1
|
R S, Nyika J, Yadav S, Mackolil J, G RP, Workie E, Ragupathy R, Ramasundaram P. Genetically modified foods: bibliometric analysis on consumer perception and preference. GM CROPS & FOOD 2022; 13:65-85. [PMID: 35400312 PMCID: PMC9009926 DOI: 10.1080/21645698.2022.2038525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/05/2023]
Abstract
In this study, we present the bibliometric trends emerging from research outputs on consumer perception and preference for genetically modified (GM) foods and policy prescriptions for enabling the consumption using VOSviewer visualization software. Consumers' positive response is largely influenced by the decision of the governments to ban or approve the GM crops cultivation. Similarly, the public support increases when the potential benefits of the technology are well articulated, consumption increases with a price discount, people's trust on the government and belief in science increases with a positive influence by the media. Europe and the USA are the first region and country, respectively, in terms of the number of active institutions per research output, per-capita GDP publication and citations. We suggest research-, agri-food industries-, and society-oriented policies to be implemented by the stakeholders to ensure the safety of GM foods, encourage consumer-based studies, and increase public awareness toward these food products.
Collapse
Affiliation(s)
- Sendhil R
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Joan Nyika
- Technical University of Kenya, Nairobi, Kenya
| | - Sheel Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Rama Prashat G
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Endashaw Workie
- School of Environmental science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Raja Ragupathy
- Lethbridge Research and Development Centre, Agriculture & Agri Food Canada, Alberta, Canada
| | - P. Ramasundaram
- National Agricultural Higher Education Project, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
2
|
Dong S, Guan L, He K, Yang W, Deng W, Yuan S, Feng J. Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants. Int J Biol Macromol 2021; 183:1346-1351. [PMID: 34004200 DOI: 10.1016/j.ijbiomac.2021.05.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022]
Abstract
Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "β" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.
Collapse
Affiliation(s)
- Sa Dong
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| | - Lingjun Guan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Kangli He
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Wenchao Yang
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Wei Deng
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Shuzhong Yuan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| |
Collapse
|
3
|
Dong S, Gao M, Bo Z, Guan L, Hu X, Zhang H, Liu B, Li P, He K, Liu X, Zhang C. Production and characterization of a single-chain variable fragment antibody from a site-saturation mutagenesis library derived from the anti-Cry1A monoclonal antibody. Int J Biol Macromol 2020; 149:60-69. [PMID: 31954781 DOI: 10.1016/j.ijbiomac.2020.01.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
There are plenty of applications of Cry1A toxins (Cry1Aa, Cry1Ab, Cry1Ac) in genetically modified crops, and it is necessary to establish corresponding detection methods. In this study, a single-chain variable fragment (scFv) with high affinities to Cry1A toxins was produced. First, the variable regions of heavy (VH) and light chain (VL) were amplified from hybridoma cell 5B5 which secrete anti-Cry1A monoclonal antibody (mAb) and then spliced into scFv-5B5 by overlap extension polymerase chain reaction (SOE-PCR). Subsequently, site-saturation mutagenesis was performed after homology modeling and molecular docking, which showed that asparagine35, phenylalanine36, isoleucine104, tyrosine105, and serine196, respectively, located in VH complementarity-determining region (CDR1 and CDR3) and VL framework region (FR3) were key amino acid sites. Then, the mutagenesis scFv library (1.35 × 105 CFU/mL) was constructed and a mutant scFv-2G12 with equilibrium dissociation constant (KD) value of 9.819 × 10-9 M against Cry1Ab toxin, which was lower than scFv-5B5 (2.025 × 10-8 M) was obtained by biopanning. Then, enzyme-linked immunosorbent assay (ELISA) was established with limit of detection (LOD) and limit of quantitation (LOQ) of 4.6-9.2 and 11.1-17.1 ng mL-1 respectively for scFv-2G12, which were lower than scFv-5B5 (12.4-22.0 and 23.6-39.7 ng mL-1). Results indicated the promising prospect of scFv-2G12 used for the detection of Cry1A toxins.
Collapse
Affiliation(s)
- Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China; College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Zongyi Bo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lingjun Guan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xiaodan Hu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Hanxiaoya Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Beibei Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Kangli He
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China.
| |
Collapse
|
4
|
Qiu Y, Li P, Liu B, Liu Y, Wang Y, Tao T, Xu J, Hammock BD, Liu X, Guan R, Zhang C. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1642307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yulou Qiu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, People’s Republic of China
| | - Pan Li
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Beibei Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yuan Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yulong Wang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Tingting Tao
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Junli Xu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Bruce D. Hammock
- Laboratory of Pesticide and Nematology Biotechnology, Department of Entomology, University of California, Davis, CA, USA
| | - Xianjin Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Rongfa Guan
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, People’s Republic of China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
5
|
Development of an immunochromatographic assay for the specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin. Anal Biochem 2018; 567:1-7. [PMID: 30130490 DOI: 10.1016/j.ab.2018.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 11/21/2022]
Abstract
Cry1Ab has been widely used in genetically modified (GM) crops and its amino acid sequence had high identity to Cry1Ac toxin. Existing nanogold immunochromatographic strips cannot distinguish Cry1Ab from Cry1Ac toxin. In this study, a rapid (5-6 min), qualitative nanogold immunochromatographic strip was successfully developed for the specific detection of Cry1Ab toxin. The assay was based on double antibody sandwich format with the visual detection limit (vLOD) of 0.1 μg mL-1. The results of immunochromatographic assay were all positive validated against the DAS-ELISA (recoveries between 109.6 and 111.8%). In addition, 10%, 5% and 0% error probability results were found in 20 times repeated tests for Cry1Ab concentration of 0.1, 0.2, 0.5 and 1 μg mL-1, respectively, demonstrating the reproducibility of the test strip. Furthermore, the test strip could be stored for 3 months under dry conditions without significant loss of sensitivity. Furthermore, the practical sample analysis results showed that the test strip was able to detect the presence of Cry1Ab in GM materials containing as low as 0.5% MON 810 Bt maize which indicated the practical value of the test strip. To our knowledge, this is the first report on the detection of Cry1Ab by immunochromatographic assay without interference from Cry1Ac toxin.
Collapse
|
6
|
Flavell RB. Innovations continuously enhance crop breeding and demand new strategic planning. GLOBAL FOOD SECURITY 2017. [DOI: 10.1016/j.gfs.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Dong S, Zhang X, Liu Y, Zhang C, Xie Y, Zhong J, Xu C, Liu X. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Anal Bioanal Chem 2017; 409:1985-1994. [PMID: 28078413 DOI: 10.1007/s00216-016-0146-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 11/28/2022]
Abstract
Cry1Ab toxin is commonly expressed in genetically modified crops in order to control chewing pests. At present, the detection method with enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibody cannot specifically detect Cry1Ab toxin for Cry1Ab's amino acid sequence and spatial structure are highly similar to Cry1Ac toxin. In this study, based on molecular design, a novel hapten polypeptide was synthesized and conjugated to keyhole limpet hemocyanin (KLH). Then, through animal immunization with this antigen, a monoclonal antibody named 2C12, showing high affinity to Cry1Ab and having no cross reaction with Cry1Ac, was produced. The equilibrium dissociation constant (K D) value of Cry1Ab toxin with MAb 2C12 was 1.947 × 10-8 M. Based on this specific monoclonal antibody, a sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for the specific determination of Cry1Ab toxin and the LOD and LOQ values were determined as 0.47 ± 0.11 and 2.43 ± 0.19 ng mL-1, respectively. The average recoveries of Cry1Ab from spiked rice leaf and rice flour samples ranged from 75 to 115%, with coefficient of variation (CV) less than 8.6% within the quantitation range (2.5-100 ng mL-1), showing good accuracy for the quantitative detection of Cry1Ab toxin in agricultural samples. In conclusion, this study provides a new approach for the production of high specific antibody and the newly developed DAS-ELISA is a useful method for Cry1Ab monitoring in agriculture products. Graphical Abstract Establishment of a DAS-ELISA for the specific detecting of Bacillus thuringiensis (Bt) Cry1Ab toxin.
Collapse
Affiliation(s)
- Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yuan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yajing Xie
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Jianfeng Zhong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Chongxin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China. .,College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
8
|
Jang H, Kwak CH, Kim G, Kim SM, Huh YS, Jeon TJ. Identification of genetically modified DNA found in Roundup Ready soybean using gold nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1899-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Dong S, Zhang C, Zhang X, Liu Y, Zhong J, Xie Y, Xu C, Ding Y, Zhang L, Liu X. Production and Characterization of Monoclonal Antibody Broadly Recognizing Cry1 Toxins by Use of Designed Polypeptide as Hapten. Anal Chem 2016; 88:7023-32. [DOI: 10.1021/acs.analchem.6b00429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sa Dong
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Cunzheng Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Xiao Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Yuan Liu
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Jianfeng Zhong
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Yajing Xie
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Chongxin Xu
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Ying Ding
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Liuquan Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Xianjin Liu
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
10
|
Jung SH, Jang H, Lim MC, Kim JH, Shin KS, Kim SM, Kim HY, Kim YR, Jeon TJ. Chromatic Biosensor for Detection of Phosphinothricin Acetyltransferase by Use of Polydiacetylene Vesicles Encapsulated within Automatically Generated Immunohydrogel Beads. Anal Chem 2015; 87:2072-8. [DOI: 10.1021/ac501795x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Min-Cheol Lim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jae-Hwan Kim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Kong-Sik Shin
- Biosafety
Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | | | - Hae-Yeong Kim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Young-Rok Kim
- Institute
of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | | |
Collapse
|
11
|
Haslberger AG. Need for an "integrated safety assessment" of GMOs, linking food safety and environmental considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:3173-80. [PMID: 16637668 DOI: 10.1021/jf0511650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence for substantial environmental influences on health and food safety comes from work with environmental health indicators which show that agroenvironmental practices have direct and indirect effects on human health, concluding that "the quality of the environment influences the quality and safety of foods" [Fennema, O. Environ. Health Perspect. 1990, 86, 229-232). In the field of genetically modified organisms (GMOs), Codex principles have been established for the assessment of GM food safety and the Cartagena Protocol on Biosafety outlines international principles for an environmental assessment of living modified organisms. Both concepts also contain starting points for an assessment of health/food safety effects of GMOs in cases when the environment is involved in the chain of events that could lead to hazards. The environment can act as a route of unintentional entry of GMOs into the food supply, such as in the case of gene flow via pollen or seeds from GM crops, but the environment can also be involved in changes of GMO-induced agricultural practices with relevance for health/food safety. Examples for this include potential regional changes of pesticide uses and reduction in pesticide poisonings resulting from the use of Bt crops or influences on immune responses via cross-reactivity. Clearly, modern methods of biotechnology in breeding are involved in the reasons behind the rapid reduction of local varieties in agrodiversity, which constitute an identified hazard for food safety and food security. The health/food safety assessment of GM foods in cases when the environment is involved needs to be informed by data from environmental assessment. Such data might be especially important for hazard identification and exposure assessment. International organizations working in these areas will very likely be needed to initiate and enable cooperation between those institutions responsible for the different assessments, as well as for exchange and analysis of information. An integrated assessment might help to focus and save capacities in highly technical areas such as molecular characterization or profiling, which are often necessary for both assessments. In the area of establishing international standards for traded foods, such as for the newly created Standards in Trade and Development Facility (STDF), an integrated assessment might help in the consideration of important environmental aspects involved in health and food safety. Furthermore, an established integrated view on GMOs may create greater consumer confidence in the technology.
Collapse
Affiliation(s)
- Alexander G Haslberger
- Vienna Ecology Center, Department for Nutritional Sciences, University of Vienna, Althanstrasse 2, A-1090 Vienna, Austria.
| |
Collapse
|
12
|
Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize. Anal Bioanal Chem 2006; 384:1269-75. [PMID: 16491341 DOI: 10.1007/s00216-006-0308-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 12/29/2005] [Accepted: 01/07/2006] [Indexed: 11/26/2022]
Abstract
Proteins from the Cry 1 family, in particular Cry 1Ab, are commonly expressed in genetically modified Bt maize in order to control chewing insect pests. A sensitive chemiluminescent sandwich enzyme immunoassay for the detection of Cry1Ab protein from genetically modified Bt maize has been developed and validated. A Cry1Ab protein-specific antibody was immobilized on 96- or 384-well microtiter plates in order to capture the Cry1Ab toxin in the sample; the bound toxin was then detected by employing a second anti-Cry1Ab antibody and a horseradish peroxidase-labeled anti-antibody, followed by measurement of the enzyme activity with an enhanced chemiluminescent system. The chemiluminescent assay fulfilled all the requirements of accuracy and precision and exhibited limits of detection of a few pg mL(-1) Cry1Ab (3 or 5 pg mL(-1), depending on the assay format), which are significantly lower than that achievable using conventional colorimetric detection of peroxidase activity and also represent an improvement compared to previously developed Cry1Ab immunoassays. High-throughput analysis can be performed using the 384-well microtiter plate format immunoassay, which also allows one to reduce the consumption of samples and reagents. Validation of the assay, performed by analyzing certified reference materials, proved that the immunoassay is able to detect the presence of the Cry1Ab protein in certified reference samples containing as low as 0.1% of MON 810 genetically modified Bt maize. This value is below the threshold requiring mandatory labeling of foods containing genetically modified material according to the actual EU regulation.
Collapse
Affiliation(s)
- A Roda
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Hollander RD. Social genomics: genomic inventions in society. The nature of what's to come. SCIENCE AND ENGINEERING ETHICS 2002; 8:485-496. [PMID: 12501718 DOI: 10.1007/s11948-002-0002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper identifies several kinds of intellectual mistakes that proponents of genetic engineering make, in defending their views and characterizing the views of their opponents. Results from research in the social sciences and humanities illuminate the nature of these mistakes. The mistakes themselves play a role in allowing proponents to gather support from other protagonists in the social controversies involving science and technology. Understanding the controversies requires understanding that innovations are components of complex and ill-structured social problems; the "right answer" does not follow from scientific or technological breakthroughs. If the problems are identified correctly, issues of non-economic or non-market values and political and individual rights will need to be addressed.
Collapse
|
14
|
Abstract
Legislation enacted worldwide to regulate the presence of genetically modified organisms (GMOs) in crops, foods and ingredients, necessitated the development of reliable and sensitive methods for GMO detection. In this article, protein- and DNA-based methods employing western blots, enzyme-linked immunosorbant assay, lateral flow strips, Southern blots, qualitative-, quantitative-, real-time- and limiting dilution-PCR methods, are discussed. Where information on modified gene sequences is not available, new approaches, such as near-infrared spectrometry, might tackle the problem of detection of non-approved genetically modified (GM) foods. The efficiency of screening, identification and confirmation strategies should be examined with respect to false-positive rates, disappearance of marker genes, increased use of specific regulator sequences and the increasing number of GM foods.
Collapse
MESH Headings
- Blotting, Southern/methods
- Blotting, Southern/standards
- Blotting, Southern/trends
- Blotting, Western/methods
- Blotting, Western/standards
- Blotting, Western/trends
- Canada
- DNA, Bacterial/isolation & purification
- DNA, Plant/isolation & purification
- Enzyme-Linked Immunosorbent Assay/methods
- Enzyme-Linked Immunosorbent Assay/standards
- Enzyme-Linked Immunosorbent Assay/trends
- European Union
- False Positive Reactions
- Food Analysis/methods
- Food, Genetically Modified/microbiology
- Food, Genetically Modified/standards
- Humans
- Models, Chemical
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/standards
- Polymerase Chain Reaction/trends
- United States
Collapse
Affiliation(s)
- Farid E Ahmed
- Dept of Radiation Oncology, Leo W. Jenkins Cancer Center, The Brody School of Medicine, LSB 014, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
15
|
Bakshi S, Sztejnberg A, Yarden O. Isolation and Characterization of a Cold-Tolerant Strain of Fusarium proliferatum, a Biocontrol Agent of Grape Downy Mildew. PHYTOPATHOLOGY 2001; 91:1062-8. [PMID: 18943441 DOI: 10.1094/phyto.2001.91.11.1062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT A cold-tolerant strain of the mycoparasite Fusarium proliferatum was isolated following UV mutagenesis of the G6 strain, which is a biocontrol agent of grape downy mildew. The isolated strain (designated 1505) exhibited radial growth two to threefold that of the parent strain when grown at 13 degrees C, which is generally suboptimal for growth of Fusarium spp., but desirable for its host, Plasmopara viticola. This rapid growth was correlated with improved biological control of P. viticola, determined by a detached-leaf assay. Even though radial growth of strain 1505 at higher temperatures was slower than that of G6 and the strain failed to conidiate, there was no reduction in biocontrol efficacy. Significantly higher levels of extracellular beta-glucosidase and endo-1,4-beta-glucanase activity were measured in the culture filtrate of strain 1505 relative to that of strain G6. A DNA-mediated transformation procedure that included the introduction of antibiotic resistance and a GUS reporter gene system was adapted for F. proliferatum. Using the GUS-engineered strains, we demonstrated that both G6 and 1505 exhibit the characteristic coiling and penetration of host structures.
Collapse
|
16
|
|
17
|
Biochemical Genetics. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|