1
|
Palti Y, Vallejo RL, Purcell MK, Gao G, Shewbridge KL, Long RL, Setzke C, Fragomeni BO, Cheng H, Martin KE, Naish KA. Genome-wide association analysis of the resistance to infectious hematopoietic necrosis virus in two rainbow trout aquaculture lines confirms oligogenic architecture with several moderate effect quantitative trait loci. Front Genet 2024; 15:1394656. [PMID: 38854430 PMCID: PMC11162110 DOI: 10.3389/fgene.2024.1394656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus (IHNV), which can cause substantial mortality and economic losses in rainbow trout aquaculture and fisheries enhancement hatchery programs. In a previous study on a commercial rainbow trout breeding line that has undergone selection, we found that genetic resistance to IHNV is controlled by the oligogenic inheritance of several moderate and many small effect quantitative trait loci (QTL). Here we used genome wide association analyses in two different commercial aquaculture lines that were naïve to previous exposure to IHNV to determine whether QTL were shared across lines, and to investigate whether there were major effect loci that were still segregating in the naïve lines. A total of 1,859 and 1,768 offspring from two commercial aquaculture strains were phenotyped for resistance to IHNV and genotyped with the rainbow trout Axiom 57K SNP array. Moderate heritability values (0.15-0.25) were estimated. Two statistical methods were used for genome wide association analyses in the two populations. No major QTL were detected despite the naïve status of the two lines. Further, our analyses confirmed an oligogenic architecture for genetic resistance to IHNV in rainbow trout. Overall, 17 QTL with notable effect (≥1.9% of the additive genetic variance) were detected in at least one of the two rainbow trout lines with at least one of the two statistical methods. Five of those QTL were mapped to overlapping or adjacent chromosomal regions in both lines, suggesting that some loci may be shared across commercial lines. Although some of the loci detected in this GWAS merit further investigation to better understand the biological basis of IHNV disease resistance across populations, the overall genetic architecture of IHNV resistance in the two rainbow trout lines suggests that genomic selection may be a more effective strategy for genetic improvement in this trait.
Collapse
Affiliation(s)
- Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Roger L. Vallejo
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Maureen K. Purcell
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Kristy L. Shewbridge
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Roseanna L. Long
- National Center for Cool and Cold Water Aquaculture, USDA-ARS, Kearneysville, WV, United States
| | - Christopher Setzke
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - Breno O. Fragomeni
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Tribondeau A, Du Pasquier D, Benchouaia M, Blugeon C, Buisine N, Sachs LM. Overlapping action of T 3 and T 4 during Xenopus laevis development. Front Endocrinol (Lausanne) 2024; 15:1360188. [PMID: 38529399 PMCID: PMC10961411 DOI: 10.3389/fendo.2024.1360188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Thyroid hormones are involved in many biological processes such as neurogenesis, metabolism, and development. However, compounds called endocrine disruptors can alter thyroid hormone signaling and induce unwanted effects on human and ecosystems health. Regulatory tests have been developed to detect these compounds but need to be significantly improved by proposing novel endpoints and key events. The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD test guideline no. 248) is one such test. It is based on Xenopus laevis tadpoles, a particularly sensitive model system for studying the physiology and disruption of thyroid hormone signaling: amphibian metamorphosis is a spectacular (thus easy to monitor) life cycle transition governed by thyroid hormones. With a long-term objective of providing novel molecular markers under XETA settings, we propose first to describe the differential effects of thyroid hormones on gene expression, which, surprisingly, are not known. After thyroid hormones exposure (T3 or T4), whole tadpole RNAs were subjected to transcriptomic analysis. By using standard approaches coupled to system biology, we found similar effects of the two thyroid hormones. They impact the cell cycle and promote the expression of genes involves in cell proliferation. At the level of the whole tadpole, the immune system is also a prime target of thyroid hormone action.
Collapse
Affiliation(s)
- Alicia Tribondeau
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, Paris, France
| | | | - Médine Benchouaia
- Genomique ENS, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Universités Paris Sciences & Lettres (PSL), Paris, France
| | - Corinne Blugeon
- Genomique ENS, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Universités Paris Sciences & Lettres (PSL), Paris, France
| | - Nicolas Buisine
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, Paris, France
| | - Laurent M. Sachs
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, Paris, France
| |
Collapse
|
3
|
Maier J, Sieme D, Wong LE, Dar F, Wienands J, Becker S, Griesinger C. Quantitative description of the phase-separation behavior of the multivalent SLP65-CIN85 complex. PNAS NEXUS 2024; 3:pgae079. [PMID: 38463037 PMCID: PMC10923291 DOI: 10.1093/pnasnexus/pgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Biomolecular condensates play a major role in cell compartmentalization, besides membrane-enclosed organelles. The multivalent SLP65 and CIN85 proteins are proximal B-cell antigen receptor (BCR) signal effectors and critical for proper immune responses. In association with intracellular vesicles, the two effector proteins form phase separated condensates prior to antigen stimulation, thereby preparing B lymphocytes for rapid and effective activation upon BCR ligation. Within this tripartite system, 6 proline-rich motifs (PRMs) of SLP65 interact promiscuously with 3 SH3 domains of the CIN85 monomer, establishing 18 individual SH3-PRM interactions whose individual dissociation constants we determined. Based on these 18 dissociation constants, we measured the phase-separation properties of the natural SLP65/CIN85 system as well as designer constructs that emphasize the strongest SH3/PRM interactions. By modeling these various SLP65/CIN85 constructs with the program LASSI (LAttice simulation engine for Sticker and Spacer Interactions), we reproduced the observed phase-separation properties. In addition, LASSI revealed a deviation in the experimental measurement, which was independently identified as a previously unknown intramolecular interaction. Thus, thermodynamic properties of the individual PRM/SH3 interactions allow us to model the phase-separation behavior of the SLP65/CIN85 system faithfully.
Collapse
Affiliation(s)
- Joachim Maier
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Daniel Sieme
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Leo E Wong
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Furqan Dar
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Stefan Becker
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute (MPI) for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Zhang G, Swann JB, Felder M, O'Meara C, Boehm T. Lymphocyte pathway analysis using naturally lymphocyte-deficient fish. Eur J Immunol 2023; 53:e2350577. [PMID: 37593947 DOI: 10.1002/eji.202350577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Comparative phylogenetic analyses are of potential value to establish the essential components of genetic networks underlying physiological traits. For species that naturally lack particular lymphocyte lineages, we show here that this strategy readily distinguishes trait-specific actors from pleiotropic components of the genetic network governing lymphocyte differentiation. Previously, three of the four members of the DNA polymerase X family have been implicated in the junctional diversification process during the somatic assembly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination, whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic diversification of antigen receptor genes.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marius Felder
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Connor O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Wang S, Liu H, Yang P, Wang Z, Ye P, Xia J, Chen S. A role of inflammaging in aortic aneurysm: new insights from bioinformatics analysis. Front Immunol 2023; 14:1260688. [PMID: 37744379 PMCID: PMC10511768 DOI: 10.3389/fimmu.2023.1260688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Xu J, Qin C, Xie J, Wang J, He Y, Tan J, Shi X. Transcriptome analysis of Chinese sucker (Myxocyprinus asiaticus) head kidney and discovery of key immune-related genes to cold stress after swimming fatigue. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101104. [PMID: 37390763 DOI: 10.1016/j.cbd.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Junjun Tan
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
7
|
Tribondeau A, Sachs LM, Buisine N. Tetrabromobisphenol A effects on differentiating mouse embryonic stem cells reveals unexpected impact on immune system. Front Genet 2022; 13:996826. [PMID: 36386828 PMCID: PMC9640982 DOI: 10.3389/fgene.2022.996826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.
Collapse
|
8
|
Marsh‐Wakefield F, Juillard P, Ashhurst TM, Juillard A, Shinko D, Putri GH, Read MN, McGuire HM, Byrne SN, Hawke S, Grau GE. Peripheral B-cell dysregulation is associated with relapse after long-term quiescence in patients with multiple sclerosis. Immunol Cell Biol 2022; 100:453-467. [PMID: 35416319 PMCID: PMC9322415 DOI: 10.1111/imcb.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
B cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified. We utilized mass cytometry to analyze B cells from the blood of patients with relapse-remitting MS (RRMS) before and after alemtuzumab treatment, and during relapse. A complementary RRMS cohort was analyzed by single-cell RNA sequencing. The R package "Spectre" was used to analyze these data, incorporating FlowSOM clustering, sparse partial least squares-discriminant analysis and permutational multivariate analysis of variance. Immunoglobulin (Ig)A+ and IgG1 + B-cell numbers were altered, including higher IgG1 + B cells during relapse. B-cell linker protein (BLNK), CD40 and CD210 expression by B cells was lower in patients with RRMS compared with non-MS controls, with similar results at the transcriptomic level. Finally, alemtuzumab restored BLNK, CD40 and CD210 expression by IgA+ and IgG1 + B cells, which was altered again during relapse. These data suggest that impairment of IgA+ and IgG1 + B cells may contribute to MS pathogenesis, which can be restored by alemtuzumab.
Collapse
Affiliation(s)
- Felix Marsh‐Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteSydneyNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneySydneyNSWAustralia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Annette Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Diana Shinko
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
| | - Givanna H Putri
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Mark N Read
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology Group, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Centre for Immunology and Allergy ResearchThe Westmead Institute for Medical ResearchWestmeadNSWAustralia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| |
Collapse
|
9
|
Zhang Q, Wu B, Weng Q, Hu F, Lin Y, Xia C, Peng H, Wang Y, Liu X, Liu L, Xiong J, Geng Y, Zhao Y, Zhang M, Du J, Wang J. Regeneration of immunocompetent B lymphopoiesis from pluripotent stem cells guided by transcription factors. Cell Mol Immunol 2022; 19:492-503. [PMID: 34893754 PMCID: PMC8975874 DOI: 10.1038/s41423-021-00805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Regeneration of functional B lymphopoiesis from pluripotent stem cells (PSCs) is challenging, and reliable methods have not been developed. Here, we unveiled the guiding role of three essential factors, Lhx2, Hoxa9, and Runx1, the simultaneous expression of which preferentially drives B lineage fate commitment and in vivo B lymphopoiesis using PSCs as a cell source. In the presence of Lhx2, Hoxa9, and Runx1 expression, PSC-derived induced hematopoietic progenitors (iHPCs) immediately gave rise to pro/pre-B cells in recipient bone marrow, which were able to further differentiate into entire B cell lineages, including innate B-1a, B-1b, and marginal zone B cells, as well as adaptive follicular B cells. In particular, the regenerative B cells produced adaptive humoral immune responses, sustained antigen-specific antibody production, and formed immune memory in response to antigen challenges. The regenerative B cells showed natural B cell development patterns of immunoglobulin chain switching and hypermutation via cross-talk with host T follicular helper cells, which eventually formed T cell-dependent humoral responses. This study exhibits de novo evidence that B lymphopoiesis can be regenerated from PSCs via an HSC-independent approach, which provides insights into treating B cell-related deficiencies using PSCs as an unlimited cell resource.
Collapse
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bingyan Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qitong Weng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangxiao Hu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yunqing Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chengxiang Xia
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Huan Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lijuan Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiapin Xiong
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yalan Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyun Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Ichii M, Oritani K, Toda J, Hosen N, Matsuda T, Kanakura Y. Signal-transducing adaptor protein-1 and protein-2 in hematopoiesis and diseases. Exp Hematol 2021; 105:10-17. [PMID: 34780812 DOI: 10.1016/j.exphem.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Inflammatory and immune signals are involved in stressed hematopoiesis under myeloablation, infection, chronic inflammation, and aging. These signals also affect malignant pathogenesis, and the dysregulated immune environment which causes the resistance to treatment. On activation, various types of protein tyrosine kinases in the cytoplasm mediate the cascade, leading to the transcription of target genes in the nucleus. Adaptor molecules are commonly defined as proteins that lack enzymatic activity, DNA-binding or receptor functions and possess protein-protein or protein-lipid interaction domains. By binding to specific domains of signaling molecules, adaptor proteins adjust the signaling responses after the ligation of receptors of soluble factors, including cytokines, chemokines, and growth factors, as well as pattern recognition receptors such as toll-like receptors. The signal-transducing adaptor protein (STAP) family regulates various intracellular signaling pathways. These proteins have a pleckstrin homology domain in the N-terminal region and an SRC-homology 2-like domain in the central region, representing typical binding structures as adapter proteins. Following the elucidation of the effects of STAPs on terminally differentiated immune cells, such as macrophages, T cells, mast cells, and basophils, recent findings have indicated the critical roles of STAP-2 in B-cell progenitor cells in marrow under hematopoietic stress and STAP-1 and -2 in BCR-ABL-transduced leukemogenesis. In this review, we focus on the role of STAPs in the bone marrow.
Collapse
Affiliation(s)
- Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Kenji Oritani
- Department of Hematology, Graduate School of Medical Science, International University of Health and Welfare, Narita, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Sumitomo Hospital, Osaka, Japan
| |
Collapse
|
11
|
Geng T, Yang D, Lin T, Harrison AG, Wang B, Torrance B, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella AT, Fikrig E, Wang P. An Essential Role of UBXN3B in B Lymphopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34462748 DOI: 10.1101/2021.03.04.433919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hematopoiesis is finely regulated to enable timely production of the right numbers and types of mature immune cells to maintain tissue homeostasis. Dysregulated hematopoiesis may compromise antiviral immunity and/or exacerbate immunopathogenesis. Herein, we report an essential role of UBXN3B in maintenance of hematopoietic homeostasis and restriction of immunopathogenesis during respiratory viral infection. Ubxn3b deficient ( Ubxn3b -/- ) mice are highly vulnerable to SARS-CoV-2 and influenza A infection, characterized by more severe lung immunopathology, lower virus-specific IgG, significantly fewer B cells, but more myeloid cells than Ubxn3b +/+ littermates. This aberrant immune compartmentalization is recapitulated in uninfected Ubxn3b -/- mice. Mechanistically, UBXN3B controls precursor B-I (pre-BI) transition to pre-BII and subsequent proliferation in a cell-intrinsic manner, by maintaining BLNK protein stability and pre-BCR signaling. These results reveal an essential role of UBXN3B for the early stage of B cell development.
Collapse
|
12
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
13
|
Li N, Wu J, Wu Y, Xu Y, Yao R, Li G, Zhang J, Zhou Y, Yin L, Yin Y, Yu T, Wang J. Further delineation of primary B cell immunodeficiency caused by novel variants of the BLNK gene in two Chinese patients. Clin Immunol 2020; 214:108387. [PMID: 32194234 DOI: 10.1016/j.clim.2020.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Biallelic variants in BLNK cause primary B-cell immunodeficiency that usually results in absence of B cells and immunoglobulin. Here, we identified disease-causing variant(s) in two unrelated Chinese patients with agammaglobulinemia. Patient 1 showed a moderate reduction in total B-cell count but demonstrated both extremely low levels of memory B-cells and lower levels of memory T cells relative to those in healthy controls. Whole-exome sequencing (WES) revealed a novel heterozygous splice variant (c.676+1G>A), and suggested exon 9 deletion from BLNK, which was subsequently validated by quantitative polymerase chain reaction. For Patient 2, WES revealed novel compound heterozygous of a frameshift variant (p.T152Pfs*6) and a synonymous variant (c.525G>A) that resulted in exon 6 skipping, according to cDNA sequencing. These findings represent the first report of a BLNK-deficient patient presenting with impaired memory B-cell and memory T-cell development. Furthermore, this study is the first reporting a pathogenic synonymous splice variant in BLNK.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Jing Wu
- Department of Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yufen Wu
- Department of Respiratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Jie Zhang
- Department of Electroencephalogram, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - YunFang Zhou
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Lei Yin
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yong Yin
- Department of Respiratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
14
|
Wang Y, Liu J, Burrows PD, Wang JY. B Cell Development and Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1254:1-22. [PMID: 32323265 DOI: 10.1007/978-981-15-3532-1_1] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the identification of B cells in 1965 (Cooper et al. 1965), three has been tremendous progress in our understanding of B cell development, maturation and function. A number of B cell subpopulations, including B-1, B-2 and regulatory B cells, have been identified. B-1 cells mainly originate from the fetal liver and contain B-1a and B-1b subsets. B-2 cells are derived from the bone marrow (BM) and can be further classified into follicular B (FOB) and marginal zone B (MZB) cells. Regulatory B cells (Bregs) function to suppress immune responses, primarily by production of the anti-inflammatory cytokine IL-10. B cell tolerance is established at several checkpoints, during B cell development in the BM (central tolerance) as well as during B cell maturation and activation in the periphery (peripheral tolerance). This chapter will focus on the regulation of important processes during the development and maturation of B-1 and B-2 cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Zhang T, Zhang M, Xu T, Chen S, Xu A. Transcriptome analysis of larval immune defence in the lamprey Lethenteron japonicum. FISH & SHELLFISH IMMUNOLOGY 2019; 94:327-335. [PMID: 31491528 DOI: 10.1016/j.fsi.2019.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The lamprey is a primitive jawless vertebrate that occupies a critical phylogenetic position, and its larval stage represents the major portion of its life cycle [1]. Lamprey larvae have been proven to be an important model organism for studying numerous biological problems, such as the immune system, due to their unique biological features [2]. In addition, early-stage larvae have never been obtained from the wild [3]; therefore, it is necessary to establish artificial breeding of lampreys in the laboratory. However, during early development, the larvae exhibit susceptibility to saprolegniasis, and the immune responses of lamprey larvae to this infection remain poorly understood. Here, we established a model of fungal infection in lamprey larvae and then used RNA sequencing to investigate the transcript profiles of lamprey larvae and their immune responses to Saprolegnia ferax. Among the profiled molecules, genes involved in pathogen recognition, inflammation, phagocytosis, lysosomal degradation, soluble humoral effectors, and lymphocyte development were significantly upregulated. The results were validated by analysis of several genes by quantitative real-time PCR and whole-mount in situ hybridization. Finally, we performed a Western blot for VLRs in infected and uninfected lampreys. This work not only provides an animal model for studying fungal infection but also suggests a molecular basis for developing defensive strategies to manage Saprolegnia ferax infection.
Collapse
Affiliation(s)
- Taotao Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mimi Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ting Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
16
|
Wu L, Kong L, Yang Y, Bian X, Wu S, Li B, Yin X, Mu L, Li J, Ye J. Effects of Cell Differentiation on the Phagocytic Activities of IgM + B Cells in a Teleost Fish. Front Immunol 2019; 10:2225. [PMID: 31608055 PMCID: PMC6761302 DOI: 10.3389/fimmu.2019.02225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Teleost B cells have phagocytic activities for ingesting particulate antigens, such as bacteria, in addition to the functional secretion of immunoglobulins (Igs). In the present study, the phagocytic activities of IgM+ B cells under various differentiational conditions residing in peripheral blood leukocytes were investigated in a teleost fish Nile tilapia (Oreochromis niloticus). The IgM+ B cells were recognized as IgMlo or IgMhi subsets based on their membrane IgM (mIgM) levels. The mIgM, secreted IgM (sIgM), major histocompatibility complex class II and reactive oxygen species were detected. Expressions of transcription factors (Pax5 and Blimp-1) and B cell signaling molecules (CD79a, CD79b, BLNK, and LYN) suggested that IgMlo B cells were resembling as plasma-like cells and IgMhi resembling as naïve/mature B cells, respectively. Analysis of phagocytic activities demonstrated that both IgMlo and IgMhi B cells have a similar phagocytic ability (phagocytosis percentage); however, the phagocytic capacity [phagocytic index and the mean fluorescence intensity (MFI)] of IgMhi B cells was significantly higher than that of IgMlo B cells. Taken together, the results indicated that B cell differentiation may cause the decrease of phagocytic capacity but not phagocytic ability of phagocytic IgM+ B cells in teleost. The finding may provide an evolutionary evidence for understanding the greater specialization of the B cell in more sophisticated adaptive humoral immunity, by decreasing phagocytic activity in order to contribute its function more specifically into antibody-secreting.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Linghe Kong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Siwei Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bingxi Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Li S, Liu J, Min Q, Ikawa T, Yasuda S, Yang Y, Wang YQ, Tsubata T, Zhao Y, Wang JY. Kelch-like protein 14 promotes B-1a but suppresses B-1b cell development. Int Immunol 2019; 30:311-318. [PMID: 29939266 DOI: 10.1093/intimm/dxy033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 11/14/2022] Open
Abstract
B-1 cells are innate-like B-cell population and produce natural antibodies that contribute to the first line of host defense. There are two subsets of B-1 cells: B-1a and B-1b. B-1a cells are the main producer of poly-reactive and autoreactive natural IgM antibodies, whereas B-1b cells can respond specifically to T-cell-independent antigens. Despite the functional significance of B-1a and B-1b cells, little information is available about what regulates the development of these two subsets. We found that Kelch-like protein 14 (KLHL14) was expressed at high levels in B cells but only at low levels in a few non-lymphoid tissues. Although mice lacking KLHL14 died right after birth, the heterozygotes developed normally with no gross abnormalities by appearance. B-cell development in the bone marrow and maturation and activation in the spleen were not affected in the heterozygous mice. However, the number of peritoneal B-1a cells was significantly reduced while B-1b cells were increased in Klhl14 heterozygous mice compared with wild-type (WT) mice. Consistently, Rag1-/- mice reconstituted with Klhl14-/- fetal liver cells had a more severe reduction of B-1a and an increase of B-1b cells in the peritoneal cavity. KLHL14 did not affect the turnover or apoptosis of B-1a and B-1b cells in vivo. Moreover, Klhl14-/- fetal liver contained a similar proportion and absolute numbers of the B-1 progenitor cells as did WT fetal liver. These results suggest that KLHL14 promotes B-1a development in mice.
Collapse
Affiliation(s)
- Shuyin Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shoya Yasuda
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yaofeng Zhao
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Tellefsen S, Morthen MK, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Sex Effects on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019; 59:5599-5614. [PMID: 30481277 PMCID: PMC6262646 DOI: 10.1167/iovs.18-25772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Sjögren syndrome is an autoimmune disease that occurs primarily in women, and is associated with lacrimal gland inflammation and aqueous-deficient dry eye. We hypothesize that sex-associated differences in lacrimal gland gene expression are very important in promoting lymphocyte accumulation in this tissue and contribute to the onset, progression, and/or severity of the inflammatory disease process. To test our hypothesis, we explored the nature and extent of sex-related differences in gene expression in autoimmune lacrimal glands. Methods Lacrimal glands were collected from age-matched, adult, male and female MRL/MpJ-Tnfrsf6lpr (MRL/lpr) and nonobese diabetic/LtJ (NOD) mice. Glands were processed for the analysis of differentially expressed mRNAs by using CodeLink Bioarrays and Affymetrix GeneChips. Data were evaluated with bioinformatics and statistical software. Results Our results show that sex significantly influences the expression of thousands of genes in lacrimal glands of MRL/lpr and NOD mice. The immune nature of this glandular response is very dependent on the Sjögren syndrome model. Lacrimal glands of female, as compared with male, MRL/lpr mice contain a significant increase in the expression of genes related to inflammatory responses, antigen processing, and chemokine pathways. In contrast, it is the lacrimal tissue of NOD males, and not females, that presents with a significantly greater expression of immune-related genes. Conclusions These data support our hypothesis that sex-related differences in gene expression contribute to lacrimal gland disease in Sjögren syndrome. Our findings also suggest that factors in the lacrimal gland microenvironment are critically important in mediating these sex-associated immune effects.
Collapse
Affiliation(s)
- Sara Tellefsen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Kaurstad Morthen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephen M Richards
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Wendy R Kam
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David A Sullivan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
20
|
Mo ZQ, Wang JL, Han R, Han Q, Li YW, Sun HY, Luo XC, Dan XM. Identification and functional analysis of grouper (Epinephelus coioides) B-cell linker protein BLNK. FISH & SHELLFISH IMMUNOLOGY 2018; 81:399-407. [PMID: 30055251 DOI: 10.1016/j.fsi.2018.07.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
B-cell linker protein (BLNK) is an adaptor protein that plays a crucial role in the B cell antigen receptor (BCR) signal pathway. To investigate the function of BLNK in teleost fish, we cloned a BLNK ortholog gene from the orange-spotted grouper (Epinephelus coioides). Homology analysis showed that the grouper BLNK (EcBLNK) had a 34%-77% amino acid identity in comparison to other vertebrates and shared the highest amino acid identity with BLNK from the Asian seabass Lates calcarifer. EcBLNK comprises an N-terminal SAM domain and a C-terminal B-cell linker SH2 domain. Ten tyrosine residues were well conserved between teleost fish and mammals. Tissue distribution analysis showed that EcBLNK was expressed mainly in immune organs and expression was at the highest level in head kidney. Co-localization of EcBLNK and EcCD79a was observed in transfected HEK293T cells. Overexpression of EcBLNK did not activate nuclear factor kappa-light-chain-enhancer of activated B cells. The protein level of EcBLNK in grouper head kidney leukocytes was increased by stimulation with lipopolysaccharide. In groupers infected with Cryptocaryon irritans, EcBLNK was regulated in the infected sites and the systemic organ which suggests that EcBLNK was activated in the immune response to parasite infection.
Collapse
Affiliation(s)
- Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qing Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, PR China.
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
21
|
Keller B, Shoukier M, Schulz K, Bhatt A, Heine I, Strohmeier V, Speckmann C, Engels N, Warnatz K, Wienands J. Germline deletion of CIN85 in humans with X chromosome-linked antibody deficiency. J Exp Med 2018; 215:1327-1336. [PMID: 29636373 PMCID: PMC5940257 DOI: 10.1084/jem.20170534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/20/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the numerous cellular functions attributed to the scaffolding protein CIN85, Keller et al. show that an inactivating germline deletion within the human CIN85 gene causes a remarkably specific defect in the activation of B lymphocytes, preventing proper immune responses. Ubiquitously expressed Cbl-interacting protein of 85 kD (CIN85) is a multifunctional adapter molecule supposed to regulate numerous cellular processes that are critical for housekeeping as well as cell type–specific functions. However, limited information exists about the in vivo roles of CIN85, because only conditional mouse mutants with cell type–specific ablation of distinct CIN85 isoforms in brain and B lymphocytes have been generated so far. No information is available about the roles of CIN85 in humans. Here, we report on primary antibody deficiency in patients harboring a germline deletion within the CIN85 gene on the X chromosome. In the absence of CIN85, all immune cell compartments developed normally, but B lymphocytes showed intrinsic defects in distinct effector pathways of the B cell antigen receptor, most notably NF-κB activation and up-regulation of CD86 expression on the cell surface. These results reveal nonredundant functions of CIN85 for humoral immune responses.
Collapse
Affiliation(s)
- Baerbel Keller
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moneef Shoukier
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Schulz
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Arshiya Bhatt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ines Heine
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Valentina Strohmeier
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Wong LE, Maier J, Wienands J, Becker S, Griesinger C. Sensitivity-Enhanced Four-Dimensional Amide–Amide Correlation NMR Experiments for Sequential Assignment of Proline-Rich Disordered Proteins. J Am Chem Soc 2018; 140:3518-3522. [DOI: 10.1021/jacs.8b00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Leo E. Wong
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Joachim Maier
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Abdelrasoul H, Werner M, Setz CS, Okkenhaug K, Jumaa H. PI3K induces B-cell development and regulates B cell identity. Sci Rep 2018; 8:1327. [PMID: 29358580 PMCID: PMC5778048 DOI: 10.1038/s41598-018-19460-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositide-3 kinase (PI3K) signaling is important for the survival of numerous cell types and class IA of PI3K is specifically required for the development of B cells but not for T cell development. Here, we show that class IA PI3K-mediated signals induce the expression of the transcription factor Pax5, which plays a central role in B cell commitment and differentiation by activating the expression of central B cell-specific signaling proteins such as SLP-65 and CD19. Defective class IA PI3K function leads to reduction in Pax5 expression and prevents B cell development beyond the stage expressing the precursor B cell receptor (pre-BCR). Investigating the mechanism of PI3K-induced Pax5 expression revealed that it involves a network of transcription factors including FoxO1 and Irf4 that directly binds to the Pax5 gene. Together, our results suggest that PI3K signaling links survival and differentiation of developing B cells with B cell identity and that decreased PI3K activity in pre-B cells results in reduced Pax5 expression and lineage plasticity.
Collapse
Affiliation(s)
- Hend Abdelrasoul
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany.,Molecular Biology department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), 12622, Giza, Egypt
| | - Markus Werner
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Corinna S Setz
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Hassan Jumaa
- Institute of Immunology, University Medical Center Ulm, 89081, Ulm, Germany.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Loss of IKAROS in committed B cell precursors causes a block in differentiation while at the same time augments aberrant cellular properties, such as bone marrow stromal adhesion, self-renewal and resistance to glucocorticoid-mediated cell death. B cell acute lymphoblastic leukaemias originating from these early stages of B cell differentiation and associated with IKAROS mutations share a high-risk cellular phenotype suggesting that deregulation of IKAROS-based mechanisms cause a highly malignant disease process. RECENT STUDIES Recent studies show that IKAROS is critical for the activity of super-enhancers at genes required for pre-B cell receptor (BCR) signalling and differentiation, working either downstream of or in parallel with B cell master regulators such as EBF1 and PAX5. IKAROS also directly represses a cryptic regulatory network of transcription factors prevalent in mesenchymal and epithelial precursors that includes YAP1, TEAD1/2, LHX2 and LMO2, and their targets, which are not normally expressed in lymphocytes. IKAROS prevents not only expression of these 'extra-lineage' transcription factors but also their cooperation with endogenous B cell master regulators, such as EBF1 and PAX5, leading to the formation of a de novo for lymphocytes super-enhancer network. IKAROS coordinates with the Polycomb repression complex (PRC2) to provide stable repression of associated genes during B cell development. However, induction of regulatory factors normally repressed by IKAROS starts a feed-forward loop that activates de-novo enhancers and elevates them to super-enhancer status, thereby diminishing PRC2 repression and awakening aberrant epithelial-like cell properties in B cell precursors. SUMMARY Insight into IKAROS-based transcriptional circuits not only sets new paradigms for cell differentiation but also provides new approaches for classifying and treating high-risk human B-ALL that originates from these early stages of B cell differentiation.
Collapse
|
25
|
Hu Y, Zhang Z, Kashiwagi M, Yoshida T, Joshi I, Jena N, Somasundaram R, Emmanuel AO, Sigvardsson M, Fitamant J, El-Bardeesy N, Gounari F, Van Etten RA, Georgopoulos K. Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia. Genes Dev 2017; 30:1971-90. [PMID: 27664237 PMCID: PMC5066240 DOI: 10.1101/gad.283762.116] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022]
Abstract
Here, Hu et al. investigated the mechanisms by which IKAROS promotes B-cell differentiation and prevents leukemogenesis. By using chromatin, transcription, and gene inactivation studies in primary wild-type and IKAROS-deficient B-cell precursors, they show that a dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem–epithelial–B-cell phenotype that underlies high-risk B-ALL. IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem–epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD–YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem–epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem–epithelial–B-cell phenotype that underlies high-risk B-ALL.
Collapse
Affiliation(s)
- Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ila Joshi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nilamani Jena
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, California 92868, USA; Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, California 92868, USA
| | - Rajesh Somasundaram
- Department for Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | | | - Mikael Sigvardsson
- Department for Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Julien Fitamant
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nabeel El-Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Fotini Gounari
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Richard A Van Etten
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, California 92868, USA; Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, California 92868, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
26
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
27
|
Novel Innate Immune Genes Regulating the Macrophage Response to Gram Positive Bacteria. Genetics 2016; 204:327-36. [PMID: 27356610 DOI: 10.1534/genetics.115.185314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/19/2016] [Indexed: 02/08/2023] Open
Abstract
Host variation in Toll-like receptors and other innate immune signaling molecules alters infection susceptibility. However, only a portion of the variability observed in the innate immune response is accounted for by known genes in these pathways. Thus, the identification of additional genes that regulate the response to Gram positive bacteria is warranted. Bone marrow-derived macrophages (BMMs) from 43 inbred mouse strains were stimulated with lipotechoic acid (LTA), a major component of the Gram positive bacterial cell wall. Concentrations of the proinflammatory cytokines IL-6, IL-12, and TNF-α were measured. In silico whole genome association (WGA) mapping was performed using cytokine responses followed by network analysis to prioritize candidate genes. To determine which candidate genes could be responsible for regulating the LTA response, candidate genes were inhibited using RNA interference (RNAi) and were overexpressed in RAW264.7 macrophages. BMMs from Bdkrb1-deficient mice were used to assess the effect of Bdkrb1 gene deletion on the response to LTA, heat-killed Streptococcus pneumoniae, and heat-killed Staphylococcus aureus WGA mapping identified 117 loci: IL-6 analysis yielded 20 loci (average locus size = 0.133 Mb; 18 genes), IL-12 analysis produced 5 loci (0.201 Mb average; 7 genes), and TNF-α analysis yielded 92 loci (0.464 Mb average; 186 genes of which 46 were prioritized by network analysis). The follow-up small interfering RNA screen of 71 target genes identified four genes (Bdkrb1, Blnk, Fbxo17, and Nkx6-1) whose inhibition resulted in significantly reduced cytokine production following LTA stimulation. Overexpression of these four genes resulted in significantly increased cytokine production in response to LTA. Bdkrb1-deficient macrophages were less responsive to LTA and heat-killed S. aureus, validating the genetic and RNAi approach to identify novel regulators of the response to LTA. We have identified four innate immune response genes that may contribute to Gram positive bacterial susceptibility.
Collapse
|
28
|
Pang SHM, Minnich M, Gangatirkar P, Zheng Z, Ebert A, Song G, Dickins RA, Corcoran LM, Mullighan CG, Busslinger M, Huntington ND, Nutt SL, Carotta S. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia 2016; 30:1375-87. [PMID: 26932576 PMCID: PMC5179358 DOI: 10.1038/leu.2016.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 11/14/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Minnich
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Pradnya Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiqiang Zheng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Anja Ebert
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Ross A Dickins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Meinrad Busslinger
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
LRRK1 is critical in the regulation of B-cell responses and CARMA1-dependent NF-κB activation. Sci Rep 2016; 6:25738. [PMID: 27166870 PMCID: PMC4863158 DOI: 10.1038/srep25738] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022] Open
Abstract
B-cell receptor (BCR) signaling plays a critical role in B-cell activation and humoral immunity. In this study, we discovered a critical function of leucine-rich repeat kinase 1 (LRRK1) in BCR-mediated immune responses. Lrrk1−/− mice exhibited altered B1a-cell development and basal immunoglobulin production. In addition, these mice failed to produce IgG3 antibody in response to T cell–independent type 2 antigen due to defects in IgG3 class-switch recombination. Concomitantly, B cells lacking LRRK1 exhibited a profound defect in proliferation and survival upon BCR stimulation, which correlated with impaired BCR-mediated NF-κB activation and reduced expression of NF-κB target genes including Bcl-xL, cyclin D2, and NFATc1/αA. Furthermore, LRRK1 physically interacted and potently synergized with CARMA1 to enhance NF-κB activation. Our results reveal a critical role of LRRK1 in NF-κB signaling in B cells and the humoral immune response.
Collapse
|
30
|
Becht E, Giraldo NA, Germain C, de Reyniès A, Laurent-Puig P, Zucman-Rossi J, Dieu-Nosjean MC, Sautès-Fridman C, Fridman WH. Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Adv Immunol 2016; 130:95-190. [DOI: 10.1016/bs.ai.2015.12.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Imoto N, Hayakawa F, Kurahashi S, Morishita T, Kojima Y, Yasuda T, Sugimoto K, Tsuzuki S, Naoe T, Kiyoi H. B Cell Linker Protein (BLNK) Is a Selective Target of Repression by PAX5-PML Protein in the Differentiation Block That Leads to the Development of Acute Lymphoblastic Leukemia. J Biol Chem 2015; 291:4723-31. [PMID: 26703467 DOI: 10.1074/jbc.m115.637835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/06/2022] Open
Abstract
PAX5 is a transcription factor that is required for the development and maintenance of B cells. Promyelocytic leukemia (PML) is a tumor suppressor and proapoptotic factor. The fusion gene PAX5-PML has been identified in acute lymphoblastic leukemia with chromosomal translocation t(9;15)(p13;q24). We have reported previously that PAX5-PML dominant-negatively inhibited PAX5 transcriptional activity and impaired PML function by disrupting PML nuclear bodies (NBs). Here we demonstrated the leukemogenicity of PAX5-PML by introducing it into normal mouse pro-B cells. Arrest of differentiation was observed in PAX5-PML-introduced pro-B cells, resulting in the development of acute lymphoblastic leukemia after a long latency in mice. Among the transactivation targets of PAX5, B cell linker protein (BLNK) was repressed selectively in leukemia cells, and enforced BLNK expression abrogated the differentiation block and survival induced by PAX5-PML, indicating the importance of BLNK repression for the formation of preleukemic state. We also showed that PML NBs were intact in leukemia cells and attributed this to the low expression of PAX5-PML, indicating that the disruption of PML NBs was not required for the PAX5-PML-induced onset of leukemia. These results provide novel insights into the molecular mechanisms underlying the onset of leukemia by PAX5 mutations.
Collapse
Affiliation(s)
- Naoto Imoto
- From the Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Fumihiko Hayakawa
- From the Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan,
| | - Shingo Kurahashi
- the Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, 441-8570, Japan
| | - Takanobu Morishita
- From the Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Kojima
- From the Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takahiko Yasuda
- the Department of Cellular Signaling, Graduate School of Medicine, University of Tokyo, 113-8654, Tokyo, Japan
| | - Keiki Sugimoto
- the Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, 520-0106, Japan
| | - Shinobu Tsuzuki
- the Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan, and
| | - Tomoki Naoe
- the National Hospital Organization Nagoya Medical Center, Nagoya, 460-0001, Japan
| | - Hitoshi Kiyoi
- From the Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
32
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
33
|
Abstract
During early stages of development, precursor B lymphocytes express a characteristic type of antigen receptor known as the pre-B-cell receptor (pre-BCR). This receptor differs from conventional BCRs in that it possesses a germ line-encoded surrogate light chain (SLC), which is associated with the signal transduction machinery via heavy chain (HC) proteins that have been generated by productive rearrangement of the immunoglobulin HC genes. The pre-BCR marks a key step of B-cell commitment, as it activates the B-cell-specific signaling cascade and mediates the selection, expansion, and differentiation of cells expressing a productively rearranged HC protein. Another difference between the pre-BCR and conventional BCR might be the initial event that triggers receptor activation, as the pre-BCR is activated in the absence of external ligands, while conventional BCRs require antigen for activation. Nonetheless, the pre-BCR downstream signaling cascade is largely similar to that of the BCR suggesting that the characteristic LC of the pre-BCR mediates important receptor interactions thereby providing distinctive, germ line-encoded features to the pre-BCR. In fact, the SLC enables the pre-BCR to act as a surrogate autoreactive receptor. Here, we outline the structure and function of the pre-BCR and how the autonomous signaling capacity might be a direct consequence of pre-BCR assembly. In addition to its role in early B-cell development, we discuss how the ordered activation of downstream signaling cascades enables the pre-BCR to activate seemingly opposing cellular programs such as proliferation and differentiation.
Collapse
|
34
|
Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B Cells Promote Tumor Immunity against B16F10 Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3120-9. [DOI: 10.1016/j.ajpath.2014.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 01/12/2023]
|
35
|
Lagresle-Peyrou C, Millili M, Luce S, Boned A, Sadek H, Rouiller J, Frange P, Cros G, Cavazzana M, André-Schmutz I, Schiff C. The BLNK adaptor protein has a nonredundant role in human B-cell differentiation. J Allergy Clin Immunol 2014; 134:145-54. [DOI: 10.1016/j.jaci.2013.12.1083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/21/2013] [Accepted: 12/23/2013] [Indexed: 01/10/2023]
|
36
|
Cohen S, Shachar I. Midkine as a regulator of B cell survival in health and disease. Br J Pharmacol 2014; 171:888-95. [PMID: 24111754 PMCID: PMC3925027 DOI: 10.1111/bph.12419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED In healthy individuals, the pool of peripheral lymphocytes is constant in size. The control of lymphoid homeostasis is the result of a very fine balance between lymphocyte production, survival and proliferation. Survival factors have been shown to play a critical role in maintaining the correct size of lymphocyte populations. Midkine, a heparin-binding cytokine was recently shown to be involved in cell proliferation, differentiation and apoptosis in various cell types including normal and malignant B cells. This review focuses on the role of midkine in the regulation of peripheral B cell survival in health and disease. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
37
|
B-cell linker protein expression contributes to controlling allergic and autoimmune diseases by mediating IL-10 production in regulatory B cells. J Allergy Clin Immunol 2013; 131:1674-82. [PMID: 23534976 DOI: 10.1016/j.jaci.2013.01.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Regulatory B cells that exhibit the cell-surface CD1d(hi)CD5(+) phenotype and produce IL-10 are termed B10 cells. Although B10 cells exert potent suppressive functions in patients with various allergic and autoimmunity disorders, the precise signaling mechanisms required for B10 cell functions remain unknown. B-cell linker protein (BLNK) is an essential component of the B-cell antigen receptor signaling pathway and is required for optimal B-cell development. OBJECTIVE We sought to elucidate the signaling pathways that are responsible for IL-10 production in B10 cells and in vivo mechanisms of how impaired B10 cell functions influence allergic and autoimmune responses. METHOD For in vitro assays, splenic CD1d(hi)CD5(+) B cells from BLNK-deficient (BLNK(-/-)) mice were analyzed for intracellular signaling pathways and cytokine production. Contact hypersensitivity (CHS) and experimental autoimmune encephalomyelitis were examined by using BLNK(-/-) mice. RESULTS Although the CD1d(hi)CD5(+) B-cell population was present in BLNK(-/-) mice, IL-10 production was impaired both in vitro and in vivo. BLNK(-/-) mice had exaggerated CHS and experimental autoimmune encephalomyelitis responses, which were normalized by adoptive transfer of splenic CD1d(hi)CD5(+) B cells from wild-type mice. In mice with CHS, BLNK(-/-) mice exhibited decreased B-cell and regulatory T-cell percentages and increased CD8(+) T-cell percentages in the skin and lymph nodes. In vitro BLNK was required for LPS-induced signal transducer and activator of transcription 3 phosphorylation in CD1d(hi)CD5(+) B cells. Finally, secreted IL-10 leads to autocrine expansion of IL-10-producing B cells. CONCLUSION BLNK serves as a critical signaling component for B10 cell function by mediating IL-10 production.
Collapse
|
38
|
Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol 2013; 131:959-71. [PMID: 23465663 DOI: 10.1016/j.jaci.2013.01.046] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
B cells develop from hematopoietic precursor cells in an ordered maturation and selection process. Extensive studies with many different mouse mutants provided fundamental insights into this process. However, the characterization of genetic defects causing primary immunodeficiencies was essential in understanding human B-cell biology. Defects in pre-B-cell receptor components or in downstream signaling proteins, such as Bruton tyrosine kinase and B-cell linker protein, arrest development at the pre-B-cell stage. Defects in survival-regulating proteins, such as B-cell activator of the TNF-α family receptor (BAFF-R) or caspase recruitment domain-containing protein 11 (CARD11), interrupt maturation and prevent differentiation of transitional B cells into marginal zone and follicular B cells. Mature B-cell subsets, immune responses, and memory B-cell and plasma cell development are disturbed by mutations affecting Toll-like receptor signaling, B-cell antigen receptor coreceptors (eg, CD19), or enzymes responsible for immunoglobulin class-switch recombination. Transgenic mouse models helped to identify key regulatory mechanisms, such as receptor editing and clonal anergy, preventing the activation of B cells expressing antibodies recognizing autoantigens. Nevertheless, the combination of susceptible genetic backgrounds with the rescue of self-reactive B cells by T cells allows the generation of autoreactive clones found in patients with many autoimmune diseases and even in those with primary immunodeficiencies. The rapid progress of functional genomic research is expected to foster the development of new tools that specifically target dysfunctional B lymphocytes to treat autoimmunity, B-cell malignancies, and immunodeficiency.
Collapse
Affiliation(s)
- Kathrin Pieper
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg, Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
39
|
Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013; 12:413-25. [PMID: 23415915 DOI: 10.1016/j.stem.2013.01.017] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 12/15/2022]
Abstract
The functional potential of hematopoietic stem cells (HSCs) declines during aging, and in doing so, significantly contributes to hematopoietic pathophysiology in the elderly. To explore the relationship between age-associated HSC decline and the epigenome, we examined global DNA methylation of HSCs during ontogeny in combination with functional analysis. Although the DNA methylome is generally stable during aging, site-specific alterations of DNA methylation occur at genomic regions associated with hematopoietic lineage potential and selectively target genes expressed in downstream progenitor and effector cells. We found that age-associated HSC decline, replicative limits, and DNA methylation are largely dependent on the proliferative history of HSCs, yet appear to be telomere-length independent. Physiological aging and experimentally enforced proliferation of HSCs both led to DNA hypermethylation of genes regulated by Polycomb Repressive Complex 2. Our results provide evidence that epigenomic alterations of the DNA methylation landscape contribute to the functional decline of HSCs during aging.
Collapse
Affiliation(s)
- Isabel Beerman
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kim KW, Chung BH, Jeon EJ, Kim BM, Choi BS, Park CW, Kim YS, Cho SG, Cho ML, Yang CW. B cell-associated immune profiles in patients with end-stage renal disease (ESRD). Exp Mol Med 2013; 44:465-72. [PMID: 22617684 PMCID: PMC3429810 DOI: 10.3858/emm.2012.44.8.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most of the previous studies on immune dysregulation in end-stage renal disease (ESRD) have focused on T cell immunity. We investigated B cell subpopulations in ESRD patients and the effect of hemodialysis (HD) on B cell-associated immune profiles in these patients. Forty-four ESRD [maintenance HD patients (n = 27) and pre-dialysis patients (n = 17)] and 27 healthy volunteers were included in this study. We determined the percentage of B cell subtypes, such as mature and immature B cells, memory B cells, and interleukin (IL)-10+ cells, as well as B cell-producing cytokines (IL-10, IL-4 and IL-21) by florescent activated cell sorting (FACS). B cell-associated gene expression was examined using real-time PCR and B cell producing cytokines (IL-10, IL-4 and IL-21) were determined using an enzyme-linked immunosorbent assay (ELISA). The percentage of total B cells and mature B cells did not differ significantly among the three groups. The percentages of memory B cells were significantly higher in the pre-dialysis group than in the HD group (P < 0.01), but the percentage of immature B cells was significantly lower in the pre-dialysis group than in the other groups. The percentages of IL-10-expressing cells that were CD19+ or immature B cells did not differ significantly (P > 0.05) between the two subgroups within the ESRD group, but the serum IL-10 concentration was significantly lower in the pre-dialysis group (P < 0.01). The results of this study demonstrate significantly altered B cell-associated immunity. Specifically, an imbalance of immature and memory B cells in ESRD patients was observed, with this finding predominating in pre-dialysis patients.
Collapse
Affiliation(s)
- Kyoung Woon Kim
- Conversant Research Consortium in Immunologic Disease,Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Critical role of the IgM Fc receptor in IgM homeostasis, B-cell survival, and humoral immune responses. Proc Natl Acad Sci U S A 2012; 109:E2699-706. [PMID: 22988094 DOI: 10.1073/pnas.1210706109] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IgM antibodies have been known for decades to enhance humoral immune responses in an antigen-specific fashion. This enhancement has been thought to be dependent on complement activation by IgM-antigen complexes; however, recent genetic studies render this mechanism unlikely. Here, we describe a likely alternative explanation; mice lacking the recently identified Fc receptor for IgM (FcμR) on B cells produced significantly less antibody to protein antigen during both primary and memory responses. This immune deficiency was accompanied by impaired germinal center formation and decreased plasma and memory B-cell generation. FcμR did not affect steady-state B-cell survival but specifically enhanced the survival and proliferation induced by B-cell receptor cross-linking. Moreover, FcμR-deficient mice produced far more autoantibodies than control mice as they aged, suggesting that FcμR is also required for maintaining tolerance to self-antigens. Our results thus define a unique pathway mediated by the FcμR for regulating immunity and tolerance and suggest that IgM antibodies promote humoral immune responses to foreign antigen yet suppress autoantibody production through at least two pathways: complement activation and FcμR.
Collapse
|
42
|
Xu LS, Sokalski KM, Hotke K, Christie DA, Zarnett O, Piskorz J, Thillainadesan G, Torchia J, DeKoter RP. Regulation of B Cell Linker Protein Transcription by PU.1 and Spi-B in Murine B Cell Acute Lymphoblastic Leukemia. THE JOURNAL OF IMMUNOLOGY 2012; 189:3347-54. [DOI: 10.4049/jimmunol.1201267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
A novel mechanism for the autonomous termination of pre-B cell receptor expression via induction of lysosome-associated protein transmembrane 5. Mol Cell Biol 2012; 32:4462-71. [PMID: 22949502 DOI: 10.1128/mcb.00531-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of the pre-B cell receptor (BCR) is confined to the early stage of B cell development, and its dysregulation is associated with anomalies of B-lineage cells, including leukemogenesis. Previous studies suggested that the pre-BCR signal might trigger the autonomous termination of pre-BCR expression even before the silencing of pre-BCR gene expression to prevent sustained pre-BCR expression. However, the underlying mechanism remains ill defined. Here we demonstrate that the pre-BCR signal induces the expression of lysosome-associated protein transmembrane 5 (LAPTM5), which leads to the prompt downmodulation of the pre-BCR. While LAPTM5 induction had no significant impact on the internalization of cell surface pre-BCR, it elicited the translocation of a large pool of intracellular pre-BCR from the endoplasmic reticulum to the lysosomal compartment concomitantly with a drastic reduction of the level of intracellular pre-BCR proteins. This reduction was inhibited by lysosomal inhibitors, indicating the lysosomal degradation of the pre-BCR. Notably, the LAPTM5 deficiency in pre-B cells led to the augmented expression level of surface pre-BCR. Collectively, the pre-BCR induces the prompt downmodulation of its own expression through the induction of LAPTM5, which promotes the lysosomal transport and degradation of the intracellular pre-BCR pool and, hence, limits the supply of pre-BCR to the cell surface.
Collapse
|
44
|
|
45
|
Conley ME, Dobbs AK, Quintana AM, Bosompem A, Wang YD, Coustan-Smith E, Smith AM, Perez EE, Murray PJ. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med 2012; 209:463-70. [PMID: 22351933 PMCID: PMC3302225 DOI: 10.1084/jem.20112533] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
Whole exome sequencing was used to determine the causative gene in patients with B cell defects of unknown etiology. A homozygous premature stop codon in exon 6 of PIK3R1 was identified in a young woman with colitis and absent B cells. The mutation results in the absence of p85α but normal expression of the p50α and p55α regulatory subunits of PI3K. Bone marrow aspirates from the patient showed <0.1% CD19(+) B cells with normal percentages of TdT(+)VpreB(+)CD19(-) B cell precursors. This developmental block is earlier than that seen in patients with defects in the B cell receptor signaling pathway or in a strain of engineered mice with a similar defect in p85α. The number and function of the patient's T cells were normal. However, Western blot showed markedly decreased p110δ, as well as absent p85α, in patient T cells, neutrophils, and dendritic cells. The patient had normal growth and development and normal fasting glucose and insulin. Mice with p85α deficiency have insulin hypersensitivity, defective platelet function, and abnormal mast cell development. In contrast, the absence of p85α in the patient results in an early and severe defect in B cell development but minimal findings in other organ systems.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miyazaki A, Yogosawa S, Murakami A, Kitamura D. Identification of CMTM7 as a transmembrane linker of BLNK and the B-cell receptor. PLoS One 2012; 7:e31829. [PMID: 22363743 PMCID: PMC3283690 DOI: 10.1371/journal.pone.0031829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023] Open
Abstract
BLNK is a pivotal adaptor protein in the signal transduction pathway from the IgM class B-cell receptor. BLNK is phosphorylated by Syk and binds various signaling intermediates, leading to cellular events including MAP-kinase activation, culminating in cellular activation. It remains unclear how BLNK is initially recruited to the surface IgM (sIgM) complex to which Syk is also recruited. Here we show that CMTM7, a tetra-spanning membrane protein of unknown function, co-localized with clathrin and sIgM at the plasma membrane. RNA-interference-mediated knockdown of CMTM7 expression in B cells resulted in an impairment of sIgM-ligation-induced tyrosine phosphorylation of BLNK, which was due to an impaired interaction of BLNK and Syk, and in a failure to activate JNK and ERK, but not upstream kinases such as Src-family kinases and Syk. CMTM7 was bound to BLNK in a membrane fraction, and their association was augmented after sIgM ligation. Exogenous CMTM7 or a mutant with an N-terminal deletion (ΔN), but not one with a C-terminal deletion (ΔC) that is defective in membrane localization, were able to restore BLNK-Syk binding, BLNK phosphorylation and ERK activation in the CMTM7-knockdown B cells. In addition, CMTM7 and the ΔN, but not the ΔC, were constitutively associated with sIgM, and this binding was required for BLNK recruitment to sIgM. From these data, we conclude that CMTM7 functions to link sIgM and BLNK in the plasma membrane, to recruit BLNK to the vicinity of Syk, and to initiate the BLNK-mediated signal transduction.
Collapse
Affiliation(s)
- Atsuko Miyazaki
- Division of Molecular Biology Laboratory, Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Noda, Chiba, Japan
| | - Satomi Yogosawa
- Division of Molecular Biology Laboratory, Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Noda, Chiba, Japan
| | - Akikazu Murakami
- Division of Azuma Laboratory, Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Noda, Chiba, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology Laboratory, Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
47
|
The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85. EMBO J 2011; 30:3620-34. [PMID: 21822214 PMCID: PMC3181483 DOI: 10.1038/emboj.2011.251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/05/2011] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase Syk and its substrate SLP65 (also called BLNK) are proximal signal transducer elements of the B-cell antigen receptor (BCR). Yet, our understanding of signal initiation and processing is limited owing to the incomplete list of SLP65 interaction partners and our ignorance of their association kinetics. We have now determined and quantified the in vivo interactomes of SLP65 in resting and stimulated B cells by mass spectrometry. SLP65 orchestrated a complex signal network of about 30 proteins that was predominantly based on dynamic interactions. However, a stimulation-independent and constant association of SLP65 with the Cbl-interacting protein of 85 kDa (CIN85) was requisite for SLP65 phosphorylation and its inducible plasma membrane translocation. In the absence of a steady SLP65/CIN85 complex, BCR-induced Ca(2+) and NF-κB responses were abrogated. Finally, live cell imaging and co-immunoprecipitation experiments further confirmed that both SLP65 and CIN85 are key components of the BCR-associated primary transducer module required for the onset and progression phases of BCR signal transduction.
Collapse
|
48
|
Büchse T, Horras N, Lenfert E, Krystal G, Körbel S, Schümann M, Krause E, Mikkat S, Tiedge M. CIN85 interacting proteins in B cells-specific role for SHIP-1. Mol Cell Proteomics 2011; 10:M110.006239. [PMID: 21725061 DOI: 10.1074/mcp.m110.006239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cbl-interacting 85-kDa protein (CIN85) plays an important role as a negative regulator of signaling pathways induced by receptor tyrosine kinases. By assembling multiprotein complexes this versatile adaptor enhances receptor tyrosine kinase-activated clathrin-mediated endocytosis and reduces phosphatidylinositol-3-kinase-induced phosphatidylinositol-3,4,5-trisphosphate production. Here we report the expression of CIN85 in primary splenic B lymphocytes and the B-lymphoma cell lines WEHI 231 and Ba/F3. Cross-linking of the B cell antigen receptor resulted in an increased association of CIN85 with the ubiquitin ligase Cbl. Through a systematic pull-down proteomics approach we identified 51 proteins that interact with CIN85 in B cells, including proteins not shown previously to be CIN85-associated. Among these proteins, the SH2-containing inositol phosphatase 1 (SHIP-1) co-precipitated with both the full-length CIN85 and each of its three SH3 domains. We also showed that this association is constitutive and depends on a region of 79 amino acids near the carboxyl terminus of SHIP-1, a region rich in potential SH3 domain binding sites. Because SHIP-1 is a major negative regulator of the phosphatidylinositol-3-kinase pathway in lymphocytes, we hypothesize that the interaction between SHIP-1 and CIN85 might synergistically facilitate the down-regulation of phosphatidylinositol-3,4,5-trisphosphate levels.
Collapse
Affiliation(s)
- Tom Büchse
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, Schillingallee 70, 18057 Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Slawinska A, Witkowski A, Bednarczyk M, Siwek M. In silico analysis of candidate genes associated with humoral innate immune response in chicken. BMC Proc 2011; 5 Suppl 4:S36. [PMID: 21645317 PMCID: PMC3108232 DOI: 10.1186/1753-6561-5-s4-s36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Production and function of natural antibodies (NAbs) constitutes an important mechanism of the humoral innate immunity in vertebrates. The level of NAbs in chicken is heritable and the genetic background has been partly investigated. However, to date the genetic determination of humoral innate immune response in avian species has not been fully described. The goal of this study was to propose a new set of candidate genes with a potential effect on the NAb phenotype for further SNP association study. Methods In silico analysis of positional and functional candidate genes covered 14 QTL regions associated with LPS, LTA & KLH NAbs and located on six chromosomes: GGA5, GGA6, GGA9, GGA14, GGA18 and GGAZ. The function of the genes was subsequently determined based on the NCBI, KEGG, Gene Ontology and InnateDB databases. Results As a result, the core panel of 38 genes participating in metabolic pathways of innate immune response was proposed. Most of them were assigned to chromosomes: GGA14, GGA5, GGA6 and GGAZ (13, 9, 8 and 5 genes, respectively). These candidate genes encode proteins predicted to play a role in (i) proliferation, differentiation and function of B lymphocytes; (ii) TLR signalling pathway, and (iii) MAP signalling cascade. Conclusions Proposed set of candidate genes is recommended to be included in the follow-up studies to model genetic networks of innate humoral immune response in chicken.
Collapse
Affiliation(s)
- Anna Slawinska
- Department of Animal Biotechnology, University of Technology and Life Sciences, Bydgoszcz, 85-084, Poland.
| | | | | | | |
Collapse
|
50
|
Abstract
The inhibitor of Bruton tyrosine kinase γ (IBtkγ) is a negative regulator of the Bruton tyrosine kinase (Btk), which plays a major role in B-cell differentiation; however, the mechanisms of IBtkγ-mediated regulation of Btk are unknown. Here we report that B-cell receptor (BCR) triggering caused serine-phosphorylation of IBtkγ at protein kinase C consensus sites and dissociation from Btk. By liquid chromatography and mass-mass spectrometry and functional analysis, we identified IBtkγ-S87 and -S90 as the critical amino acid residues that regulate the IBtkγ binding affinity to Btk. Consistently, the mutants IBtkγ carrying S87A and S90A mutations bound constitutively to Btk and down-regulated Ca(2+) fluxes and NF-κB activation on BCR triggering. Accordingly, spleen B cells from Ibtkγ(-/-) mice showed an increased activation of Btk, as evaluated by Y551-phosphorylation and sustained Ca(2+) mobilization on BCR engagement. These findings identify a novel pathway of Btk regulation via protein kinase C phosphorylation of IBtkγ.
Collapse
|