1
|
Kato A, Iwasaki R, Takeshima K, Maruzuru Y, Koyanagi N, Natsume T, Kusano H, Adachi S, Kawano S, Kawaguchi Y. Identification of a novel neurovirulence factor encoded by the cryptic orphan gene UL31.6 of herpes simplex virus 1. J Virol 2024; 98:e0074724. [PMID: 38819171 PMCID: PMC11265434 DOI: 10.1128/jvi.00747-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Although the herpes simplex virus type 1 (HSV-1) genome was thought to contain approximately 80 different protein coding sequences (CDSs), recent multi-omics analyses reported HSV-1 encodes more than 200 potential CDSs. However, few of the newly identified CDSs were confirmed to be expressed at the peptide or protein level in HSV-1-infected cells. Furthermore, the impact of the proteins they encode on HSV-1 infection is largely unknown. This study focused on a newly identified CDS, UL31.6. Re-analyzation of our previous chemical proteomics data verified that UL31.6 was expressed at the peptide level in HSV-1-infected cells. Antisera raised against a viral protein encoded by UL31.6 (pUL31.6) reacted with a protein with an approximate molecular mass of 37 kDa in lysates of Vero cells infected with each of three HSV-1 strains. pUL31.6 was efficiently dissociated from virions in high-salt solution. A UL31.6-null mutation had a minimal effect on HSV-1 gene expression, replication, cell-to-cell spread, and morphogenesis in Vero cells; in contrast, it significantly reduced HSV-1 cell-to-cell spread in three neural cells but not in four non-neural cells including Vero cells. The UL31.6-null mutation also significantly reduced the mortality and viral replication in the brains of mice after intracranial infection, but had minimal effects on pathogenic manifestations in and around the eyes, and viral replication detected in the tear films of mice after ocular infection. These results indicated that pUL31.6 was a tegument protein and specifically acted as a neurovirulence factor by potentially promoting viral transmission between neuronal cells in the central nervous system.IMPORTANCERecent multi-omics analyses reported the herpes simplex virus type 1 (HSV-1) genome encodes an additional number of potential coding sequences (CDSs). However, the expressions of these CDSs at the peptide or protein levels and the biological effects of these CDSs on HSV-1 infection remain largely unknown. This study annotated a cryptic orphan CDS, termed UL31.6, an HSV-1 gene that encodes a tegument protein with an approximate molecular mass of 37 kDa, which specifically acts as a neurovirulence factor. Our study indicates that HSV-1 proteins important for viral pathogenesis remain to be identified and a comprehensive understanding of the pathogenesis of HSV-1 will require not only the identification of cryptic orphan CDSs using emerging technologies but also step-by-step and in-depth analyses of each of the cryptic orphan CDSs.
Collapse
Grants
- 20H5692 Japan Society for the Promotion of Science (JSPS)
- 22H04803 Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)
- 22H05584 Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)
- JPMJPR22R5 Japan Science and Technology Agency (JST)
- JP23wm0225035, JP22fk0108640, JP223fa627001, JP20wm0125002, JP23wm0225031 Japan Agency for Medical Research and Development (AMED)
- JP22gm1610008 Japan Agency for Medical Research and Development (AMED)
- Takeda Science Foundation
- Cell Science Research Foundation
Collapse
Affiliation(s)
- Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Ryoji Iwasaki
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kousuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hideo Kusano
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Department of Proteomics, National Cancer Center Research institute, Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Department of Proteomics, National Cancer Center Research institute, Tokyo, Japan
| | - Shuichi Kawano
- Faculty of Mathematics, Kyushu University, Fukuoka, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan
| |
Collapse
|
2
|
Sun G, Kropp KA, Kirchner M, Plückebaum N, Selich A, Serrero M, Dhingra A, Cabrera JR, Ritter B, Bauerfeind R, Wyler E, Landthaler M, Schambach A, Sodeik B, Mertins P, Viejo-Borbolla A. Herpes simplex virus type 1 modifies the protein composition of extracellular vesicles to promote neurite outgrowth and neuroinfection. mBio 2024; 15:e0330823. [PMID: 38275838 PMCID: PMC10865794 DOI: 10.1128/mbio.03308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.
Collapse
Affiliation(s)
- Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Marieluise Kirchner
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manutea Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Kropp KA, Sun G, Viejo-Borbolla A. Colonization of peripheral ganglia by herpes simplex virus type 1 and 2. Curr Opin Virol 2023; 60:101333. [PMID: 37267706 DOI: 10.1016/j.coviro.2023.101333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) infect and establish latency in neurons of the peripheral nervous system to persist lifelong in the host and to cause recurrent disease. During primary infection, HSV replicates in epithelial cells in the mucosa and skin and then infects neurites, highly dynamic structures that grow or retract in the presence of attracting or repelling cues, respectively. Following retrograde transport in neurites, HSV establishes latency in the neuronal nucleus. Viral and cellular proteins participate in the chromatinization of the HSV genome that regulates gene expression, persistence, and reactivation. HSV-2 modulates neurite outgrowth during primary infection and upon reactivation, probably to facilitate infection and survival of neurons. Whether HSV-1 modulates neurite outgrowth and the underlying mechanism is currently under investigation. This review deals with HSV-1 and HSV-2 colonization of peripheral neurons, with a focus on the modulation of neurite outgrowth by these viruses.
Collapse
Affiliation(s)
- Kai A Kropp
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | - Guorong Sun
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
5
|
Akhtar LN, Bowen CD, Renner DW, Pandey U, Della Fera AN, Kimberlin DW, Prichard MN, Whitley RJ, Weitzman MD, Szpara ML. Genotypic and Phenotypic Diversity of Herpes Simplex Virus 2 within the Infected Neonatal Population. mSphere 2019; 4:e00590-18. [PMID: 30814317 PMCID: PMC6393728 DOI: 10.1128/msphere.00590-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
More than 14,000 neonates are infected with herpes simplex virus (HSV) annually. Approximately half display manifestations limited to the skin, eyes, or mouth (SEM disease). The rest develop invasive infections that spread to the central nervous system (CNS disease or encephalitis) or throughout the infected neonate (disseminated disease). Invasive HSV disease is associated with significant morbidity and mortality, but the viral and host factors that predispose neonates to these forms are unknown. To define viral diversity within the infected neonatal population, we evaluated 10 HSV-2 isolates from newborns with a range of clinical presentations. To assess viral fitness independently of host immune factors, we measured viral growth characteristics in cultured cells and found diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger plaque size and enhanced spread, with the isolates from cerebrospinal fluid (CSF) exhibiting the most robust growth. We sequenced complete viral genomes of all 10 neonatal viruses, providing new insights into HSV-2 genomic diversity in this clinical setting. We found extensive interhost and intrahost genomic diversity throughout the viral genome, including amino acid differences in more than 90% of the viral proteome. The genes encoding glycoprotein G (gG; US4), glycoprotein I (gI; US7), and glycoprotein K (gK; UL53) and viral proteins UL8, UL20, UL24, and US2 contained variants that were found in association with CNS isolates. Many of these viral proteins are known to contribute to cell spread and neurovirulence in mouse models of CNS disease. This report represents the first application of comparative pathogen genomics to neonatal HSV disease.IMPORTANCE Herpes simplex virus (HSV) causes invasive disease in half of infected neonates, resulting in significant mortality and permanent cognitive morbidity. The factors that contribute to invasive disease are not understood. This study revealed diversity among HSV isolates from infected neonates and detected the first associations between viral genetic variations and clinical disease manifestations. We found that viruses isolated from newborns with encephalitis showed enhanced spread in culture. These viruses contained protein-coding variations not found in viruses causing noninvasive disease. Many of these variations were found in proteins known to impact neurovirulence and viral spread between cells. This work advances our understanding of HSV diversity in the neonatal population and how it may impact disease outcome.
Collapse
Affiliation(s)
- Lisa N Akhtar
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher D Bowen
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Ashley N Della Fera
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David W Kimberlin
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard J Whitley
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
6
|
Weed DJ, Dollery SJ, Komala Sari T, Nicola AV. Acidic pH Mediates Changes in Antigenic and Oligomeric Conformation of Herpes Simplex Virus gB and Is a Determinant of Cell-Specific Entry. J Virol 2018; 92:e01034-18. [PMID: 29925660 PMCID: PMC6096812 DOI: 10.1128/jvi.01034-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus (HSV) is an important human pathogen with a high worldwide seroprevalence. HSV enters epithelial cells, the primary site of infection, by a low-pH pathway. HSV glycoprotein B (gB) undergoes low pH-induced conformational changes, which are thought to drive membrane fusion. When neutralized back to physiological pH, these changes become reversible. Here, HSV-infected cells were subjected to short pulses of radiolabeling, followed by immunoprecipitation with a panel of gB monoclonal antibodies (MAbs), demonstrating that gB folds and oligomerizes rapidly and cotranslationally in the endoplasmic reticulum. Full-length gB from transfected cells underwent low-pH-triggered changes in oligomeric conformation in the absence of other viral proteins. MAbs to gB neutralized HSV entry into cells regardless of the pH dependence of the entry pathway, suggesting a conservation of gB function in distinct fusion mechanisms. The combination of heat and acidic pH triggered irreversible changes in the antigenic conformation of the gB fusion domain, while changes in the gB oligomer remained reversible. An elevated temperature alone was not sufficient to induce gB conformational change. Together, these results shed light on the conformation and function of the HSV-1 gB oligomer, which serves as part of the core fusion machinery during viral entry.IMPORTANCE Herpes simplex virus (HSV) causes infection of the mouth, skin, eyes, and genitals and establishes lifelong latency in humans. gB is conserved among all herpesviruses. HSV gB undergoes reversible conformational changes following exposure to acidic pH which are thought to mediate fusion and entry into epithelial cells. Here, we identified cotranslational folding and oligomerization of newly synthesized gB. A panel of antibodies to gB blocked both low-pH and pH-neutral entry of HSV, suggesting conserved conformational changes in gB regardless of cell entry route. Changes in HSV gB conformation were not triggered by increased temperature alone, in contrast to results with EBV gB. Acid pH-induced changes in the oligomeric conformation of gB are related but distinct from pH-triggered changes in gB antigenic conformation. These results highlight critical aspects of the class III fusion protein, gB, and inform strategies to block HSV infection at the level of fusion and entry.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Stephen J Dollery
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tri Komala Sari
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Ata EB, Zaghawa A, Ghazy AA, Elsify A, Abdelrahman K, Kasem S, Nayel M. Development and characterization of ORF68 negative equine herpes virus type-1, Ab4p strain. J Virol Methods 2018; 261:121-131. [PMID: 30165189 DOI: 10.1016/j.jviromet.2018.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023]
Abstract
Equine herpesvirus-1 (EHV-1) is an important pathogen, which infects horses worldwide with high morbidity but low mortality rates. The respiratory disorders and abortions are the most common indicators. Ab4p (an abortigenic and paralytic virus) is one of the most important and virulent strains. The development and functional characterization of the open reading frame-68 (ORF68) negative EHV-1 Ab4p mutants and an assessment of their roles in the infection at the cellular level were the main targets of the current study. Escherichia coli DH10β containing the Ab4p bacterial artificial chromosome (pAb4pBAC) and Red/ET expression vector were used to develop different ORF68 mutants. Multi-step growth kinetic experiments were conducted in order to evaluate the growth properties of the constructed mutant viruses. Growth of the Ab4pΔORF68 showed the lowest titer, compared to the Ab4pΔORF68R, Ab4pΔORF68R non-sense, and the parent Ab4p viruses without any significant difference (P > 0.05). The growth of the mutant viruses was almost similar across the cell types, but viruses growth was more efficient in FHK cells as judged by the number of the obtained virus particles. The plaque size of Ab4pΔORF68 was significantly (40%) smaller than those of Ab4p (P < 0.01), Ab4pΔORF68R, and Ab4pΔORF68R non-sense viruses which confirmed the importance of ORF68 protein in the cell-to-cell transmission of EHV-1. Subcellular localization of the green fluorescent protein (GFP) ORF68 gene fusion product showed late expression with intranuclear localization of the transfected cells while immunofluorescent antibody technique (IFAT) localized it at the nucleus and nuclear membranes of the infected cells. Hence, it could be concluded that ORF68 protein may not be essential for EHV-1 Ab4p growth but plays a crucial role in virus penetration and transmission at the cellular level. Therefore, the generated EHV-1 ORF68 negative mutant could be a prospective candidate for the development of a vaccine marker.
Collapse
Affiliation(s)
- Emad Beshir Ata
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Ahmed Zaghawa
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Alaa A Ghazy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt
| | - Ahmed Elsify
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Khaled Abdelrahman
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt
| | - Samy Kasem
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, El-Geish street, Kafrelsheikh, Egypt; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mohamed Nayel
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
8
|
Weed DJ, Nicola AV. Herpes simplex virus Membrane Fusion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:29-47. [PMID: 28528438 PMCID: PMC5869023 DOI: 10.1007/978-3-319-53168-7_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Martínez-Martín N, Viejo-Borbolla A, Alcami A. Herpes simplex virus particles interact with chemokines and enhance cell migration. J Gen Virol 2016; 97:3007-3016. [DOI: 10.1099/jgv.0.000616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nadia Martínez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
González-Motos V, Kropp KA, Viejo-Borbolla A. Chemokine binding proteins: An immunomodulatory strategy going viral. Cytokine Growth Factor Rev 2016; 30:71-80. [DOI: 10.1016/j.cytogfr.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 01/13/2023]
|
11
|
Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. J Virol 2016; 90:5622-5635. [PMID: 27030266 DOI: 10.1128/jvi.00446-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/24/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites. IMPORTANCE The DNA genomes of viruses within the subfamily Alphaherpesvirinae are divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region, suggesting Us8A may have an important role in the HSV-1 life cycle. However, the specific role of Us8A in HSV-1 infection remains to be elucidated. Here, we show that Us8A is a virulence factor for HSV-1 infection in mice, and the function of Us8A for viral invasion into the central nervous system from peripheral sites is regulated by Us3-mediated phosphorylation of the protein at Ser-61. This is the first study to report the significance of Us8A and its regulation in HSV-1 infection.
Collapse
|
12
|
Identification of non-essential loci within the Meleagrid herpesvirus 1 genome. Virol J 2015; 12:130. [PMID: 26307059 PMCID: PMC4550065 DOI: 10.1186/s12985-015-0362-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Meleagrid herpesvirus 1 (MeHV-1) infectious bacterial artificial chromosomes (iBACs) are ideal vectors for the development of recombinant vaccines for the poultry industry. However, the full potential of iBACS as vectors can only be realised after thorough genetic characterisation, including identification of those genetic locations that are non-essential for virus replication. Generally, transposition has proven to be a highly effective strategy for rapid and efficient mutagenesis of iBAC clones. The current study describes the characterisation of 34 MeHV-1 mutants containing transposon insertions within the pMeHV1-C18 iBAC genome. Methods Tn5 and MuA transposition methods were used to generate a library of 76 MeHV-1 insertion mutants. The capacity of each mutant to facilitate the recovery of infectious MeHV-1 was determined by the transfection of clone DNA into chicken embryo fibroblasts. Results Attempts to recover infectious virus from the modified clones identified 14 genetic locations that were essential for MeHV-1 replication in cell culture. Infectious MeHV-1 was recovered from the remaining 14 intragenic insertion mutants and six intergenic insertion mutants, suggesting that the respective insertion locations are non-essential for MeHV-1 replication in cell culture. Conclusions The essential and non-essential designations for those MeHV-1 genes characterised in this study were generally in agreement with previous reports for other herpesviruses homologues. However, the requirement for the mardivirus-specific genes LORF4A and LORF5 are reported for the first time. These findings will help direct future work on the development of recombinant poultry vaccines using MeHV-1 as a vector by identifying potential transgene insertion sites within the viral genome. Electronic supplementary material The online version of this article (doi10.1186/s12985-015-0362-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Heidarieh H, Hernáez B, Alcamí A. Immune modulation by virus-encoded secreted chemokine binding proteins. Virus Res 2015; 209:67-75. [PMID: 25791735 DOI: 10.1016/j.virusres.2015.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Chemokines are chemoattractant cytokines that mediate the migration of immune cells to sites of infection which play an important role in innate and adaptive immunity. As an immune evasion strategy, large DNA viruses (herpesviruses and poxviruses) encode soluble chemokine binding proteins that bind chemokines with high affinity, even though they do not show sequence similarity to cellular chemokine receptors. This review summarizes the different secreted viral chemokine binding proteins described to date, with special emphasis on the diverse mechanisms of action they exhibit to interfere with chemokine function and their specific contribution to virus pathogenesis.
Collapse
Affiliation(s)
- Haleh Heidarieh
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain.
| |
Collapse
|
14
|
Herpes simplex virus enhances chemokine function through modulation of receptor trafficking and oligomerization. Nat Commun 2015; 6:6163. [PMID: 25625471 DOI: 10.1038/ncomms7163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023] Open
Abstract
Glycoprotein G (gG) from herpes simplex virus 1 and 2 (HSV-1 and HSV-2, important human neurotropic pathogens) is the first viral chemokine-binding protein found to potentiate chemokine function. Here we show that gG attaches to cell surface glycosaminoglycans and induces lipid raft clustering, increasing the incorporation of CXCR4 receptors into these microdomains. gG induces conformational rearrangements in CXCR4 homodimers and changes their intracellular partners, leading to sustained, functional chemokine/receptor complexes at the surface. This results in increased chemotaxis dependent on the cholesterol content of the plasma membrane and receptor association to Src-kinases and phosphatidylinositol-3-kinase signalling pathways, but independent of clathrin-mediated endocytosis. Furthermore, using electron microscopy, we show that such enhanced functionality is associated with the accumulation of low-order CXCR4 nanoclusters. Our results provide insights into basic mechanisms of chemokine receptor function and into a viral strategy of immune modulation.
Collapse
|
15
|
Cabrera JR, Viejo-Borbolla A, Martinez-Martín N, Blanco S, Wandosell F, Alcamí A. Secreted herpes simplex virus-2 glycoprotein G modifies NGF-TrkA signaling to attract free nerve endings to the site of infection. PLoS Pathog 2015; 11:e1004571. [PMID: 25611061 PMCID: PMC4303327 DOI: 10.1371/journal.ppat.1004571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 11/12/2014] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG) from HSV-2, known to modulate immune mediators (chemokines), also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2) increases nerve growth factor (NGF)-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (Trk)A-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigaciones Biologicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Nadia Martinez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigaciones Biologicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Koyanagi N, Imai T, Arii J, Kato A, Kawaguchi Y. Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol Immunol 2014; 58:31-7. [PMID: 24200420 DOI: 10.1111/1348-0421.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/25/2022]
Abstract
Us3 is a serine-threonine protein kinase that is encoded by herpes simplex virus 1 (HSV-1). In experimental animal models of HSV infection, peripheral and intracranial inoculations can be used to study viral pathogenicity in peripheral sites (e.g., eyes and vagina) and central nervous systems (CNSs), respectively. In addition, peripheral inoculation can be used to investigate this virus' ability to invade the CNS (neuroinvasiveness) from peripheral sites. HSV-1 Us3 has previously been shown to be critical for viral pathogenicity in both peripheral sites and CNSs of mice. However, the role of HSV-1 Us3 in viral neuroinvasiveness has not yet been elucidated. In the present study, the yields of a Us3 null mutant virus and its repaired virus in the eyes, trigeminal ganglia, and brains of mice following ocular inoculation were examined. It was found that, although the repaired virus appeared in the brains of mice 3 days after infection, peak replication occurring 7 days after infection, no viral replication of the Us3 null mutant virus was detectable. These findings indicate that HSV-1 Us3 plays a crucial role in the ability of the virus to invade the brain from the eyes. Thus, HSV-1 Us3 is a significant neuroinvasiveness factor in vivo.
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology; Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
17
|
Phosphorylation of a herpes simplex virus 1 dUTPase by a viral protein kinase, Us3, dictates viral pathogenicity in the central nervous system but not at the periphery. J Virol 2013; 88:2775-85. [PMID: 24352467 DOI: 10.1128/jvi.03300-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. Here, we report that Us3 phosphorylation of viral dUTPase (vdUTPase) at serine 187 (Ser-187), which has been shown to promote the vdUTPase activity, appears to be critical for viral virulence in the CNS but not for pathogenic effects in peripheral sites. Since HSV proteins critical for viral virulence in the CNS are, in almost all cases, also involved in viral pathogenicity at peripheral sites, this phosphorylation event is a unique report of a specific mechanism involved in HSV-1 virulence in the CNS.
Collapse
|
18
|
Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus. Vaccine 2013; 31:5953-9. [PMID: 24144474 DOI: 10.1016/j.vaccine.2013.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
The duck enteritis virus (DEV) may be a promising candidate viral vector for an aquatic poultry vaccination that can protect against multiple pathogens because it has a very large genome and a narrow host range. Recently, we described two DEV recombinants that contained deletions of the viral US2 or gIgE genes. The hemagglutinin (HA) gene of an H5N1-type highly pathogenic avian influenza virus (HPAIV) of goose origin was inserted into the deletion sites to construct two rDEVs expressing the AIV HA antigen. The resulting rDEV-ΔgIgE-HA or rDEV-ΔUS2-HA recombinant DEV viruses were used to infect duck embryo fibroblasts. Reverse transcription PCR, immunofluorescence and western blot analysis results indicated that rDEV-ΔgIgE-HA and rDEV-ΔUS2-HA were successfully expressed in duck embryo fibroblasts (DEFs). To investigate whether the HA gene could be stably maintained in the recombinant viruses, the viruses were passaged in DEFs 18 times. The HA gene in both recombinants could be detected by PCR amplification. The immunized four-week-old ducks induced specific antibodies against DEV and AIV HA and were protected against challenge infections with DEV AV1221 viruses.
Collapse
|
19
|
Contributions of herpes simplex virus 1 envelope proteins to entry by endocytosis. J Virol 2013; 87:13922-6. [PMID: 24109213 DOI: 10.1128/jvi.02500-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the required HSV glycoproteins, gB, gD, and gH-gL, may be sufficient for entry regardless of entry route taken. This may be distinct from entry mechanisms employed by other human herpesviruses.
Collapse
|
20
|
Hall RN, Meers J, Mitter N, Fowler EV, Mahony TJ. The Meleagrid herpesvirus 1 genome is partially resistant to transposition. Avian Dis 2013; 57:380-6. [PMID: 23901750 DOI: 10.1637/10339-082912-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Collapse
Affiliation(s)
- Robyn N Hall
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | | | | | | |
Collapse
|
21
|
The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein. J Virol 2013; 87:9590-603. [PMID: 23785212 DOI: 10.1128/jvi.00994-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.
Collapse
|
22
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
23
|
Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog 2012; 8:e1002497. [PMID: 22319442 PMCID: PMC3271085 DOI: 10.1371/journal.ppat.1002497] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/06/2011] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses. Chemokines are chemotactic cytokines that direct the flux of leukocytes to the site of injury and infection, playing a relevant role in the antiviral response. An uncontrolled, unorganized chemokine response is beneath the onset and maintenance of several immunopathologies. During millions of years of evolution, viruses have developed strategies to modulate the host immune system. One of such strategies consists on the secretion of viral proteins that bind to and inhibit the function of chemokines. However, the modulation of the chemokine network mediated by the highly prevalent human pathogen herpes simplex virus (HSV) is unknown. We have addressed this issue and show that HSV-1, causing cold sores and encephalitis and HSV-2, causing urogenital tract infections, interact with chemokines. We determined that the viral protein responsible for such activity is glycoprotein G (gG). gG binds chemokines with high affinity and, in contrast to all viral chemokine binding proteins described to date that inhibit chemokine function, we found that HSV gG potentiates chemokine function in vitro and in vivo. The implications of such potentiation in HSV viral cycle, pathogenesis and chemokine function are discussed.
Collapse
|
24
|
Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1. J Virol 2011; 86:492-503. [PMID: 22013039 DOI: 10.1128/jvi.05897-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) which localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Poly(ADP-ribosyl)ation of the nuclear mitotic apparatus (NuMA) protein by tankyrase 1 during mitosis is essential for sister telomere resolution and mitotic spindle pole formation. In interphase cells, tankyrase 1 resides in the cytoplasm, and its role therein is not well understood. In this study, we found that herpes simplex virus (HSV) infection induced extensive modification of tankyrase 1 but not tankyrase 2. This modification was dependent on extracellular signal-regulated kinase (ERK) activity triggered by HSV infection. Following HSV-1 infection, tankyrase 1 was recruited to the nucleus. In the early phase of infection, tankyrase 1 colocalized with ICP0 and thereafter localized within the HSV replication compartment, which was blocked in cells infected with the HSV-1 ICP0-null mutant R7910. In the absence of infection, ICP0 interacted with tankyrase 1 and efficiently promoted its nuclear localization. HSV did not replicate efficiently in cells depleted of both tankyrases 1 and 2. Moreover, XAV939, an inhibitor of tankyrase PARP activity, decreased viral titers to 2 to 5% of control values. We concluded that HSV targets tankyrase 1 in an ICP0- and ERK-dependent manner to facilitate its replication.
Collapse
|
25
|
Jarosinski KW, Margulis NG, Kamil JP, Spatz SJ, Nair VK, Osterrieder N. Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC. J Virol 2007; 81:10575-87. [PMID: 17634222 PMCID: PMC2045466 DOI: 10.1128/jvi.01065-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) causes a general malaise in chickens that is mostly characterized by the development of lymphoblastoid tumors in multiple organs. The use of bacterial artificial chromosomes (BACs) for cloning and manipulation of the MDV genome has facilitated characterization of specific genes and genomic regions. The development of most MDV BACs, including pRB-1B-5, derived from a very virulent MDV strain, involved replacement of the US2 gene with mini-F vector sequences. However, when reconstituted viruses based on pRB-1B were used in pathogenicity studies, it was discovered that contact chickens housed together with experimentally infected chickens did not contract Marek's disease (MD), indicating a lack of horizontal transmission. Staining of feather follicle epithelial cells in the skins of infected chickens showed that virus was present but was unable to be released and/or infect susceptible chickens. Restoration of US2 and removal of mini-F sequences within viral RB-1B did not alter this characteristic, although in vivo viremia levels were increased significantly. Sequence analyses of pRB-1B revealed that the UL13, UL44, and US6 genes encoding the UL13 serine/threonine protein kinase, glycoprotein C (gC), and gD, respectively, harbored frameshift mutations. These mutations were repaired individually, or in combination, using two-step Red mutagenesis. Reconstituted viruses were tested for replication, MD incidence, and their abilities to horizontally spread to contact chickens. The experiments clearly showed that US2, UL13, and gC in combination are essential for horizontal transmission of MDV and that none of the genes alone is able to restore this phenotype.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
26
|
von Einem J, Smith PM, Van de Walle GR, O'Callaghan DJ, Osterrieder N. In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 2007; 362:151-62. [PMID: 17250864 DOI: 10.1016/j.virol.2006.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/06/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
Glycoprotein G (gG) of equine herpesvirus type 1 (EHV-1), a structural component of virions and secreted from virus-infected cells, was shown to bind to a variety of different chemokines and as such might be involved in immune modulation. Little is known, however, about its role in the replication cycle and infection of EHV-1 in vivo. Here we report on the function of gG in context of virus infection in vitro and in vivo. A gG deletion mutant of pathogenic EHV-1 strain RacL11 (vL11DeltagG) was constructed and analyzed. Deletion of gG had virtually no effect on the growth properties of vL11DeltagG in cell culture when compared to parental virus or a rescuant virus vL11DeltagGR, respectively, and virus titers and plaque formation were unaffected in the absence of the glycoprotein. Similarly, in the murine model of EHV-1 infection, no significant differences in virulence between the gG deletion mutant and RacL11 or vL11DeltagGR were found at high doses of infection. However, infection of mice at lower doses revealed that the gG deletion mutant was able to replicate to higher titers in lungs of infected mice. Additionally, these mice lost significantly more weight than those infected with RacL11 and a more pronounced inflammatory response in lungs was observed. Therefore we concluded that deletion of gG in EHV-1 seems to lead to an exacerbation of respiratory disease in the mouse.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
27
|
Hai R, Chu A, Li H, Umamoto S, Rider P, Liu F. Infection of human cytomegalovirus in cultured human gingival tissue. Virol J 2006; 3:84. [PMID: 17022821 PMCID: PMC1617094 DOI: 10.1186/1743-422x-3-84] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 10/05/2006] [Indexed: 11/17/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) infection in the oral cavity plays an important role in its horizontal transmission and in causing viral-associated oral diseases such as gingivitis. However, little is currently known about HCMV pathogenesis in oral mucosa, partially because HCMV infection is primarily limited to human cells and few cultured tissue or animal models are available for studying HCMV infection. Results In this report, we studied the infection of HCMV in a cultured gingival tissue model (EpiGingival, MatTek Co.) and investigated whether the cultured tissue can be used to study HCMV infection in the oral mucosa. HCMV replicated in tissues that were infected through the apical surface, achieving a titer of at least 300-fold at 10 days postinfection. Moreover, the virus spread from the apical surface to the basal region and reduced the thickness of the stratum coreum at the apical region. Viral proteins IE1, UL44, and UL99 were expressed in infected tissues, a characteristic of HCMV lytic replication in vivo. Studies of a collection of eight viral mutants provide the first direct evidence that a mutant with a deletion of open reading frame US18 is deficient in growth in the tissues, suggesting that HCMV encodes specific determinants for its infection in oral mucosa. Treatment by ganciclovir abolished viral growth in the infected tissues. Conclusion These results suggest that the cultured gingival mucosa can be used as a tissue model for studying HCMV infection and for screening antivirals to block viral replication and transmission in the oral cavity.
Collapse
Affiliation(s)
- Rong Hai
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Alice Chu
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Hongjian Li
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Sean Umamoto
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Paul Rider
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Lyman MG, Randall JA, Calton CM, Banfield BW. Localization of ERK/MAP kinase is regulated by the alphaherpesvirus tegument protein Us2. J Virol 2006; 80:7159-68. [PMID: 16809321 PMCID: PMC1489020 DOI: 10.1128/jvi.00592-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many different viruses activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase signaling pathway during infection and require ERK activation for the efficient execution of their replication programs. Despite these findings, no virus-encoded proteins have been identified that directly modulate ERK activities. In an effort to determine the function of a conserved alphaherpesvirus structural protein called Us2, we screened a yeast two-hybrid library derived from NIH 3T3 cells and identified ERK as a Us2-interacting protein. Our studies indicate that Us2 binds to ERK in virus-infected cells, mediates the incorporation of ERK into the virion, and inhibits the activation of ERK nuclear substrates. The association of Us2 with ERK leads to the sequestration of ERK at the plasma membrane and to a perinuclear vesicular compartment, thereby keeping ERK out of the nucleus. Us2 can bind to activated ERK, and the data suggest that Us2 does not inhibit ERK enzymatic activity. The treatment of cells with U0126, a specific inhibitor of ERK activation, resulted in a substantial delay in the release of virus from infected cells that was more pronounced with a virus deleted for Us2 than with parental and repaired strains, suggesting that both ERK and Us2 activities are required for efficient virus replication. This study highlights an additional complexity to the activation of ERK by viruses, namely, that localization of active ERK can be altered by virus-encoded proteins.
Collapse
Affiliation(s)
- Mathew G Lyman
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8333, P.O. Box 6511, Aurora, 80045, USA
| | | | | | | |
Collapse
|
29
|
Polcicova K, Goldsmith K, Rainish BL, Wisner TW, Johnson DC. The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors. J Virol 2005; 79:11990-2001. [PMID: 16140775 PMCID: PMC1212635 DOI: 10.1128/jvi.79.18.11990-12001.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein.
Collapse
Affiliation(s)
- Katarina Polcicova
- L-220, Room 6366/BSc, Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
30
|
Bubeck A, Wagner M, Ruzsics Z, Lötzerich M, Iglesias M, Singh IR, Koszinowski UH. Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J Virol 2004; 78:8026-35. [PMID: 15254174 PMCID: PMC446129 DOI: 10.1128/jvi.78.15.8026-8035.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Essential viral proteins perform vital functions during morphogenesis via a complex interaction with other viral and cellular gene products. Here, we present a novel approach to comprehensive mutagenesis of essential cytomegalovirus genes and biological analysis in the 230-kbp-genome context. A random Tn7-based mutagenesis procedure at the single-gene level was combined with site-specific recombination via the FLP/FLP recognition target site system for viral genome reconstitution. We show the function of more than 100 mutants from a larger library of M50/p35, a protein involved in capsid egress from the nucleus. This protein recruits other viral proteins and cellular enzymes to the inner nuclear membrane. Our approach enabled us to rapidly discriminate between essential and nonessential regions within the coding sequence. Based on the prediction of the screen, we were able to map a site essential for viral protein-protein interaction at the amino acid level.
Collapse
Affiliation(s)
- Anja Bubeck
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Abenes G, Chan K, Lee M, Haghjoo E, Zhu J, Zhou T, Zhan X, Liu F. Murine cytomegalovirus with a transposon insertional mutation at open reading frame m155 is deficient in growth and virulence in mice. J Virol 2004; 78:6891-9. [PMID: 15194765 PMCID: PMC421665 DOI: 10.1128/jvi.78.13.6891-6899.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A pool of murine cytomegalovirus (MCMV) mutants was previously generated by using a Tn3-based transposon mutagenesis approach (X. Zhan, M. Lee, J. Xiao, and F. Liu, J. Virol. 74:7411-7421, 2000). In this study, one of the MCMV mutants, Rvm155, which contained the transposon insertion in open reading frame m155, was characterized in vitro for its replication in tissue culture and in vivo for its growth and virulence in immunodeficient SCID mice. Compared to the wild-type strain and a rescued virus that restored the m155 region, the mutant is significantly deficient in growth in many organs of the infected animals. At 21 days postinfection the titers of Rvm155 in the salivary glands, lungs, spleens, livers, and kidneys of the intraperitoneally infected SCID mice were lower than the titers of the wild-type virus and the rescued virus by 50-, 1,000-, 500-, 100-, and 500-fold, respectively. Moreover, the viral mutant was attenuated in killing the SCID mice, as none of the SCID mice that were intraperitoneally infected with Rvm155 died until 38 days postinfection while all the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results provide the first direct evidence that a disruption of m155 expression leads to attenuation of viral virulence and growth in animals. Moreover, these results suggest that m155 is a viral determinant for optimal MCMV growth and virulence in vivo.
Collapse
Affiliation(s)
- Gerardo Abenes
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Clase AC, Lyman MG, del Rio T, Randall JA, Calton CM, Enquist LW, Banfield BW. The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells. J Virol 2003; 77:12285-98. [PMID: 14581565 PMCID: PMC254261 DOI: 10.1128/jvi.77.22.12285-12298.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Us2 gene is conserved among alphaherpesviruses, but its function is not known. We demonstrate here that the pseudorabies virus (PRV) Us2 protein is synthesized early after infection and localizes to cytoplasmic vesicles and to the plasma membrane, despite the lack of a recognizable signal sequence or membrane-spanning domain. Us2 protein is also packaged as part of the tegument of mature virions. The Us2 carboxy-terminal four amino acids comprise a CAAX motif, a well-characterized signal for protein prenylation. Treatment of infected cells with lovastatin, a drug that disrupts protein prenylation, changed the relative electrophoretic mobility of Us2 in sodium dodecyl sulfate-polyacrylamide gels. In addition, lovastatin treatment caused a dramatic relocalization of Us2 to cytoplasmic punctate structures associated with microtubules, which appeared to concentrate over the microtubule organizing center. When the CAAX motif was changed to GAAX and the mutant protein was synthesized from an expression plasmid, it concentrated in punctate cytoplasmic structures reminiscent of Us2 localization in infected cells treated with lovastatin. We suggest that prenylation of PRV Us2 protein is required for proper membrane association. Curiously, the Us2 protein isolated from purified virions does not appear to be prenylated. This is the first report to describe the prenylation of an alphaherpesvirus protein.
Collapse
Affiliation(s)
- Amanda C Clase
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 2003; 100:14223-8. [PMID: 14623981 PMCID: PMC283573 DOI: 10.1073/pnas.2334032100] [Citation(s) in RCA: 531] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous herpesvirus, causes a lifelong subclinical infection in healthy adults but leads to significant morbidity and mortality in neonates and immunocompromised individuals. Its ability to grow in different cell types is responsible for HCMV-associated diseases, including mental retardation and retinitis, and vascular disorders. To globally assess viral gene function for replication in cells, we determined the genomic sequence of a bacterial artificial chromosome (BAC)-based clone of HCMV Towne strain and used this information to delete each of its 162 unique ORFs and generate a collection of viral mutants. The growth of these mutants in different cultured cells was examined to systematically investigate the necessity of each ORF for replication. Our results showed that 45 ORFs are essential for viral replication in fibroblasts and 117 are nonessential. Some genes were found to be required for viral replication in retinal pigment epithelial cells and microvascular endothelial cells, but not in fibroblasts, indicating their role as tropism factors. Interestingly, several viral mutants grew 10- to 500-fold better than the parental strain in different cell types, suggesting that the deleted ORFs encode replication temperance or repressing functions. Thus, HCMV encodes supportive and suppressive growth regulators for optimizing its replication in human fibroblasts, epithelial, and endothelial cells. Suppression of viral replication by virus-encoded temperance factors represents a novel mechanism for regulating the growth of an animal virus, and may contribute to HCMV's optimal infection of different tissues and successful proliferation among the human population.
Collapse
Affiliation(s)
- Walter Dunn
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Farnsworth A, Goldsmith K, Johnson DC. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm. J Virol 2003; 77:8481-94. [PMID: 12857917 PMCID: PMC165244 DOI: 10.1128/jvi.77.15.8481-8494.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 05/02/2003] [Indexed: 11/20/2022] Open
Abstract
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.
Collapse
Affiliation(s)
- Aaron Farnsworth
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
35
|
Tam A, Zhu J, Hai R, Haghjoo E, Tong T, Zhan X, Lu S, Liu F. Murine cytomegalovirus with a transposon insertional mutation at open reading frame M35 is defective in growth in vivo. J Virol 2003; 77:7746-55. [PMID: 12829814 PMCID: PMC161956 DOI: 10.1128/jvi.77.14.7746-7755.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We had previously constructed a pool of murine cytomegalovirus (MCMV) mutants that contained a Tn3-based transposon sequence randomly inserted in the viral genome. In the study reported here, one of the mutants, RvM35, which contains the transposon insertion at open reading frame M35, was characterized both in vitro in tissue cultures and in immunocompetent Balb/c and immunodeficient SCID mice. Our results provide the first direct evidence to suggest that M35 is not essential for viral replication in vitro in NIH 3T3 cells. Compared to the wild-type strain and a rescued virus that restored the M35 region, the viral mutant was attenuated in growth in both the intraperitoneally infected Balb/c and SCID mice. At 21 days postinfection, the titers of the mutant in the salivary glands, lungs, spleens, livers, and kidneys of the SCID mice were lower than the titers of the wild-type Smith strain and the rescued virus by 50,000-, 100-, 10-, 100-, and 50-fold, respectively. Moreover, the growth of RvM35 is severely attenuated in the salivary glands. The virulence of the mutant virus also appears to be attenuated, because no death was observed in SCID mice infected with RvM35 until 35 days postinfection, while all the animals infected with the wild-type and rescued viruses died 27 days postinfection. Our results suggest that M35 is important for MCMV virulence in killing SCID mice and is required for optimal viral growth in vivo, including in the salivary glands.
Collapse
Affiliation(s)
- Ada Tam
- Division of Infectious Diseases, School of Public Health, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhu J, Chen J, Hai R, Tong T, Xiao J, Zhan X, Lu S, Liu F. In vitro and in vivo characterization of a murine cytomegalovirus with a mutation at open reading frame m166. J Virol 2003; 77:2882-91. [PMID: 12584312 PMCID: PMC149767 DOI: 10.1128/jvi.77.5.2882-2891.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the mutants, Rvm166, which contained the transposon sequence at open reading frame m166, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. The viral mutant replicated as well as the wild-type Smith strain in vitro in NIH 3T3 cells, whereas the transposon insertion precluded the expression of >65% of the m166 open reading frame. Compared to the wild-type strain and a rescued virus that restored the m166 region, the viral mutant was significantly attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. At 21 days postinfection, the titers of the viral mutant in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice were lower than the titers of the Smith strain and the rescued virus by about 30000-, 10000-, 1000-, 300-, and 800-fold, respectively. Moreover, the virulence of the mutant virus appears to be severely attenuated because no death was found in SCID mice infected with the viral mutant up to 90 days postinfection, whereas all of the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results suggest that m166 probably encodes a virulence factor and is required for MCMV virulence in killing SCID mice and for optimal viral growth in vivo.
Collapse
Affiliation(s)
- Jiaming Zhu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bryant NA, Davis-Poynter N, Vanderplasschen A, Alcami A. Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J 2003; 22:833-46. [PMID: 12574120 PMCID: PMC145452 DOI: 10.1093/emboj/cdg092] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mimicry of host chemokines and chemokine receptors to modulate chemokine activity is a strategy encoded by beta- and gammaherpesviruses, but very limited information is available on the anti-chemokine strategies encoded by alphaherpesviruses. The secretion of chemokine binding proteins (vCKBPs) has hitherto been considered a unique strategy encoded by poxviruses and gammaherpesviruses. We describe a family of novel vCKBPs in equine herpesvirus 1, bovine herpesvirus 1 and 5, and related alphaherpesviruses with no sequence similarity to chemokine receptors or other vCKBPs. We show that glycoprotein G (gG) is secreted from infected cells, binds a broad range of chemokines with high affinity and blocks chemokine activity by preventing their interaction with specific receptors. Moreover, gG also blocks chemokine binding to glycosaminoglycans, an interaction required for the correct presentation and function of chemokines in vivo. In contrast to other vCKBPs, gG may also be membrane anchored and, consistently, we show chemokine binding activity at the surface of cells expressing full-length protein. These alphaherpesvirus vCKBPs represent a novel family of proteins that bind chemokines both at the membrane and in solution.
Collapse
Affiliation(s)
| | - Nick Davis-Poynter
- Department of Medicine and Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ,
Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK and Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, B43b, University of Liège, B-4000 Liège, Belgium Corresponding author e-mail:
| | - Alain Vanderplasschen
- Department of Medicine and Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ,
Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK and Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, B43b, University of Liège, B-4000 Liège, Belgium Corresponding author e-mail:
| | - Antonio Alcami
- Department of Medicine and Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ,
Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK and Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, B43b, University of Liège, B-4000 Liège, Belgium Corresponding author e-mail:
| |
Collapse
|
38
|
Lee M, Abenes G, Zhan X, Dunn W, Haghjoo E, Tong T, Tam A, Chan K, Liu F. Genetic analyses of gene function and pathogenesis of murine cytomegalovirus by transposon-mediated mutagenesis. J Clin Virol 2002; 25 Suppl 2:S111-22. [PMID: 12361762 DOI: 10.1016/s1386-6532(02)00096-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Murine cytomegalovirus (MCMV) has a linear genome of 230 kb and encodes more than 170 genes, many of which have not been extensively studied for their functions in pathogenesis in vivo. A Tn3-based transposon was constructed and used to generate MCMV mutants by disrupting viral gene targets. The functions of the mutated genes were investigated by studying the viral mutants in cultured cells and in immunocompetent Balb/c and immunodeficient SCID mice. A pool of MCMV mutants that contained the transposon sequence randomly inserted at the viral genome was generated. Studies of several mutants (e.g. a viral mutant with the transposon inserted at open reading frame m09) in cultured cells and in mice indicate that the presence of the transposon sequence per se in the viral genome does not significantly affect viral growth in vitro and in vivo. Moreover, the genome structures of the viral mutants, including the transposon insertion regions, were stable during replication in cultured cells and in animals. Several viral mutants (e.g. a viral mutant with the transposon at M27) that are attenuated in growth and virulence in animals were identified. These results suggest that the genes mutated in these viral mutants may be important for viral virulence and pathogenesis. The Tn3-based system may be a useful tool for the systematic construction of CMV mutants and for studies of CMV gene functions in viral replication in vitro and in pathogenesis in vivo.
Collapse
Affiliation(s)
- Manfred Lee
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hirano M, Nakamura S, Mitsunaga F, Okada M, Shirahama S, Eberle R. One-step PCR to distinguish B virus from related primate alphaherpesviruses. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:716-9. [PMID: 11986284 PMCID: PMC119990 DOI: 10.1128/cdli.9.3.716-719.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By adding betaine to the PCR mixture, we previously established a PCR method to amplify a DNA segment of the glycoprotein G gene of B virus (BV) derived from a rhesus macaque. We have found that DNA of other BV strains derived from cynomolgus, pigtail, and lion-tailed macaques can also serve as the template in our PCR assay. Under the same conditions no product was obtained with DNA of simian agent 8 of green monkeys and Herpesvirus papio 2 of baboons, or the human herpes simplex viruses types 1 and 2. Thus, this PCR method is useful to discriminate BV from other closely related primate alphaherpesviruses.
Collapse
Affiliation(s)
- Makoto Hirano
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Demmin GL, Clase AC, Randall JA, Enquist LW, Banfield BW. Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J Virol 2001; 75:10856-69. [PMID: 11602726 PMCID: PMC114666 DOI: 10.1128/jvi.75.22.10856-10869.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar insertions in the gG locus of the wild-type PRV strain Becker had no effect on the ability of virus infection to spread between cells. Insertions in the gG locus of the virulent NIA-3 strain gave results similar to those found with the Bartha strain. To examine the role of gG in cell-to-cell spread, a nonsense mutation in the gG signal sequence was constructed and crossed into the Bartha strain. This mutant, PRV157, failed to express gG yet had cell-to-cell spread properties indistinguishable from those of the parental Bartha strain. These data indicated that, while insertions in the gG locus result in decreased cell-to-cell spread, the phenotype was not due to loss of gG expression as first predicted. Analysis of gene expression upstream and downstream of gG revealed that expression of the upstream Us3 protein is reduced by insertion of lacZ or egfp at the gG locus. By contrast, expression of the gene immediately downstream of gG, Us6, which encodes glycoprotein gD, was not affected by insertions in gG. These data indicate that DNA insertions in gG have polar effects and suggest that the serine/threonine kinase encoded by the Us3 gene, and not gG, functions in the spread of viral infection between cells.
Collapse
Affiliation(s)
- G L Demmin
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | |
Collapse
|
41
|
Zhou G, Roizman B. The domains of glycoprotein D required to block apoptosis depend on whether glycoprotein D is present in the virions carrying herpes simplex virus 1 genome lacking the gene encoding the glycoprotein. J Virol 2001; 75:6166-72. [PMID: 11390618 PMCID: PMC114332 DOI: 10.1128/jvi.75.13.6166-6172.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An earlier report showed that viruses lacking the open reading frames encoding glycoproteins J and D but containing the glycoprotein D in their envelopes (gD-/+ stocks) and viruses lacking both the open reading frames and the glycoproteins in their envelopes (gD-/- stocks) induce apoptosis (G. Zhou, V. Galvan, G. Campadelli-Fiume, and B. Roizman, J. Virol. 74:11782-11791, 2000). Furthermore, apoptosis was blocked by delivery in trans of genes expressing glycoprotein D or J. Whereas gD-/- stocks attach but cannot initiate productive infection, gD-/+ stocks infect cells and produce gD-/- progeny virus. The difference in the infectivity of these two stocks suggested the possibility that the requirements for blocking apoptosis may be different. To test this hypothesis, we cloned into baculoviruses the entire wild-type glycoprotein D (Bac-gD-WT), the ectodomain only (Bac-gD-A), the ectodomain and the transmembrane domain (Bac-gD-B), the ectodomain and the cytoplasmic domain without the transmembrane domain (Bac-gD-C), or the transmembrane domain and the carboxyl-terminal cytoplasmic domain (Bac-gD-D). We report the following. Apoptosis induced by gD-/+ stocks was blocked by delivery in trans of recombinant baculovirus Bac-gD-WT, Bac-gD-A, Bac-gD-B, or Bac-gD-C but not of Bac-gD. Apoptosis induced by gD-/- stocks was blocked by Bac-gD-WT or by a mixture of Bac-gD-B and Bac-gD-D but not by any baculoviruses expressing truncated glycoprotein D alone or by the mixture of Bac-gD-A and Bac-gD-D. We conclude that the requirements to block apoptosis induced by the two virus stocks are different. The gD ectodomain is sufficient to block apoptosis induced by gD, whereas both the ectodomain and the cytoplasmic domain are required to block apoptosis induced by gD-/- stocks. The results indicate that in the case of gD-/- stocks, the transmembrane domain is required either to deliver the ectodomain to the appropriate intracellular compartment or to form multimeric constructs which virtually reconstitute gD through the interaction of transmembrane domains.
Collapse
Affiliation(s)
- G Zhou
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 E. 58th St., Chicago, IL 60637, USA
| | | |
Collapse
|
42
|
Hirai K, Sakaguchi M. Polyvalent recombinant Marek's disease virus vaccine against poultry diseases. Curr Top Microbiol Immunol 2001; 255:261-87. [PMID: 11217427 DOI: 10.1007/978-3-642-56863-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- K Hirai
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | |
Collapse
|
43
|
Abenes G, Lee M, Haghjoo E, Tong T, Zhan X, Liu F. Murine cytomegalovirus open reading frame M27 plays an important role in growth and virulence in mice. J Virol 2001; 75:1697-707. [PMID: 11160668 PMCID: PMC114079 DOI: 10.1128/jvi.75.4.1697-1707.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a Tn3-based transposon mutagenesis approach, we have generated a pool of murine cytomegalovirus (MCMV) mutants. In this study, one of the mutants, RvM27, which contained the transposon sequence at open reading frame M27, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. Our results suggest that the M27 carboxyl-terminal sequence is dispensable for viral replication in vitro. Compared to the wild-type strain and a rescued virus that restored the M27 region, RvM27 was attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. Specifically, the titers of RvM27 in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice at 21 days postinfection were 50- to 500-fold lower than those of the wild-type virus and the rescued virus. Moreover, the virulence of the mutant virus appeared to be attenuated, because no deaths occurred among SCID mice infected with RvM27 for up to 37 days postinfection, while all the animals infected with the wild-type and rescued viruses died within 27 days postinfection. Our observations provide the first direct evidence to suggest that a disruption of M27 expression results in reduced viral growth and attenuated viral virulence in vivo in infected animals. Moreover, these results suggest that M27 is a viral determinant required for optimal MCMV growth and virulence in vivo and provide insight into the functions of the M27 homologues found in other animal and human CMVs as well as in other betaherpesviruses.
Collapse
Affiliation(s)
- G Abenes
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
44
|
Lee M, Xiao J, Haghjoo E, Zhan X, Abenes G, Tuong T, Dunn W, Liu F. Murine cytomegalovirus containing a mutation at open reading frame M37 is severely attenuated in growth and virulence in vivo. J Virol 2000; 74:11099-107. [PMID: 11070005 PMCID: PMC113190 DOI: 10.1128/jvi.74.23.11099-11107.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pool of murine cytomegalovirus (MCMV) mutants was generated by using a Tn3-based transposon mutagenesis procedure. One of the mutants, RvM37, which contained the transposon sequence at open reading frame M37, was characterized both in tissue culture and in immunocompetent BALB/c and immunodeficient SCID mice. Our results provide the first direct evidence to suggest that M37 is not essential for viral replication in vitro in NIH 3T3 cells. Compared to the wild-type strain and a rescued virus that restored the M37 region, the viral mutant was severely attenuated in growth in both BALB/c and SCID mice after intraperitoneal infection. Specifically, titers of the Smith strain and rescued virus in the salivary glands, lungs, spleens, livers, and kidneys of the SCID mice at 21 days postinfection were about 5 x 10(5), 2 x 10(5), 5 x 10(4), 5 x 10(3), and 1 x 10(4) PFU/ml of organ homogenate, respectively; in contrast, titers of RvM37 in these organs were less than 10(2) PFU/ml of organ homogenate. Moreover, the virulence of the mutant virus appeared to be significantly attenuated because none of the SCID mice infected with RvM37 had died by 120 days postinfection, while all animals infected with the wild-type and rescued viruses had died by 26 days postinfection. Our results suggest that M37 probably encodes a virulence factor and is required for MCMV virulence in SCID mice and for optimal viral growth in vivo.
Collapse
Affiliation(s)
- M Lee
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Xiao J, Tong T, Zhan X, Haghjoo E, Liu F. In vitro and in vivo characterization of a murine cytomegalovirus with a transposon insertional mutation at open reading frame M43. J Virol 2000; 74:9488-97. [PMID: 11000218 PMCID: PMC112378 DOI: 10.1128/jvi.74.20.9488-9497.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the MCMV mutants, RvM43, which contained the transposon inserted in open reading frame M43, was characterized. Our results provide the first direct evidence to suggest that M43 is not essential for viral replication in vitro in NIH 3T3 cells. Moreover, RvM43 exhibited a titer similar to that of the wild-type virus in the lungs, livers, spleens, and kidneys of both BALB/c and SCID mice and was as virulent as the wild-type virus in killing SCID mice that had been intraperitoneally infected with the viruses. In contrast, titers of the mutant virus in the salivary glands of the infected animals at 21 days postinfection were significantly (100 to 1,000-fold) lower than those of the wild-type virus and a rescued virus that restored the M43 region and its expression. Thus, M43 appears to be not essential for viral growth in vivo in the lungs, livers, spleens, and kidneys of infected animals and is also dispensable for virulence in killing SCID mice. Moreover, our results suggest that M43 is an MCMV determinant for growth in the salivary glands. Studies of viral genes required for replication in the salivary glands are important in understanding the mechanism of viral tropism for the salivary glands and shedding in saliva, which is believed to be one of the major routes of CMV transmission among healthy human populations.
Collapse
Affiliation(s)
- J Xiao
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
46
|
Zhan X, Lee M, Xiao J, Liu F. Construction and characterization of murine cytomegaloviruses that contain transposon insertions at open reading frames m09 and M83. J Virol 2000; 74:7411-21. [PMID: 10906194 PMCID: PMC112261 DOI: 10.1128/jvi.74.16.7411-7421.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants, including two recombinant viruses that contained the transposon sequence within open reading frames m09 and M83. Our studies provide the first direct evidence to suggest that m09 is not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and in both BALB/c-Byj and CB17 severe combined immunodeficient (SCID) mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover, the virus that contained the insertion mutation in m09 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of both the BALB/c and SCID mice and was as virulent as the wild-type virus in killing the SCID mice when these animals were intraperitoneally infected with these viruses. These results suggest that m09 is dispensable for viral growth in these organs and that the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. In contrast, the virus that contained the insertion mutation in M83 exhibited a titer of at least 60-fold lower than that of the wild-type virus in the organs of the SCID mice and was attenuated in killing the SCID mice. These results demonstrate the utility of using the Tn3-based system as a mutagenesis approach for studying the function of MCMV genes in both immunocompetent and immunodeficient animals.
Collapse
Affiliation(s)
- X Zhan
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
47
|
Tran LC, Kissner JM, Westerman LE, Sears AE. A herpes simplex virus 1 recombinant lacking the glycoprotein G coding sequences is defective in entry through apical surfaces of polarized epithelial cells in culture and in vivo. Proc Natl Acad Sci U S A 2000; 97:1818-22. [PMID: 10677539 PMCID: PMC26519 DOI: 10.1073/pnas.020510297] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1998] [Accepted: 11/23/1999] [Indexed: 11/18/2022] Open
Abstract
During infection of a new host, the first surfaces encountered by herpes simplex viruses are the apical membranes of epithelial cells of mucosal surfaces. These cells are highly polarized, and the protein composition of their apical and basolateral membranes are very different, so that different viral entry pathways have evolved for each surface. To determine whether the viral glycoprotein G (gG) is specifically required for efficient infection of a particular surface of polarized cells, apical and basal surfaces were infected with wild-type virus or a gG deletion mutant. After infection of polarized cells in culture, the gG(-) virus was deficient in infection of apical surfaces but was able to infect cells through basal membranes, replicate, and spread into surrounding cells. The gG-dependent step in apical infection was a stage beyond attachment. After in vivo infection of apical surfaces of epithelial cells of nonscarified mouse corneas, infection by glycoprotein C(-) or gG(-) virus was considerably reduced as compared with that observed after infection with wild-type virus. In contrast, when corneas were scarified, allowing virus access to other cell surfaces, the gG and glycoprotein C deletion mutants infected eyes as efficiently as wild-type viruses. A secondary mutation allowing infection of apical surfaces by gG(-) virus arose readily during passage of the virus in nonpolarized cells, indicating that either the gG-dependent step of apical infection can be bypassed or that another viral protein can acquire the same function.
Collapse
Affiliation(s)
- L C Tran
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
48
|
Zhan X, Lee M, Abenes G, Von Reis I, Kittinunvorakoon C, Ross-Macdonald P, Snyder M, Liu F. Mutagenesis of murine cytomegalovirus using a Tn3-based transposon. Virology 2000; 266:264-74. [PMID: 10639313 DOI: 10.1006/viro.1999.0089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants. We analyzed three of the constructed recombinant viruses that contained the transposon within the M25, M27, and m155 open reading frames. Our studies provide the first direct evidence to suggest that M25 and M27 are not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and Balb/c mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover the virus that contained the insertion mutation in M25 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of the Balb/c mice that were intraperitoneally infected with these viruses. These results suggest that M25 is dispensable for viral growth in these organs and the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. The Tn3-based system can be used as a mutagenesis approach for studying the function of MCMV genes in both tissue culture and in animals.
Collapse
Affiliation(s)
- X Zhan
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, 140 Warren Hall, Berkeley, California, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith GA, Enquist LW. Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol 1999; 73:6405-14. [PMID: 10400733 PMCID: PMC112720 DOI: 10.1128/jvi.73.8.6405-6414.1999] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A full-length clone of the 142-kb pseudorabies virus (PRV) genome was constructed as a stable F plasmid in Escherichia coli. The clone, pBecker1, was colinear with PRV-Becker genomic DNA, lacking detectable rearrangements, deletions, or inversions. The transfection of pBecker1 into susceptible eukaryotic cells resulted in productive viral infection. Virus isolated following transfection was indistinguishable from wild-type virus in a rodent model of infection and spread to retinorecipient regions of the brain following inoculation in the vitreous body of the eye. Mutagenesis of pBecker1 in E. coli with a mini-Tn5-derived transposon enabled the rapid isolation of insertion mutants, identification of essential viral genes, and simplified construction of viral revertants. The serial passage of a viral insertion mutant demonstrated the transposon insertion to be stable. However, the F-plasmid insertion present in the viral gG locus was found to undergo a spontaneous deletion following transfection into eukaryotic cells. The implications of F-plasmid insertion into the viral genome with regard to phenotype and genomic stability are discussed.
Collapse
Affiliation(s)
- G A Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
50
|
Brune W, Ménard C, Hobom U, Odenbreit S, Messerle M, Koszinowski UH. Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis. Nat Biotechnol 1999; 17:360-4. [PMID: 10207884 DOI: 10.1038/7914] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are important pathogens in animals and humans. The large DNA genomes of several herpesviruses have been sequenced, but the function of the majority of putative genes is elusive. Determining which genes are essential for their replication is important for identifying potential chemotherapy targets, designing herpesvirus vectors, and generating attenuated vaccines. For this purpose, we recently reported that herpesvirus genomes can be maintained as infectious bacterial artificial chromosomes (BAC) in Escherichia coli. Here we describe a one-step procedure for random-insertion mutagenesis of a herpesvirus BAC using a Tn1721-based transposon system. Transposon insertion sites were determined by direct sequencing, and infectious virus was recovered by transfecting cultured cells with the mutant genomes. Lethal mutations were rescued by cotransfecting cells containing noninfectious genomes with the corresponding wild-type subgenomic fragments. We also constructed revertant genomes by allelic exchange in bacteria. These methods, which are generally applicable to any cloned herpesvirus genome, will facilitate analysis of gene function for this virus family.
Collapse
Affiliation(s)
- W Brune
- Department of Virology, Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | |
Collapse
|