to do so due to off-target integration and incomplete knockin. To address these problems, we applied simultaneous co-targeting with Cas12a to insert loxP sites in cis, together with transgenic counterscreening and comprehensive molecular analysis, to identify off-target insertions and confirm targeted knockins. We subsequently used our approach to establish endogenously floxed alleles of foxc1a, rasa1a, and ruvbl1, each in a single generation. We demonstrate the utility of these alleles by verifying Cre-dependent deletion, which yielded expected phenotypes in each case. Finally, we used the floxed gata2a allele to demonstrate an endothelial autonomous requirement in lymphatic valve development. Together, our results provide a framework for routine generation and application of endogenously floxed alleles in zebrafish.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui-Min Yin
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Benjamin Toles
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Amy Kolb
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kevin Luk
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sumio Isogai
- Department of Medical Education, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Tomohito Hanasaka
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Michael J Parsons
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Scot A Wolfe
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Chiang CY, Fan S, Zheng H, Guo W, Zheng Z, Sun Y, Zhong C, Zeng J, Li S, Zhang M, Xiao T, Zheng D. Methylation of KRAS by SETD7 promotes KRAS degradation in non-small cell lung cancer. Cell Rep 2023; 42:113003. [PMID: 37682707 DOI: 10.1016/j.celrep.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/18/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
Oncogenic KRAS mutations are a key driver for initiation and progression in non-small cell lung cancer (NSCLC). However, how post-translational modifications (PTMs) of KRAS, especially methylation, modify KRAS activity remain largely unclear. Here, we show that SET domain containing histone lysine methyltransferase 7 (SETD7) interacts with KRAS and methylates KRAS at lysines 182 and 184. SETD7-mediated methylation of KRAS leads to degradation of KRAS and attenuation of the RAS/MEK/ERK signaling cascade, endowing SETD7 with a potent tumor-suppressive role in NSCLC, both in vitro and in vivo. Mechanistically, RABGEF1, a ubiquitin E3 ligase of KRAS, is recruited and promotes KRAS degradation in a K182/K184 methylation-dependent manner. Notably, SETD7 is inversely correlated with KRAS at the protein level in clinical NSCLC tissues. Low SETD7 or RABGEF1 expression is associated with poor prognosis in lung adenocarcinoma patients. Altogether, our results define a tumor-suppressive function of SETD7 that operates via modulating KRAS methylation and degradation.
Collapse
Affiliation(s)
- Cheng-Yao Chiang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Guo
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Zehan Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shuaihu Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Min Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Tian Xiao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China.
| | - Duo Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
15
|
Ghufran M, Rehman AU, Ayaz M, Ul-Haq Z, Uddin R, Azam SS, Wadood A. New lead compounds identification against KRas mediated cancers through pharmacophore-based virtual screening and in vitro assays. J Biomol Struct Dyn 2023; 41:8053-8067. [PMID: 36184737 DOI: 10.1080/07391102.2022.2128878] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 10/07/2022]
Abstract
Cancer remains the leading cause of mortality and morbidity in the world, with 19.3 million new diagnoses and 10.1 million deaths in 2020. Cancer is caused due to mutations in proto-oncogenes and tumor-suppressor genes. Genetic analyses found that Ras (Rat sarcoma) is one of the most deregulated oncogenes in human cancers. The Ras oncogene family members including NRas (Neuroblastoma ras viral oncogene homolog), HRas (Harvey rat sarcoma) and KRas are involved in different types of human cancers. The mutant KRas is considered as the most frequent oncogene implicated in the development of lung, pancreatic and colon cancers. However, there is no efficient clinical drug even though it has been identified as an oncogene for 30 years. Therefore there is an emerging need to develop potent, new anticancer drugs. In this study, computer-aided drug designing approaches as well as experimental methods were employed to find new and potential anti-cancer drugs. The pharmacophore model was developed from an already known FDA approved anti-cancer drug Bortezomib using the software MOE. The validated pharmacophore model was then used to screen the in-house and commercially available databases. The pharmacophore-based virtual screening resulted in 26 and 86 hits from in-house and commercial databases respectively. Finally, 6/13 (in-house database) and 24/64 hits (commercial databases) were selected with different scaffolds having good interactions with the significant active residues of KRasG12D protein that were predicted as potent lead compounds. Finally, the results of pharmacophore-based virtual screening were further validated by molecular dynamics simulation analysis. The 6 hits of the in-house database were further evaluated experimentally. The experimental results showed that these compounds have good anti-cancer activity which validate the protocol of our in silico studies. KRasG12D protein is a very important anti-cancer target and potent inhibitors for this target are still not available, so small lead compound inhibitors were identified to inhibit the activity of this protein by blocking the GTP-binding pocket.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi, Pakistan
| | - Syed Sikander Azam
- Department of Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
16
|
Vish KJ, Stiegler AL, Boggon TJ. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. J Biol Chem 2023; 299:105098. [PMID: 37507023 PMCID: PMC10470053 DOI: 10.1016/j.jbc.2023.105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
RasGAP (p120RasGAP), the founding member of the GTPase-activating protein (GAP) family, is one of only nine human proteins to contain two SH2 domains and is essential for proper vascular development. Despite its importance, its interactions with key binding partners remains unclear. In this study we provide a detailed viewpoint of RasGAP recruitment to various binding partners and assess their impact on RasGAP activity. We reveal the RasGAP SH2 domains generate distinct binding interactions with three well-known doubly phosphorylated binding partners: p190RhoGAP, Dok1, and EphB4. Affinity measurements demonstrate a 100-fold weakened affinity for RasGAP-EphB4 binding compared to RasGAP-p190RhoGAP or RasGAP-Dok1 binding, possibly driven by single versus dual SH2 domain engagement with a dominant N-terminal SH2 interaction. Small-angle X-ray scattering reveals conformational differences between RasGAP-EphB4 binding and RasGAP-p190RhoGAP binding. Importantly, these interactions do not impact catalytic activity, implying RasGAP utilizes its SH2 domains to achieve diverse spatial-temporal regulation of Ras signaling in a previously unrecognized fashion.
Collapse
Affiliation(s)
- Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Department of Yale Cancer Center, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
17
|
Kim D, Herdeis L, Rudolph D, Zhao Y, Böttcher J, Vides A, Ayala-Santos CI, Pourfarjam Y, Cuevas-Navarro A, Xue JY, Mantoulidis A, Bröker J, Wunberg T, Schaaf O, Popow J, Wolkerstorfer B, Kropatsch KG, Qu R, de Stanchina E, Sang B, Li C, McConnell DB, Kraut N, Lito P. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 2023; 619:160-166. [PMID: 37258666 PMCID: PMC10322706 DOI: 10.1038/s41586-023-06123-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.
Collapse
Affiliation(s)
- Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Yulei Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Vides
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos I Ayala-Santos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasin Pourfarjam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Cuevas-Navarro
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Y Xue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | - Rui Qu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Sang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chuanchuan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
18
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Fareez F, Wang BH, Brain I, Lu JQ. Lymphomas in patients with neurofibromatosis type 1 (NF1): another malignancy in the NF1 syndrome? Pathology 2023; 55:302-314. [PMID: 36774237 DOI: 10.1016/j.pathol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant multisystem syndrome caused by mutations in the neurofibromin 1 (NF1) gene that encodes for the protein neurofibromin acting as a tumour suppressor. Neurofibromin functions primarily as a GTPase-activating protein for the Ras family of oncogenes, which activates many signalling pathways for cell proliferation and differentiation; without neurofibromin, Ras is constitutively activated, thereby turning on many downstream signalling pathways related to oncogenesis. Patients with NF1 have a well known predisposition for certain types of malignancies including malignant peripheral nerve sheath tumours, gliomas, and breast cancers, as well as a potential association of NF1 with lymphoproliferative disorders such as lymphomas. In this article, we review the pathophysiology and tumourigenesis of NF1, previously reported cases of cutaneous lymphomas in NF1 patients along with our case demonstration of a NF1-associated scalp B-cell lymphoma, and NF1-associated extra cutaneous lymphomas. The diagnosis of lymphomas particularly cutaneous lymphomas may be difficult in NF1 patients as they often have skin lesions and/or cutaneous/subcutaneous nodules or tumours like neurofibromas, which raises the possibility of underdiagnosed cutaneous lymphomas in NF1 patients. We also comprehensively discuss the association between NF1 and lymphomas. In summary, most studies support a potential association between NF1 and lymphomas. Further investigation is needed to clarify the association between NF1 and lymphomas in order to bring clinical awareness of possibly underdiagnosed NF1-associated lymphomas and individualised management of NF1 patients to practice.
Collapse
Affiliation(s)
- Faiha Fareez
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada
| | - Bill H Wang
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Ian Brain
- Department of Laboratory Medicine and Pathobiology/Hematopathology, University of Toronto, Toronto, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine/Neuropathology, Hamilton General Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
20
|
GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. Comput Biol Chem 2023; 104:107835. [PMID: 36893567 DOI: 10.1016/j.compbiolchem.2023.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
Collapse
|
21
|
Stiegler AL, Boggon TJ. Structure Determination of SH2-Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP. Methods Mol Biol 2023; 2705:77-89. [PMID: 37668970 PMCID: PMC11059313 DOI: 10.1007/978-1-0716-3393-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The p120RasGAP protein contains two Src homology 2 (SH2) domains, each with phosphotyrosine-binding activity. We describe the crystallization of the isolated and purified p120RasGAP SH2 domains with phosphopeptides derived from a binding partner protein, p190RhoGAP. Purified recombinant SH2 domain protein is mixed with synthetic phosphopeptide at a stoichiometric ratio to form the complex in vitro. Crystallization is then achieved by the hanging drop vapor diffusion method over specific reservoir solutions that yield single macromolecular co-crystals containing SH2 domain protein and phosphopeptide. This protocol yields suitable crystals for X-ray diffraction studies, and our recent X-ray crystallography studies of the two SH2 domains of p120RasGAP demonstrate that the N-terminal SH2 domain binds phosphopeptide in a canonical interaction. In contrast, the C-terminal SH2 domain binds phosphopeptide via a unique atypical binding mode. The crystallographic studies for p120RasGAP illustrate that although the three-dimensional structure of SH2 domains and the molecular details of their binding to phosphotyrosine peptides are well defined, careful structural analysis can continue to yield new molecular-level insights.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Frontzek F, Hailfinger S, Lenz G. Plasmablastic lymphoma: from genetics to treatment. Leuk Lymphoma 2022; 64:799-807. [PMID: 36577021 DOI: 10.1080/10428194.2022.2162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmablastic lymphoma (PBL) represents a rare distinct lymphoma entity with plasmablastic morphology and plasmacytic immunophenotype that is characterized by an aggressive clinical course. Standard chemotherapeutic regimens often remain insufficient to cure affected patients. Recently, comprehensive molecular analyses of large cohorts of primary PBL samples have revealed the mutational landscape as well as the pattern of copy number alterations of this rare lymphoma subtype. Identification of recurrent aberrations affecting the JAK-STAT, RAS-RAF, NOTCH, IRF4, and MYC signaling pathways drive the molecular pathogenesis of PBL and hold great potential for novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fabian Frontzek
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
23
|
Pagba C, Gupta AK, Naji AK, van der Hoeven D, Churion K, Liang X, Jakubec J, Hook M, Zuo Y, Martinez de Kraatz M, Frost JA, Gorfe AA. KRAS Inhibitor that Simultaneously Inhibits Nucleotide Exchange Activity and Effector Engagement. ACS BIO & MED CHEM AU 2022; 2:617-626. [PMID: 37101428 PMCID: PMC10125367 DOI: 10.1021/acsbiomedchemau.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 04/28/2023]
Abstract
We describe a small molecule ligand ACA-14 (2-hydroxy-5-{[(2-phenylcyclopropyl) carbonyl] amino} benzoic acid) as an initial lead for the development of direct inhibitors of KRAS, a notoriously difficult anticancer drug target. We show that the compound binds to KRAS near the switch regions with affinities in the low micromolar range and exerts different effects on KRAS interactions with binding partners. Specifically, ACA-14 impedes the interaction of KRAS with its effector Raf and reduces both intrinsic and SOS-mediated nucleotide exchange rates. Likely as a result of these effects, ACA-14 inhibits signal transduction through the MAPK pathway in cells expressing mutant KRAS and inhibits the growth of pancreatic and colon cancer cells harboring mutant KRAS. We thus propose compound ACA-14 as a useful initial lead for the development of broad-acting inhibitors that target multiple KRAS mutants and simultaneously deplete the fraction of GTP-loaded KRAS while abrogating the effector-binding ability of the already GTP-loaded fraction.
Collapse
Affiliation(s)
- Cynthia
V. Pagba
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Amit K. Gupta
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Ali K. Naji
- Department
of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, Texas 77030, United States
| | - Dharini van der Hoeven
- Department
of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, Texas 77030, United States
| | - Kelly Churion
- Center
for Infectious and Inflammatory Diseases, Texas A&M University Health Science Center, 2121 W Holcombe Blvd, Houston, Texas 77030, United States
| | - Xiaowen Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jacob Jakubec
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Magnus Hook
- Center
for Infectious and Inflammatory Diseases, Texas A&M University Health Science Center, 2121 W Holcombe Blvd, Houston, Texas 77030, United States
| | - Yan Zuo
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Marisela Martinez de Kraatz
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jeffrey A. Frost
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program, UTHealth MD Anderson
Cancer Center Graduate School of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Alemayehu A. Gorfe
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School
of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United
States
| |
Collapse
|
24
|
Stiegler AL, Vish KJ, Boggon TJ. Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP. Structure 2022; 30:1603-1614.e5. [PMID: 36417908 PMCID: PMC9722645 DOI: 10.1016/j.str.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
p120RasGAP is a multidomain GTPase-activating protein for Ras. The presence of two Src homology 2 domains in an SH2-SH3-SH2 module raises the possibility that p120RasGAP simultaneously binds dual phosphotyrosine residues in target proteins. One known binding partner with two proximal phosphotyrosines is p190RhoGAP, a GTPase-activating protein for Rho GTPases. Here, we present the crystal structure of the p120RasGAP SH2-SH3-SH2 module bound to a doubly tyrosine-phosphorylated p190RhoGAP peptide, revealing simultaneous phosphotyrosine recognition by the SH2 domains. The compact arrangement places the SH2 domains in close proximity resembling an SH2 domain tandem and exposed SH3 domain. Affinity measurements support synergistic binding, while solution scattering reveals that dual phosphotyrosine binding induces compaction of this region. Our studies reflect a binding mode that limits conformational flexibility within the SH2-SH3-SH2 cassette and relies on the spacing and sequence surrounding the two phosphotyrosines, potentially representing a selectivity mechanism for downstream signaling events.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|
26
|
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun 2022; 13:4788. [PMID: 35970859 PMCID: PMC9378701 DOI: 10.1038/s41467-022-32541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.
Collapse
Affiliation(s)
- Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
28
|
Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S). Nat Chem Biol 2022; 18:1177-1183. [PMID: 35864332 DOI: 10.1038/s41589-022-01065-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Drugs that directly impede the function of driver oncogenes offer exceptional efficacy and a therapeutic window. The recently approved mutant selective small-molecule cysteine-reactive covalent inhibitor of the G12C mutant of K-Ras, sotorasib, provides a case in point. KRAS is the most frequently mutated proto-oncogene in human cancer, yet despite success targeting the G12C allele, targeted therapy for other hotspot mutants of KRAS has not been described. Here we report the discovery of small molecules that covalently target a G12S somatic mutation in K-Ras and suppress its oncogenic signaling. We show that these molecules are active in cells expressing K-Ras(G12S) but spare the wild-type protein. Our results provide a path to targeting a second somatic mutation in the oncogene KRAS by overcoming the weak nucleophilicity of an acquired serine residue. The chemistry we describe may serve as a basis for the selective targeting of other unactivated serines.
Collapse
|
29
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
30
|
Abstract
In this review, I provide a brief history of the discovery of RAS and the GAPs and GEFs that regulate its activity from a personal perspective. Much of this history has been driven by technological breakthroughs that occurred concurrently, such as molecular cloning, cDNA expression to analyze RAS proteins and their structures, and application of PCR to detect mutations. I discuss the RAS superfamily and RAS proteins as therapeutic targets, including recent advances in developing RAS inhibitors. I also describe the role of the RAS Initiative at Frederick National Laboratory for Cancer Research in advancing development of RAS inhibitors and providing new insights into signaling complexes and interaction of RAS proteins with the plasma membrane.
Collapse
Affiliation(s)
- Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States; Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
31
|
Jameson N, Gavagan M, Zalatan JG. A kinetic mechanism for systems-level behavior in GTPase signaling. Trends Biochem Sci 2022; 47:459-460. [DOI: 10.1016/j.tibs.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
32
|
KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discov 2022; 8:5. [PMID: 35075146 PMCID: PMC8786924 DOI: 10.1038/s41421-021-00368-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
KRAS mutation occurs in nearly 30% of human cancers, yet the most prevalent and oncogenic KRAS(G12D) variant still lacks inhibitors. Herein, we designed a series of potent inhibitors that can form a salt bridge with KRAS’s Asp12 residue. Our ITC results show that these inhibitors have similar binding affinity with both GDP-bound and GTP-bound KRAS(G12D), and our crystallographic studies reveal the structural basis of inhibitor binding-induced switch-II pocket in KRAS(G12D), experimentally confirming the formation of a salt bridge between the piperazine moiety of the inhibitors and the Asp12 residue of the mutant protein. Among KRAS family proteins and mutants, both ITC and enzymatic assays demonstrate the selectivity of the inhibitors for KRAS(G12D); and the inhibitors disrupt the KRAS–CRAF interaction. We also observed the inhibition of cancer cell proliferation as well as MAPK signaling by a representative inhibitor (TH-Z835). However, since the inhibition was not fully dependent on KRAS mutation status, it is possible that our inhibitors may have off-target effects via targeting non-KRAS small GTPases. Experiments with mouse xenograft models of pancreatic cancer showed that TH-Z835 significantly reduced tumor volume and synergized with an anti-PD-1 antibody. Collectively, our study demonstrates proof-of-concept for a strategy based on salt-bridge and induced-fit pocket formation for KRAS(G12D) targeting, which warrants future medicinal chemistry efforts for optimal efficacy and minimized off-target effects.
Collapse
|
33
|
Tripathi S, Dsouza NR, Mathison AJ, Leverence E, Urrutia R, Zimmermann MT. Enhanced interpretation of 935 hotspot and non-hotspot RAS variants using evidence-based structural bioinformatics. Comput Struct Biotechnol J 2022; 20:117-127. [PMID: 34976316 PMCID: PMC8688876 DOI: 10.1016/j.csbj.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022] Open
Abstract
In the current study, we report computational scores for advancing genomic interpretation of disease-associated genomic variation in members of the RAS family of genes. For this purpose, we applied 31 sequence- and 3D structure-based computational scores, chosen by their breadth of biophysical properties. We parametrized our data by assembling a numerically homogenized experimentally-derived dataset, which when use in our calculations reveal that computational scores using 3D structure highly correlate with experimental measures (e.g., GAP-mediated hydrolysis RSpearman = 0.80 and RAF affinity Rspearman = 0.82), while sequence-based scores are discordant with this data. Performing all-against-all comparisons, we applied this parametrized modeling approach to the study of 935 RAS variants from 7 RAS genes, which led us to identify 4 groups of mutations according to distinct biochemical scores within each group. Each group was comprised of hotspot and non-hotspot KRAS variants, indicating that poorly characterized variants could functionally behave like pathogenic mutations. Combining computational scores using dimensionality reduction indicated that changes to local unfolding propensity associate with changes in enzyme activity by genomic variants. Hence, our systematic approach, combining methodologies from both clinical genomics and 3D structural bioinformatics, represents an expansion for interpreting genomic data, provides information of mechanistic value, and that is transferable to other proteins.
Collapse
Affiliation(s)
- Swarnendu Tripathi
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elise Leverence
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
34
|
Lo A, Holmes K, Kamlapurkar S, Mundt F, Moorthi S, Fung I, Fereshetian S, Watson J, Carr SA, Mertins P, Berger AH. Multiomic characterization of oncogenic signaling mediated by wild-type and mutant RIT1. Sci Signal 2021; 14:eabc4520. [PMID: 34846918 PMCID: PMC8848860 DOI: 10.1126/scisignal.abc4520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant activation of the RAS family of guanosine triphosphatases (GTPases) is prevalent in lung adenocarcinoma, with somatic mutation of KRAS occurring in ~30% of tumors. We previously identified somatic mutations and amplifications of the gene encoding RAS family GTPase RIT1 in lung adenocarcinomas. To explore the biological pathways regulated by RIT1 and how they relate to the oncogenic KRAS network, we performed quantitative proteomic, phosphoproteomic, and transcriptomic profiling of isogenic lung epithelial cells in which we ectopically expressed wild-type or cancer-associated variants of RIT1 and KRAS. We found that both mutant KRAS and mutant RIT1 promoted canonical RAS signaling and that overexpression of wild-type RIT1 partially phenocopied oncogenic RIT1 and KRAS, including induction of epithelial-to-mesenchymal transition. Our findings suggest that RIT1 protein abundance is a factor in its pathogenic function. Therefore, chromosomal amplification of wild-type RIT1 in lung and other cancers may be tumorigenic.
Collapse
Affiliation(s)
- April Lo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kristin Holmes
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shriya Kamlapurkar
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Filip Mundt
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Present address: Proteomics technology platform, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Sitapriya Moorthi
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Iris Fung
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shaunt Fereshetian
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacqueline Watson
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A. Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Philipp Mertins
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Current affiliation: Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, 13092 Berlin, Germany
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
35
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
36
|
Cox AD, Der CJ. Filling in the GAPs in understanding RAS. Science 2021; 374:152-153. [PMID: 34618580 DOI: 10.1126/science.abl3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA.,Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
37
|
Li C, Vides A, Kim D, Xue J, Zhao Y, Lito P. The G protein signaling regulator RGS3 enhances the GTPase activity of KRAS. Science 2021; 374:197-201. [PMID: 34618566 PMCID: PMC9295010 DOI: 10.1126/science.abf1730] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently reported to be effective in patients with lung cancer, KRASG12C inhibitors bind to the inactive, or guanosine diphosphate (GDP)–bound, state of the oncoprotein and require guanosine triphosphate (GTP) hydrolysis for inhibition. However, KRAS mutations prevent the catalytic arginine of GTPase-activating proteins (GAPs) from enhancing an otherwise slow hydrolysis rate. If KRAS mutants are indeed insensitive to GAPs, it is unclear how KRASG12C hydrolyzes sufficient GTP to allow inactive state–selective inhibition. Here, we show that RGS3, a GAP previously known for regulating G protein–coupled receptors, can also enhance the GTPase activity of mutant and wild-type KRAS proteins. Our study reveals an unexpected mechanism that inactivates KRAS and explains the vulnerability to emerging clinically effective therapeutics.
Collapse
Affiliation(s)
- Chuanchuan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY 10065
| | - Alberto Vides
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY 10065
| | - Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY 10065
| | - Jenny Xue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY 10065
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College and Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yulei Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY 10065
| | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY 10065
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College and Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
38
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Weber SM, Brossier NM, Prechtl A, Barnes S, Wilson LS, Brosius SN, Longo JF, Carroll SL. R-Ras subfamily proteins elicit distinct physiologic effects and phosphoproteome alterations in neurofibromin-null MPNST cells. Cell Commun Signal 2021; 19:95. [PMID: 34530870 PMCID: PMC8447793 DOI: 10.1186/s12964-021-00773-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. Methods NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. Results R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. Conclusions R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Plain English Summary Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior. Video Abstract
![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00773-4.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nicole M Brossier
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pediatrics, St. Louis Children's Hospital, St. Louis, USA
| | - Amanda Prechtl
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephen Barnes
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Landon S Wilson
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephanie N Brosius
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA. .,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA. .,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
40
|
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021; 10:1831. [PMID: 34359999 PMCID: PMC8305018 DOI: 10.3390/cells10071831] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Much progress has been made toward deciphering RHO GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through RHO GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstrasse 1, Building 22.03.05, 40225 Düsseldorf, Germany;
| |
Collapse
|
41
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
42
|
Tien JCY, Chugh S, Goodrum AE, Cheng Y, Mannan R, Zhang Y, Wang L, Dommeti VL, Wang X, Xu A, Hon J, Kenum C, Su F, Wang R, Cao X, Shankar S, Chinnaiyan AM. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A 2021; 118:e2026104118. [PMID: 33972443 PMCID: PMC8157917 DOI: 10.1073/pnas.2026104118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the deadliest malignancy in the United States. Non-small cell lung cancer (NSCLC) accounts for 85% of cases and is frequently driven by activating mutations in the gene encoding the KRAS GTPase (e.g., KRASG12D). Our previous work demonstrated that Argonaute 2 (AGO2)-a component of the RNA-induced silencing complex (RISC)-physically interacts with RAS and promotes its downstream signaling. We therefore hypothesized that AGO2 could promote KRASG12D-dependent NSCLC in vivo. To test the hypothesis, we evaluated the impact of Ago2 knockout in the KPC (LSL-KrasG12D/+;p53f/f;Cre) mouse model of NSCLC. In KPC mice, intratracheal delivery of adenoviral Cre drives lung-specific expression of a stop-floxed KRASG12D allele and biallelic ablation of p53 Simultaneous biallelic ablation of floxed Ago2 inhibited KPC lung nodule growth while reducing proliferative index and improving pathological grade. We next applied the KPHetC model, in which the Clara cell-specific CCSP-driven Cre activates KRASG12D and ablates a single p53 allele. In these mice, Ago2 ablation also reduced tumor size and grade. In both models, Ago2 knockout inhibited ERK phosphorylation (pERK) in tumor cells, indicating impaired KRAS signaling. RNA sequencing (RNA-seq) of KPC nodules and nodule-derived organoids demonstrated impaired canonical KRAS signaling with Ago2 ablation. Strikingly, accumulation of pERK in KPC organoids depended on physical interaction of AGO2 and KRAS. Taken together, our data demonstrate a pathogenic role for AGO2 in KRAS-dependent NSCLC. Given the prevalence of this malignancy and current difficulties in therapeutically targeting KRAS signaling, our work may have future translational relevance.
Collapse
Affiliation(s)
- Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Seema Chugh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Andrew E Goodrum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Xiaoming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Alice Xu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Jennifer Hon
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109;
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
43
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
44
|
Van QN, Prakash P, Shrestha R, Balius TE, Turbyville TJ, Stephen AG. RAS Nanoclusters: Dynamic Signaling Platforms Amenable to Therapeutic Intervention. Biomolecules 2021; 11:377. [PMID: 33802474 PMCID: PMC8000715 DOI: 10.3390/biom11030377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew G. Stephen
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, National Cancer Institute RAS Initiative, Inc., Frederick, MD 21702, USA; (Q.N.V.); (P.P.); (R.S.); (T.E.B.); (T.J.T.)
| |
Collapse
|
45
|
Nagano T, Iwasaki T, Onishi K, Awai Y, Terachi A, Kuwaba S, Asano S, Katasho R, Nagai K, Nakashima A, Kikkawa U, Kamada S. LY6D-induced macropinocytosis as a survival mechanism of senescent cells. J Biol Chem 2021; 296:100049. [PMID: 33168631 PMCID: PMC7948989 DOI: 10.1074/jbc.ra120.013500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent-cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Because macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent-cell survival through the incorporation of extracellular nutrients.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Tetsushi Iwasaki
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Kengo Onishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yuto Awai
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Anju Terachi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shione Kuwaba
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Shota Asano
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ryoko Katasho
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kiyoko Nagai
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Department of Biology, Faculty of Science, Kobe University, Kobe, Japan.
| |
Collapse
|
46
|
Abstract
RAS proteins control a number of essential cellular processes as molecular switches in the human body. Presumably due to their important signalling role, RAS proteins are among the most frequently mutated oncogenes in human cancers. Hence, numerous efforts were done to develop appropriate therapies for RAS-mutant cancers in the last three decades. This review aimed to collect all of the reported small molecules that affect RAS signalling. These molecules can be divided in four main branches. First, we address approaches blocking RAS membrane association. Second, we focus on the stabilization efforts of non-productive RAS complexes. Third, we examine the approach to block RAS downstream signalling through disturbance of RAS-effector complex formation. Finally, we discuss direct inhibition; particularly the most recently reported covalent inhibitors, which are already advanced to human clinical trials.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, Budapest, H-1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, Budapest, H-1117, Hungary.
| |
Collapse
|
47
|
Kim D, Xue JY, Lito P. Targeting KRAS(G12C): From Inhibitory Mechanism to Modulation of Antitumor Effects in Patients. Cell 2020; 183:850-859. [PMID: 33065029 PMCID: PMC7669705 DOI: 10.1016/j.cell.2020.09.044] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
KRAS mutations are among the most common genetic alterations in lung, colorectal, and pancreatic cancers. Direct inhibition of KRAS oncoproteins has been a long-standing pursuit in precision oncology, one established shortly after the discovery of RAS mutations in human cancer cells nearly 40 years ago. Recent advances in medicinal chemistry have established inhibitors targeting KRAS(G12C), a mutation found in ∼13% of lung adenocarcinomas and, at a lower frequency, in other cancers. Preclinical studies describing their discovery and mechanism of action, coupled with emerging clinical data from patients treated with these drugs, have sparked a renewed enthusiasm in the study of KRAS and its therapeutic potential. Here, we discuss how these advances are reshaping the fundamental aspects of KRAS oncoprotein biology and the strides being made toward improving patient outcomes in the clinic.
Collapse
Affiliation(s)
- Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Jenny Yaohua Xue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
48
|
Homami A, Ataei Kachoei Z, Asgarie M, Ghazi F. Analysis of FGFR3 and HRAS genes in patients with bladder cancer. Med J Islam Repub Iran 2020; 34:108. [PMID: 33316010 PMCID: PMC7722963 DOI: 10.34171/mjiri.34.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Bladder cancer is the most frequent malignancy that affects the urinary tract. Studies have shown different types of FGFR3 and HRAS genes mutations in human bladder cancer, with a comprehensive range of mutation number in various populations. This study aimed to determine the specific point mutations of these 2 genes among Iranian patients with bladder cancer. Methods: In this study, 100 specimens of patients with transitional cell carcinoma were analyzed. All samples were examined for FGFR3 and HRAS mutations using PCR and direct DNA sequencing methods. Results: A total of 9 pathogenic mutations and 9 polymorphisms were found in 2 exons (7 and 15) of the FGFR3 genes in patients with bladder cancer (S249Y, I633I, L645L, D646E, Y647*, D628V, P250T, Q263H, Y305H). However, no mutation was found in exon 10 of FGFR3 and exon 1 of HRAS genes. Conclusion: In this study, 5 mutations were found in FGFR3 gene that have not been detected previously. There was no mutation in exon 10 of FGFR3 and exon1 of HRAS. The results of this study confirmed the association of ethnic-genetic factors in the occurrence of bladder cancer, so that these variables may not be present in all ethnic groups.
Collapse
Affiliation(s)
- Ameneh Homami
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Ataei Kachoei
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asgarie
- Department of Medical Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Gasper R, Wittinghofer F. The Ras switch in structural and historical perspective. Biol Chem 2020; 401:143-163. [PMID: 31600136 DOI: 10.1515/hsz-2019-0330] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Since its discovery as an oncogene more than 40 years ago, Ras has been and still is in the focus of many academic and pharmaceutical labs around the world. A huge amount of work has accumulated on its biology. However, many questions about the role of the different Ras isoforms in health and disease still exist and a full understanding will require more intensive work in the future. Here we try to survey some of the structural findings in a historical perspective and how it has influenced our understanding of structure-function and mechanistic relationships of Ras and its interactions. The structures show that Ras is a stable molecular machine that uses the dynamics of its switch regions for the interaction with all regulators and effectors. This conformational flexibility has been used to create small molecule drug candidates against this important oncoprotein.
Collapse
Affiliation(s)
- Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | - Fred Wittinghofer
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| |
Collapse
|
50
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|