1
|
GaneshKumar P, Panchabikesan K, Divya S, Oh TH. Revolutionizing MXene nanomaterials for hydrogen production and storage: Enhancing catalysis, storage, mechanical integrity, and ecosystem compatibility. Adv Colloid Interface Sci 2025; 342:103528. [PMID: 40334634 DOI: 10.1016/j.cis.2025.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/15/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Hydrogen holds a pivotal role in achieving net-zero emission targets. Serving as an energy carrier, it complements renewable energy sources in meeting clean energy transition goals and mitigating climate change issues. While many nations recognizes the potential of hydrogen, in the current energy scenario, there is an urgent need for rapid advancements in hydrogen production and storage methods. The advancements in hydrogen production and storage must utilize emission-free methods that are both cost-effective and scalable. Hydrogen as a portable power source, faces criticism due to its low volumetric energy density and the safety requirements associated with its storage. To unlock the full potential of hydrogen in the energy sector, it is imperative to address the challenges related to cost-effective, emission-free generation methods and storage options. In recent years, MXene, a two-dimensional material composed of transition metal carbides, nitrides, and carbonitrides, has garnered significant attention. Its excellent mechanical strength and chemical stability make it a promising material for hydrogen production and storage. Previous reviews have predominantly concentrated on either hydrogen production or storage capabilities of MXene; however, a comprehensive review of its potential in both domains is scarce. Understanding the importance and potential of MXene, the present study review the potential, technical barriers, and solutions for using MXene for both hydrogen production and storage. The challenges associated with MXenes, such as scalability of synthesis, environmental stability, limited hydrogen storage capacity, and catalytic efficiency for hydrogen evolution reactions (HER), are critically examined. Additionally, the review discusses MXene's mechanical and thermal properties, advantages, disadvantages, and environmental risks. Notably, it highlights MXene's application as a catalyst for advancing hydrogen production through gasification, thermochemical processes, and hydrocarbon reforming.
Collapse
Affiliation(s)
- Poongavanam GaneshKumar
- Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu, India.
| | | | - S Divya
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|
2
|
Faraji S, Liu M. Transferable machine learning interatomic potential for carbon hydrogen systems. Phys Chem Chem Phys 2024; 26:22346-22358. [PMID: 39140158 DOI: 10.1039/d4cp02300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this study, we developed a machine learning interatomic potential based on artificial neural networks (ANN) to model carbon-hydrogen (C-H) systems. The ANN potential was trained on a dataset of C-H clusters obtained through density functional theory (DFT) calculations. Through comprehensive evaluations against DFT results, including predictions of geometries and formation energies across 0D-3D systems comprising C and C-H, as well as modeling various chemical processes, the ANN potential demonstrated exceptional accuracy and transferability. Its capability to accurately predict lattice dynamics, crucial for stability assessment in crystal structure prediction, was also verified through phonon dispersion analysis. Notably, its accuracy and computational efficiency in calculating force constants facilitated the exploration of complex energy landscapes, leading to the discovery of a novel C polymorph. These results underscore the robustness and versatility of the ANN potential, highlighting its efficacy in advancing computational materials science by conducting precise atomistic simulations on a wide range of C-H materials.
Collapse
Affiliation(s)
- Somayeh Faraji
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Mingjie Liu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Plerdsranoy P, Thaweelap N, Chirachanchai S, Utke R. Chitosan-assisted hydrogen adsorption and reversibility of Ni-doped hierarchical carbon scaffolds. RSC Adv 2024; 14:19106-19115. [PMID: 38882480 PMCID: PMC11177292 DOI: 10.1039/d4ra02687j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
We investigated the effects of chitosan (CS) on the hydrogen adsorption and reversibility of hierarchical carbon scaffold (HCS) loaded with Ni nanoparticles. As size-controllable, stabilizing, and shape-directing agents for the green synthesis of metal nanoparticles of CS, Ni nanoparticles with uniform distribution and shape are deposited onto HCS. The latter results in the superior specific surface area of Ni nanoparticles for hydrogen chemisorption. The best hydrogen adsorption capacities at room temperature under 20-70 bar H2 of 0.5-1.70 wt% H2 were obtained from 10 wt% Ni-doped HCS-CS. Although macropores of the HCS collapsed upon cycling due to hydrogen pressure applied during adsorption, average hydrogen capacities of 1.17 ± 0.05 wt% H2 (T = 25 °C and p(H2) = 50 bar) were maintained for 14 cycles. This is because not only uniform distribution and shape of Ni nanoparticles and microporous structures of the HCS were preserved upon cycling but also the interactions between Ni and heteroatoms (N and O) of the HCS and CS prevented particle agglomeration.
Collapse
Affiliation(s)
- Praphatsorn Plerdsranoy
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Natthaporn Thaweelap
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| | - Rapee Utke
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
4
|
Rezić I, Meštrović E. Challenges of Green Transition in Polymer Production: Applications in Zero Energy Innovations and Hydrogen Storage. Polymers (Basel) 2024; 16:1310. [PMID: 38794503 PMCID: PMC11124979 DOI: 10.3390/polym16101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The green transition in the sustainable production and processing of polymers poses multifaceted challenges that demand integral comprehensive solutions. Specific problems of presences of toxic trace elements are often missed and this prevents shifting towards eco-friendly alternatives. Therefore, substantial research and the development of novel approaches is needed to discover and implement innovative, sustainable production materials and methods. This paper is focused on the most vital problems of the green transition from the aspect of establishing universally accepted criteria for the characterization and classification of eco-friendly polymers, which is essential to ensuring transparency and trust among consumers. Additionally, the recycling infrastructure needs substantial improvement to manage the end-of-life stage of polymer products effectively. Moreover, the lack of standardized regulations and certifications for sustainable polymers adds to the complexity of this problem. In this paper we propose solutions from the aspect of standardization protocols for the characterization of polymers foreseen as materials that should be used in Zero Energy Innovations in Hydrogen Storage. The role model standards originate from eco-labeling procedures for materials that come into direct or prolonged contact with human skin, and that are monitored by different methods and testing procedures. In conclusion, the challenges of transitioning to green practices in polymer production and processing demands a concerted effort from experts in the field which need to emphasize the problems of the analysis of toxic ultra trace and trace impurities in samples that will be used in hydrogen storage, as trace impurities may cause terrific obstacles due to their decreasing the safety of materials. Overcoming these obstacles requires the development and application of current state-of-the-art methodologies for monitoring the quality of polymers during their recycling, processing, and using, as well as the development of other technological innovations, financial initiatives, and a collective commitment to fostering a sustainable and environmentally responsible future for the polymer industry and innovations in the field of zero energy applications.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Ernest Meštrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Liu Q, Feng N, Zou Y, Fan C, Wang J. Exploring the impact of stress on the electronic structure and optical properties of graphdiyne nanoribbons for advanced optoelectronic applications. Sci Rep 2024; 14:6051. [PMID: 38480809 PMCID: PMC10937923 DOI: 10.1038/s41598-024-56380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Graphdiyne (GDY), a two-dimensional carbon material with sp- and sp2-hybridization, is recognized for its unique electronic properties and well-dispersed porosity. Its versatility has led to its use in a variety of applications. The precise control of this material's properties is paramount for its effective utilization in nano-optical devices. One effective method of regulation, which circumvents the need for additional disturbances, involves the application of external stress. This technique provides a direct means of eliciting changes in the electronic characteristics of the material. For instance, when subjected to uniaxial stress, electron transfer occurs at the triple bond. This results in an armchair-edged graphdiyne nanoribbon (A(3)-GDYNR) with a planar width of 2.07 nm, which exhibits a subtle plasmon effect at 500 nm. Conversely, a zigzag-edged graphdiyne nanoribbon (Z(3)-GDYNR) with a planar width of 2.86 nm demonstrates a pronounced plasmon effect within the 250-1200 nm range. This finding suggests that the zigzag nanoribbon surpasses the armchair nanoribbon in terms of its plasmon effect. First principles calculations and ab initio molecular dynamics further confirmed that under applied stress Z(3)-GDYNR exhibits less deformation than A(3)-GDYNR, indicating superior stability. This work provides the necessary theoretical basis for understanding graphene nanoribbons (GDYNRs).
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China
| | - Naixing Feng
- Key Laboratory of Intelligent Computing and Signal Processing, and School of Electronic and Information Engineering, Anhui University, Hefei, 230601, China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Chuanqiang Fan
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
6
|
Khan MSJ, Mohd Sidek L, Kamal T, Khan SB, Basri H, Zawawi MH, Ahmed AN. Catalytic innovations: Improving wastewater treatment and hydrogen generation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120228. [PMID: 38377746 DOI: 10.1016/j.jenvman.2024.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
The effective reduction of hazardous organic pollutants in wastewater is a pressing global concern, necessitating the development of advanced treatment technologies. Pollutants such as nitrophenols and dyes, which pose significant risks to both human and aquatic health, making their reduction particularly crucial. Despite the existence of various methods to eliminate these pollutants, they are not without limitations. The utilization of nanomaterials as catalysts for chemical reduction exhibits a promising alternative owing to their distinguished catalytic activity and substantial surface area. For catalytically reducing the pollutants NaBH4 has been utilized as a useful source for it because it reduces the pollutants quiet efficiently and it also releases hydrogen gas as well which can be used as a source of energy. This paper provides a comprehensive review of recent research on different types of nanomaterials that function as catalysts to reduce organic pollutants and also generating hydrogen from NaBH4 methanolysis while also evaluating the positive and negative aspects of nanocatalyst. Additionally, this paper examines the features effecting the process and the mechanism of catalysis. The comparison of different catalysts is based on size of catalyst, reaction time, rate of reaction, hydrogen generation rate, activation energy, and durability. The information obtained from this paper can be used to steer the development of new catalysts for reducing organic pollutants and generation hydrogen by NaBH4 methanolysis.
Collapse
Affiliation(s)
| | - Lariyah Mohd Sidek
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hidayah Basri
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Mohd Hafiz Zawawi
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Ali Najah Ahmed
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Malaysia.
| |
Collapse
|
7
|
Liu Q, Wang X, Yu J, Wang J. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications. Phys Chem Chem Phys 2024; 26:1541-1563. [PMID: 38165768 DOI: 10.1039/d3cp04393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Graphyne (GY) and graphdiyne (GDY) have properties including unique sp- and sp2-hybrid carbon atomic structures, natural non-zero band gaps, and highly conjugated π electrons. GY and GDY have good application prospects in many fields, including catalysis, solar cells, sensors, and modulators. Under the influence of the boundary effect and quantum size effect, quasi-one-dimensional graphyne nanoribbons (GYNRs) and graphdiyne nanoribbons (GDYNRs) show novel physical properties. The various structures available give GYNRs and GDYNRs greater band structure and electronic properties, and their excellent physical and chemical properties differ from those of two-dimensional GY and GDY. However, the development of GYNRs and GDYNRs still faces problems, including issues with accurate synthesis, advanced structural characterization, the structure-performance correlation of materials, and potential applications. In this review, the structures and physical properties of quasi-one-dimensional GYNRs and GDYNRs are reviewed, their advantages and disadvantages are summarized, and their potential applications are highlighted. This review provides a meaningful basis and research foundation for the design and development of high-performance materials and devices based on GYNRs and GDYNRs in the field of energy.
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Xiaorong Wang
- School of petrochemical engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Jing Yu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| |
Collapse
|
8
|
Badi N, Roy AS, Al-Aoh HA, Motawea MS, Alghamdi SA, M Alsharari A, Albaqami AS, Ignatiev A. Enhanced and Proficient Soft Template Array of Polyaniline-TiO 2 Nanocomposites Fibers Prepared Using Anionic Surfactant for Fuel Cell Hydrogen Storage. Polymers (Basel) 2023; 15:4186. [PMID: 37896429 PMCID: PMC10610601 DOI: 10.3390/polym15204186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Porous TiO2-doped polyaniline and polyaniline nanocomposite fibers prepared by the in situ polymerization technique using anionic surfactant in an ice bath were studied. The prepared nanocomposites were characterized by FTIR spectroscopy and XRD patterns for structural analysis. The surface morphology of the polyaniline and its nanocomposites was examined using SEM images. DC conductivity shows the three levels of conductivity inherent in a semiconductor. Among the nanocomposites, the maximum DC conductivity is 5.6 S/cm for 3 wt.% polyaniline-TiO2 nanocomposite. Cyclic voltammetry shows the properties of PANI due to the redox peaks of 0.93 V and 0.24 V. Both peaks are due to the redox transition of PANI from the semiconductor to the conductive state. The hydrogen absorption capacity is approximately 4.5 wt.%, but at 60 °C the capacity doubles to approximately 7.3 wt.%. Conversely, 3 wt.% PANI-TiO2 nanocomposites have a high absorption capacity of 10.4 wt.% compared to other nanocomposites. An overall desorption capacity of 10.4 wt.% reduced to 96% was found for 3 wt.% TiO2-doped PANI nanocomposites.
Collapse
Affiliation(s)
- Nacer Badi
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Renewable Energy and Environmental Technologies Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aashis S Roy
- Department of Chemistry, S.S. Tegnoor Degree College, Gubbi Colony, Kalaburagi 585105, Karnataka, India
| | - Hatem A Al-Aoh
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed S Motawea
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrhman M Alsharari
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrahman S Albaqami
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alex Ignatiev
- Department of Physics, University of Houston, Houston, TX 77204-5004, USA
| |
Collapse
|
9
|
Kumar N, Soren S, Nirala A, Almakayeel N, Yunus Khan TM, Khan MA. Distribution of Carbon Nanotubes in an Aluminum Matrix by a Solution-Mixing Process. ACS OMEGA 2023; 8:33845-33856. [PMID: 37744815 PMCID: PMC10515603 DOI: 10.1021/acsomega.3c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
In order to overcome the limitations of standard ball-mill mixing processes to fabricate a uniformly dispersed carbon nanotube (CNT) reinforcement composite without damaging CNTs in matrix powder, a unique and easy solution-mixing process was developed. The present study aims to synthesize Al-0.5 wt % CNT composites using ball-milling and solution-mixing processes and compares their CNT dispersion and structural and thermal properties. Compared with the ball-milling process, the solution-mixing process was simple and effective for the uniform distribution of CNTs without structural damage. Various methods were utilized to examine the structural characteristics of the composite powder. These techniques included high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy, and particle size analysis. Raman spectroscopy observes an increase of defects in ball-milled composites, and the particle size analyzer confirms the structural deformation, resulting in the degradation of composite powder mechanical properties. In the solution-mixing process, aluminum particles and the structure of CNTs are well-preserved even after mixing. Thermogravimetric analysis (TGA) was used to research the thermal stability of the composite materials. The results validated the impact of CNTs on thermal characteristics enhancement (improved thermal resistance) when compared with pure aluminum, suggesting potential uses in the aerospace industry, transport, and construction sectors.
Collapse
Affiliation(s)
- Navin Kumar
- Department
of Fuel Minerals and Metallurgical Engineering, Indian institute of technology (Indian Schools of Mines), Dhanbad 826004, India
| | - Shatrughan Soren
- Department
of Fuel Minerals and Metallurgical Engineering, Indian institute of technology (Indian Schools of Mines), Dhanbad 826004, India
| | - Akhileshwar Nirala
- Department
of Fuel Minerals and Metallurgical Engineering, Indian institute of technology (Indian Schools of Mines), Dhanbad 826004, India
| | - Naif Almakayeel
- Industrial
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - T. M. Yunus Khan
- Department
of Mechanical Engineering College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad Amir Khan
- Department
of Civil Engineering, Galgotias College
of Engineering and Technology, Knowledge Park 2, Greater
Noida 201310, Uttar Pradesh, India
| |
Collapse
|
10
|
Liu Y, Wang R, Wang L, Xia J, Wang C, Tang C. Size- and Chirality-Dependent Structural and Mechanical Properties of Single-Walled Phenine Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4706. [PMID: 37445019 DOI: 10.3390/ma16134706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Phenine nanotubes (PNTs) have recently been synthesized as a promising new one-dimensional material for high-performance electronics. The periodically distributed vacancy defects in PNTs result in novel semiconducting properties, but may also compromise their mechanical properties. However, the role of these defects in modifying the structural and mechanical properties is not yet well understood. To address this, we conducted systematic molecular dynamics simulations investigating the structural evolution and mechanical responses of PNTs under various conditions. Our results demonstrated that the twisting of linear carbon chains in both armchair and zigzag PNTs led to interesting structural transitions, which were sensitive to chiralities and diameters. Additionally, when subjected to tensile and compressive loading, PNTs' cross-sectional geometry and untwisting of linear carbon chains resulted in distinct mechanical properties compared to carbon nanotubes. Our findings provide comprehensive insights into the fundamental properties of these new structures while uncovering a new mechanism for modifying the mechanical properties of one-dimensional nanostructures through the twisting-untwisting of linear carbon chains.
Collapse
Affiliation(s)
- Yanjun Liu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Ruijie Wang
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Liya Wang
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Jun Xia
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, Wales, UK
| | - Chun Tang
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
11
|
Chen Y, Xia G, Jin C, Wang Y, Yan Y, Chen Y, Gong X, Lai Y, Wu C. Palladium-Phosphide-Modified Three-Dimensional Phospho-Doped Graphene Materials for Hydrogen Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4219. [PMID: 37374404 DOI: 10.3390/ma16124219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The development of efficient hydrogen storage materials is crucial for advancing hydrogen-based energy systems. In this study, we prepared a highly innovative palladium-phosphide-modified P-doped graphene hydrogen storage material with a three-dimensional configuration (3D Pd3P0.95/P-rGO) using a hydrothermal method followed by calcination. This 3D network hindering the stacking of graphene sheets provided channels for hydrogen diffusion to improve the hydrogen adsorption kinetics. Importantly, the construction of the three-dimensional palladium-phosphide-modified P-doped graphene hydrogen storage material improved the hydrogen absorption kinetics and mass transfer process. Furthermore, while acknowledging the limitations of primitive graphene as a medium in hydrogen storage, this study addressed the need for improved graphene-based materials and highlighted the significance of our research in exploring three-dimensional configurations. The hydrogen absorption rate of the material increased obviously in the first 2 h compared with two-dimensional sheets of Pd3P/P-rGO. Meanwhile, the corresponding 3D Pd3P0.95/P-rGO-500 sample, which was calcinated at 500 °C, achieved the optimal hydrogen storage capacity of 3.79 wt% at 298 K/4 MPa. According to molecular dynamics, the structure was thermodynamically stable, and the calculated adsorption energy of a single H2 molecule was -0.59 eV/H2, which was in the ideal range of hydrogen ad/desorption. These findings pave the way for the development of efficient hydrogen storage systems and advance the progress of hydrogen-based energy technologies.
Collapse
Affiliation(s)
- Yiwen Chen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, China
- Dongfang Electric Corporation Dongfang Turbine Co., Ltd., Deyang 618000, China
| | - Guanghui Xia
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Chaonan Jin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yao Wang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610064, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
| | - Yigang Yan
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610064, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
- Technology Innovation Center of Hydrogen Storage-Transportation and Fueling Equipments for State Market Regulation, Chengdu 610100, China
| | - Yungui Chen
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610064, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
- Technology Innovation Center of Hydrogen Storage-Transportation and Fueling Equipments for State Market Regulation, Chengdu 610100, China
| | - Xiufang Gong
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, China
- Dongfang Electric Corporation Dongfang Turbine Co., Ltd., Deyang 618000, China
| | - Yuqiu Lai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, China
- Dongfang Electric Corporation Dongfang Turbine Co., Ltd., Deyang 618000, China
| | - Chaoling Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610064, China
- Technology Innovation Center of Hydrogen Storage-Transportation and Fueling Equipments for State Market Regulation, Chengdu 610100, China
| |
Collapse
|
12
|
Reversible H2 Storage Capacity of Ni Functionalized Carbyne (C10) Complex. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Liu J, Sun L, Yang J, Guo D, Chen D, Yang L, Xiao P. Ti-Mn hydrogen storage alloys: from properties to applications. RSC Adv 2022; 12:35744-35755. [PMID: 36545097 PMCID: PMC9748650 DOI: 10.1039/d2ra07301c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Efficient and safe storage of hydrogen is an important link in the process of hydrogen energy utilization. Hydrogen storage with hydrogen storage materials as the medium has the characteristics of high volumetric hydrogen storage density and good safety. Among many hydrogen storage materials, only rare earth-based and titanium-based hydrogen storage alloys have been applied thus far. In this work, current state-of-the-art research and applications of Ti-Mn hydrogen storage alloys are reviewed. Firstly, the hydrogen storage properties and regulation methods of binary to multicomponent Ti-Mn alloys are introduced. Then, the applications of Ti-Mn alloys in hydrogen storage, hydrogen compression and catalysis are discussed. Finally, the future research and development of Ti-Mn hydrogen storage alloys is proposed.
Collapse
Affiliation(s)
- Jianjun Liu
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| | - Lei Sun
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| | - Jinggang Yang
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| | - Dongliang Guo
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| | - Dabing Chen
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| | - Liheng Yang
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| | - Peng Xiao
- State Grid Jiangsu Electric Power Co, Ltd. Research Institute Nanjing Jiangsu P. R. China
| |
Collapse
|
14
|
Christensen EE, Amin M, Tumiel TM, Krauss TD. Localized Charge on Surfactant-Wrapped Single-Walled Carbon Nanotubes. J Phys Chem Lett 2022; 13:10705-10712. [PMID: 36367529 PMCID: PMC9706551 DOI: 10.1021/acs.jpclett.2c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As-synthesized, semiconducting single-walled carbon nanotubes (SWCNTs) are nominally charge neutral. However, ionic surfactants that are commonly used to disperse SWCNTs in solution can lead to significantly charged aggregates adsorbed to the nanotube. Here, electrostatic force microscopy (EFM) was used to characterize the static-charge interactions between individual SWCNTs and the local environment. We report nonuniform spatial charge distributions with highly varying magnitudes ranging between ±15 e associated with surfactant coverage on long SWCNTs (>1.5 μm). EFM images acquired after resonant photoexcitation demonstrate charge carrier localization due to electrostatic interactions with charged surfactant aggregates. Charge densities as measured by EFM are used to estimate the depth of this electrostatically induced potential well, calculated to be on the order of hundreds of millielectronvolts, suggesting that surfactant charges heterogeneously covering SWCNTs provide traps for excitons potentially leading to their localization.
Collapse
|
15
|
Sharifian M, Kern W, Riess G. A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers (Basel) 2022; 14:4512. [PMID: 36365506 PMCID: PMC9654451 DOI: 10.3390/polym14214512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 10/29/2023] Open
Abstract
Globally, reducing CO2 emissions is an urgent priority. The hydrogen economy is a system that offers long-term solutions for a secure energy future and the CO2 crisis. From hydrogen production to consumption, storing systems are the foundation of a viable hydrogen economy. Each step has been the topic of intense research for decades; however, the development of a viable, safe, and efficient strategy for the storage of hydrogen remains the most challenging one. Storing hydrogen in polymer-based carriers can realize a more compact and much safer approach that does not require high pressure and cryogenic temperature, with the potential to reach the targets determined by the United States Department of Energy. This review highlights an outline of the major polymeric material groups that are capable of storing and releasing hydrogen reversibly. According to the hydrogen storage results, there is no optimal hydrogen storage system for all stationary and automotive applications so far. Additionally, a comparison is made between different polymeric carriers and relevant solid-state hydrogen carriers to better understand the amount of hydrogen that can be stored and released realistically.
Collapse
Affiliation(s)
- Mohammadhossein Sharifian
- Montanuniversität Leoben, Chair in Chemistry of Polymeric Materials, Otto-Glöckel-Strasse 2, A-8700 Leoben, Austria
| | | | | |
Collapse
|
16
|
Liu H, He S, Li G, Wang Y, Xu L, Sheng P, Wang X, Jiang T, Huang C, Lan Z, Zhou W, Guo J. Directed Stabilization by Air-Milling and Catalyzed Decomposition by Layered Titanium Carbide Toward Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42102-42112. [PMID: 36097412 DOI: 10.1021/acsami.2c11805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AlH3 is a metastable hydride with a theoretical hydrogen capacity of 10.01 wt % and is very easy to decompose during ball milling especially in the presence of many catalysts, which will lead to the attenuation of the available hydrogen capacity. In this work, AlH3 was ball milled in air (called "air-milling") with layered Ti3C2 to prepare a Ti3C2-catalyzed AlH3 hydrogen storage material. Such air-milled and Ti3C2-catalyzed AlH3 possesses excellent hydrogen storage performances, with a low initial decomposition temperature of just 61 °C and a high hydrogen release capacity of 8.1 wt %. In addition, 6.9 wt % of hydrogen can be released within 20 min at constantly 100 °C, with a low activation energy as low as 40 kJ mol-1. Air-milling will lead to the formation of an Al2O3 oxide layer on the AlH3 particles, which will prevent continuous decomposition of AlH3 when milling with active layered Ti3C2. The layered Ti3C2 will grip on and intrude into the AlH3 particle oxide layers and then catalyze the decomposition of AlH3 during heating. The strategy employing air-milling as a synthesis method and utilizing layered Ti3C2 as a catalyst in this work can solve the key issue of severe decomposition during ball milling with catalysts economically and conveniently and thus achieve both high-capacity and low-temperature hydrogen storage of AlH3. This air-milling method is also effective for other active catalysts toward both reducing the decomposition temperature and increasing the available hydrogen capacity of AlH3.
Collapse
Affiliation(s)
- Haizhen Liu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Shixuan He
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Guangxu Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Ye Wang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Li Xu
- State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
| | - Peng Sheng
- State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
| | - Xinhua Wang
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Jiang
- Guangxi University of Finance and Economics, Nanning 530003, China
| | - Cunke Huang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiqiang Lan
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenzheng Zhou
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jin Guo
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Rimza T, Saha S, Dhand C, Dwivedi N, Patel SS, Singh S, Kumar P. Carbon-Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. CHEMSUSCHEM 2022; 15:e202200281. [PMID: 35377969 DOI: 10.1002/cssc.202200281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
It is estimated that all fossil fuels will be depleted by 2060 if we continue to use them at the present rate. Therefore, there is an unmet need for an alternative source of energy with high calorific value. In this regard, hydrogen is considered the best alternative renewable fuel that could be used in practical conditions. Accordingly, researchers are looking for an ideal hydrogen storage system under ambient conditions for feasible applications. In many respects, carbon-based sorbents have emerged as the best possible hydrogen storage media. These carbon-based sorbents are cost-effective, eco-friendly, and readily available. In this Review, the present status of carbon-based materials in promoting solid-state hydrogen storage technologies at the operating temperature and pressure was reported. Experimental studies have shown that some carbon-based materials such as mesoporous graphene and doped carbon nanotubes may have hydrogen storage uptake of 3-7 wt %, while some theoretical studies have predicted up to 13.79 wt % of hydrogen uptake at ambient conditions. Also, it was found that different methods used for carbon materials synthesis played a vital role in hydrogen storage performance. Eventually, this Review will be helpful to the scientific community for finding the competent material and methodology to investigate the existing hydrogen uptake issues at operating conditions.
Collapse
Affiliation(s)
- Tripti Rimza
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Singh Patel
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Singh
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Kumar
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
18
|
Carbon nanotubes for production and storage of hydrogen: challenges and development. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Chan CW, Wu SY, Chen HT. The interaction of hydrogen with heteroatoms (B, N)-doped porous graphene: A computational study. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Zhang W, Li HY, Xu CG, Huang ZY, Li XS. Research progress on the effects of nanoparticles on gas hydrate formation. RSC Adv 2022; 12:20227-20238. [PMID: 35919611 PMCID: PMC9277519 DOI: 10.1039/d2ra03376c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Gas hydrate has great application potential in gas separation, energy storage, seawater desalination, etc. However, the intensity of mass and heat transfer is not enough to meet the needs of efficient hydrate synthesis. Nanoparticles, different from other liquid chemical additives, are considered as effective additives to promote hydrate formation due to their rich specific surface area and excellent thermal conductivity. This work summarizes the effect of the nanoparticles on the thermodynamics and kinetics of hydrate formation. And also, this work probes into the mechanism of the effect of the nanoparticles on the formation of hydrate as well as provides some suggestions for future research. It is found that it's difficult for nanoparticles to effectively promote the formation of the gas hydrate without the use of surfactants, because the adhesion characteristics of the nanoparticles make them easily agglomerate or even agglomerate in solution. In addition, at present, the research on the influence of nanoparticles on the formation and decomposition of natural gas hydrate is still very fragmented, and the micro mechanism of the influence is not clear, which requires more systematic and specific research in the future. At the same time, the development of nanoparticles that can promote the formation of natural gas hydrate should also become the focus of future research. The use of nanoparticles and their effects on thermodynamics and kinetics during the hydrate formation process is summarized. For their application in drilling fluid and cement slurry, it is found nanoparticles must be used in conjunction with surfactants to be effective.![]()
Collapse
Affiliation(s)
- Wei Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230023, Anhui Province, China
| | - Hao-Yang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Gang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong Province, China
| | - Zhuo-Yi Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230023, Anhui Province, China
| | - Xiao-Sen Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong Province, China
- CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, Guangdong Province, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong Province, China
| |
Collapse
|
21
|
A Study on Electron Acceptor of Carbonaceous Materials for Highly Efficient Hydrogen Uptakes. Catalysts 2021. [DOI: 10.3390/catal11121524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Significant efforts have been directed toward the identification of carbonaceous materials that can be utilized for hydrogen uptake in order to develop on-board automotive systems with a gravimetric capacity of 5.5 wt.%, thus meeting the U.S. Department of Energy technical targets. However, the capacity of hydrogen storage is limited by the weak interaction between hydrogen molecules and the carbon surface. Cigarette butts, which are the most abundant form of primary plastic waste, remain an intractable environmental pollution problem. To transform this source of waste into a valuable adsorbent for hydrogen uptake, we prepared several forms of oxygen-rich cigarette butt-derived porous carbon (CGB-AC, with the activation temperature range of 600 and 900 °C). Our experimental investigation revealed that the specific surface area increased from 600 to 700 °C and then decreased as the temperature rose to 900 °C. In contrast, the oxygen contents gradually decreased with increasing activation temperature. CGB-AC700 had the highest H2 excess uptake (QExcess) of 8.54 wt.% at 77 K and 20 bar, which was much higher than that of porous carbon reported in the previous studies. We found that the dynamic interaction between the porosity and the oxygen content determined the hydrogen storage capacity. The underlying mechanisms proposed in the present study would be useful in the design of efficient hydrogen storage because they explain the interaction between positive carbonaceous materials and negative hydrogen molecules in quadrupole orbitals.
Collapse
|
22
|
Abstract
The energy security landscape that we envisage in 2050 will be different from that of today. Meeting the future energy needs of the armed forces will be a key challenge, not least for military security. The World Energy Council’s World Energy Scenarios forecast that the world’s population will rise to 10 billion by 2050, which will also necessitate an increase in the size of the armed forces. In this context, energy extraction, distribution, and storage become essential to stabilizing the imbalance between production and demand. Among the available solutions, Power to Hydrogen (P2H) is one of the most appealing options. However, despite the potential, many obstacles currently hinder the development of the P2H market. This article aims to identify and analyse existing barriers to the introduction of P2H technologies that use hydrogen. The holistic approach used, which was based on a literature survey, identified obstacles and possible strategies for overcoming them. The research conducted presents an original research contribution at the level of hydrogen strategies considered in leading countries around the world. The research findings identified unresolved regulatory issues and sources of uncertainty in the armed forces. There is a lack of knowledge in the armed forces of some countries about the process of producing hydrogen energy and its benefits, which raises concerns about the consistency of its exploitation. Negative attitudes towards hydrogen fuel energy can be a significant barrier to its deployment in the armed forces. Possible approaches and solutions have also been proposed to eliminate obstacles and to support decision makers in defining and implementing a strategy for hydrogen as a clean energy carrier. There are decisive and unresolved obstacles to its deployment, not only in the armed forces.
Collapse
|
23
|
Mehboob MY, Hussain R, Irshad Z, Farwa U, Adnan M, Muhammad S. Designing and Encapsulation of Inorganic Al12N12 Nanoclusters with Be, Mg, and Ca Metals for Efficient Hydrogen Adsorption: A Step Forward Towards Hydrogen Storage Materials. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanoclusters such as [Formula: see text][Formula: see text] have received increased attention due to their diverse applications in the fields of optoelectronics and energy storage. In this paper, we have investigated a series of alkaline earth metal (AEM)-encapsulated [Formula: see text][Formula: see text] nanoclusters for hydrogen adsorption. Thermodynamic adsorption parameters, optical and nonlinear optical properties were investigated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. Encapsulation of AEMs (Be, Mg and Ca) is an effective strategy to improve the NLO reaction and thermodynamic and adsorption properties of [Formula: see text][Formula: see text] nanoclusters. The adsorption energies ranging from [Formula: see text]26.57[Formula: see text]kJ/mol to [Formula: see text]213.33[Formula: see text]kJ/mol for the three guests (Be, Mg and Ca) capsulated [Formula: see text][Formula: see text] nanoclusters are observed. The adsorption energy is affected by the size of the nanocage. Therefore, Ca- and Mg-encapsulated cages show higher values of adsorption energy. Overall, an increase in adsorption energy ([Formula: see text][Formula: see text]kJ/mol to [Formula: see text]91.06[Formula: see text]kJ/mol) is observed for (Be, Mg and Ca) encapsulated [Formula: see text][Formula: see text] nanoclusters compared to untreated [Formula: see text][Formula: see text] and H2-[Formula: see text][Formula: see text] cages. Moreover, adsorption of hydrogen on AEMs encapsulated in [Formula: see text][Formula: see text] leads to a decrease in the HOMO-LUMO energy gap with an enhancement of linear and nonlinear hyperpolarizability. All hydrogen-adsorbed AEMs [Formula: see text][Formula: see text] nanocages exhibit large [Formula: see text] and [Formula: see text] values, suggesting that these systems are potential candidates for optical materials. Various geometrical parameters such as frontier molecular orbitals (FMOs), partial density of states, global quantum descriptor of reactivity, natural bond orbital testing and molecular electrostatic strength analyses were performed to investigate the thermodynamic stability of all the studied systems. The results obtained confirmed that the designed systems are suitable for hydrogen storage. Therefore, we recommend that these systems be investigated for their hydrogen storage and optical properties.
Collapse
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, 501-759, Republic of Korea
| | - Ume Farwa
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, 501-759, Republic of Korea
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
24
|
Winarto, Yamamoto E, Yasuoka K. Water molecules in CNT-Si 3N 4 membrane: Properties and the separation effect for water-alcohol solution. J Chem Phys 2021; 155:104701. [PMID: 34525818 DOI: 10.1063/5.0055027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water confined in carbon nanotubes (CNTs) has been intensively studied because of its unique properties and potential for various applications and is often embedded in silicon nitride (Si3N4) membranes. However, the understanding of the influence of Si3N4 on the properties of water in CNTs lacks clarity. In this study, we performed molecular dynamics simulations to investigate the effect of the Si3N4 membrane on water molecules inside CNTs. The internal electric field generated in the CNTs by the point charges of the Si3N4 membrane changes the structure and dynamical properties of water in the nanotubes, causing it to attain a disordered structure. The Si3N4 membrane decreases the diffusivity of water in the CNTs; this is because the Coulomb potential energy (i.e., electrostatic interaction) of water decreases owing to the presence of Si3N4, whereas the Lennard-Jones potential energy (i.e., van der Waals interaction) does not change significantly. Furthermore, electrostatic interactions make the water structure more stable in the CNTs. As a result, the Si3N4 membrane enhances the separation effect of the water-methanol mixture with CNTs in the presence of an external electric field. Furthermore, the threshold of the external electric field strength to induce water-methanol separation with CNTs is reduced owing to the presence of a silicon nitride membrane.
Collapse
Affiliation(s)
- Winarto
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, Jl. MT Haryono 167, Malang 65145, Indonesia
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
25
|
Akça A, Genç A, Kutlu B. The activation of B-H bonds in borohydride on Cu(1 0 0) and Cu(1 1 0) surfaces. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Shangguan W, Zhao H, Dai JQ, Cai J, Yan C. First-Principles Study of Hydrogen Storage of Sc-Modified Semiconductor Covalent Organic Framework-1. ACS OMEGA 2021; 6:21985-21993. [PMID: 34497893 PMCID: PMC8412926 DOI: 10.1021/acsomega.1c02452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
At present, the development of new carbon-based nanoporous materials with semiconductor properties and high hydrogen storage capacity has become a research hotspot in the field of hydrogen storage and hydrogen supply. Here, we pioneered the study of the hydrogen storage capacity of a scandium (Sc) atom-modified semiconductor covalent organic framework-1 (COF-1) layer. It was found that the hydrogen storage capacity of the COF-1 structure was significantly enhanced after the modification of the Sc atom. We found that each Sc atom of the modified COF-1 structure can stably adsorb up to four H2 molecules, and the average adsorption energy of the four hydrogen molecules is -0.284 eV/H2. Six Sc atoms are stably adsorbed most bilaterally on the cell of the COF-1 unit, which can adsorb 24 H2 molecules in total. In addition, we have further studied the adsorption and desorption behaviors of H2 molecules on the 6Sc-COF-1 surface at 300 and 400 K, respectively. It can be found that each Sc atom of the COF-1 unit cell can stably adsorb three H2 molecules with a hydrogen storage performance of 5.23 wt % at 300 K, which is higher than those of lithium-modified phosphorene (4.4 wt %) and lithium-substituted BHNH sheets (3.16 wt %). At 400 K, all of the adsorbed H2 molecules are released. This confirms the excellent reversibility of 6Sc-COF-1 in hydrogen storage performance. This research has great significance in the application of fuel cells, surpassing traditional hydrogen storage materials.
Collapse
|
27
|
Direct growth of vertically well-aligned carbon nanotube arrays on atomic layer deposition of ZnO films. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Sarkar R, Kar M, Habib M, Zhou G, Frauenheim T, Sarkar P, Pal S, Prezhdo OV. Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. J Am Chem Soc 2021; 143:6649-6656. [PMID: 33896175 DOI: 10.1021/jacs.1c02325] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanotubes (CNTs) are appealing candidates for solar and optoelectronic applications. Traditionally used as electron sinks, CNTs can also perform as electron donors, as exemplified by coupling with perylenediimide (PDI). To achieve high efficiencies, electron transfer (ET) should be fast, while subsequent charge recombination should be slow. Typically, defects are considered detrimental to material performance because they accelerate charge and energy losses. We demonstrate that, surprisingly, common CNT defects improve rather than deteriorate the performance. CNTs and other low dimensional materials accommodate moderate defects without creating deep traps. At the same time, charge redistribution caused by CNT defects creates an additional electrostatic potential that increases the CNT work function and lowers CNT energy levels relative to those of the acceptor species. Hence, the energy gap for the ET is decreased, while the gap for the charge recombination is increased. The effect is particularly important because charge acceptors tend to bind near defects due to enhanced chemical interactions. The time-domain simulation of the excited-state dynamics provides an atomistic picture of the observed phenomenon and characterizes in detail the electronic states, vibrational motions, inelastic and elastic electron-phonon interactions, and time scales of the charge separation and recombination processes. The findings should apply generally to low-dimensional materials, because they dissipate defect strain better than bulk semiconductors. Our calculations reveal that CNT performance is robust to common defects and that moderate defects are essential rather than detrimental for CNT application in energy, electronics, and related fields.
Collapse
Affiliation(s)
- Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Moumita Kar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Md Habib
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany.,Shenzhen JL Computational Science and Applied Research Institute (CSAR), Shenzhen 518110, China.,Beijing Computational Science Research Center (CSRC), Beijing 100193, China
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
29
|
Graś M, Lota G. Control of hydrogen release during borohydride electrooxidation with porous carbon materials. RSC Adv 2021; 11:15639-15655. [PMID: 35481206 PMCID: PMC9031118 DOI: 10.1039/d1ra01444g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 01/11/2023] Open
Abstract
Due to their highly tunable electrical and structural properties, carbon materials are widely used in fuel cells. This study reviews the latest modifications carried out in order to improve the electrochemical properties of carbon-based anodes in Direct Borohydride Fuel Cell (DBFC). However, in this type of fuel cell, various types of carbon (e.g. carbon black, activated carbons, carbon nanotubes, graphene and heteroatom-doped carbons and MOF-derived carbon materials) can provide not only catalyst support, but also hydrogen storage due to the extremely complex process of borohydride electrooxidation. Accurate control of porosity and carbon morphology is therefore necessary for high fuel cell efficiency. Finally, some prospects for the future development of carbon materials for DBFC design are presented. It should be emphasized, that the storage of hydrogen in solid form is a possible breakthrough for the future use of hydrogen as an ecological fuel, which is why scientific research in this topic is so important.
Collapse
Affiliation(s)
- Małgorzata Graś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Grzegorz Lota
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals Division in Poznan Central Laboratory of Batteries and Cells Forteczna 12 61-362 Poznan Poland
| |
Collapse
|
30
|
Hydrogen Nanometrology in Advanced Carbon Nanomaterial Electrodes. NANOMATERIALS 2021; 11:nano11051079. [PMID: 33922071 PMCID: PMC8143510 DOI: 10.3390/nano11051079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
A comparative experimental study between advanced carbon nanostructured electrodes, in similar hydrogen uptake/desorption conditions, is investigated making use of the recent molecular beam-thermal desorption spectrometry. This technique is used for monitoring hydrogen uptake and release from different carbon electrocatalysts: 3D-graphene, single-walled carbon nanotube networks, multi-walled carbon nanotube networks, and carbon nanotube thread. It allows an accurate determination of the hydrogen mass absorbed in electrodes made from these materials, with significant enhancement in the signal-to-noise ratio for trace hydrogen avoiding recourse to ultra-high vacuum procedures. The hydrogen mass spectra account for the enhanced surface capability for hydrogen adsorption in the different types of electrode in similar uptake conditions, and confirm their enhanced hydrogen storage capacity, pointing to a great potential of carbon nanotube threads in replacing the heavier metals or metal alloys as hydrogen storage media.
Collapse
|
31
|
Liu H, Lu C, Wang X, Xu L, Huang X, Wang X, Ning H, Lan Z, Guo J. Combinations of V 2C and Ti 3C 2 MXenes for Boosting the Hydrogen Storage Performances of MgH 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13235-13247. [PMID: 33720702 DOI: 10.1021/acsami.0c23150] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional vanadium carbide (V2C) and titanium carbide (Ti3C2) MXenes were first synthesized by exfoliating V2AlC or Ti3AlC2 and then introduced jointly into magnesium hydride (MgH2) to tailor the hydrogen desorption/absorption performances of MgH2. The as-prepared MgH2-V2C-Ti3C2 composites show much better hydrogen storage performances than pure MgH2. MgH2 with addition of 10 wt % of 2V2C/Ti3C2 initiates hydrogen desorption at around 180 °C; 5.1 wt % of hydrogen was desorbed within 60 min at 225 °C, while 5.8 wt % was desorbed within 2 min at 300 °C. Under 6 MPa H2, the dehydrided MgH2-2V2C/Ti3C2 can start to recover hydrogen at room temperature, and 5.1 wt % of H2 is obtained within 20 s at a constant temperature of 40 °C. The reversible capacity (6.3 wt %) does not decline for up to 10 cycles, which shows excellent cycling stability. The addition of 2V2C/Ti3C2 can remarkably lower the activation energy for the hydrogen desorption reaction of MgH2 by 37% and slightly reduce the hydrogen desorption reaction enthalpy by 2 kJ mol-1 H2. It was demonstrated that the combination of V2C and Ti3C2 promotes the hydrogen-releasing process of MgH2 compared with addition of only V2C or Ti3C2, while Ti3C2 impacts MgH2 more significantly than V2C in the hydrogen absorption process of MgH2 at ambient temperatures. A possible mechanism in the hydrogen release and uptake of the MgH2-V2C-Ti3C2 system was proposed as follows: hydrogen atoms or molecules may preferentially transfer through the MgH2/V2C/Ti3C2 triple-grain boundaries during the desorption process and through the Mg/Ti3C2 interfaces during the absorption process. Microstructure studies indicated that V2C and Ti3C2 mainly act as efficient catalysts for MgH2. This work provides an insight into the hydrogen storage behaviors and mechanisms of MgH2 boosted by a combination of two MXenes.
Collapse
Affiliation(s)
- Haizhen Liu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Chenglin Lu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinchun Wang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Li Xu
- State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
| | - Xiantun Huang
- Department of Materials Science and Engineering, Baise College, Baise 533000, Guangxi, China
| | - Xinhua Wang
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Ning
- College of Mathematics and Physics, Guangxi University for Nationalities, Nanning 530006, China
| | - Zhiqiang Lan
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jin Guo
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
32
|
Ti decorated B8 as a potential hydrogen storage material: A DFT study with van der Waals corrections. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Janjua MRSA. Theoretical Framework for Encapsulation of Inorganic B12N12 Nanoclusters with Alkaline Earth Metals for Efficient Hydrogen Adsorption: A Step Forward toward Hydrogen Storage Materials. Inorg Chem 2021; 60:2816-2828. [DOI: 10.1021/acs.inorgchem.0c03730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Mahato N, Jang H, Dhyani A, Cho S. Recent Progress in Conducting Polymers for Hydrogen Storage and Fuel Cell Applications. Polymers (Basel) 2020; 12:E2480. [PMID: 33114547 PMCID: PMC7693427 DOI: 10.3390/polym12112480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen is a clean fuel and an abundant renewable energy resource. In recent years, huge scientific attention has been invested to invent suitable materials for its safe storage. Conducting polymers has been extensively investigated as a potential hydrogen storage and fuel cell membrane due to the low cost, ease of synthesis and processability to achieve the desired morphological and microstructural architecture, ease of doping and composite formation, chemical stability and functional properties. The review presents the recent progress in the direction of material selection, modification to achieve appropriate morphology and adsorbent properties, chemical and thermal stabilities. Polyaniline is the most explored material for hydrogen storage. Polypyrrole and polythiophene has also been explored to some extent. Activated carbons derived from conducting polymers have shown the highest specific surface area and significant storage. This review also covers recent advances in the field of proton conducting solid polymer electrolyte membranes in fuel cells application. This review focuses on the basic structure, synthesis and working mechanisms of the polymer materials and critically discusses their relative merits.
Collapse
Affiliation(s)
- Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (N.M.); (H.J.)
| | - Hyeji Jang
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (N.M.); (H.J.)
| | - Archana Dhyani
- Department of Applied Sciences, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India;
| | - Sunghun Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (N.M.); (H.J.)
| |
Collapse
|
35
|
Hassan AJ. DFT Study of HF and H2O Adsorption on Zn and Ga-Doped Single-Walled Carbon Nanotube. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420080105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Panigrahi P, Kumar A, Bae H, Lee H, Ahuja R, Hussain T. Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium. Phys Chem Chem Phys 2020; 22:15675-15682. [PMID: 32618312 DOI: 10.1039/d0cp01237h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
By using first principles density functional theory simulations, we report detailed geometries, electronic structures and hydrogen (H2) storage properties of boron nitride nanotubes (BNNTs) doped with selective polylithiated molecules (CLi2). We find that unsaturated bonding of Li-1s states with BNNT significantly enhances the system stability and hinders the Li-Li clustering effect, which can be detrimental for reversible H2 storage. The H2 adsorption mechanism is explained on the basis of polarization caused by the cationic Li+ of CLi2 molecules bonded with BNNT. The incident H2 molecules are adsorbed with BNNT-nCLi2 through electrostatic and van der Waals interactions. We find that with a maximum of 5.0% of CLi2 coverage on BNNT, an H2 gravimetric density of up to 4.41 wt% can be achieved with adsorption energies in the range of -0.33 eV per H2, which is suitable for ambient condition H2 storage applications.
Collapse
Affiliation(s)
- Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence, Hindustan Institute of Technology and Science, Chennai 603103, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
37
|
Calvo F, Yurtsever E. Solvation of coronene oligomers by para-H 2 molecules: the effects of size and shape. Phys Chem Chem Phys 2020; 22:12465-12475. [PMID: 32462154 DOI: 10.1039/d0cp01357a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stepwise solvation of various cationic coronene oligomers by para-hydrogen (p-H2) molecules was computationally investigated using a united-atom model for the p-H2 molecules and the Silvera-Goldman potential, together with a polarizable description for the interaction with the hydrocarbon molecules. A survey of the energy landscape for oligomers containing between 1 and 4 coronene molecules and possible different conformers was carried out using standard global optimization, the hydrocarbon complex being kept as rigid. The most stable structures provided the starting configuration of systematic path-integral molecular dynamics simulations at 2 K. The variations of the geometric and energetic properties of the solvation shell were determined with increasing number of para-hydrogen molecules. The relative stability of the solvation shell is generally found to be more robustly determined by the energy increment (or dissociation energy) than by geometrical indicators, especially when the oligomers have less ordered structures. In agreement with recent mass spectrometry experiments, the size at which the first solvation shell is complete is found to vary approximately linearly with the oligomer size when the coronene molecules stack together, with a slope that is related to the offset between two successive molecules.
Collapse
Affiliation(s)
- F Calvo
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
| | | |
Collapse
|
38
|
Mert H, Deniz CU, Baykasoglu C. Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1758696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Humeyra Mert
- Faculty of Engineering, Department of Polymer Engineering, Hitit University, Corum, Turkey
| | - Celal Utku Deniz
- Faculty of Engineering, Department of Chemical Engineering, Hitit University, Corum, Turkey
| | - Cengiz Baykasoglu
- Faculty of Engineering, Department of Mechanical Engineering, Hitit University, Corum, Turkey
| |
Collapse
|
39
|
Soldatov AP. Conception of Nanosized Membrane Reactors for Hydrogenation with Accumulated Hydrogen. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Das S, Nayak SK, Sahu KK. Insight into anomalous hydrogen adsorption on rare earth metal decorated on 2-dimensional hexagonal boron nitride: a density functional theory study. RSC Adv 2020; 10:12929-12940. [PMID: 35492084 PMCID: PMC9051411 DOI: 10.1039/d0ra01835j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage, hydrogen evolution using catalysis, etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood, its binding properties with lanthanides are not well reported. In this article, by density functional theory studies, we show how a rare earth metal, cerium, binds with hydrogen when decorated over a heteropolar 2D material, hexagonal boron nitride. Each cerium adatom is found to bind eight hydrogen molecules which is a much higher number than has been reported for transition metal atoms. However, the highest binding energy occurs at four hydrogen molecules. This anomaly, therefore, is investigated in the present article using first-principles calculations. The number density of hydrogen molecules adsorbed over the cerium adatom is explained by investigating the electronic charge volume interactions owing to a unique geometrical arrangement of the guest hydrogen molecules. The importance of geometrical encapsulation in enhancing electronic interactions is explained.
Collapse
Affiliation(s)
- Shreeja Das
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar India .,Centre of Excellence for Novel Energy Materials, Indian Institute of Technology Bhubaneswar India
| | - Saroj K Nayak
- Centre of Excellence for Novel Energy Materials, Indian Institute of Technology Bhubaneswar India.,School of Basic Sciences, Indian Institute of Technology Bhubaneswar India
| | - Kisor K Sahu
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar India .,Centre of Excellence for Novel Energy Materials, Indian Institute of Technology Bhubaneswar India
| |
Collapse
|
41
|
Le TNM, Chiu CC, Kuo JL. From the perspectives of DFT calculations, thermodynamic modeling, and kinetic Monte Carlo simulations: the interaction between hydrogen and Sc 2C monolayers. Phys Chem Chem Phys 2020; 22:4387-4401. [PMID: 32022039 DOI: 10.1039/c9cp05796j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we have examined the adsorption properties of hydrogen on pristine Sc2C monolayers by DFT calculations. Based on these calculations, we have proposed a thermodynamic model to estimate the hydrogen storage capability within the typical ranges for the operating temperature and pressure. Our thermodynamic modeling has shown that the maximum uptake of usable hydrogen could reach up to 7.2 wt% under cryogenic conditions. When calculating the usable hydrogen uptake, we have taken into consideration that, under realistic operating conditions, not all hydrogen adsorbed on pristine Sc2C can be desorbed from the surface, as some surface-adsorbate interactions are too strong. On the other hand, the interaction between the usable hydrogen and Sc2C appears to be too weak to reach the targets for the year 2025 set by the US Department of Energy (5.5 wt% at operating temperatures between 233 K and 358 K and delivery pressures of up to 12 bar). According to the modeling results, one needs to decrease the temperature to 120 K to reach 5.5 wt% hydrogen uptake at 12 bar. The results obtained with the thermodynamic model have been confirmed with a kinetic Monte Carlo simulation, which has also been used to estimate the time scale of the hydrogen adsorption and desorption processes. In addition, we have also evaluated the changes in the electronic structure of the Sc2C monolayer upon adsorbing hydrogen. As the band gap of Sc2C changes significantly upon adsorbing H2, Sc2C may have more potential as a hydrogen detector instead of as a hydrogen storage material.
Collapse
Affiliation(s)
- Thong Nguyen-Minh Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Daan District, Taipei City 10617, Taiwan.
| | | | | |
Collapse
|
42
|
Zhou X, Xie Y, Zhao Z, Fu W. A simple strategy based on fibers coated with surfactant-functionalized multiwalled carbon nanotubes to improve the properties of solid-phase microextraction of phenols in aqueous solution. BMC Chem 2020; 14:15. [PMID: 32099973 PMCID: PMC7029595 DOI: 10.1186/s13065-020-00665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/30/2020] [Indexed: 02/19/2023] Open
Abstract
Methods and experiments In this study, a functionalized multiwalled carbon nanotube (MWCNT)-coated solid-phase microextraction (SPME) fiber was developed for concentrating analytes in aqueous samples. Sodium deoxycholate (NaDC) was used as a dispersing agent for non-covalent modification of MWCNTs. The coating showed porous structure and large adsorption capacity. To investigate the capability of this MWCNTs/NaDC SPME fiber, it was applied to the analysis of phenols in aqueous solution. After extraction, the analytes were desorbed in an acetonitrile–water solution and analyzed using high-performance liquid chromatography. Results The MWCNTs/NaDC fiber exhibited good analytical performance, and fine preparation reproducibility was obtained with the relative standard deviations (RSDs) ranging from 4.9% to 10.2% (n = 6) in one batch, from 5.7% to 11.9% (n = 3) among different batches. Under the optimum extraction conditions, the detection limits were 0.15–0.30 ng/mL(S/N = 3), the linear detection ranges were 1–100 ng/mL (R2 ≥ 0.9997) for these analytes, and good recoveries (80.3–95.4%) were obtained for the spiked samples. Conclusion This is a simple and accurate pretreatment method for the analysis of phenols in aqueous samples.
Collapse
Affiliation(s)
- Xueqing Zhou
- 1Analytical and Testing Center, Hainan University, Haikou, 570228 China.,2College of Materials and Chemical Engineering, Hainan University, Haikou, 570228 China
| | - Yanli Xie
- 1Analytical and Testing Center, Hainan University, Haikou, 570228 China
| | - Zhendong Zhao
- 1Analytical and Testing Center, Hainan University, Haikou, 570228 China
| | - Wenyan Fu
- 2College of Materials and Chemical Engineering, Hainan University, Haikou, 570228 China
| |
Collapse
|
43
|
Janas D, Koziol KK. The Effect of the Gaseous Environment on the Electrical Conductivity of Multi-Walled Carbon Nanotube Films over a Wide Temperature Range. MATERIALS 2020; 13:ma13030510. [PMID: 31973192 PMCID: PMC7040676 DOI: 10.3390/ma13030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
The surrounding gas atmosphere can have a significant influence on the electrical properties of multi-walled carbon nanotube (CNT) ensembles. In this study, we subjected CNT films to various gaseous environments or vacuum to observe how such factors alter the electrical resistance of networks at high temperatures. We showed that the removal of adsorbed water and other contaminants from the surface under reduced pressure significantly affects the electrical conductivity of the material. We also demonstrated that exposing the CNT films to the hydrogen atmosphere (as compared to a selection of gases of inert and oxidizing character) at elevated temperatures results in a notable reduction of electrical resistance. We believe that the observed sensitivity of the electrical properties of the CNT films to hydrogen or vacuum at elevated temperatures could be of practical importance.
Collapse
Affiliation(s)
- Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-32-237-10-82
| | - Krzysztof K. Koziol
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, UK;
- Department of Transport and Manufacturing, Cranfield University, College Road, Cranfield MK43 0AL, UK
| |
Collapse
|
44
|
Polyol Process Coupled to Cold Plasma as a New and Efficient Nanohydride Processing Method: Nano-Ni 2H as a Case Study. NANOMATERIALS 2020; 10:nano10010136. [PMID: 31940905 PMCID: PMC7022929 DOI: 10.3390/nano10010136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/28/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
An alternative route for metal hydrogenation has been investigated: cold plasma hydrogen implantation on polyol-made transition metal nanoparticles. This treatment applied to a challenging system, Ni–H, induces a re-ordering of the metal lattice, and superstructure lines have been observed by both Bragg–Brentano and grazing incidence X-ray diffraction. The resulting intermetallic structure is similar to those obtained by very high-pressure hydrogenation of nickel and prompt us to suggest that plasma-based hydrogen implantation in nanometals is likely to generate unusual metal hydride, opening new opportunities in chemisorption hydrogen storage. Typically, almost isotropic in shape and about 30 nm sized hexagonal-packed Ni2H single crystals were produced starting from similarly sized cubic face-centred Ni polycrystals.
Collapse
|
45
|
Vidya H, Swamy BK. Improved electrocatalytic performance for nanosensor comprising alkaline treated MWCNTs for dopamine detection. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
46
|
Gabal E, Chatterjee S, Ahmed FK, Abd-Elsalam KA. Carbon nanomaterial applications in air pollution remediation. CARBON NANOMATERIALS FOR AGRI-FOOD AND ENVIRONMENTAL APPLICATIONS 2020:133-153. [DOI: 10.1016/b978-0-12-819786-8.00007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
47
|
Panahi A, Ghafar-Zadeh E, Magiierowski S, Sabour MH. Molecular Dynamics Simulation Study of Electrokinetics Transport of Aqueous Solution through Functionalized Carbon Nanotubes: A New Membrane Model for Nanopours Based Biosensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:6158-6161. [PMID: 30441740 DOI: 10.1109/embc.2018.8513530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DNA sequencing is an essential process for determining the nucleotides on a DNA strands and this process is of high importance in medicine and biomedical research. Nanopore based DNA sequencing has been widely researched and analyzed during last years and this is very important to improve all parameters involved in the process of DNA translocating through these nanopours. Ionic current resolution is a key parameter in designing these nanopours for better measuring of this infinitesimal current that is in order of nano A or even pico A. Here by means of molecular dynamics simulation we showed that using fluorinated carbon nanotubes while embedded inside silicon membrane results a higher ionic current compared to pristine carbon nanotubes. We simulated pristine carbon nanotubes (PCNT) and fluorinated carbon nanotubes (FCNT) with chirality of (8,8) and (10,10) which corresponds to diameter of 1.07 nm and 1.34 nm respectively. Ionic current analysis of these inorganic nanopours functionalized with carbon nanomaterials showed that it could double or triple the magnitude of ionic current. For FCNT (8,8) the magnitude of ionic current was 1.984 nA while it was 0.891 nA for PCNT (8,8) embedded in silicon nanopore. Our study introduces the fluorination of carbon nanotubes as potential method for designing high resolution DNA sequencing nanopore devices.
Collapse
|
48
|
Vellingiri L, Annamalai K, Kandasamy R, Kombiah I. Single-walled carbon nanotubes/lithium borohydride composites for hydrogen storage: role of in situ formed LiB(OH) 4, Li 2CO 3 and LiBO 2 by oxidation and nitrogen annealing. RSC Adv 2019; 9:31483-31496. [PMID: 35527925 PMCID: PMC9072713 DOI: 10.1039/c9ra06916j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Lithium Borohydride (LiBH4), from the family of complex hydrides has received much attention as a potential hydrogen storage material due to its high hydrogen energy densities in terms of weight (18.5 wt%) and volume (121 kg H2 per mol). However, utilization of LiBH4 as a hydrogen carrier in off- or on-board applications is hindered by its unfavorable thermodynamics and low stability in air. In this study, we have synthesized an air stable SWCNT@LiBH4 composite using a facile ultrasonication assisted impregnation method followed by oxidation at 300 °C under ambient conditions (SWLiB-A). Further, part of the oxidized sample is treated at 500 °C under nitrogen atmosphere (SWLiB-N). Upon oxidation in air, the in situ formation of lithium borate hydroxide (LiB(OH)4) and lithium carbonate (Li2CO3) on the surface of the composite (SWLiB@LiBH4) is observed. But in the case of SWLiB-N, the surface hydroxyl groups [OH4]− completely vanished leaving porous LiBH4 with SWCNT, LiBO2 and Li2CO3 phases. Hydrogen adsorption/desorption experiments carried out at 100 °C under 5 bar H2 pressure showed the highest hydrogen adsorption capacity of 4.0 wt% for SWLiB-A and 4.3 wt% for SWLiB-N composites in the desorption temperature range of 153–368 °C and 108–433 °C respectively. The observed storage capacity of SWLiB-A is due to the H+ and H− coupling between in situ formed Li+[B(OH)4]−, Li2+[CO3]− and Li+[BH4]−. Whereas in SWLiB-N, the presence of positively charged Li and B atoms and LiBO2 acts as a catalyst which resulted in reduced de-hydrogenation temperature (108 °C) as compared to bulk LiBH4. Moreover, it is inferred that the formation of intermediate phases such as Li+[B(OH)4]−, Li2+[CO3]− (SWLiB-A) and Li+[BO2]− (SWLiB-N) on the surface of the composites not only stabilizes the composite under ambient conditions but also resulted in enhanced de- and re-hydrogenation kinetics through catalytic effects. Further, these intermediates also act as a barrier for the loss of boron and lithium through diborane release from the composites upon dehydrogenation. Furthermore, the role of in situ formed intermediates such as LiB(OH)4, Li2CO3 and LiBO2 on the stability of the composite under ambient conditions and the hydrogen storage properties of the SWCNT@LiBH4 composite are reported for the first time. In situ formed Li+[B(OH)4]−, Li2+[CO3]− & Li+[BO2]− on the surface of SWCNT@LiBH4 not only stabilizes the composites in ambient conditions but also enhanced the de- and re-hydrogenation kinetics of the composites through catalytic effect.![]()
Collapse
Affiliation(s)
- Lathapriya Vellingiri
- Hydrogen Storage Materials and Nanosensors Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science & Technology Kattankulathur-603203 Kancheepuram Tamil Nadu India
| | - Karthigeyan Annamalai
- Hydrogen Storage Materials and Nanosensors Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science & Technology Kattankulathur-603203 Kancheepuram Tamil Nadu India
| | - Ramamurthi Kandasamy
- Hydrogen Storage Materials and Nanosensors Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science & Technology Kattankulathur-603203 Kancheepuram Tamil Nadu India .,Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science & Technology Kattankulathur-603203 Kancheepuram Tamil Nadu India
| | - Iyakutti Kombiah
- Hydrogen Storage Materials and Nanosensors Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science & Technology Kattankulathur-603203 Kancheepuram Tamil Nadu India
| |
Collapse
|
49
|
Yang L, Ma Y, Xu Y, Chang G. Cation-π induced lithium-doped conjugated microporous polymer with remarkable hydrogen storage performance. Chem Commun (Camb) 2019; 55:11227-11230. [PMID: 31469129 DOI: 10.1039/c9cc04174e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cation-π induced lithium-doped conjugated microporous polymer, Li+-PTAT, was constructed. It was proved that the point to face cation-π interactions between Li+ and indole can endow the resulting Li+-PTAT with high Li+ content and without agglomeration, which further leads to its encouraging hydrogen storage capacity.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.
| | | | | | | |
Collapse
|
50
|
Saber O, Aljaafari A, Alshoaibi A, Osama A. A low-temperature technique and new strategy for the dual growth of carbon nanotubes and nanorods through the confinement of explosive materials inside a porous structure. RSC Adv 2019; 9:30509-30518. [PMID: 35530223 PMCID: PMC9072139 DOI: 10.1039/c9ra04532e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, we report a low temperature technique and new strategy for the dual growth of carbon nanotubes (CNTs) and nanorods (CNRs) with alumina nanoparticles to avoid the high temperature required for CNT and CNR production and their assembling behaviour. In this trend, X-ray diffraction and thermal analysis indicated that the porous system of aluminium species was prepared and saturated with the crystalline structure of ammonium nitrate to act as a solid explosive composite and caused alcohol decomposition inside a pressurized vessel at 250 °C. TEM images and the Raman results confirmed that the CNTs had grown at 250 °C through the decomposition of methanol inside the boehmite structure. Also, the TEM images revealed that the growth of CNTs depended on the ratio between the methanol and the solid explosive. By calcination at 600 °C, the Raman results indicated that the CNTs became more ordered and had fewer defects. In the case of changing methanol to ethanol, the results indicated that methanol was more favorable than ethanol for growing CNTs by this technique. Also, it indicated that ethanol was a good source for producing carbon nanorods. Finally, we concluded that this was probably the first time that carbon nanotubes or nanorods had been prepared at 250 °C and their aggregations prevented through their dual growth with alumina nanoparticles. This dual growth approach is a very promising strategy for building homogeneous nanocomposites based on carbon nanotubes and nanorods. In this paper, we report a low temperature technique and new strategy for the dual growth of carbon nanotubes (CNTs) and nanorods (CNRs) with alumina nanoparticles to avoid the high temperature required for CNT and CNR production.![]()
Collapse
Affiliation(s)
- Osama Saber
- Physics Department, Faculty of Science, King Faisal University Al-Hassa 31982, P. O. Box 400 Saudi Arabia +966-013-5899440.,Petroleum Refining, Egyptian Petroleum Research Institute P. O. Box 11727 Nasr City Cairo Egypt
| | - Abdullah Aljaafari
- Physics Department, Faculty of Science, King Faisal University Al-Hassa 31982, P. O. Box 400 Saudi Arabia +966-013-5899440
| | - Adil Alshoaibi
- Physics Department, Faculty of Science, King Faisal University Al-Hassa 31982, P. O. Box 400 Saudi Arabia +966-013-5899440
| | - Aya Osama
- Chemistry Department, Faculty of Science, King Faisal University Al-Hassa 31982, P. O. Box 400 Saudi Arabia
| |
Collapse
|