1
|
Shi S, Ou X, Liu C, Wen H, Jiang K. Immunoproteasome acted as immunotherapy 'coffee companion' in advanced carcinoma therapy. Front Immunol 2024; 15:1464267. [PMID: 39281672 PMCID: PMC11392738 DOI: 10.3389/fimmu.2024.1464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Immunoproteasome is a specialized form of proteasome which plays a crucial role in antigen processing and presentation, and enhances immune responses against malignant cells. This review explores the role of immunoproteasome in the anti-tumor immune responses, including immune surveillance and modulation of the tumor microenvironment, as well as its potential as a target for cancer immunotherapy. Furthermore, we have also discussed the therapeutic potential of immunoproteasome inhibitors, strategies to enhance antigen presentation and combination therapies. The ongoing trials and case studies in urology, melanoma, lung, colorectal, and breast cancers have also been summarized. Finally, the challenges facing clinical translation of immunoproteasome-targeted therapies, such as toxicity and resistance mechanisms, and the future research directions have been addressed. This review underscores the significance of targeting the immunoproteasome in combination with other immunotherapies for solid tumors and its potential broader applications in other diseases.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wen
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Calzada-Fraile D, Iborra S, Ramírez-Huesca M, Jorge I, Dotta E, Hernández-García E, Martín-Cófreces N, Nistal-Villán E, Veiga E, Vázquez J, Pasqual G, Sánchez-Madrid F. Immune synapse formation promotes lipid peroxidation and MHC-I upregulation in licensed dendritic cells for efficient priming of CD8 + T cells. Nat Commun 2023; 14:6772. [PMID: 37880206 PMCID: PMC10600134 DOI: 10.1038/s41467-023-42480-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Antigen cognate dendritic cell (DC)-T cell synaptic interactions drive activation of T cells and instruct DCs. Upon receiving CD4+ T cell help, post-synaptic DCs (psDCs) are licensed to generate CD8+ T cell responses. However, the cellular and molecular mechanisms that enable psDCs licensing remain unclear. Here, we describe that antigen presentation induces an upregulation of MHC-I protein molecules and increased lipid peroxidation on psDCs in vitro and in vivo. We also show that these events mediate DC licensing. In addition, psDC adoptive transfer enhances pathogen-specific CD8+ T responses and protects mice from infection in a CD8+ T cell-dependent manner. Conversely, depletion of psDCs in vivo abrogates antigen-specific CD8+ T cell responses during immunization. Together, our data show that psDCs enable CD8+ T cell responses in vivo during vaccination and reveal crucial molecular events underlying psDC licensing.
Collapse
Affiliation(s)
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Enrico Dotta
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Noa Martín-Cófreces
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Dynamic Video Microscopy Unit, Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006, Madrid, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28668, Madrid, Spain
| | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain.
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006, Madrid, Spain.
| |
Collapse
|
3
|
Ngwaga T, Chauhan D, Salberg AG, Shames SR. Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog 2023; 19:e1011473. [PMID: 37347796 PMCID: PMC10321654 DOI: 10.1371/journal.ppat.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Abigail G. Salberg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephanie R. Shames
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
4
|
Xiong Y, Yu C, Zhang Q. Ubiquitin-Proteasome System-Regulated Protein Degradation in Spermatogenesis. Cells 2022; 11:1058. [PMID: 35326509 PMCID: PMC8947704 DOI: 10.3390/cells11061058] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a prolonged and highly ordered physiological process that produces haploid male germ cells through more than 40 steps and experiences dramatic morphological and cellular transformations. The ubiquitin proteasome system (UPS) plays central roles in the precise control of protein homeostasis to ensure the effectiveness of certain protein groups at a given stage and the inactivation of them after this stage. Many UPS components have been demonstrated to regulate the progression of spermatogenesis at different levels. Especially in recent years, novel testis-specific proteasome isoforms have been identified to be essential and unique for spermatogenesis. In this review, we set out to discuss our current knowledge in functions of diverse USP components in mammalian spermatogenesis through: (1) the composition of proteasome isoforms at each stage of spermatogenesis; (2) the specificity of each proteasome isoform and the associated degradation events; (3) the E3 ubiquitin ligases mediating protein ubiquitination in male germ cells; and (4) the deubiquitinases involved in spermatogenesis and male fertility. Exploring the functions of UPS machineries in spermatogenesis provides a global picture of the proteome dynamics during male germ cell production and shed light on the etiology and pathogenesis of human male infertility.
Collapse
Affiliation(s)
- Yi Xiong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Zhejiang University, Sir Run Run Shaw Hospital, 3 East Qing Chun Rd, Hangzhou 310020, China;
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
5
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
6
|
Singh SR, Meyer-Jens M, Alizoti E, Bacon WC, Davis G, Osinska H, Gulick J, Reischmann-Düsener S, Orthey E, McLendon PM, Molkentin JD, Schlossarek S, Robbins J, Carrier L. A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. Autophagy 2020; 17:3124-3139. [PMID: 33249983 PMCID: PMC8526018 DOI: 10.1080/15548627.2020.1856493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP) are two major protein degradation pathways in eukaryotic cells. Initially considered as two independent pathways, there is emerging evidence that they can work in concert. As alterations of UPS and ALP function can contribute to neurodegenerative disorders, cancer and cardiac disease, there is great interest in finding targets that modulate these catabolic processes. We undertook an unbiased, total genome high-throughput screen to identify novel effectors that regulate both the UPS and ALP. We generated a stable HEK293 cell line expressing a UPS reporter (UbG76V-mCherry) and an ALP reporter (GFP-LC3) and screened for genes for which knockdown increased both UbG76V-mCherry intensity and GFP-LC3 puncta. With stringent selection, we isolated 80 candidates, including the transcription factor ZNF418 (ZFP418 in rodents). After screen validation with Zfp418 overexpression in HEK293 cells, we evaluated Zfp418 knockdown and overexpression in neonatal rat ventricular myocytes (NRVMs). Endogenous and overexpressed ZFP418 were localized in the nucleus. Subsequent experiments showed that ZFP418 negatively regulates UPS and positively regulates ALP activity in NRVMs. RNA-seq from Zfp418 knockdown revealed altered gene expression of numerous ubiquitinating and deubiquitinating enzymes, decreased expression of autophagy activators and initiators and increased expression of autophagy inhibitors. We found that ZPF418 activated the promoters of Dapk2 and Fyco1, which are involved in autophagy. RNA-seq from Zfp418 knockdown revealed accumulation of several genes involved in cardiac development and/or hypertrophy. In conclusion, our study provides evidence that ZNF418 activates the ALP, inhibits the UPS and regulates genes associated with cardiomyocyte structure/function. Abbreviations: ACTN2, actinin alpha 2; ALP, autophagy-lysosomal pathway; COPB1, COPI coat complex subunit beta 1; DAPK2, death associated protein kinase 2; FYCO1, FYVE and coiled-coil domain autophagy adaptor 1; HEK293, human embryonic kidney cells 293; HTS, high-throughput screen; LC3, microtubule associated protein 1 light chain 3; NRVMs, neonatal rat ventricular myocytes; RNA-seq, RNA sequencing; RPS6, ribosomal protein S6; TNNI3, troponin I, cardiac 3; UPS, ubiquitin-proteasome system; shRNA, short hairpin RNA; SQSTM1/p62, sequestosome 1; VPS28, VPS28 subunit of ESCRT-I; ZNF418/ZFP418, zinc finger protein 418.
Collapse
Affiliation(s)
- Sonia R Singh
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Moritz Meyer-Jens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erda Alizoti
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Clark Bacon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Gregory Davis
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - James Gulick
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Silke Reischmann-Düsener
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ellen Orthey
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick M McLendon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
7
|
Gu Y, Barwick BG, Shanmugam M, Hofmeister CC, Kaufman J, Nooka A, Gupta V, Dhodapkar M, Boise LH, Lonial S. Downregulation of PA28α induces proteasome remodeling and results in resistance to proteasome inhibitors in multiple myeloma. Blood Cancer J 2020; 10:125. [PMID: 33318477 PMCID: PMC7736847 DOI: 10.1038/s41408-020-00393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Protein homeostasis is critical for maintaining eukaryotic cell function as well as responses to intrinsic and extrinsic stress. The proteasome is a major portion of the proteolytic machinery in mammalian cells and plays an important role in protein homeostasis. Multiple myeloma (MM) is a plasma cell malignancy with high production of immunoglobulins and is especially sensitive to treatments that impact protein catabolism. Therapeutic agents such as proteasome inhibitors have demonstrated significant benefit for myeloma patients in all treatment phases. Here, we demonstrate that the 11S proteasome activator PA28α is upregulated in MM cells and is key for myeloma cell growth and proliferation. PA28α also regulates MM cell sensitivity to proteasome inhibitors. Downregulation of PA28α inhibits both proteasomal load and activity, resulting in a change in protein homeostasis less dependent on the proteasome and leads to cell resistance to proteasome inhibitors. Thus, our findings suggest an important role of PA28α in MM biology, and also provides a new approach for targeting the ubiquitin-proteasome system and ultimately sensitivity to proteasome inhibitors.
Collapse
Affiliation(s)
- Yanyan Gu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Craig C Hofmeister
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Jonathan Kaufman
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Ajay Nooka
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Vikas Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Madhav Dhodapkar
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA. .,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Lei K, Bai H, Sun S, Xin C, Li J, Chen Q. PA28γ, an Accomplice to Malignant Cancer. Front Oncol 2020; 10:584778. [PMID: 33194729 PMCID: PMC7662426 DOI: 10.3389/fonc.2020.584778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome, which is involved in the regulation of several essential cellular processes and angiogenesis. Over the past 20 years, many amino acid sites and motifs have been proven to play important roles in the characteristic functions of PA28γ. The number of binding partners and validated cellular functions of PA28γ have increased, which has facilitated the clarification of its involvement in different biological events. PA28γ is involved in the progression of various diseases, and its aberrant overexpression in cancer is remarkable. Patients with low levels of PA28γ expression have a higher survival rate than those with high levels of PA28γ expression, as has been shown for a wide variety of tumors. The functions of PA28γ in cancer can be divided into five main categories: cell proliferation, cell apoptosis, metastasis and invasion, cell nuclear dynamics that have relevance to angiogenesis, and viral infection. In this review, we focus on the role of PA28γ in cancer, summarizing its aberrant expression, prooncogenic effects and underlying mechanisms in various cancers, and we highlight the possible cancer-related applications of PA28γ, such as its potential use in the diagnosis, targeted treatment and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuan Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
10
|
Wang Y, Miao X, Li H, Su P, Lin L, Liu L, Li X. The correlated expression of immune and energy metabolism related genes in the response to Salmonella enterica serovar Enteritidis inoculation in chicken. BMC Vet Res 2020; 16:257. [PMID: 32711533 PMCID: PMC7382137 DOI: 10.1186/s12917-020-02474-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serovar Enteritidis (SE) is one of the food-borne pathogenic bacteria, which affects poultry production and poses severe threat to human health. The correlation of immune system and metabolism in chicken after SE inoculation is important but not clear. In the current study, we identified the expression of immune and energy metabolism related genes using quantitative PCR to evaluate the correlation between immune system and energy metabolism against SE inoculation in Jining Bairi chicken. Results ATP5G1, ATP5G3 and ND2 were significantly up-regulated at 1 dpi (day post inoculation), and ATP5E, ATP5G1, ATP5G3 were significantly down-regulated at 7 dpi (P < 0.05). IL-8 and IL-1β were significantly down-regulated at 1 dpi, IL-8 and IL-18 were significantly down-regulated at 3 dpi, IL-8 and BCL10 were significantly up-regulated at 7 dpi (P < 0.05). Conclusions These findings indicate that the correlation between immune and energy metabolism related genes gradually change with time points post SE inoculation, from one homeostasis to an opposite homeostasis with 3 dpi as a turning point. These results will pave the foundation for the relationship between immune system and energy metabolism in the response to SE inoculation in chicken.
Collapse
Affiliation(s)
- Yuanmei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China.,Present Address: Current affiliation: Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xiuxiu Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Huilong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Pengcheng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Lili Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, 271018, Taian, China.
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China.
| |
Collapse
|
11
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
The proteasome activator REGγ counteracts immunoproteasome expression and autoimmunity. J Autoimmun 2019; 103:102282. [PMID: 31171475 DOI: 10.1016/j.jaut.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
For quite a long time, the 11S proteasome activator REGɑ and REGβ, but not REGγ, are known to control immunoproteasome and promote antigen processing. Here, we demonstrate that REGγ functions as an inhibitor for immunoproteasome and autoimmune disease. Depletion of REGγ promotes MHC class I-restricted presentation to prime CD8+ T cells in vitro and in vivo. Mice deficient for REGγ have elevation of CD8+ T cells and DCs, and develop age-related spontaneous autoimmune symptoms. Mechanistically, REGγ specifically interacts with phosphorylated STAT3 and promotes its degradation in vitro and in cells. Inhibition of STAT3 dramatically attenuates levels of LMP2/LMP7 and antigen presentation in cells lacking REGγ. Importantly, treatment with STAT3 or LMP2/7 inhibitor prevented accumulation of immune complex in REGγ-/- kidney. Moreover, REGγ-/- mice also expedites Pristane-induced lupus. Bioinformatics and immunohistological analyses of clinical samples have correlated lower expression of REGγ with enhanced expression of phosphorylated STAT3, LMP2 and LMP7 in human Lupus Nephritis. Collectively, our results support the concept that REGγ is a new regulator of immunoproteasome to balance autoimmunity.
Collapse
|
13
|
Jimenez-Guardeño JM, Apolonia L, Betancor G, Malim MH. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat Microbiol 2019; 4:933-940. [PMID: 30886358 DOI: 10.1038/s41564-019-0402-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Type 1 interferon suppresses viral replication by upregulating the expression of interferon-stimulated genes with diverse antiviral properties1. The replication of human immunodeficiency virus type 1 (HIV-1) is naturally inhibited by interferon, with the steps between viral entry and chromosomal integration of viral DNA being notably susceptible2-5. The interferon-stimulated gene myxovirus resistance 2 has been defined as an effective postentry inhibitor of HIV-1, but is only partially responsible for interferon's suppressive effect6-8. Using small interfering RNA-based library screening in interferon-α-treated cells, we sought to characterize further interferon-stimulated genes that target the pre-integration phases of HIV-1 infection, and identified human tripartite-containing motif 5α (TRIM5α) as a potent anti-HIV-1 restriction factor. Human TRIM5α, in contrast with many nonhuman orthologues, has not generally been ascribed substantial HIV-1 inhibitory function, a finding attributed to ineffective recognition of cytoplasmic viral capsids by TRIM5α2,9,10. Here, we demonstrate that interferon-α-mediated stimulation of the immunoproteasome, a proteasome isoform mainly present in immune cells and distinguished from the constitutive proteasome by virtue of its different catalytic β-subunits, as well as the proteasome activator 28 regulatory complex11-13, and the associated accelerated turnover of TRIM5α underpin the reprogramming of human TRIM5α for effective capsid-dependent inhibition of HIV-1 DNA synthesis and infection. These observations identify a mechanism for regulating human TRIM5α antiviral function in human cells and rationalize how TRIM5α participates in the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Luis Apolonia
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Gilberto Betancor
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Kasahara M, Flajnik MF. Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics 2019; 71:251-261. [PMID: 30675634 DOI: 10.1007/s00251-019-01105-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/10/2023]
Abstract
Proteasomes are a multi-subunit protease complex that produces peptides bound by major histocompatibility complex (MHC) class I molecules. Phylogenetic studies indicate that two specialized forms of proteasomes, immunoproteasomes and thymoproteasomes, and the proteasome activator PA28αβ emerged in a common ancestor of jawed vertebrates which acquired adaptive immunity based on the MHC, T cell receptors, and B cell receptors ~ 500 million years ago. Comparative genomics studies now provide strong evidence that the genes coding for the immunoproteasome subunits emerged by genome-wide duplication. On the other hand, the gene encoding the thymoproteasome subunit β5t emerged by tandem duplication from the gene coding for the β5 subunit. Strikingly, birds lack immunoproteasomes, thymoproteasomes, and the proteasome activator PA28αβ, raising an interesting question of whether they have evolved any compensatory mechanisms.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Wang M, Zhang FK, Elsheikha HM, Zhang NZ, He JJ, Luo JX, Zhu XQ. Transcriptomic insights into the early host-pathogen interaction of cat intestine with Toxoplasma gondii. Parasit Vectors 2018; 11:592. [PMID: 30428922 PMCID: PMC6236892 DOI: 10.1186/s13071-018-3179-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although sexual reproduction of the parasite Toxoplasma gondii exclusively occurs in the cat intestine, knowledge about the alteration of gene expression in the intestine of cats infected with T. gondii is still limited. Here, we investigated the temporal transcriptional changes that occur in the cat intestine during T. gondii infection. Methods Cats were infected with 100 T. gondii cysts and their intestines were collected at 6, 12, 18, 24, 72 and 96 hours post-infection (hpi). RNA sequencing (RNA-Seq) Illumina technology was used to gain insight into the spectrum of genes that are differentially expressed due to infection. Quantitative RT-PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. Results Our transcriptome analysis revealed 2363 DEGs that were clustered into six unique patterns of gene expression across all the time points after infection. Our analysis revealed 56, 184, 404, 508, 400 and 811 DEGs in infected intestines compared to uninfected controls at 6, 12, 18, 24, 72 and 96 hpi, respectively. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in catalytic activity and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the intestine of infected cats evolve over the course of infection, and the largest difference in the enriched pathways was observed at 96 hpi. The anti-T. gondii defense response of the feline host was mediated by Major Histocompatibility Complex class I, proteasomes, heat-shock proteins and fatty acid binding proteins. Conclusions This study revealed novel host factors, which may be critical for the successful establishment of an intracellular niche during T. gondii infection in the definitive feline host. Electronic supplementary material The online version of this article (10.1186/s13071-018-3179-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
16
|
Jonik-Nowak B, Menneteau T, Fesquet D, Baldin V, Bonne-Andrea C, Méchali F, Fabre B, Boisguerin P, de Rossi S, Henriquet C, Pugnière M, Ducoux-Petit M, Burlet-Schiltz O, Lamond AI, Fort P, Boulon S, Bousquet MP, Coux O. PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proc Natl Acad Sci U S A 2018; 115:E6477-E6486. [PMID: 29934401 PMCID: PMC6048556 DOI: 10.1073/pnas.1722299115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.
Collapse
Affiliation(s)
- Beata Jonik-Nowak
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Thomas Menneteau
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Didier Fesquet
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Véronique Baldin
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Francisca Méchali
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Bertrand Fabre
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Sylvain de Rossi
- Montpellier Ressources Imagerie (MRI) Facility, Biocampus UMS3426, CNRS, 34090 Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier (IRCM) - INSERM U1194, Institut Régional du Cancer de Montpellier, Université de Montpellier, F-34298 Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier (IRCM) - INSERM U1194, Institut Régional du Cancer de Montpellier, Université de Montpellier, F-34298 Montpellier, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, DD1 5HL Dundee, United Kingdom
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Séverine Boulon
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France;
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS, Université de Toulouse-Université Paul Sabatier, 31062 Toulouse, France;
| | - Olivier Coux
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34090 Montpellier, France;
| |
Collapse
|
17
|
Driscoll JJ, Brailey M. Emerging small molecule approaches to enhance the antimyeloma benefit of proteasome inhibitors. Cancer Metastasis Rev 2018; 36:585-598. [PMID: 29052093 DOI: 10.1007/s10555-017-9698-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy which, despite recent treatment advances, remains incurable in the vast majority of the over 118,000 patients in the USA afflicted with this disease. Treatment of MM has dramatically improved in the past decade with the introduction of new drugs into therapeutic strategies in both the frontline and relapse settings that has led to a significant improvement in the median overall survival (OS). These drugs have been incorporated into clinical guidelines and transformed the treatment approach to MM. Numerous classes of antimyeloma agents, i.e., alkylators, steroids, proteasome inhibitors, immunomodulatory agents, deactylase inhibitors, and monoclonal antibodies, are now FDA-approved and can be combined in doublet or triplet regimens. Moreover, many patients do not respond to therapy and those that do eventually relapse. Emerging therapies that may overcome drug resistance and improve MM treatment include that inhibit regulatory and Ub-processing components of the proteasome, a specialized variant of the proteasome known as the immunoproteasome, proteolysis-targeting chimeric molecules (PROTACS and Degronomids). Emerging strategies also include accessory plasmacytoid dendritic cells (pDCs), vaccines, checkpoint inhibitors, and chimeric antigen receptor-engineered T (CAR-T) cells. Advances in understanding proteasome and plasma cell biology may allow for earlier treatment of MM patients using rationally informed combination therapies with curative potential.
Collapse
Affiliation(s)
- James J Driscoll
- Department of Internal Medicine, Division of Hematology and Oncology, Cincinnati, OH, 45267, USA. .,University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA.
| | - Magen Brailey
- University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA.,McMicken College of Arts and Sciences, Biology, Cincinnati, OH, USA
| |
Collapse
|
18
|
Basler M, Mundt S, Groettrup M. The immunoproteasome subunit LMP7 is required in the murine thymus for filling up a hole in the T cell repertoire. Eur J Immunol 2017; 48:419-429. [PMID: 29067678 DOI: 10.1002/eji.201747282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Cells of hematopoietic origin express high levels of the immunoproteasome, a cytokine-inducible variant of the proteasome which has been implicated in regulating inflammatory responses and antigen presentation. In the thymus, medullary thymic epithelial cells (mTECs) and cortical thymic epithelial cells (cTECs) do express different proteasome subunits exerting chymotrypsin-like activities suggesting distinct functions in thymic T cell selection. Employing the lymphocytic choriomeningitis virus (LCMV) infection model, we could show that the immunoproteasome subunit LMP7 was absolutely required for the generation of LCMV GP118-125 -specific T cells although the class I mediated presentation of GP118-125 was not dependent on LMP7. Using bone marrow chimeras and adoptive transfer of LMP7-deficient CD8+ T cells into RAG1-deficient mice we show that LMP7-deficient mice lacked GP118-125 -specific T cell precursors and that LMP7 was required in radioresistant cells - most likely thymic epithelial cells - to enable their selection. Since LMP7 is strongly expressed in negatively selecting mTECs but barely in positively selecting cTECs our data suggest that LMP7 was required to avoid excessive negative selection of GP118-125 -specific T cell precursors. Taken together, this study demonstrates that the immunoproteasome is a crucial factor for filling up holes within the cytotoxic T cell repertoire.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Sarah Mundt
- Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
19
|
Huber EM, Groll M. The Mammalian Proteasome Activator PA28 Forms an Asymmetric α 4β 3 Complex. Structure 2017; 25:1473-1480.e3. [PMID: 28867616 DOI: 10.1016/j.str.2017.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
The heptameric proteasome activator (PA) 28αβ is known to modulate class I antigen processing by docking onto 20S proteasome core particles (CPs). The exact stoichiometry and arrangement of its α and β subunits, however, is still controversial. Here we analyzed murine PA28 complexes regarding structure and assembly. Strikingly, PA28α, PA28β, and PA28αβ preparations form heptamers, but solely PA28α and PA28αβ associate with CPs. Co-expression of α and β yields one unique PA28αβ species with an unchangeable subunit composition. Structural data on PA28α, PA28β, and PA28αβ up to 2.9 Å resolution reveal a PA28α4β3 complex with an alternating subunit arrangement and a single α-α interface. Differential scanning fluorimetry experiments and activity assays classify PA28α4β3 as most stable and most active, indicating that this assembly might represent the physiologically relevant species. Together, our data resolve subunit composition and arrangement of PA28αβ and clarify how an asymmetric heptamer can be assembled from two highly homologous subunits.
Collapse
Affiliation(s)
- Eva M Huber
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
20
|
XU XIAOPING, LIU DONGJUAN, JI NING, LI TAIWEN, LI LONGJIANG, JIANG LU, LI JING, ZHANG PING, ZENG XIN, CHEN QIANMING. A novel transcript variant of proteasome activator 28γ: Identification and function in oral cancer cells. Int J Oncol 2015; 47:188-94. [DOI: 10.3892/ijo.2015.2980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
|
21
|
Acquah JRQ, Haratake K, Rakwal R, Udono H, Chiba T. Hsp90 and ECM29 Are Important to Maintain the Integrity of Mammalian 26S Proteasome. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abc.2015.57022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
23
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
24
|
Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 2014; 4:566-84. [PMID: 24970231 PMCID: PMC4101498 DOI: 10.3390/biom4020566] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 11/16/2022] Open
Abstract
PA28αβ is a γ-interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28αβ-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28αβ plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28αβ and discuss recent findings concerning its role in modifying the spectrum of proteasome's peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28αβ activity.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
25
|
Abstract
The mammalian immune system has evolved to display peptides derived from microbial antigens to immune effector cells. Liberated from the intact antigens through distinct proteolytic mechanisms, these peptides are subsequently transported to the cell surface while bound to chaperone-like receptors known as major histocompatibility complex molecules. These complexes are then scrutinized by T-cells that express receptors with specificity for specific major histocompatibility complex-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this cellular peptide array alert the immune system to changes in the intracellular environment that may be associated with infection, oncogenesis or other abnormal cellular processes, resulting in a cascade of events that result in the elimination of the abnormal cell. Since peptides play such an essential role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Recent advances in studies of immune responses that have utilized mass spectrometry and associated technologies are reviewed. The authors gaze into the future and look at current challenges and where proteomics will impact in immunology over the next 5 years.
Collapse
Affiliation(s)
- Nicholas A Williamson
- The University of Melbourne, Department of Biochemistry & Molecular Biology, The Bio21 Molecular Science & Biotechnology Institute, 3010, Victoria, Australia.
| | | |
Collapse
|
26
|
Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 2013; 71:16-24. [PMID: 24239609 DOI: 10.1016/j.yjmcc.2013.11.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 01/08/2023]
Abstract
In the cell, the proteasome and lysosomes represent the most important proteolytic machineries, responsible for the protein degradation in the ubiquitin-proteasome system (UPS) and autophagy, respectively. Both the UPS and autophagy are essential to protein quality and quantity control. Alterations in cardiac proteasomal and lysosomal degradation are remarkably associated with most heart disease in humans and are implicated in the pathogenesis of congestive heart failure. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteasomal functional insufficiency or lysosomal insufficiency as a major pathogenic factor in the heart. This review article highlights some recent advances in the research into proteasome and lysosome protein degradation in relation to cardiac pathology and examines the emerging evidence for enhancing degradative capacities of the proteasome and/or lysosome as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, The Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
|
28
|
Timofeev AV, Kuzmenko YV, Zharkova II, Starodubova ES, Karpov VL. Activation of transcription of immunoproteasome subunit genes in murine monocytes infected with different mycobacterial strains. Mol Biol 2013. [DOI: 10.1134/s0026893313020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Gavilán E, Sánchez-Aguayo I, Daza P, Ruano D. GSK-3β signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition. Cell Death Dis 2013; 4:e572. [PMID: 23559006 PMCID: PMC3668630 DOI: 10.1038/cddis.2013.95] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ubiquitin–proteasome system and the autophagy–lysosome pathway are the two main mechanisms for eukaryotic intracellular protein degradation. Proteasome inhibitors are used for the treatment of some types of cancer, whereas autophagy seems to have a dual role in tumor cell survival and death. However, the relationship between both pathways has not been extensively studied in tumor cells. We have investigated both proteolytic systems in the human epithelial breast non-tumor cell line MCF10A and in the human epithelial breast tumor cell line MCF7. In basal condition, tumor cells showed a lower proteasome function but a higher autophagy activity when compared with MCF10A cells. Importantly, proteasome inhibition (PI) leads to different responses in both cell types. Tumor cells showed a dose-dependent glycogen synthase kinase-3 (GSK-3)β inhibition, a huge increase in the expression of the transcription factor CHOP and an active processing of caspase-8. By contrast, MCF10A cells fully activated GSK-3β and showed a lower expression of both CHOP and processed caspase-8. These molecular differences were reflected in a dose-dependent autophagy activation and cell death in tumor cells, while non-tumor cells exhibited the formation of inclusion bodies and a decrease in the cell death rate. Importantly, the behavior of the MCF7 cells can be reproduced in MCF10A cells when GSK-3β and the proteasome were simultaneously inhibited. Under this situation, MCF10A cells strongly activated autophagy, showing minimal inclusion bodies, increased CHOP expression and cell death rate. These findings support GSK-3β signaling as a key mechanism in regulating autophagy activation or inclusion formation in human tumor or non-tumor breast cells, respectively, which may shed new light on breast cancer control.
Collapse
Affiliation(s)
- E Gavilán
- Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | | | | | | |
Collapse
|
30
|
Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:2-12. [PMID: 23507199 DOI: 10.1016/j.bbamcr.2013.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Mary J Kunjappu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
31
|
Otoda T, Takamura T, Misu H, Ota T, Murata S, Hayashi H, Takayama H, Kikuchi A, Kanamori T, Shima KR, Lan F, Takeda T, Kurita S, Ishikura K, Kita Y, Iwayama K, Kato KI, Uno M, Takeshita Y, Yamamoto M, Tokuyama K, Iseki S, Tanaka K, Kaneko S. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes 2013; 62:811-24. [PMID: 23209186 PMCID: PMC3581221 DOI: 10.2337/db11-1652] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress is a major contributor to obesity-induced insulin resistance in the liver. However, the molecular link between obesity and ER stress remains to be identified. Proteasomes are important multicatalytic enzyme complexes that degrade misfolded and oxidized proteins. Here, we report that both mouse models of obesity and diabetes and proteasome activator (PA)28-null mice showed 30-40% reduction in proteasome activity and accumulation of polyubiquitinated proteins in the liver. PA28-null mice also showed hepatic steatosis, decreased hepatic insulin signaling, and increased hepatic glucose production. The link between proteasome dysfunction and hepatic insulin resistance involves ER stress leading to hyperactivation of c-Jun NH₂-terminal kinase in the liver. Administration of a chemical chaperone, phenylbutyric acid (PBA), partially rescued the phenotypes of PA28-null mice. To confirm part of the results obtained from in vivo experiments, we pretreated rat hepatoma-derived H4IIEC3 cells with bortezomib, a selective inhibitor of the 26S proteasome. Bortezomib causes ER stress and insulin resistance in vitro--responses that are partly blocked by PBA. Taken together, our data suggest that proteasome dysfunction mediates obesity-induced ER stress, leading to insulin resistance in the liver.
Collapse
Affiliation(s)
- Toshiki Otoda
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
- Corresponding author: Toshinari Takamura,
| | - Hirofumi Misu
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Tsuguhito Ota
- Frontier Science Organization, Kanazawa University, Ishikawa, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Department of Integrated Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroto Hayashi
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Hiroaki Takayama
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Akihiro Kikuchi
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Takehiro Kanamori
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kosuke R. Shima
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Fei Lan
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Takashi Takeda
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Seiichiro Kurita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kazuhide Ishikura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yuki Kita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kaito Iwayama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichiro Kato
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Masafumi Uno
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yumie Takeshita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Miyuki Yamamoto
- Department of Histology and Embryology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Kunpei Tokuyama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Shoichi Iseki
- Department of Histology and Embryology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| |
Collapse
|
32
|
Ubiquitin receptors and protein quality control. J Mol Cell Cardiol 2012; 55:73-84. [PMID: 23046644 DOI: 10.1016/j.yjmcc.2012.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
Protein quality control (PQC) is essential to intracellular proteostasis and is carried out by sophisticated collaboration between molecular chaperones and targeted protein degradation. The latter is performed by proteasome-mediated degradation, chaperone-mediated autophagy (CMA), and selective macroautophagy, and collectively serves as the final line of defense of PQC. Ubiquitination and subsequently ubiquitin (Ub) receptor proteins (e.g., p62 and ubiquilins) are important common factors for targeting misfolded proteins to multiple quality control destinies, including the proteasome, lysosomes, and perhaps aggresomes, as well as for triggering mitophagy to remove defective mitochondria. PQC inadequacy, particularly proteasome functional insufficiency, has been shown to participate in cardiac pathogenesis. Tremendous advances have been made in unveiling the changes of PQC in cardiac diseases. However, the investigation into the molecular pathways regulating PQC in cardiac (patho)physiology, including the function of most ubiquitin receptor proteins in the heart, has only recently been initiated. A better understanding of molecular mechanisms governing PQC in cardiac physiology and pathology will undoubtedly provide new insights into cardiac pathogenesis and promote the search for novel therapeutic strategies to more effectively battle heart disease.This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
33
|
Basler M, Lauer C, Moebius J, Weber R, Przybylski M, Kisselev AF, Tsu C, Groettrup M. Why the structure but not the activity of the immunoproteasome subunit low molecular mass polypeptide 2 rescues antigen presentation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1868-77. [PMID: 22772448 DOI: 10.4049/jimmunol.1103592] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome is responsible for the generation of most epitopes presented on MHC class I molecules. Treatment of cells with IFN-γ leads to the replacement of the constitutive catalytic subunits β1, β2, and β5 by the inducible subunits low molecular mass polypeptide (LMP) 2 (β1i), multicatalytic endopeptidase complex-like-1 (β2i), and LMP7 (β5i), respectively. The incorporation of these subunits is required for the production of numerous MHC class I-restricted T cell epitopes. The structural features rather than the proteolytic activity of an immunoproteasome subunit are needed for the generation of some epitopes, but the underlying mechanisms have remained elusive. Experiments with LMP2-deficient splenocytes revealed that the generation of the male HY-derived CTL-epitope UTY(246-254) was dependent on LMP2. Treatment of male splenocytes with an LMP2-selective inhibitor did not reduce UTY(246-254) presentation, whereas silencing of β1 activity increased presentation of UTY(246-254). In vitro degradation experiments showed that the caspase-like activity of β1 was responsible for the destruction of this CTL epitope, whereas it was preserved when LMP2 replaced β1. Moreover, inhibition of the β5 subunit rescued the presentation of the influenza matrix 58-66 epitope, thus suggesting that a similar mechanism can apply to the exchange of β5 by LMP7. Taken together, our data provide a rationale why the structural property of an immunoproteasome subunit rather than its activity is required for the generation of a CTL epitope.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau, Constance University, CH-8280 Kreuzlingen, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pintado C, Gavilán MP, Gavilán E, García-Cuervo L, Gutiérrez A, Vitorica J, Castaño A, Ríos RM, Ruano D. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 2012; 9:87. [PMID: 22559833 PMCID: PMC3462674 DOI: 10.1186/1742-2094-9-87] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022] Open
Abstract
Background Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. Methods Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. Results LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. Conclusions Our results identify neuroinflammation as a risk factor that increases susceptibility to neurodegeneration induced by proteasome inhibition. These results highlight the modulation of neuroinflammation as a mechanism for neuronal protection that could be relevant in situations where both factors are present, such as aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristina Pintado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pickering AM, Davies KJA. Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys 2012; 523:181-90. [PMID: 22564544 DOI: 10.1016/j.abb.2012.04.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
Abstract
The response and functions of proteasome regulators Pa28αβ (or 11S), Pa28γ and Pa200 in oxidative-stress adaptation (also called hormesis) was studied in murine embryonic fibroblasts (MEFs), using a well-characterized model of cellular adaptation to low concentrations (1.0-10.0 μM) of hydrogen peroxide (H(2)O(2)), which alter gene expression profiles, increasing resistance to higher levels of oxidative-stress. Pa28αβ bound to 20S proteasomes immediately upon H(2)O(2)-treatment, whereas 26S proteasomes were disassembled at the same time. Over the next 24h, the levels of Pa28αβ, Pa28γ and Pa200 proteasome regulators increased during H(2)O(2)-adaptation, whereas the 19S regulator was unchanged. Purified Pa28αβ, and to a lesser extent Pa28γ, significantly increased the ability of purified 20S proteasome to selectively degrade oxidized proteins; Pa28αβ also increased the capacity of purified immunoproteasome to selectively degrade oxidized proteins but Pa28γ did not. Pa200 regulator actually decreased 20S proteasome and immunoproteasome's ability to degrade oxidized proteins but Pa200 and poly-ADP ribose polymerase may cooperate in enabling initiation of DNA repair. Our results indicate that cytoplasmic Pa28αβ and nuclear Pa28γ may both be important regulators of proteasome's ability to degrade oxidatively-damaged proteins, and induced-expression of both 20S proteasome and immunoproteasome, and their Pa28αβ and Pa28γ regulators are important for oxidative-stress adaptation.
Collapse
Affiliation(s)
- Andrew M Pickering
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
36
|
Phark S, Park SY, Choi S, Zheng Z, Cho E, Lee M, Lim JY, Seo JB, Won NH, Jung WW, Sul D. Toxicological biomarkers of 2,3,4,7,8-pentachlorodibenzofuran in proteins secreted by HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:656-66. [DOI: 10.1016/j.bbapap.2012.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 01/08/2023]
|
37
|
Jain MR, Li Q, Liu T, Rinaggio J, Ketkar A, Tournier V, Madura K, Elkabes S, Li H. Proteomic identification of immunoproteasome accumulation in formalin-fixed rodent spinal cords with experimental autoimmune encephalomyelitis. J Proteome Res 2012; 11:1791-803. [PMID: 22188123 DOI: 10.1021/pr201043u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinically relevant formalin-fixed and paraffin-embedded (FFPE) tissues have not been widely used in neuroproteomic studies because many proteins are presumed to be degraded during tissue preservation. Recent improvements in proteomics technologies, from the 2D gel analysis of intact proteins to the "shotgun" quantification of peptides and the use of isobaric tags for absolute and relative quantification (iTRAQ) method, have made the analysis of FFPE tissues possible. In recent years, iTRAQ has been one of the main methods of choice for high throughput quantitative proteomics analysis, which enables simultaneous comparison of up to eight samples in one experiment. Our objective was to assess the relative merits of iTRAQ analysis of fresh frozen versus FFPE nervous tissues by comparing experimental autoimmune encephalomyelitis (EAE)-induced proteomic changes in FFPE rat spinal cords and frozen tissues. EAE-induced proteomic changes in FFPE tissues were positively correlated with those found in the frozen tissues, albeit with ∼50% less proteome coverage. Subsequent validation of the enrichment of immunoproteasome (IP) activator 1 in EAE spinal cords led us to evaluate other proteasome and IP-specific proteins. We discovered that many IP-specific (as opposed to constitutive) proteasomal proteins were enriched in EAE rat spinal cords, and EAE-induced IP accumulation also occurred in the spinal cords of an independent mouse EAE model in a disability score-dependent manner. Therefore, we conclude that it is feasible to generate useful information from iTRAQ-based neuroproteomics analysis of archived FFPE tissues for studying neurological disease tissues.
Collapse
Affiliation(s)
- Mohit Raja Jain
- Center For Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center , 205 S. Orange Ave., Newark, New Jersey 07103, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dennissen FJA, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 2012; 96:190-207. [PMID: 22270043 DOI: 10.1016/j.pneurobio.2012.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022]
Abstract
A shared hallmark for many neurodegenerative disorders is the accumulation of toxic protein species which is assumed to be the cause for these diseases. Since the ubiquitin proteasome system (UPS) is the most important pathway for selective protein degradation it is likely that it is involved in the aetiology neurodegenerative disorders. Indeed, impairment of the UPS has been reported to occur during neurodegeneration. Although accumulation of toxic protein species (amyloid β) are in turn known to impair the UPS the relationship is not necessarily causal. We provide an overview of the most recent insights in the roles the UPS plays in protein degradation and other processes. Additionally, we discuss the role of the UPS in clearance of the toxic proteins known to accumulate in the hallmarks of neurodegenerative diseases. The present paper will focus on critically reviewing the involvement of the UPS in specific neurodegenerative diseases and will discuss if UPS impairment is a cause, a consequence or both of the disease.
Collapse
Affiliation(s)
- F J A Dennissen
- Department of Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
39
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
40
|
Li J, Horak KM, Su H, Sanbe A, Robbins J, Wang X. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J Clin Invest 2011; 121:3689-700. [PMID: 21841311 DOI: 10.1172/jci45709] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 06/22/2011] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system degrades most intracellular proteins, including misfolded proteins. Proteasome functional insufficiency (PFI) has been observed in proteinopathies, such as desmin-related cardiomyopathy, and implicated in many common diseases, including dilated cardiomyopathy and ischemic heart disease. However, the pathogenic role of PFI has not been established. Here we created inducible Tg mice with cardiomyocyte-restricted overexpression of proteasome 28 subunit α (CR-PA28αOE) to investigate whether upregulation of the 11S proteasome enhances the proteolytic function of the proteasome in mice and, if so, whether the enhancement can rescue a bona fide proteinopathy and protect against ischemia/reperfusion (I/R) injury. We found that CR-PA28αOE did not alter the homeostasis of normal proteins and cardiac function, but did facilitate the degradation of a surrogate misfolded protein in the heart. By breeding mice with CR-PA28αOE with mice representing a well-established model of desmin-related cardiomyopathy, we demonstrated that CR-PA28αOE markedly reduced aberrant protein aggregation. Cardiac hypertrophy was decreased, and the lifespan of the animals was increased. Furthermore, PA28α knockdown promoted, whereas PA28α overexpression attenuated, accumulation of the mutant protein associated with desmin-related cardiomyopathy in cultured cardiomyocytes. Moreover, CR-PA28αOE limited infarct size and prevented postreperfusion cardiac dysfunction in mice with myocardial I/R injury. We therefore conclude that benign enhancement of cardiac proteasome proteolytic function can be achieved by CR-PA28αOE and that PFI plays a major pathogenic role in cardiac proteinopathy and myocardial I/R injury.
Collapse
Affiliation(s)
- Jie Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, USA
| | | | | | | | | | | |
Collapse
|
41
|
Cardoso J, Lima CDP, Leal T, Gradia DF, Fragoso SP, Goldenberg S, De Sá RG, Krieger MA. Analysis of proteasomal proteolysis during the in vitro metacyclogenesis of Trypanosoma cruzi. PLoS One 2011; 6:e21027. [PMID: 21698116 PMCID: PMC3117861 DOI: 10.1371/journal.pone.0021027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/18/2011] [Indexed: 12/15/2022] Open
Abstract
Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell.
Collapse
Affiliation(s)
| | | | - Tiago Leal
- Universidade Federal de Ouro Preto/UFOP, Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | | - Marco A. Krieger
- Instituto Carlos Chagas/FIOCRUZ, Curitiba, Parana, Brazil
- * E-mail:
| |
Collapse
|
42
|
de Graaf N, van Helden MJG, Textoris-Taube K, Chiba T, Topham DJ, Kloetzel PM, Zaiss DMW, Sijts AJAM. PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo. Eur J Immunol 2011; 41:926-35. [PMID: 21360704 DOI: 10.1002/eji.201041040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/02/2010] [Accepted: 01/05/2011] [Indexed: 11/08/2022]
Abstract
Proteasomes play a fundamental role in the processing of intracellular antigens into peptides that bind to MHC class I molecules for the presentation of CD8(+) T cells. Three IFN-γ-inducible catalytic proteasome (immuno)subunits as well as the IFN-γ-inducible proteasome activator PA28 dramatically accelerate the generation of a subset of MHC class I-presented antigenic peptides. To determine whether these IFN-γ-inducible proteasome components play a compounded role in antigen processing, we generated mice lacking both PA28 and immunosubunits β5i/LMP7 and β2i/MECL-1. Analyses of MHC class I cell-surface levels ex vivo demonstrated that PA28 deficiency reduced the production of MHC class I-binding peptides both in cells with and without immunosubunits, in the latter cells further decreasing an already diminished production of MHC ligands in the absence of immunoproteasomes. In contrast, the immunosubunits but not PA28 appeared to be of critical importance for the induction of CD8(+) T-cell responses to multiple dominant Influenza and Listeria-derived epitopes. Taken together, our data demonstrate that PA28 and the proteasome immunosubunits use fundamentally different mechanisms to enhance the supply of MHC class I-binding peptides; however, only the immunosubunit-imposed effects on proteolytic epitope processing appear to have substantial influence on the specificity of pathogen-specific CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Natascha de Graaf
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Powell SR, Wang X. Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J 2010; 25:883-93. [PMID: 21098724 DOI: 10.1096/fj.10-160895] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The principal function of the proteasome is targeted degradation of intracellular proteins. Proteasome dysfunction has been observed in experimental cardiomyopathies and implicated in human congestive heart failure. Measures to enhance proteasome proteolytic function are currently lacking but would be beneficial in testing the pathogenic role of proteasome dysfunction and could have significant therapeutic potential. The association of proteasome activator 28 (PA28) with the 20S proteasome may play a role in antigen processing. It is unclear, however, whether the PA28 plays any important role outside of antigen presentation, although up-regulation of PA28 has been observed in certain types of cardiomyopathy. Here, we show that PA28α overexpression (PA28αOE) stabilized PA28β, increased 11S proteasomes, and enhanced the degradation of a previously validated proteasome surrogate substrate (GFPu) in cultured neonatal rat cardiomyocytes. PA28αOE significantly attenuated H(2)O(2)-induced increases in the protein carbonyls and markedly suppressed apoptosis in cultured cardiomyocytes under basal conditions or when stressed by H(2)O(2). We conclude that PA28αOE is sufficient to up-regulate 11S proteasomes, enhance proteasome-mediated removal of misfolded and oxidized proteins, and protect against oxidative stress in cardiomyocytes, providing a highly sought means to increase proteasomal degradation of abnormal cellular proteins.
Collapse
Affiliation(s)
- Jie Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Lee Medical Bldg., Vermillion, SD 57069, USA
| | | | | |
Collapse
|
44
|
Response of porcine intestinal in vitro organ culture tissues following exposure to Lactobacillus plantarum JC1 and Salmonella enterica serovar Typhimurium SL1344. Appl Environ Microbiol 2010; 76:6645-57. [PMID: 20639369 DOI: 10.1128/aem.03115-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin-α was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.
Collapse
|
45
|
Nguyen TP, Soukup VM, Gelman BB. Persistent hijacking of brain proteasomes in HIV-associated dementia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:893-902. [PMID: 20035054 DOI: 10.2353/ajpath.2010.090390] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunoproteasome induction sustains class 1 antigen presentation and immunological vigilance against HIV-1 in the brain. Investigation of HIV-1-associated alterations in brain protein turnover by the ubiquitin-proteasome system was performed by (1) determining proteasome subunit changes associated with persistent brain inflammation due to HIV-1; (2) determining whether these changes are related to HIV-1 neurocognitive disturbances, encephalitis, and viral loads; and (3) localizing proteasome subunits in brain cells and synapses. On the basis of neurocognitive performance, virological, and immunological measurements obtained within 6 months before death, 153 autopsy cases were selected. Semiquantitative immunoblot analysis performed in the dorsolateral prefrontal cortex revealed up to threefold induction of immunoproteasome subunits LMP7 and PA28alpha in HIV-1-infected subjects and was strongly related to diagnoses of neuropsychological impairment and HIV encephalitis. Low performance on neurocognitive tests specific for dorsolateral prefrontal cortex functioning domains was selectively correlated with immunoproteasome induction. Immunohistochemistry and laser confocal microscopy were then used to localize immunoproteasome subunits to glial and neuronal elements including perikarya, dystrophic axons, and synapses. In addition, HIV loads in brain tissue, cerebrospinal fluid, and blood plasma were robustly correlated to immunoproteasome levels. This persistent "hijacking" of the proteasome by HIV-1-mediated inflammatory response and immunoproteasome induction in the brain is hypothesized to impede turnover of folded proteins in brain cells. This would disrupt neuronal and synaptic protein dynamics, contributing to HIV-1 neurocognitive disturbances.
Collapse
Affiliation(s)
- Trung P Nguyen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
46
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
47
|
Le Feuvre AY, Dantas-Barbosa C, Baldin V, Coux O. High yield bacterial expression and purification of active recombinant PA28αβ complex. Protein Expr Purif 2009; 64:219-24. [DOI: 10.1016/j.pep.2008.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
48
|
Kusmierczyk AR, Hochstrasser M. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem 2008; 389:1143-51. [PMID: 18713001 DOI: 10.1515/bc.2008.130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 26S proteasome is the key eukaryotic protease responsible for the degradation of intracellular proteins. Protein degradation by the 26S proteasome plays important roles in numerous cellular processes, including the cell cycle, differentiation, apoptosis, and the removal of damaged or misfolded proteins. How this 2.5-MDa complex, composed of at least 32 different polypeptides, is assembled in the first place is not well understood. However, it has become evident that this complicated task is facilitated by a framework of protein factors that chaperone the nascent proteasome through its various stages of assembly. We review here the known proteasome-specific assembly factors, most only recently discovered, and describe their potential roles in proteasome assembly, with an emphasis on the many remaining unanswered questions about this intricate process of assisted self-assembly.
Collapse
Affiliation(s)
- Andrew R Kusmierczyk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
49
|
PACemakers of Proteasome Core Particle Assembly. Structure 2008; 16:1296-304. [DOI: 10.1016/j.str.2008.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 01/08/2023]
|
50
|
Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J 2008; 27:2204-13. [PMID: 18650933 DOI: 10.1038/emboj.2008.148] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/03/2008] [Indexed: 11/09/2022] Open
Abstract
The 20S proteasome is the catalytic core of the 26S proteasome. It comprises four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). Recent studies indicated that proteasome-specific chaperones and beta-subunit appendages assist in the formation of alpha-rings and dimerization of half-proteasomes, but the process involved in the assembly of beta-rings is poorly understood. Here, we clarify the mechanism of beta-ring formation on alpha-rings by characterizing assembly intermediates accumulated in cells depleted of each beta-subunit. Starting from beta2, incorporation of beta-subunits occurs in an orderly manner dependent on the propeptides of beta2 and beta5, and the C-terminal tail of beta2. Unexpectedly, hUmp1, a chaperone functioning at the final assembly step, is incorporated as early as beta2 and is required for the structural integrity of early assembly intermediates. We propose a model in which beta-ring formation is assisted by both intramolecular and extrinsic chaperones, whose roles are partially different between yeast and mammals.
Collapse
|