1
|
Schubert K, Zhang J, Muscolo ME, Braly M, McCausland JW, Lam HN, Hug K, Loven M, Solis SR, Escobar ME, Moore H, Terciano D, Pacheco DF, Lowe TM, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. PLoS Pathog 2025; 21:e1012655. [PMID: 40424556 DOI: 10.1371/journal.ppat.1012655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a key role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Yersinia pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Yersinia virulence (pYV). Several layers of gene regulation enable a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37˚C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is required for robust expression of the Shigella flexneri T3SS that, similar to Yersinia, is encoded on a virulence plasmid whose replication is regulated by sRNA. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of sRNA-regulated virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I promotes virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
| | - Michele E Muscolo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, United States of America
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew Loven
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Santiago Ruiz Solis
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Melissa Estrada Escobar
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Diana Fernandez Pacheco
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Todd M Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Cammie F Lesser
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala Universitet, Uppsala, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
2
|
Jia Z, Rui P, Fang X, Han K, Yu T, Lu Y, Zheng H, Chen J, Yan F, Wu G. Proteolysis of host DEAD-box RNA helicase by potyviral proteases activates plant immunity. THE NEW PHYTOLOGIST 2025; 245:1655-1672. [PMID: 39611543 DOI: 10.1111/nph.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The precise mechanisms by which plant viral proteases interact with and cleave host proteins, thereby participating in virus-host interactions, are not well understood. Potyviruses, the largest group of known plant-infecting RNA viruses, are known to rely on the nuclear inclusion protease a (NIa-Pro) for the processing of viral polyproteins. Here, we demonstrate that the proteolytic activity of NIa-Pro from potyvirus turnip mosaic virus (TuMV) is indispensable for inducing hypersensitive cell death in Nicotiana benthamiana. NIa-Pro targets and degrades the host DEAD-box protein 5 (DBP5) via a specific cleavage motif, which initiates host cell death. Both the silencing of DBP5 and the overexpression of NIa-Pro lead to an increased frequency of stop codon readthrough, which could be potentially harmful to the host, as it may result in the production of aberrant proteins. Unlike the NIa-Pro of most other potyviruses, the NIa-Pro of tobacco etch virus can also degrade DBP5 and trigger cell death, in both pepper and N. benthamiana. Furthermore, we discovered that the TuMV-encoded nuclear inclusion b can counteract NIa-Pro-induced cell death by co-opting DBP5. These findings unveil hitherto uncharacterized roles for plant virus proteases in cleaving host proteins and highlight the role of host DBP5 in modulating plant immunity.
Collapse
Affiliation(s)
- Zhaoxing Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xinxin Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianqi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
3
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
4
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
5
|
Schubert K, Braly M, Zhang J, Muscolo ME, Lam HN, Hug K, Moore H, McCausland JW, Terciano D, Lowe T, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617751. [PMID: 39416138 PMCID: PMC11482874 DOI: 10.1101/2024.10.11.617751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a critical role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Y. pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Y ersinia virulence (pYV). Several layers of gene regulation enables a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37°C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is also required for robust expression of the Shigella flexneri virulence plasmid-encoded T3SS. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining normal PCN of model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I reinforces PCN and virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - Michele E Muscolo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Todd Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
6
|
Sharma A, Iruegas-Bocardo F, Bibi S, Chen YC, Kim JG, Abrahamian P, Minsavage GV, Hurlbert JC, Vallad GE, Mudgett MB, Jones JB, Goss EM. Multiple Acquisitions of XopJ2 Effectors in Populations of Xanthomonas perforans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:736-747. [PMID: 39102648 DOI: 10.1094/mpmi-05-24-0048-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Type III effectors (T3Es) are major determinants of Xanthomonas virulence and targets for resistance breeding. XopJ2 (synonym AvrBsT) is a highly conserved YopJ-family T3E acquired by X. perforans, the pathogen responsible for bacterial spot disease of tomato. In this study, we characterized a new variant (XopJ2b) of XopJ2, which is predicted to have a similar three-dimensional (3D) structure as the canonical XopJ2 (XopJ2a) despite sharing only 70% sequence identity. XopJ2b carries an acetyltransferase domain and the critical residues required for its activity, and the positions of these residues are predicted to be conserved in the 3D structure of the proteins. We demonstrated that XopJ2b is a functional T3E and triggers a hypersensitive response (HR) when translocated into pepper cells. Like XopJ2a, XopJ2b triggers HR in Arabidopsis that is suppressed by the deacetylase, SOBER1. We found xopJ2b in genome sequences of X. euvesicatoria, X. citri, X. guizotiae, and X. vasicola strains, suggesting widespread horizontal transfer. In X. perforans, xopJ2b was present in strains collected in North America, Africa, Asia, Australia, and Europe, whereas xopJ2a had a narrower geographic distribution. This study expands the Xanthomonas T3E repertoire, demonstrates functional conservation in T3E evolution, and further supports the importance of XopJ2 in X. perforans fitness on tomato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anuj Sharma
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL 32611, U.S.A
| | | | - Shaheen Bibi
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Yun-Chu Chen
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Peter Abrahamian
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL 32611, U.S.A
| | - Gerald V Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jason C Hurlbert
- Department of Chemistry, Physics, and Geology, Winthrop University, Rock Hill, SC 29733, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL 32611, U.S.A
| | - Mary B Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
7
|
Du J, Wang Z. Regulation of RIPK1 Phosphorylation: Implications for Inflammation, Cell Death, and Therapeutic Interventions. Biomedicines 2024; 12:1525. [PMID: 39062098 PMCID: PMC11275223 DOI: 10.3390/biomedicines12071525] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) plays a crucial role in controlling inflammation and cell death. Its function is tightly controlled through post-translational modifications, enabling its dynamic switch between promoting cell survival and triggering cell death. Phosphorylation of RIPK1 at various sites serves as a critical mechanism for regulating its activity, exerting either activating or inhibitory effects. Perturbations in RIPK1 phosphorylation status have profound implications for the development of severe inflammatory diseases in humans. This review explores the intricate regulation of RIPK1 phosphorylation and dephosphorylation and highlights the potential of targeting RIPK1 phosphorylation as a promising therapeutic strategy for mitigating human diseases.
Collapse
Affiliation(s)
- Jingchun Du
- Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| |
Collapse
|
8
|
Bhadauria V, Zhao W. The Molecular Genetics and Genomics of Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:3970. [PMID: 38612780 PMCID: PMC11012200 DOI: 10.3390/ijms25073970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Plants have evolved an intricate immune system to protect themselves from potential pathogens [...].
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture and Rural Affairs—Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture and Rural Affairs—Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Lan Z, Qu L, Liang Y, Chen L, Xu S, Ge J, Xue Z, Bao X, Xia S, Yang H, Huang J, Xu Y, Zhu X. AZD1390, an ataxia telangiectasia mutated inhibitor, attenuates microglia-mediated neuroinflammation and ischemic brain injury. CNS Neurosci Ther 2024; 30:e14696. [PMID: 38668740 PMCID: PMC11048048 DOI: 10.1111/cns.14696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
AIMS Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhen Lan
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Long‐jie Qu
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Ying Liang
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Li‐qiu Chen
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Shuai Xu
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Jian‐wei Ge
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Zhi‐wei Xue
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Xin‐yu Bao
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Sheng‐nan Xia
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Hai‐yan Yang
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Jing Huang
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yun Xu
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Xiao‐lei Zhu
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| |
Collapse
|
10
|
Lauber E, González-Fuente M, Escouboué M, Vicédo C, Luneau JS, Pouzet C, Jauneau A, Gris C, Zhang ZM, Pichereaux C, Carrère S, Deslandes L, Noël LD. Bacterial host adaptation through sequence and structural variations of a single type III effector gene. iScience 2024; 27:109224. [PMID: 38439954 PMCID: PMC10909901 DOI: 10.1016/j.isci.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.
Collapse
Affiliation(s)
- Emmanuelle Lauber
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Manuel González-Fuente
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Maxime Escouboué
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Céline Vicédo
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Julien S. Luneau
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Cécile Pouzet
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Alain Jauneau
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Carine Gris
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Auzeville-Tolosane, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| |
Collapse
|
11
|
Youssouf N, Martin M, Bischoff M, Soubeyran P, Gannoun-Zaki L, Molle V. The secreted tyrosine phosphatase PtpA promotes Staphylococcus aureus survival in RAW 264.7 macrophages through decrease of the SUMOylation host response. Microbiol Spectr 2023; 11:e0281323. [PMID: 37819153 PMCID: PMC10714793 DOI: 10.1128/spectrum.02813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus uses numerous strategies to survive and persist in the intracellular environment of professional phagocytes, including modulation of the SUMOylation process. This study aims to understand how S. aureus alters host SUMOylation to enhance its intracellular survival in professional phagocytes. Our results indicate that S. aureus strain Newman utilizes PtpA-driven phosphorylation to decrease the amount of SUMOylated proteins in murine macrophages to facilitate its survival in this immune cell type.
Collapse
Affiliation(s)
- Nadhuma Youssouf
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| | - Marianne Martin
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Saarland, Germany
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR, Aix-Marseille, Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Virginie Molle
- VBIC, INSERM U1047, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Tomar V, Rikkerink EHA, Song J, Sofkova-Bobcheva S, Bus VGM. Structure-Function Characterisation of Eop1 Effectors from the Erwinia-Pantoea Clade Reveals They May Acetylate Their Defence Target through a Catalytic Dyad. Int J Mol Sci 2023; 24:14664. [PMID: 37834112 PMCID: PMC10572645 DOI: 10.3390/ijms241914664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The YopJ group of acetylating effectors from phytopathogens of the genera Pseudomonas and Ralstonia have been widely studied to understand how they modify and suppress their host defence targets. In contrast, studies on a related group of effectors, the Eop1 group, lag far behind. Members of the Eop1 group are widely present in the Erwinia-Pantoea clade of Gram-negative bacteria, which contains phytopathogens, non-pathogens and potential biocontrol agents, implying that they may play an important role in agroecological or pathological adaptations. The lack of research in this group of YopJ effectors has left a significant knowledge gap in their functioning and role. For the first time, we perform a comparative analysis combining AlphaFold modelling, in planta transient expressions and targeted mutational analyses of the Eop1 group effectors from the Erwinia-Pantoea clade, to help elucidate their likely activity and mechanism(s). This integrated study revealed several new findings, including putative binding sites for inositol hexakisphosphate and acetyl coenzyme A and newly postulated target-binding domains, and raises questions about whether these effectors function through a catalytic triad mechanism. The results imply that some Eop1s may use a catalytic dyad acetylation mechanism that we found could be promoted by the electronegative environment around the active site.
Collapse
Affiliation(s)
- Vishant Tomar
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Erik H. A. Rikkerink
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Janghoon Song
- Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju 58216, Republic of Korea
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Vincent G. M. Bus
- Hawkes Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4130, New Zealand;
| |
Collapse
|
13
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
14
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
15
|
Cornet-Gomez A, Retana Moreira L, Kronenberger T, Osuna A. Extracellular vesicles of trypomastigotes of Trypanosoma cruzi induce changes in ubiquitin-related processes, cell-signaling pathways and apoptosis. Sci Rep 2023; 13:7618. [PMID: 37165081 PMCID: PMC10171165 DOI: 10.1038/s41598-023-34820-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. The disease has an acute and a chronic phase in which approximately 30% of the chronic patients suffer from heart disease and/or gastrointestinal symptoms. The pathogenesis of the disease is multifactorial and involves the virulence of the strains, immunological factors and extracellular vesicles (EV) shed by the parasite which participate in cell-cell communication and evasion of the immune response. In this work, we present a transcriptomic analysis of cells stimulated with EV of the trypomastigote stage of T. cruzi. Results after EV-cell incubation revealed 322 differentially expressed genes (168 were upregulated and 154 were downregulated). In this regard, the overexpression of genes related to ubiquitin-related processes (Ube2C, SUMO1 and SUMO2) is highlighted. Moreover, the expression of Rho-GTPases (RhoA, Rac1 and Cdc42) after the interaction was analyzed, revealing a downregulation of the analyzed genes after 4 h of interaction. Finally, a protective role of EV over apoptosis is suggested, as relative values of cells in early and late apoptosis were significantly lower in EV-treated cells, which also showed increased CSNK1G1 expression. These results contribute to a better understanding of the EV-cell interaction and support the role of EV as virulence factors.
Collapse
Affiliation(s)
- Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain.
| |
Collapse
|
16
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
17
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
18
|
Okuda K, Silva Costa Franco MM, Yasunaga A, Gazzinelli R, Rabinovitch M, Cherry S, Silverman N. Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival. iScience 2022; 25:104909. [PMID: 36060064 PMCID: PMC9436752 DOI: 10.1016/j.isci.2022.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmania parasites use elaborate virulence mechanisms to invade and thrive in macrophages. These virulence mechanisms inhibit host cell defense responses and generate a specialized replicative niche, the parasitophorous vacuole. In this work, we performed a genome-wide RNAi screen in Drosophila macrophage-like cells to identify the host factors necessary for Leishmania amazonensis infection. This screen identified 52 conserved genes required specifically for parasite entry, including several components of the SUMOylation machinery. Further studies in mammalian macrophages found that L. amazonensis infection inhibited SUMOylation within infected macrophages and this inhibition enhanced parasitophorous vacuole growth and parasite proliferation through modulation of multiple genes especially ATP6V0D2, which in turn affects CD36 expression and cholesterol levels. Together, these data suggest that parasites actively sabotage host SUMOylation and alter host transcription to improve their intracellular niche and enhance their replication.
Collapse
Affiliation(s)
- Kendi Okuda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Miriam Maria Silva Costa Franco
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
- Centro de Tecnologia de Vacinas, Universidade Federal of Minas Gerais, Belo Horizonte, MG 31270, Brazil
- Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG 30190, Brazil
| | - Michel Rabinovitch
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
19
|
|
20
|
Olawole OI, Liu Q, Chen C, Gleason ML, Beattie GA. The Contributions to Virulence of the Effectors Eop1 and DspE Differ Between Two Clades of Erwinia tracheiphila Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1399-1408. [PMID: 34505816 DOI: 10.1094/mpmi-06-21-0149-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strains of Erwinia tracheiphila, causal agent of bacterial wilt of cucurbits, are divided into distinct clades. Et-melo clade strains wilt Cucumis spp. but not Cucurbita spp., thus exhibiting host specificity, whereas Et-C1 clade strains wilt Cucurbita spp. more rapidly than Cucumis melo, thus exhibiting a host preference. This study investigated the contribution of the effector proteins Eop1 and DspE to E. tracheiphila pathogenicity and host adaptation. Loss of eop1 did not enable Et-melo strains to infect squash (Cucurbita pepo) or an Et-C1 strain to induce a more rapid wilt of muskmelon (Cucumis melo), indicating that Eop1 did not function in host specificity or preference as in the related pathogen E. amylovora. However, overexpression of eop1 from Et-melo strain MDCuke but not from Et-C1 strain BHKY increased the virulence of a BHKY eop1 deletion mutant on muskmelon, demonstrating that the Eop1 variants in the two clades are distinct in their virulence functions. Loss of dspE from Et-melo strains reduced but did not eliminate virulence on hosts muskmelon and cucumber, whereas loss of dspE from an Et-C1 strain eliminated pathogenicity on hosts squash, muskmelon, and cucumber. Thus, the centrality of DspE to virulence differs in the two clades. Et-melo mutants lacking the chaperone DspF exhibited similar virulence to mutants lacking DspE, indicating that DspF is the sole chaperone for DspE in E. tracheiphila, unlike in E. amylovora. Collectively, these results provide the first functional evaluation of effectors in E. tracheiphila and demonstrate clade-specific differences in the roles of Eop1 and DspE.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Olakunle I Olawole
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Qian Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Chiliang Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| |
Collapse
|
21
|
Abstract
Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.
Collapse
|
22
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Sharma M, Fuertes D, Perez-Gil J, Lois LM. SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Front Cell Dev Biol 2021; 9:703795. [PMID: 34485289 PMCID: PMC8415633 DOI: 10.3389/fcell.2021.703795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Plants are constantly confronted by a multitude of biotic stresses involving a myriad of pathogens. In crops, pathogen infections result in significant agronomical losses worldwide posing a threat to food security. In order to enter plant tissues and establish a successful infection, phytopathogens have to surpass several physical, and chemical defense barriers. In recent years, post-translational modification (PTM) mechanisms have emerged as key players in plant defense against pathogens. PTMs allow a highly dynamic and rapid response in front of external challenges, increasing the complexity and precision of cellular responses. In this review, we focus on the role of SUMO conjugation (SUMOylation) in plant immunity against fungi, bacteria, and viruses. In plants, SUMO regulates multiple biological processes, ranging from development to responses arising from environmental challenges. During pathogen attack, SUMO not only modulates the activity of plant defense components, but also serves as a target of pathogen effectors, highlighting its broad role in plant immunity. Here, we summarize known pathogenic strategies targeting plant SUMOylation and, the plant SUMO conjugates involved in host-pathogen interactions. We also provide a catalog of candidate SUMO conjugates according to their role in defense responses. Finally, we discuss the complex role of SUMO in plant defense, focusing on key biological and experimental aspects that contribute to some controversial conclusions, and the opportunities for improving agricultural productivity by engineering SUMOylation in crop species.
Collapse
Affiliation(s)
- Manisha Sharma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Biosciences, College of Life and Environment Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Fuertes
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - L Maria Lois
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
24
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Pandey A, Moon H, Choi S, Yoon H, Prokchorchik M, Jayaraman J, Sujeevan R, Kang YM, McCann HC, Segonzac C, Kim CM, Park SJ, Sohn KH. Ralstonia solanacearum Type III Effector RipJ Triggers Bacterial Wilt Resistance in Solanum pimpinellifolium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:962-972. [PMID: 33881922 DOI: 10.1094/mpmi-09-20-0256-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt disease in solanaceous crops. Identification of avirulence type III-secreted effectors recognized by specific disease resistance proteins in host plant species is an important step toward developing durable resistance in crops. In the present study, we show that R. solanacearum effector RipJ functions as an avirulence determinant in Solanum pimpinellifolium LA2093. In all, 10 candidate avirulence effectors were shortlisted based on the effector repertoire comparison between avirulent Pe_9 and virulent Pe_1 strains. Infection assays with transgenic strain Pe_1 individually carrying a candidate avirulence effector from Pe_9 revealed that only RipJ elicits strong bacterial wilt resistance in S. pimpinellifolium LA2093. Furthermore, we identified that several RipJ natural variants do not induce bacterial wilt resistance in S. pimpinellifolium LA2093. RipJ belongs to the YopJ family of acetyltransferases. Our sequence analysis indicated the presence of partially conserved putative catalytic residues. Interestingly, the conserved amino acid residues in the acetyltransferase catalytic triad are not required for effector-triggered immunity. In addition, we show that RipJ does not autoacetylate its lysine residues. Our study reports the identification of the first R. solanacearum avirulence protein that triggers bacterial wilt resistance in tomato. We expect that our discovery of RipJ as an avirulence protein will accelerate the development of bacterial wilt-resistant tomato varieties in the future.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ankita Pandey
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayoung Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayeon Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | - Jay Jayaraman
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert Auckland 1025, New Zealand
| | - Rajendran Sujeevan
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yu Mi Kang
- Division of Horticulture Industry, Wonkwang University, Iksan 554438, Republic of Korea
| | - Honour C McCann
- Institute of Advanced Studies, Massey University, Auckland 0745, New Zealand
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cécile Segonzac
- Department of Plant Science, Plant Genome and Breeding Institute, Agricultural Life Science Research Institute, Seoul National University, 08826, Seoul, Republic of Korea
- Plant Immunity Research Center, Seoul National University, 08826, Seoul, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 08826, Seoul, Republic of Korea
| | - Chul Min Kim
- Division of Horticulture Industry, Wonkwang University, Iksan 554438, Republic of Korea
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Biosciences and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
26
|
Staphylococcus aureus Decreases SUMOylation Host Response to Promote Intramacrophage Survival. Int J Mol Sci 2021; 22:ijms22158108. [PMID: 34360873 PMCID: PMC8347835 DOI: 10.3390/ijms22158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a commensal bacterium that causes severe infections in soft tissue and the bloodstream. During infection, S. aureus manipulates host cell response to facilitate its own replication and dissemination. Here, we show that S. aureus significantly decreases the level of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-phagocytosis. The reduced level of SUMOylation correlates with a decrease in the SUMO-conjugating enzyme Ubc9. The over-expression of SUMO proteins in macrophages impaired bacterial intracellular proliferation and the inhibition of SUMOylation with ML-792 increased it. Together, these findings demonstrated for the first time the role of host SUMOylation response toward S. aureus infection.
Collapse
|
27
|
Zheng W, Peng Z, Peng S, Yu Z, Cao Z. Multinuclei Occurred Under Cryopreservation and Enhanced the Pathogenicity of Melampsora larici-populina. Front Microbiol 2021; 12:650902. [PMID: 34248868 PMCID: PMC8270653 DOI: 10.3389/fmicb.2021.650902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Melampsora larici-populina is a macrocyclic rust, and the haploid stage with two nuclei and the diploid of mononuclear sequentially occur annually. During the preservation of dry urediniospores at −80°C, we found that one isolate, ΔTs06, was different from the usual wild-type isolate Ts06 at −20°C because it has mixed polykaryotic urediniospores. However, the other spores, including the 0, I, III, and IV stages of a life cycle, were the same as Ts06. After five generations of successive inoculation and harvest of urediniospores from the compatible host Populus purdomii, the isolate ΔTs06 steadily maintained more than 20% multiple nucleus spores. To test the pathogenesis variation of ΔTs06, an assay of host poplars was applied to evaluate the differences between ΔTs06 and Ts06. After ΔTs06 and Ts06 inoculation, leaves of P. purdomii were used to detect the expression of small secreted proteins (SSPs) and fungal biomasses using quantitative real-time PCR (qRT-PCR) and trypan blue staining. ΔTs06 displayed stronger expression of five SSPs and had a shorter latent period, a higher density of uredinia, and higher DNA mass. A transcriptomic comparison between ΔTs06 and Ts06 revealed that 3,224 were differentially expressed genes (DEGs), 55 of which were related to reactive oxygen species metabolism, the Mitogen-activated protein kinase (MAPK) signaling pathway, and the meiosis pathway. Ten genes in the mitotic and meiotic pathways and another two genes associated with the “response to DNA damage stimulus” all had an upward expression, which were detected by qRT-PCR in ΔTs06 during cryopreservation. Gas chromatography–mass spectrometry (GC-MS) confirmed that the amounts of hexadecanoic acid and octadecadienoic acid were much more in ΔTs06 than in Ts06. In addition, using spectrophotometry, hydrogen peroxide (H2O2) was also present in greater quantities in ΔTs06 compared with those found in Ts06. Increased fatty acids metabolism could prevent damage to urediniospores in super-low temperatures, but oxidant species that involved H2O2 may destroy tube proteins of mitosis and meiosis, which could cause abnormal nuclear division and lead to multinucleation, which has a different genotype. Therefore, the multinuclear isolate is different from the wild-type isolate in terms of phenotype and genotype; this multinucleation phenomenon in urediniospores improves the pathogenesis and environmental fitness of M. larici-populina.
Collapse
Affiliation(s)
- Wei Zheng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zijia Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Shaobing Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhongdong Yu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
29
|
Chakraborty J. In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function. JOURNAL OF PLANT RESEARCH 2021; 134:599-611. [PMID: 33730245 DOI: 10.1007/s10265-021-01274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bacterial acetyltransferase effectors belonging to the Yersinia outer protein J (YopJ) group inhibit multiple immune signaling pathways in human and plants. The present study determines in-silico acetyl-coenzyme A (AcCoA) binding and Arabidopsis immune regulator RPM1-interacting protein4 (RIN4) peptide interactions to YopJ effector hypersensitivity and pathogenesis-dependent outer proteinZ3 (HopZ3) from Pseudomonas syringae. Phylogenetic analysis revealed that HopZ3 was clustered by acetyltransferase effectors from plant bacterial pathogens. Structural juxtaposition shows HopZ3 comprises topology matched closer with HopZ1a than PopP2 effectors, respectively. AcCoA binds HopZ3 at two sites i.e., substrate binding pocket and catalytic site. AcCoA interactions to substrate binding pocket was transient and dissipated upon in-silico mutation of Ser 279 residue whereas, attachment to catalytic site was found to be stable in the presence of inositol hexaphosphate (IP6) as a co-factor. Interface atoms used for measuring hydrogen bond distances, bound or accessible surface area, and root-mean-square fluctuation (RMSF) values, suggests that the HopZ3 complex stabilizes after binding to AcCoA ligand and RIN4 peptide. The few non-conserved polymorphic residues that have been displayed on HopZ3 surface presumably confer intracellular recognitions within hosts. Collectively, homology modeling and interactive docking experiments were used to substantiate Arabidopsis immune 'guardee' interactions to HopZ3.
Collapse
|
30
|
Mooney BC, Mantz M, Graciet E, Huesgen PF. Cutting the line: manipulation of plant immunity by bacterial type III effector proteases. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3395-3409. [PMID: 33640987 DOI: 10.1093/jxb/erab095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host's innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host's immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation that remains is the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases and compare their functions with those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.
Collapse
Affiliation(s)
- Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
32
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
33
|
Abstract
Klebsiella pneumoniae has been singled out as an urgent threat to human health due to the increasing isolation of strains resistant to “last-line” antimicrobials, narrowing the treatment options against Klebsiella infections. Unfortunately, at present, we cannot identify candidate compounds in late-stage development for treatment of multidrug-resistant Klebsiella infections; this pathogen is exemplary of the mismatch between unmet medical needs and the current antimicrobial research and development pipeline. Furthermore, there is still limited evidence on K. pneumoniae pathogenesis at the molecular and cellular levels in the context of the interactions between bacterial pathogens and their hosts. In this research, we have uncovered a sophisticated strategy employed by Klebsiella to subvert the activation of immune defenses by controlling the modification of proteins. Our research may open opportunities to develop new therapeutics based on counteracting this Klebsiella-controlled immune evasion strategy. Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Understanding the virulence mechanisms of K. pneumoniae is a priority and timely to design new therapeutics. Here, we demonstrate that K. pneumoniae limits the SUMOylation of host proteins in epithelial cells and macrophages (mouse and human) to subvert cell innate immunity. Mechanistically, in lung epithelial cells, Klebsiella increases the levels of the deSUMOylase SENP2 in the cytosol by affecting its K48 ubiquitylation and its subsequent degradation by the ubiquitin proteasome. This is dependent on Klebsiella preventing the NEDDylation of the Cullin-1 subunit of the ubiquitin ligase complex E3-SCF-βTrCP by exploiting the CSN5 deNEDDylase. Klebsiella induces the expression of CSN5 in an epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-extracellular signal-regulated kinase (ERK)-glycogen synthase kinase 3 beta (GSK3β) signaling pathway-dependent manner. In macrophages, Toll-like receptor 4 (TLR4)-TRAM-TRIF-induced type I interferon (IFN) via IFN receptor 1 (IFNAR1)-controlled signaling mediates Klebsiella-triggered decrease in the levels of SUMOylation via let-7 microRNAs (miRNAs). Our results revealed the crucial role played by Klebsiella polysaccharides, the capsule, and the lipopolysaccharide (LPS) O-polysaccharide, to decrease the levels of SUMO-conjugated proteins in epithelial cells and macrophages. A Klebsiella-induced decrease in SUMOylation promotes infection by limiting the activation of inflammatory responses and increasing intracellular survival in macrophages.
Collapse
|
34
|
Bacterial virulence mediated by orthogonal post-translational modification. Nat Chem Biol 2020; 16:1043-1051. [PMID: 32943788 DOI: 10.1038/s41589-020-0638-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens secrete virulence factors, also known as effector proteins, directly into host cells. These effectors suppress pro-inflammatory host signaling while promoting bacterial infection. A particularly interesting subset of effectors post-translationally modify host proteins using novel chemistry that is not otherwise found in the mammalian proteome, which we refer to as 'orthogonal post-translational modification' (oPTM). In this Review, we profile oPTM chemistry for effectors that catalyze serine/threonine acetylation, phosphate β-elimination, phosphoribosyl-linked ubiquitination, glutamine deamidation, phosphocholination, cysteine methylation, arginine N-acetylglucosaminylation, and glutamine ADP-ribosylation on host proteins. AMPylation, a PTM that could be considered orthogonal until only recently, is also discussed. We further highlight known cellular targets of oPTMs and their resulting biological consequences. Developing a complete understanding of oPTMs and the host cell processes they hijack will illuminate critical steps in the infection process, which can be harnessed for a variety of therapeutic, diagnostic, and synthetic applications.
Collapse
|
35
|
Ji X, Zhang X, Sun L, Hou X, Song J, Tan X, Song H, Qiu X, Li M, Tang L, Han L, Li Z. Mce1C and Mce1D facilitate N. farcinica invasion of host cells and suppress immune responses by inhibiting innate signaling pathways. Sci Rep 2020; 10:14908. [PMID: 32913259 PMCID: PMC7484815 DOI: 10.1038/s41598-020-71860-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The mammalian cell entry (Mce) family of proteins consists of invasin-like membrane-associated proteins. The roles of Mce1C and Mce1D proteins in host–pathogen interactions have not been investigated. In this study, we demonstrate that Mce1C and Mce1D protein is localized in the cell wall fraction of N. farcinica. Both N. farcinica Mce1C and Mce1D proteins are expressed at the level of protein and mRNA and elicit antibody responses during infection. Mce1C and Mce1D facilitate the internalization of Escherichia coli expressing Mce1C protein or latex beads coated with Mce1D protein by HeLa cells, respectively. We further demonstrate that Mce1C and Mce1D can suppress the secretion of the proinflammatory factors TNF-α and IL-6 in macrophages infected with Mycobacterium smegmatis expressing Mce1C or Mce1D and promote the survival of M. smegmatis expressing Mce1C or Mce1D in macrophages. In addition, Mce1C and Mce1D supress the activation of the NF-κB and MAPK signaling pathways by blocking the phosphorylation of AKT, P65, ERK1/2, JNK, or P38 in macrophages. These findings suggest that Mce1C and Mce1D proteins facilitate N. farcinica invasion of HeLa cells and suppress host innate immune responses by manipulating NF-κB and MAPK signaling pathways, which may provide a target for N. farcinica treatment.
Collapse
Affiliation(s)
- Xingzhao Ji
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiujuan Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lina Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Jingdong Song
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoluo Tan
- Chenzhou Center for Disease Control and Prevention, Chenzhou, China
| | - Han Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Minghui Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Lu Tang
- First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China.
| |
Collapse
|
36
|
Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol 2020; 74:221-245. [PMID: 32660389 DOI: 10.1146/annurev-micro-020518-120221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.
Collapse
Affiliation(s)
- Katherine Andrea Schubert
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
37
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
38
|
Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. Modification of the host ubiquitome by bacterial enzymes. Microbiol Res 2020; 235:126429. [PMID: 32109687 PMCID: PMC7369425 DOI: 10.1016/j.micres.2020.126429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Attachment of ubiquitin molecules to protein substrates is a reversible post-translational modification (PTM), which occurs ubiquitously in eukaryotic cells and controls most cellular processes. As a consequence, ubiquitination is an attractive target of pathogen-encoded virulence factors. Pathogenic bacteria have evolved multiple mechanisms to hijack the host's ubiquitin system to their advantage. In this review, we discuss the bacteria-encoded E3 ligases and deubiquitinases translocated to the host for an addition or removal of eukaryotic ubiquitin modification, effectively hijacking the host's ubiquitination processes. We review bacterial enzymes homologous to host proteins in sequence and functions, as well as enzymes with novel mechanisms in ubiquitination, which have significant structural differences in comparison to the mammalian E3 ligases. Finally, we will also discuss examples of molecular "counter-weapons" - eukaryotic proteins, which counteract pathogen-encoded E3 ligases. The many examples of the pathogen effector molecules that catalyze eukaryotic ubiquitin modification bring to light the intricate pathways involved in the pathogenesis of some of the most virulent bacterial infections with human pathogens. The role of these effector molecules remains an essential determinant of bacterial virulence in terms of infection, invasion, and replication. A comprehensive understanding of the mechanisms dictating the mimicry employed by bacterial pathogens is of vital importance in developing new strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Berglund
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Rafaela Gjondrekaj
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Ellen Verney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA.
| |
Collapse
|
39
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
40
|
Ma N, Hu J, Zhang ZM, Liu W, Huang M, Fan Y, Yin X, Wang J, Ding K, Ye W, Li Z. 2 H-Azirine-Based Reagents for Chemoselective Bioconjugation at Carboxyl Residues Inside Live Cells. J Am Chem Soc 2020; 142:6051-6059. [PMID: 32159959 DOI: 10.1021/jacs.9b12116] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein modification by chemical reagents has played an essential role in the treatment of human diseases. However, the reagents currently used are limited to the covalent modification of cysteine and lysine residues. It is thus desirable to develop novel methods that can covalently modify other residues. Despite the fact that the carboxyl residues are crucial for maintaining the protein function, few selective labeling reactions are currently available. Here, we describe a novel reactive probe, 3-phenyl-2H-azirine, that enables chemoselective modification of carboxyl groups in proteins under both in vitro and in situ conditions with excellent efficiency. Furthermore, proteome-wide profiling of reactive carboxyl residues was performed with a quantitative chemoproteomic platform.
Collapse
Affiliation(s)
- Nan Ma
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jun Hu
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wenyan Liu
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Minhao Huang
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Youlong Fan
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xingfeng Yin
- Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangdong 510632, China
| | - Jigang Wang
- The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China.,Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ke Ding
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wencai Ye
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
41
|
Schreiber KJ, Lewis JD. Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A. Methods Mol Biol 2020; 1991:23-32. [PMID: 31041759 DOI: 10.1007/978-1-4939-9458-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein acetylation has emerged as a common modification that modulates multiple aspects of protein function, including localization, stability, and protein-protein interactions. It is increasingly evident that protein acetylation significantly impacts the outcome of host-microbe interactions. In order to characterize novel putative acetyltransferase enzymes and their substrates, we describe a simple protocol for the detection of acetyltransferase activity in vitro. Purified proteins are incubated with 14C-acetyl CoA and separated electrophoretically, and acetylated proteins are detected by phosphorimaging or autoradiography.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA. .,Plant Gene Expression Center, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
42
|
Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 2020; 47:1857-1866. [PMID: 31845741 DOI: 10.1042/bst20190526] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Protein ubiquitination is a posttranslational modification that regulates many aspects of cellular life, including proteostasis, vesicular trafficking, DNA repair and NF-κB activation. By directly targeting intracellular bacteria or bacteria-containing vacuoles to the lysosome, ubiquitination is also an important component of cell-autonomous immunity. Not surprisingly, several pathogenic bacteria encode deubiquitinases (DUBs) and use them as secreted effectors that prevent ubiquitination of bacterial components. A systematic overview of known bacterial DUBs, including their cleavage specificities and biological roles, suggests multiple independent acquisition events from host-encoded DUBs and other proteases. The widely used classification of DUBs into seven well-defined families should only be applied to eukaryotic DUBs, since several bacterial DUBs do not follow this classification.
Collapse
|
43
|
Difference in Strain Pathogenicity of Septicemic Yersinia pestis Infection in a TLR2 -/- Mouse Model. Infect Immun 2020; 88:IAI.00792-19. [PMID: 31907194 DOI: 10.1128/iai.00792-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is the causative agent of bubonic, pneumonic, and septicemic plague. We demonstrate that Toll-like receptor 2-deficient (TLR2-/-) mice are resistant to septicemic infection by the KIM5 strain of Y. pestis but not to infection by the CO92 Δpgm strain. This resistance is dependent on TLR2, the route of infection, and the isoform of YopJ. Elevated bacterial burdens were found in the spleens of CO92 Δpgm-infected animals by 24 h postinfection and in the livers by 4 days. The YopJ isoform present contributed directly to cytotoxicity and inflammatory cytokine production of bone marrow-derived macrophages from TLR2-/- mice. Immune cell trafficking is altered in CO92 Δpgm infections, with an increased neutrophil infiltration to the spleen 5 days postinfection. Immune cell infiltration to the liver was greater and earlier in KIM5-infected TLR2-/- mice. The functionality of the immune cells was assessed by the ability to develop reactive oxygen and nitrogen species. Our data suggest an inhibition of granulocytes in forming these species in CO92 Δpgm-infected TLR2-/- mice. These findings suggest that resistance to KIM5 in TLR2-/- mice is dependent on early immune cell trafficking and functionality.
Collapse
|
44
|
Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infect Immun 2020; 88:IAI.00909-19. [PMID: 31871100 DOI: 10.1128/iai.00909-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Collapse
|
45
|
The Invasion Plasmid Antigen J (IpaJ) from Salmonella Inhibits NF-κB Activation by Suppressing IκBα Ubiquitination. Infect Immun 2020; 88:IAI.00875-19. [PMID: 31843963 DOI: 10.1128/iai.00875-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica serovar Pullorum is the pathogen of pullorum disease, which leads to severe economic losses in many developing countries. In contrast to the strong inflammatory response induced by Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Enteritidis, S Pullorum causes systemic infection with little inflammation. The effector proteins secreted by Salmonella often play a crucial role in modulating host signal transduction and cellular processes to the pathogen's advantage. In the present study, the invasion plasmid antigen J (IpaJ) protein specifically identified in S Pullorum was found to significantly inhibit activation of the key proinflammatory transcription factor, NF-κB, which was induced by tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and lipopolysaccharide (LPS). IpaJ inhibited the NF-κB pathway in cells infected with S Pullorum through the stabilization of IκBα. Deletion of ipaJ in S Pullorum caused a significantly increased level of ubiquitinated IκBα that was subsequently degraded by the proteasome in HeLa cells. Moreover, IpaJ was efficient in the prevention of NF-κB translocation to the nucleus and ultimately interfered with the secretion of the proinflammatory cytokines IL-1β, IL-6, and IL-8 in infected HeLa cells. Additionally, the transformation of ipaJ into S Enteritidis decreased the secretion of proinflammatory cytokines in HeLa cells through suppression of the NF-κB pathway. The infection of chicken peripheral blood monocyte-derived macrophages (chMDM) confirmed that ipaJ-deleted S Pullorum induced a stronger expression of proinflammatory cytokines than the wild-type and complementary strains. In summary, the present study revealed that IpaJ functions as an important anti-inflammatory protein involved in S Pullorum infection through inhibition of the NF-κB pathway and the subsequent inflammatory response.
Collapse
|
46
|
Lopes Fischer N, Naseer N, Shin S, Brodsky IE. Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 2019; 5:14-26. [DOI: 10.1038/s41564-019-0623-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023]
|
47
|
Modeling Pneumonic Plague in Human Precision-Cut Lung Slices Highlights a Role for the Plasminogen Activator Protease in Facilitating Type 3 Secretion. Infect Immun 2019; 87:IAI.00175-19. [PMID: 31085709 PMCID: PMC6652753 DOI: 10.1128/iai.00175-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Pneumonic plague is the deadliest form of disease caused by Yersinia pestis Key to the progression of infection is the activity of the plasminogen activator protease Pla. Deletion of Pla results in a decreased Y. pestis bacterial burden in the lung and failure to progress into the lethal proinflammatory phase of disease. While a number of putative functions have been attributed to Pla, its precise role in the pathogenesis of pneumonic plague is yet to be defined. Here, we show that Pla facilitates type 3 secretion into primary alveolar macrophages but not into the commonly used THP-1 cell line. We also establish human precision-cut lung slices as a platform for modeling early host/pathogen interactions during pneumonic plague and solidify the role of Pla in promoting optimal type 3 secretion using primary human tissue with relevant host cell heterogeneity. These results position Pla as a key player in the early host/pathogen interactions that define pneumonic plague and showcase the utility of human precision-cut lung slices as a platform to evaluate pulmonary infection by bacterial pathogens.
Collapse
|
48
|
Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 2019; 21:202-212. [DOI: 10.1016/j.micinf.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
49
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
50
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|