1
|
Soejima M, Koda Y. Detection of c.375A>G, c.385A>T, c.571C>T, and sedel2 of FUT2 via Real-Time PCR in a Single Tube. Diagnostics (Basel) 2023; 13:2022. [PMID: 37370917 DOI: 10.3390/diagnostics13122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
α(1,2)fucosyltransferase (Se enzyme) encoded by FUT2 is involved in the secretor status of ABH(O) blood group antigens. The sedel2 allele is one of the non-functional FUT2 (se) alleles in which 9.3 kb, containing the entire coding region of FUT2, is deleted by Alu-mediated nonhomologous recombination. In addition to this allele, three SNPs of FUT2, c.375A>G, c.385A>T, and c.571C>T, appear to be prevalent in certain Oceanian populations such as Polynesians. Recently, we developed an endpoint genotyping assay to determine sedel2 zygosity, using a FAM-labeled probe for detection of the sedel2 allele and a VIC-labeled probe for the detection of FUT2. In this study, instead of the VIC probe, a HEX-labeled probe covering both c.375A>G and c.385A>T and a Cy5-labeled probe covering c.571C>T were added to the sedel2 allele assay mixture to allow for the simultaneous detection of these four variations via endpoint genotyping for sedel2 zygosity and fluorescence melting curve analysis for c.375A>G, c.385A>T, and c.571C>T genotyping. The results obtained from 24 Samoan subjects using this method were identical to those obtained using previous methods. Therefore, it appears that the present method can accurately determine these four variations simultaneously.
Collapse
Affiliation(s)
- Mikiko Soejima
- Department of Forensic Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshiro Koda
- Department of Forensic Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
2
|
Soejima M, Koda Y. Real-time PCR-based detection of the Alu-mediated deletion of FUT2 (se del2). Leg Med (Tokyo) 2021; 54:101986. [PMID: 34736142 DOI: 10.1016/j.legalmed.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Secretor status of the ABH(O) histoblood group antigens is regulated by secretor type α(1,2)fucosyltransferase encoded by FUT2. The sedel2 allele is a complete deletion of the FUT2 coding region generated by Alu-mediated homologous recombination. This deletion seems to be exclusively encountered in certain Oceanian populations. From the perspective of forensic science, sedel2 is considered to be one of ancestry informative markers for these populations. Real-time PCR followed by melting curve analysis was employed to find primer set to specifically amplify sedel2. We designed primers which produced a 231-bp amplicon specific to sedel2. The specificity of these primers was also confirmed by gel electrophoresis and sequencing of the PCR product. Then, two real-time PCR methods based on melting curve analysis and a hydrolysis probe were designed to determine sedel2 zygosity by adding FUT2-specific primers. These two methods were validated by analyzing 24 Samoan subjects. The results obtained from 24 Samoan subjects by the two methods were fully in accordance with those obtained by a previous conventional PCR method that amplified a 2.7-kb fragment of sedel2. Therefore, these two methods seemed to accurately determine the zygosity of sedel2 and were useful for investigation of the distribution and origin of this deletion.
Collapse
Affiliation(s)
- Mikiko Soejima
- Department of Forensic Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshiro Koda
- Department of Forensic Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| |
Collapse
|
3
|
Puurand T, Kukuškina V, Pajuste FD, Remm M. AluMine: alignment-free method for the discovery of polymorphic Alu element insertions. Mob DNA 2019; 10:31. [PMID: 31360240 PMCID: PMC6639938 DOI: 10.1186/s13100-019-0174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background Recently, alignment-free sequence analysis methods have gained popularity in the field of personal genomics. These methods are based on counting frequencies of short k-mer sequences, thus allowing faster and more robust analysis compared to traditional alignment-based methods. Results We have created a fast alignment-free method, AluMine, to analyze polymorphic insertions of Alu elements in the human genome. We tested the method on 2,241 individuals from the Estonian Genome Project and identified 28,962 potential polymorphic Alu element insertions. Each tested individual had on average 1,574 Alu element insertions that were different from those in the reference genome. In addition, we propose an alignment-free genotyping method that uses the frequency of insertion/deletion-specific 32-mer pairs to call the genotype directly from raw sequencing reads. Using this method, the concordance between the predicted and experimentally observed genotypes was 98.7%. The running time of the discovery pipeline is approximately 2 h per individual. The genotyping of potential polymorphic insertions takes between 0.4 and 4 h per individual, depending on the hardware configuration. Conclusions AluMine provides tools that allow discovery of novel Alu element insertions and/or genotyping of known Alu element insertions from personal genomes within few hours.
Collapse
Affiliation(s)
- Tarmo Puurand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Viktoria Kukuškina
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Hamdi HK, Reddy S, Laz N, Eltaher R, Kandell Z, Mahmud T, Alenazi L, Haroun B, Hassan M, Ragavendra R. A human specific Alu DNA cassette is found flanking the genes of transcription factor AP2. BMC Res Notes 2019; 12:222. [PMID: 30975199 PMCID: PMC6458609 DOI: 10.1186/s13104-019-4247-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/01/2019] [Indexed: 12/01/2022] Open
Abstract
Objective Alu elements are retroposons that invaded the primate genome and shaped its biology. Some Alus inserted recently and are polymorphic in the human population. It is these Alus that are being sought after in disease association studies and regulatory biology. Discovering polymorphic Alus in the human genome can open areas of new research in these fields. Results Using the polymerase chain reaction on genomic DNA, we identified a polymorphic Alu in the flanking region of the TFAP2B and TFAP2D genes. The new insert was found in higher frequency in Europeans (0.4) and Asians (0.38) and lower frequency in Africans (0.25). We also show this Alu to be part of a 3 Alu cassette that is human specific. The TFAP2B and TFAP2D genes encode members of the transcription factor AP-2, which plays a role in organ development. The insertion of this Alu cassette flanking the transcription factor genes distinguishes humans from the primates. This cassette can possibly affect the regulation of both genes or alternately provoke genomic deletions, which we have shown in this study. Its presence in such a location is intriguing and unquestionably opens an investigational window in disease association studies and in the field of gene regulation. Electronic supplementary material The online version of this article (10.1186/s13104-019-4247-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamdi K Hamdi
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia.
| | - Siddana Reddy
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Nada Laz
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Renad Eltaher
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Zahraa Kandell
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Teif Mahmud
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Lamia Alenazi
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Basheer Haroun
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Mohanad Hassan
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Raju Ragavendra
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| |
Collapse
|
5
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
6
|
ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int J Mol Sci 2018; 19:ijms19061734. [PMID: 29895733 PMCID: PMC6032270 DOI: 10.3390/ijms19061734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Collapse
|
7
|
A statistical analysis on transcriptome sequences: The enrichment of Alu-element is associated with subcellular location. Biochem Biophys Res Commun 2018. [PMID: 29524415 DOI: 10.1016/j.bbrc.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Alu-element plays important roles in mediating alternative splicing, RNA editing and translation regulation. However, the distribution and function of the Alu-element are never analysed at the transcriptome level. This study presents a statistical analysis of the Alu-element on human transcriptome. We found that mRNAs and lncRNAs share the same sequence form for the Alu-element. The Alu-element covers 5.8% of the coding transcripts and 17.1% of the coding genes for mRNAs, and covers 9.3% of the transcripts and 13.6% of the genes for lncRNAs. The Alu-element is preferentially located at the 3' end. Statistical analysis demonstrates that the enrichment of Alu-element is associated with subcellular location. For instance, Alu-inclusive transcripts are overexpressed in nucleus, mitochondrion and Golgi apparatus membrane while under-expressed in cell membrane and extracellular space. We found that genes contain both Alu-element and S- domains of 7SL RNA are all associated with cellular activities carried out in mitochondrion.
Collapse
|
8
|
Gigoni A, Costa D, Gaetani M, Tasso R, Villa F, Florio T, Pagano A. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells. Cell Cycle 2016; 15:2420-30. [PMID: 27494068 DOI: 10.1080/15384101.2016.1181242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possibility to enhance proliferation and dedifferentiation of cells of interest, by 21A down-regulation, using a mixture of chemically modified Anti-21A RNAs. Our results confirmed the validity of this approach that allows the amplification of specific cell populations, in a controlled manner and without inducing permanent effects. In addition to induce cell proliferation, the procedure did not decrease the tissue regeneration potential of progenitor cells in two different cell systems.
Collapse
Affiliation(s)
- Arianna Gigoni
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy
| | | | - Massimiliano Gaetani
- c ISMETT, Mediterranean Institute for Transplantation and Advanced Specialized Therapies , Palermo , Italy.,d Ri.MED Foundation , Palermo , Italy
| | - Roberta Tasso
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy.,b IRCCS-AOU San Martino-IST , Genova , Italy
| | - Federico Villa
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy
| | - Tullio Florio
- e Sect. of Pharmacology, Dept. of Internal Medicine (DiMI) and Center of Excellence for Biomedical Research (CEBR), University of Genova , Genova , Italy
| | - Aldo Pagano
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy.,b IRCCS-AOU San Martino-IST , Genova , Italy
| |
Collapse
|
9
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
10
|
Audas TE, Lee S. Stressing out over long noncoding RNA. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:184-91. [PMID: 26142536 PMCID: PMC9479161 DOI: 10.1016/j.bbagrm.2015.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022]
Abstract
Genomic studies have revealed that humans possess far fewer protein-encoding genes than originally predicted. These over-estimates were drawn from the inherent developmental and stimuli-responsive complexity found in humans and other mammals, when compared to lower eukaryotic organisms. This left a conceptual void in many cellular networks, as a new class of functional molecules was necessary for "fine-tuning" the basic proteomic machinery. Transcriptomics analyses have determined that the vast majority of the genetic material is transcribed as noncoding RNA, suggesting that these molecules could provide the functional diversity initially sought from proteins. Indeed, as discussed in this review, long noncoding RNAs (lncRNAs), the largest family of noncoding transcripts, have emerged as common regulators of many cellular stressors; including heat shock, metabolic deprivation and DNA damage. These stimuli, while divergent in nature, share some common stress-responsive pathways, notably inhibition of cell proliferation. This role intrinsically makes stress-responsive lncRNA regulators potential tumor suppressor or proto-oncogenic genes. As the list of functional RNA molecules continues to rapidly expand it is becoming increasingly clear that the significance and functionality of this family may someday rival that of proteins. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Santagostino M, Khoriauli L, Gamba R, Bonuglia M, Klipstein O, Piras FM, Vella F, Russo A, Badiale C, Mazzagatti A, Raimondi E, Nergadze SG, Giulotto E. Genome-wide evolutionary and functional analysis of the Equine Repetitive Element 1: an insertion in the myostatin promoter affects gene expression. BMC Genet 2015; 16:126. [PMID: 26503543 PMCID: PMC4623272 DOI: 10.1186/s12863-015-0281-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons. These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry out a genome wide analysis of ERE1 retrotransposons in the horse and to analyze insertion polymorphism in relation to evolution and function. The effect of an ERE1 insertion in the promoter of the myostatin gene, which is involved in muscle development, was also investigated. RESULTS In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERE1 insertion within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with sport aptitude and racing performance. CONCLUSIONS Sequence conservation and insertion polymorphism of ERE1 elements are related to the time of their appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results suggest that the ERE1 insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic performance, breeding schemes may take into account ERE1 insertion polymorphism at the myostatin promoter.
Collapse
Affiliation(s)
- Marco Santagostino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Lela Khoriauli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Riccardo Gamba
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Margherita Bonuglia
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Ori Klipstein
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesca M Piras
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesco Vella
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alessandra Russo
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Claudia Badiale
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alice Mazzagatti
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Raimondi
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Solomon G Nergadze
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Giulotto
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| |
Collapse
|
12
|
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 2015; 86:90-109. [PMID: 25797922 DOI: 10.1016/j.ympev.2015.03.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/25/2022]
Abstract
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Solenne Bire
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Institute of Biotechnology, University of Lausanne, Center for Biotechnology UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Peter Arensburger
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, United States.
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
13
|
Re-characterization of established human retinoblastoma cell lines. Histochem Cell Biol 2014; 143:325-38. [DOI: 10.1007/s00418-014-1285-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 11/26/2022]
|
14
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
15
|
Marks J. Hominoid cytogenetics and evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012. [DOI: 10.1002/ajpa.1330260507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proc Natl Acad Sci U S A 2012; 109:13781-6. [PMID: 22869729 DOI: 10.1073/pnas.1206494109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deficient expression of the RNase III DICER1, which leads to the accumulation of cytotoxic Alu RNA, has been implicated in degeneration of the retinal pigmented epithelium (RPE) in geographic atrophy (GA), a late stage of age-related macular degeneration that causes blindness in millions of people worldwide. Here we show increased extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation in the RPE of human eyes with GA and that RPE degeneration in mouse eyes and in human cell culture induced by DICER1 depletion or Alu RNA exposure is mediated via ERK1/2 signaling. Alu RNA overexpression or DICER1 knockdown increases ERK1/2 phosphorylation in the RPE in mice and in human cell culture. Alu RNA-induced RPE degeneration in mice is rescued by intravitreous administration of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1, but not by inhibitors of other MAP kinases such as p38 or JNK. These findings reveal a previously unrecognized function of ERK1/2 in the pathogenesis of GA and provide a mechanistic basis for evaluation of ERK1/2 inhibition in treatment of this disease.
Collapse
|
17
|
Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med (Berl) 2012; 90:1095-107. [PMID: 22527882 DOI: 10.1007/s00109-012-0896-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
Abstract
Selenoprotein N (SelN) deficiency causes several inherited neuromuscular disorders collectively termed SEPN1-related myopathies, characterized by early onset, generalized muscle atrophy, and muscle weakness affecting especially axial muscles and leading to spine rigidity, severe scoliosis, and respiratory insufficiency. SelN is ubiquitously expressed and is located in the membrane of the endoplasmic reticulum; however, its function remains elusive. The predominant expression of SelN in human fetal tissues and the embryonic muscle phenotype reported in mutant zebrafish suggest that it is involved in myogenesis. In mice, SelN is also mostly expressed during embryogenesis and especially in the myotome, but no defect was detected in muscle development and growth in the Sepn1 knock-out mouse model. By contrast, we recently demonstrated that SelN is essential for muscle regeneration and satellite cell maintenance in mice and humans, hence opening new avenues regarding the pathomechanism(s) leading to SEPN1-related myopathies. At the cellular level, recent data suggested that SelN participates in oxidative and calcium homeostasis, with a potential role in the regulation of the ryanodine receptor activity. Despite the recent and exciting progress regarding the physiological function(s) of SelN in muscle tissue, the pathogenesis leading to SEPN1-related myopathies remains largely unknown, with several unsolved questions, and no treatment available. In this review, we introduce SelN, its properties and expression pattern in zebrafish, mice, and humans, and we discuss its potential roles in muscle tissue and the ensuing clues for the development of therapeutic options.
Collapse
|
18
|
Antisense Oligonucleotide (AON)-based Therapy for Leber Congenital Amaurosis Caused by a Frequent Mutation in CEP290. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e14. [PMID: 23343883 PMCID: PMC3381589 DOI: 10.1038/mtna.2012.3] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal degeneration, with an onset in the first year of life. The most frequent mutation that causes LCA, present in at least 10% of individuals with LCA from North-American and Northern-European descent, is an intronic mutation in CEP290 that results in the inclusion of an aberrant exon in the CEP290 mRNA. Here, we describe a genetic therapy approach that is based on antisense oligonucleotides (AONs), small RNA molecules that are able to redirect normal splicing of aberrantly processed pre-mRNA. Immortalized lymphoblastoid cells of individuals with LCA homozygously carrying the intronic CEP290 mutation were transfected with several AONs that target the aberrant exon that is incorporated in the mutant CEP290 mRNA. Subsequent RNA isolation and reverse transcription-PCR analysis revealed that a number of AONs were capable of almost fully redirecting normal CEP290 splicing, in a dose-dependent manner. Other AONs however, displayed no effect on CEP290 splicing at all, indicating that the rescue of aberrant CEP290 splicing shows a high degree of sequence specificity. Together, our data show that AON-based therapy is a promising therapeutic approach for CEP290-associated LCA that warrants future research in animal models to develop a cure for this blinding disease.
Collapse
|
19
|
Kines KJ, Belancio VP. Expressing genes do not forget their LINEs: transposable elements and gene expression. FRONT BIOSCI-LANDMRK 2012; 17:1329-44. [PMID: 22201807 DOI: 10.2741/3990] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane University Cancer Center and Tulane Center for Aging
| | | |
Collapse
|
20
|
TFIIF facilitates dissociation of RNA polymerase II from noncoding RNAs that lack a repression domain. Mol Cell Biol 2010; 30:91-7. [PMID: 19841064 DOI: 10.1128/mcb.01115-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) have recently been found to regulate multiple steps in mammalian mRNA transcription. Mouse B2 RNA and human Alu RNA bind RNA polymerase II (Pol II) and repress mRNA transcription, using regions of the ncRNAs referred to as repression domains. Two other ncRNAs, mouse B1 RNA and human small cytoplasmic Alu (scAlu) RNA, bind Pol II with high affinity but lack repression domains and hence do not inhibit transcription. To better understand the interplay between ncRNAs that bind Pol II and their functions in transcription, we studied how Pol II binding and transcriptional repression are controlled by general transcription factors. We found that TFIIF associates with B1 RNA/Pol II and scAlu RNA/Pol II complexes and decreases their kinetic stability. Both subunits of TFIIF are required for this activity. Importantly, fusing a repression domain to B1 RNA stabilizes its interaction with Pol II in the presence of TFIIF. These results suggest a new role for TFIIF in regulating the interaction of ncRNAs with Pol II; specifically, it destabilizes interactions with ncRNAs that are not transcriptional repressors. These studies also identify a new function for ncRNA repression domains: they stabilize interactions of ncRNAs with Pol II in the presence of TFIIF.
Collapse
|
21
|
Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol 2008; 130:1119-30. [PMID: 19005674 DOI: 10.1007/s00418-008-0536-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2008] [Indexed: 11/30/2022]
Abstract
Since their introduction almost a century ago, chick embryo model systems involving the technique of chorioallantoic grafting have proved invaluable in the in vivo studies of tumor development and angiogenesis and tumor cell dissemination. The ability of the chick embryo's chorioallantoic membrane (CAM) to efficiently support the growth of inoculated xenogenic tumor cells greatly facilitates analysis of human tumor cell metastasis. During spontaneous metastasis, the highly vascularized CAM sustains rapid tumor formation within several days following cell grafting. The dense capillary network of the CAM also serves as a repository of aggressive tumor cells that escaped from the primary tumor and intravasated into the host vasculature. This spontaneous metastasis setting provides a unique experimental model to study in vivo the intravasation step of the metastatic cascade. During experimental metastasis when tumor cells are inoculated intravenously, the CAM capillary system serves as a place for initial arrest and then, for tumor cell extravasation and colonization. The tissue composition and accessibility of the CAM for experimental interventions makes chick embryo CAM systems attractive models to follow the fate and visualize microscopically the behavior of grafted tumor cells in both spontaneous and experimental metastasis settings.
Collapse
|
22
|
|
23
|
Gherman A, Chen PE, Teslovich TM, Stankiewicz P, Withers M, Kashuk CS, Chakravarti A, Lupski JR, Cutler DJ, Katsanis N. Population bottlenecks as a potential major shaping force of human genome architecture. PLoS Genet 2008; 3:e119. [PMID: 17658953 PMCID: PMC1925129 DOI: 10.1371/journal.pgen.0030119] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/04/2007] [Indexed: 11/24/2022] Open
Abstract
The modern synthetic view of human evolution proposes that the fixation of novel mutations is driven by the balance among selective advantage, selective disadvantage, and genetic drift. When considering the global architecture of the human genome, the same model can be applied to understanding the rapid acquisition and proliferation of exogenous DNA. To explore the evolutionary forces that might have morphed human genome architecture, we investigated the origin, composition, and functional potential of numts (nuclear mitochondrial pseudogenes), partial copies of the mitochondrial genome found abundantly in chromosomal DNA. Our data indicate that these elements are unlikely to be advantageous, since they possess no gross positional, transcriptional, or translational features that might indicate beneficial functionality subsequent to integration. Using sequence analysis and fossil dating, we also show a probable burst of integration of numts in the primate lineage that centers on the prosimian–anthropoid split, mimics closely the temporal distribution of Alu and processed pseudogene acquisition, and coincides with the major climatic change at the Paleocene–Eocene boundary. We therefore propose a model according to which the gross architecture and repeat distribution of the human genome can be largely accounted for by a population bottleneck early in the anthropoid lineage and subsequent effectively neutral fixation of repetitive DNA, rather than positive selection or unusual insertion pressures. Throughout evolutionary history, fragments of the mitochondrial genome, known as numts (for nuclear mitochondrial sequences), have been inserted into the nuclear genome. These fragments are distinct from all other classes of repetitive DNA found in nuclear genomes, not least because they are incapable of mediating their own proliferation. Taking advantage of their unique evolutionary properties, we have used numts to improve our understanding of the architecture of the human genome with special emphasis on the mechanism of acquisition and retention of repeat sequences, which comprise the bulk of nuclear DNA. We find that numts are unlikely to have any evolutionary benefit driving their retention. Moreover, numts are not acquired randomly during evolutionary time. Instead, their rate of acquisition spikes dramatically around pronounced population bottlenecks, in a manner reminiscent of other repeat classes. Therefore, we propose that the primary driving force of repeat acquisition in the genome is not selection, but random genetic drift, whose force becomes pronounced during profound reductions of population size. Our findings support the theory of neutral evolution, according to which random genetic drift exerts an influence on the acquisition of DNA changes that far outweighs the power of positive selection.
Collapse
MESH Headings
- Alu Elements
- Animals
- Cell Line
- Chromosome Mapping
- DNA/genetics
- DNA, Mitochondrial/genetics
- Evolution, Molecular
- Genetic Drift
- Genetics, Population
- Genome, Human
- Genome, Mitochondrial
- Humans
- In Situ Hybridization, Fluorescence
- Models, Genetic
- Primates/genetics
- Protein Biosynthesis
- Pseudogenes
- Repetitive Sequences, Nucleic Acid
- Selection, Genetic
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Adrian Gherman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peter E Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tanya M Teslovich
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marjorie Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carl S Kashuk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - David J Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (DJC); (NK)
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (DJC); (NK)
| |
Collapse
|
24
|
Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29:499-509. [PMID: 18313387 DOI: 10.1016/j.molcel.2007.12.013] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/24/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Noncoding RNAs (ncRNAs) have recently been discovered to regulate mRNA transcription in trans, a role traditionally reserved for proteins. The breadth of ncRNAs as transacting transcriptional regulators and the diversity of signals to which they respond are only now becoming recognized. Here we show that human Alu RNA, transcribed from short interspersed elements (SINEs), is a transacting transcriptional repressor during the cellular heat shock response. Alu RNA blocks transcription by binding RNA polymerase II (Pol II) and entering complexes at promoters in vitro and in human cells. Transcriptional repression by Alu RNA involves two loosely structured domains that are modular, a property reminiscent of classical protein transcriptional regulators. Two other SINE RNAs, human scAlu RNA and mouse B1 RNA, also bind Pol II but do not repress transcription in vitro. These studies provide an explanation for why mouse cells harbor two major classes of SINEs, whereas human cells contain only one.
Collapse
Affiliation(s)
- Peter D Mariner
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
26
|
Core-SINE blocks comprise a large fraction of monotreme genomes; implications for vertebrate chromosome evolution. Chromosome Res 2008; 15:975-84. [DOI: 10.1007/s10577-007-1187-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/21/2007] [Accepted: 10/21/2007] [Indexed: 10/22/2022]
|
27
|
Rosenbloom J, Abrams WR, Indik Z, Yeh H, Ornstein-Goldstein N, Bashir MM. Structure of the elastin gene. CIBA FOUNDATION SYMPOSIUM 2007; 192:59-74; discussion 74-80. [PMID: 8575268 DOI: 10.1002/9780470514771.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The isolation and characterization of cDNAs encompassing the full length of chicken, cow, rat and human elastin mRNA have led to the elucidation of the primary structure of the respective tropoelastins. Large segments of the sequence are conserved but there are also considerable variations which range in extent from relatively small alterations, such as conservative amino acid substitutions, to variation in the length of hydrophobic segments and largescale deletions and insertions. In general, smaller differences are found among mammalian tropoelastins and greater ones between chicken and mammalian tropoelastins. Although only a single elastin gene is found per haploid genome, the primary transcript is subject to considerable alternative splicing, resulting in multiple tropoelastin isoforms. Functionally distinct hydrophobic and cross-link domains of the protein are encoded in separate exons which alternate in the gene. The introns of the human gene are rich in Alu repetitive sequences, which may be the site of recombinational events, and there are also several dinucleotide repeats, which may exhibit polymorphism and, therefore, be effective genetic markers. The 5' flanking region is G+C rich and contains potential binding sites for numerous modulating factors, but no TATA box or functional CAAT box. The basic promoter is contained within a 136 bp segment and transcription is initiated at multiple sites. These findings suggest that the regulation of elastin gene expression is complex and takes place at several levels.
Collapse
Affiliation(s)
- J Rosenbloom
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
28
|
Garrity RR, Hegamyer GA, Seed JL, Colburn NH. Deletion mapping of tumor promotion-susceptibility gene pro1 implicates an RNA polymerase III transcription unit. Mol Carcinog 2006; 3:243-50. [PMID: 1698383 DOI: 10.1002/mc.2940030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The murine gene pro1 has been cloned from JB6 epidermal cell lines that are sensitive to neoplastic transformation by tumor promoters. Insensitive JB6 variants acquire susceptibility to neoplastic transformation by tumor promoters when transfected with pro1. The repetitive nature of pro1 was indicated by sequence and Southern analysis. In contrast, northern analysis of RNA from promotion-sensitive cells revealed the presence of a small pro1-hybridizing transcript. Strand-specific RNA probes implicated an RNA polymerase III (RNAPIII) coding domain in pro1 as the source of this hybridization signal. Ribonuclease protection of gel-purified pro1 RNA from JB6 variant cell lines identified a 130-nucleotide transcript. The size of this transcript is compatible with in vitro RNAPIII transcription of pro1. Deletion mapping of pro1 by exonuclease III demonstrated that the biologically active domain included the RNAPIII transcription unit. RNA probes map pro1 RNA within the activity domain. These results delineate an activity domain of 597 nucleotides and suggest that a small RNA is the product of promotion-sensitivity gene pro1.
Collapse
Affiliation(s)
- R R Garrity
- Biological Carcinogenesis Development Program, Program Resources, Inc., Frederick, Maryland
| | | | | | | |
Collapse
|
29
|
Li W, Miramontes P. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021912. [PMID: 17025477 DOI: 10.1103/physreve.74.021912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Indexed: 05/12/2023]
Abstract
Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500 kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500 kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, New York 11030, USA.
| | | |
Collapse
|
30
|
Gasior SL, Palmisano M, Deininger PL. Alu-linked hairpins efficiently mediate RNA interference with less toxicity than do H1-expressed short hairpin RNAs. Anal Biochem 2005; 349:41-8. [PMID: 16359634 DOI: 10.1016/j.ab.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/18/2005] [Accepted: 11/01/2005] [Indexed: 12/22/2022]
Abstract
RNA interference has become a powerful tool for specific inhibition of gene expression in mammalian cells. Expression constructs allow for the long-term delivery of short interfering RNAs, usually through the expression of Pol III-transcribed hairpins. In some instances, these expression systems have been shown to have side effects, including induction of the interferon response and cytotoxicity. Here we demonstrate that H1-expressed hairpins, as well as the cloning vector, reduce the plating efficiency of HeLa cells. This toxicity is abrogated by coexpression of the hairpin in the same transcript as a human Alu repetitive element. These Alu-linked hairpins retain the ability to knock down expression of target mRNAs. This modification, which we term SINE (short interspersed repetitive element)-enhanced short hairpin RNA, provides an alternative expression system for hairpins with reduced side effects.
Collapse
Affiliation(s)
- Stephen L Gasior
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
31
|
Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 2005; 22:134-41. [PMID: 16287941 DOI: 10.1093/bioinformatics/bti774] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Matches to repetitive sequences are usually undesirable in the output of DNA database searches. Repetitive sequences need not be matched to a query, if they can be masked in the database. RepeatMasker/Maskeraid (RM), currently the most widely used software for DNA sequence masking, is slow and requires a library of repetitive template sequences, such as a manually curated RepBase library, that may not exist for newly sequenced genomes. RESULTS We have developed a software tool called WindowMasker (WM) that identifies and masks highly repetitive DNA sequences in a genome, using only the sequence of the genome itself. WM is orders of magnitude faster than RM because WM uses a few linear-time scans of the genome sequence, rather than local alignment methods that compare each library sequence with each piece of the genome. We validate WM by comparing BLAST outputs from large sets of queries applied to two versions of the same genome, one masked by WM, and the other masked by RM. Even for genomes such as the human genome, where a good RepBase library is available, searching the database as masked with WM yields more matches that are apparently non-repetitive and fewer matches to repetitive sequences. We show that these results hold for transcribed regions as well. WM also performs well on genomes for which much of the sequence was in draft form at the time of the analysis. AVAILABILITY WM is included in the NCBI C++ toolkit. The source code for the entire toolkit is available at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/. Once the toolkit source is unpacked, the instructions for building WindowMasker application in the UNIX environment can be found in file src/app/winmasker/README.build. SUPPLEMENTARY INFORMATION Supplementary data are available at ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/windowmasker/windowmasker_suppl.pdf
Collapse
Affiliation(s)
- Aleksandr Morgulis
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services Building 38A, Room 1003N, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
The human Y chromosome contains over 60 million nucleotides, but least number of genes compared to any other chromosome and acts as a genetic determinant of the male characteristic features. The male specific region, MSY, comprising 95% of the Y chromosome represents a mosaic of heterochromatic and three classes of euchromatic (X-transposed, X-degenerate and ampliconic) sequences. Thus far, 156 transcription units, 78 protein-coding genes and 27 distinct proteins of the Y chromosome have been identified. The MSY euchromatic sequences show frequent gene conversion. Of the eight massive palindromes identified on the human Y chromosome, six harbor vital testis specific genes. The human male infertility has been attributed to mutations in the genes on Y chromosome and autosomes and failures of several physical and physiological attributes including paracrine controls. In addition, deletion of any one or all the three azoospermia (AZFa, AZFb or AZFc) factor(s) and some still unidentified regulatory elements located elsewhere in the genome result in infertility. Characterization of palindromic complexes on the long arm of Y chromosome encompassing AZFb and AZFc regions and identification of HERV15 class of endogenous retroviruses close to AZFa region have facilitated our understanding on the organization of azoospermia factors. Considerable overlap of the AZFb and AZFc regions encompassing a number of genes and transcripts has been shown to exist. However, barring details on AZF, information on the exact number of genes or the types of mutations prevalent in the infertile male is not available. Similarly, roles of sizable body of repetitive DNA present in close association with transcribing sequences on the Y chromosome are yet not clear. In a clinical setting with known cases of infertility, systematic search for loss or gain of these repeat elements would help understand their biological role(s). We present a brief overview on the genetic complexity of the human Y chromosome in the context of human male infertility.
Collapse
Affiliation(s)
- Sher Ali
- National Institute of Immunology, Molecular Genetics Laboratory, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | |
Collapse
|
34
|
Imase A, Matsuda H, Irie Y, Iwamura Y. Existence of host DNA sequences in schistosomes—horizontal and vertical transmission. Parasitol Int 2003; 52:369-73. [PMID: 14665395 DOI: 10.1016/s1383-5769(03)00053-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The localization of repetitive DNA sequences in the mouse genome such as mouse type 2 Alu sequence (B2) and mouse retrovirus-related sequences was shown in the body of adult Schistosoma japonicum and Schistosoma mansoni by applying an in situ PCR and hybridization technique. Using the same method, mouse major histocompatibility complex (MHC) class I sequence was also found in schistosomes. Furthermore, mouse MHC class I sequence and type A retroviral sequence were detected in S. japonicum and S. mansoni cercarial DNA by blot hybridization. These findings indicated that horizontal and vertical transmission of host DNA sequences occurred in schistosomes. The incorporation and propagation of host sequences in schistosomes and the roles played by such host sequences form the focus of this brief review.
Collapse
Affiliation(s)
- Atsuko Imase
- Department of Tropical Medicine and Parasitology, Dokkyo University School of Medicine, Tochigi 321-0293, Japan.
| | | | | | | |
Collapse
|
35
|
Chang JH, Pan JP, Tai DY, Huang AC, Li PH, Ho HL, Hsieh HL, Chou SC, Lin WL, Lo E, Chang CY, Tseng J, Su MT, Lee-Chen GJ. Identification and characterization of LDL receptor gene mutations in hyperlipidemic Chinese. J Lipid Res 2003; 44:1850-8. [PMID: 12837857 DOI: 10.1194/jlr.m200470-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA screening for LDL receptor mutations was performed in 170 unrelated hyperlipidemic Chinese patients and two clinically diagnosed familial hypercholesterolemia patients. Two deletions (Del e3-5 and Del e6-8), eight point mutations (W-18X, D69N, R94H, E207K, C308Y, I402T, A410T, and A696G), and two polymorphisms (A370T and I602V) were identified. Of these mutations, C308Y and Del e6-8 were found in homozygosity, and D69N and C308Y were seen in unrelated patients. The effects of mutations on LDL receptor function were characterized in COS-7 cells. The LDL receptor level and activity were close to those of wild type in A696G transfected cells. A novel intermediate protein and reduction of LDL receptor activity were seen in D69N transfected cells. For R94H, E207K, C308Y, I402T, and A410T mutations, only approximately 20-64% of normal receptor activities were seen. Conversely, Del e3-5 and Del e6-8 lead to defective proteins with approximately 0-13% activity. Most of the mutant receptors were localized intracellularly, with a staining pattern resembling that of the endoplasmic reticulum and Golgi apparatus (D69N, R94H, E207K, C308Y, and I402T) or endosome/lysosome (A410T and Del e6-8). Molecular analysis of the LDL receptor gene will clearly identify the cause of the patient's hyperlipidemia and allow appropriate early treatment as well as antenatal and family studies.
Collapse
Affiliation(s)
- Jui-Hung Chang
- Department of Biology, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hon LS, Jain AN. Compositional structure of repetitive elements is quantitatively related to co-expression of gene pairs. J Mol Biol 2003; 332:305-10. [PMID: 12948482 DOI: 10.1016/s0022-2836(03)00926-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A sequence similarity metric operating on 10 kb upstream regions of gene pairs quantitatively predicts a portion of co-variation of expression of gene pairs in large-scale gene expression studies in human tumors and tumor-derived cell lines. The signal on which the metric depends most strongly originates in the compositional structure of repetitive genomic sequences (particularly Alu elements) present in these upstream regions. This effect is completely separable from effects of isochore composition on gene expression. The results implicate repetitive elements with some functional role in transcriptional regulation of the specific genes in whose promoter regions they reside and lend credence to suggestions that the general phenomenon of repetitive element insertions may be a fundamental evolutionary mechanism for modulating gene transcription.
Collapse
Affiliation(s)
- Lawrence S Hon
- Cancer Research Institute, University of California, 2340 Sutter Street S-336, Box 0128, San Francisco, CA 94143-0128, USA
| | | |
Collapse
|
37
|
Bellingham J, Gregory-Evans K, Fox MF, Gregory-Evans CY. Gene structure and tissue expression of human selenoprotein W, SEPW1, and identification of a retroprocessed pseudogene, SEPW1P. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:140-6. [PMID: 12818432 DOI: 10.1016/s0167-4781(03)00078-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have determined that the human SEPW1 (selenoprotein W) gene maps to chromosome 19q13.3, spans approximately 6.3 kb and comprises six exons, in contrast to the previously published five exons. The gene lacks canonical TATA and CAAT boxes, but has numerous Sp1 consensus binding sites upstream of multiple transcription start sites. SEPW1 is expressed in all of the 22 tissues assayed, and shows highest expression in skeletal muscle and heart. Additionally, we have also identified a retroprocessed SEPW1 pseudogene, SEPW1P, which maps to chromosome 1p34-35.
Collapse
Affiliation(s)
- James Bellingham
- Section of Cell and Molecular Biology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
38
|
Thornton MA, Zhang C, Kowalska MA, Poncz M. Identification of distal regulatory regions in the human alpha IIb gene locus necessary for consistent, high-level megakaryocyte expression. Blood 2002; 100:3588-96. [PMID: 12393463 DOI: 10.1182/blood-2002-05-1307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alphaIIb/beta3-integrin receptor is present at high levels only in megakaryocytes and platelets. Its presence on platelets is critical for hemostasis. The tissue-specific nature of this receptor's expression is secondary to the restricted expression of alphaIIb, and studies of the alphaIIb proximal promoter have served as a model of a megakaryocyte-specific promoter. We have examined the alphaIIb gene locus for distal regulatory elements. Sequence comparison between the human (h) and murine (m) alphaIIb loci revealed high levels of conservation at intergenic regions both 5' and 3' to the alphaIIb gene. Additionally, deoxyribonuclease (DNase) I sensitivity mapping defined tissue-specific hypersensitive (HS) sites that coincide, in part, with these conserved regions. Transgenic mice containing various lengths of the h(alpha)IIb gene locus, which included or excluded the various conserved/HS regions, demonstrated that the proximal promoter was sufficient for tissue specificity, but that a region 2.5 to 7.1 kb upstream of the h(alpha)IIb gene was necessary for consistent expression. Another region 2.2 to 7.4 kb downstream of the gene enhanced expression 1000-fold and led to levels of h(alpha)IIb mRNA that were about 30% of the native m(alpha)IIb mRNA level. These constructs also resulted in detectable h(alpha)IIb/m(beta)3 on the platelet surface. This work not only confirms the importance of the proximal promoter of the alphaIIb gene for tissue specificity, but also characterizes the distal organization of the alphaIIb gene locus and provides an initial localization of 2 important regulatory regions needed for the expression of the alphaIIb gene at high levels during megakaryopoiesis.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
39
|
Chauhan C, Dash D, Grover D, Rajamani J, Mukerji M. Origin and instability of GAA repeats: insights from Alu elements. J Biomol Struct Dyn 2002; 20:253-63. [PMID: 12354077 DOI: 10.1080/07391102.2002.10506841] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Expansion of GAA repeats in the intron of the frataxin gene is involved in the autosomal recessive Friedreich's ataxia (FRDA). The GAA repeats arise from a stretch of adenine residues of an Alu element. These repeats have a size ranging from 7- 38 in the normal population, and expand to thousands in the affected individuals. The mechanism of origin of GAA repeats, their polymorphism and stability are not well understood. In this study, we have carried out an extensive analysis of GAA repeats at several loci in the humans. This analysis indicates the association of a majority of GAA repeats with the 3' end of an "A" stretch present in the Alu repeats. Further, the prevalence of GAA repeats correlates with the evolutionary age of Alu subfamilies as well as with their relative frequency in the genome. Our study on GAA repeat polymorphism at some loci in the normal population reveals that the length of the GAA repeats is determined by the relative length of the flanking A stretch. Based on these observations, a possible mechanism for origin of GAA repeats and modulatory effects of flanking sequences on repeat instability mediated by DNA triplex is proposed.
Collapse
Affiliation(s)
- Chitra Chauhan
- Functional Genomics Unit, Centre for Biochemical Technology (CSIR), Delhi University Campus, Mall Road, Delhi-110007, India
| | | | | | | | | |
Collapse
|
40
|
Lin CJ, Tam RC. Transcriptional regulation of CD28 expression by CD28GR, a novel promoter element located in exon 1 of the CD28 gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6134-43. [PMID: 11342633 DOI: 10.4049/jimmunol.166.10.6134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD28 provides an essential costimulatory signal required for Ag-mediated T cell activation via the TCR. Although accumulating evidence exists for the signaling properties of CD28, less is known regarding the regulation of CD28 expression. In this study, we have identified a novel promoter element of CD28, CD28GR (GGGGAGGAGGGG), which is located between +181 and +192 in exon 1 of the CD28 gene. Mutations within the 12-bp CD28GR sequence abolished its transcriptional activity. CD28GR contains a Sp1/EGR-1 binding site, which was found to act as the predominant functional element for regulating CD28 gene expression in Jurkat cells. Exon 1/CD28GR-driven transcription in Jurkat cells was augmented by cotransfection with Sp1 or EGR-1 expression plasmid. Similar augmentation was also shown with pharmacologic activation. This study is the first to identify a regulatory element that is critical for conferring constitutive and activation-induced transcriptional activation of the CD28 gene. Furthermore, our results proposed potential involvement of Sp1 in regulating CD28 expression. The linkage between Sp1 and the expression of CD28 has important implications in how viral infections, such as HIV, can induce immunosuppression.
Collapse
Affiliation(s)
- C J Lin
- Department of Drug Discovery, ICN Pharmaceuticals, Costa Mesa, CA 92626, USA
| | | |
Collapse
|
41
|
Scofield MA, Xiong W, Haas MJ, Zeng Y, Cox GS. Sequence analysis of the human glycoprotein hormone alpha-subunit gene 5'-flanking DNA and identification of a potential regulatory element as an alu repetitive sequence. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:302-18. [PMID: 11018255 DOI: 10.1016/s0167-4781(00)00192-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nucleotide sequence of the human glycoprotein hormone alpha-subunit (GPHalpha) gene 5'-flanking DNA was determined from -1637 to +49 relative to the cap site (+1). Comparison of the upstream sequence of the human gene with those of rhesus and mouse demonstrates regions with variable identity. When the 1.7 kb fragment was used to drive the expression of chloramphenicol acetyltransferase (CAT) in transiently transfected HeLa cells, it was found that CAT activity was elevated about 3-fold when the fragment was truncated from -1637 to -846, suggesting the presence of a negative regulatory element in the distal 5'-flanking DNA. This overlaps an Alu repetitive sequence (ARS) located between nucleotides -1330 and -1007. Gel mobility shift and DNase protection analyses identified a protein binding site centered around -1100 in the ARS second monomer. The GPHalpha upstream ARS was cloned in both orientations in positions upstream and downstream from the bacterial CAT gene under control of the herpes simplex virus thymidine kinase (tk) promoter. DNA-mediated transient transfection of these plasmids revealed a marked inhibition (79-82%) of CAT production by the ARS when it was cloned upstream from the tk promoter and in the same orientation as that found in the GPHalpha 5'-flanking DNA. Smaller decreases (29-57%) were produced by the ARS cloned upstream from the tk promoter in the reverse orientation. In marked contrast, the Alu repetitive element had little or no effect when cloned in either orientation downstream from the tk-CAT gene. Introduction of a second ARS downstream from the CAT reporter gene in vectors already containing an ARS upstream from the tk promoter significantly reduced the strong negative effect elicited by the upstream repetitive element. When compared to the Blur 8 Alu element, the GPHalpha upstream ARS differs markedly with respect to its effect on tk-CAT expression in transient assays and as a substrate for DNA binding proteins present in HeLa nuclear extracts. Together, the transient expression results demonstrate that ARS elements can influence expression of nearby class II promoters. The extent of this effect depends on element position and orientation, cell type, the particular ARS (e.g., GPHalpha or Blur 8), and whether copies were present both upstream and downstream from the transcription unit.
Collapse
Affiliation(s)
- M A Scofield
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 984525 Nebraska Medical Center, Omaha, NE 68198-4525, USA
| | | | | | | | | |
Collapse
|
42
|
Yates PA, Burman RW, Mummaneni P, Krussel S, Turker MS. Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation. J Biol Chem 1999; 274:36357-61. [PMID: 10593928 DOI: 10.1074/jbc.274.51.36357] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cis-acting methylation center that signals de novo DNA methylation is located upstream of the mouse Aprt gene. In the current study, two approaches were taken to determine if tandem B1 repetitive elements found at the 3' end of the methylation center contribute to the methylation signal. First, bisulfite genomic sequencing demonstrated that CpG sites within the B1 elements were methylated at relative levels of 43% in embryonal stem cells deficient for the maintenance DNA methyltransferase when compared with wild type embryonal stem cells. Second, the ability of the B1 elements to signal de novo methylation upon stable transfection into mouse embryonal carcinoma cells was examined. This approach demonstrated that the B1 elements were methylated de novo to a high level in the embryonal carcinoma cells and that the B1 elements acted synergistically. The results from these experiments provide strong evidence that the tandem B1 repetitive elements provide a significant fraction of the methylation center signal. By extension, they also support the hypothesis that one role for DNA methylation in mammals is to protect the genome from expression and transposition of parasitic elements.
Collapse
Affiliation(s)
- P A Yates
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
43
|
Shiraishi M, Sekiguchi A, Chuu YH, Sekiya T. Tight interaction between densely methylated DNA fragments and the methyl-CpG binding domain of the rat MeCP2 protein attached to a solid support. Biol Chem 1999; 380:1127-31. [PMID: 10543452 DOI: 10.1515/bc.1999.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a previous report we have found that a number of short DNA fragments methylated at CpG sequences bound more tightly to a methyl-CpG binding column than DNA fragments having a larger number of methyl-CpG sequences. The column consists of a polypeptide comprising the DNA binding domain of the rat MeCP2 protein attached to a solid support. In the present study, we have investigated the features of short DNA fragments which bind tightly to a methyl-CpG binding column. Tight binding was observed when the DNA fragment had a high density of methyl-CpG sequences. Many of these fragments, derived from human genomic DNA, contained Alu repeated sequences supporting the previous observation that the highly-abundant Alu sequences are highly methylated. Our results suggest that methyl-CpG density is an important factor in the interaction between DNA fragments and the DNA binding domain of MeCP2 attached to a solid support.
Collapse
Affiliation(s)
- M Shiraishi
- Oncogene Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Hamdi H, Nishio H, Zielinski R, Dugaiczyk A. Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. J Mol Biol 1999; 289:861-71. [PMID: 10369767 DOI: 10.1006/jmbi.1999.2797] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past 60 million years, or so, approximately one million copies of Alu DNA repeats have accumulated in the genome of primates, in what appears to be an ongoing process. We determined the phylogenetic distribution of specific Alu (and other) DNA repeats in the genome of several primates: human, chimpanzee, gorilla, orangutan, baboon, rhesus, and macaque. At the population level studied, the majority of the repeats was found to be fixed in the primate species. Our data suggest that new Alu elements arise in unique, irreversible events, in a mechanism that seems to preclude precise excision and loss. The same insertions did not arise independently in two species. Once inserted and genetically fixed, the DNA elements are retained in all descendant lineages. The irreversible expansion of Alu s introduces a vector of time into the evolutionary process, and provides realistic (rather than statistical) answers to questions on phylogenies. In contrast to point mutations, the present distribution of individual Alu s is congruent with just one phylogeny. We submit that only irreversible and taxonomically relevant events are at the molecular basis of evolution. Most point mutations do not belong to this category.
Collapse
Affiliation(s)
- H Hamdi
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | | | | | | |
Collapse
|
45
|
Guimera J, Casas C, Estivill X, Pritchard M. Human minibrain homologue (MNBH/DYRK1): characterization, alternative splicing, differential tissue expression, and overexpression in Down syndrome. Genomics 1999; 57:407-18. [PMID: 10329007 DOI: 10.1006/geno.1999.5775] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human homologue (MNBH/DYRK1) of the Drosophila minibrain gene maps to human chromosome 21 within the Down syndrome (DS) critical region and is within the region minimally deleted in chromosome 21-linked microcephaly. As a first step in gaining insight into the role that MNBH may have in human neurogenesis, and as a lead-up to the development of mouse models for MNBH overexpression, we have characterized the gene at the molecular level. We describe here the MNBH full-length transcript, alternative splicing, expression profile, and genomic organization. The full-length cDNA of MNBH is 5. 2 kb and is composed of 17 exons spanning 150 kb, between markers D21S335 and D21S337. Transcripts MNBHa and MNBHb arise from the use of different first exons in the 5'-UTR and are differentially expressed. MNBHa is expressed ubiquitiously in a broad spectrum of tissues and is apparently under the control of a CpG island. MNBHb is expressed only in heart and skeletal muscle and is apparently under the control of a TATA-like box. Four alternative splicing events affecting the C-terminus of the protein yield at least four isoforms of MNBH (MNBH-iso1, MNBH-iso2, MNBH-iso3, and MNBH-iso4). A PEST sequence, potentially involved in the rapid degradation of the protein, is present in all the isoforms. A histidine repeat and a serine/threonine domain are present only in the largest form of the protein (MNBH-iso1). MNBH was overexpressed 1.5-fold in DS brains and Dyrk1 about 2.1-fold in the brains of the Ts65Dn mice. The information provided here should be valuable for MNBH mutation studies and aid in the development of DS animal models.
Collapse
Affiliation(s)
- J Guimera
- Medical and Molecular Genetics Center-IRO, Hospital Duran i Reynals, Avia de Castelldefels, Km 2.7, L'Hospitalet de Llobregat, Barcelona, Catalonia, 08907, Spain
| | | | | | | |
Collapse
|
46
|
Crone TM, Schalles SL, Benedict CM, Pan W, Ren L, Loy SE, Isom H, Clawson GA. Growth inhibition by a triple ribozyme targeted to repetitive B2 transcripts. Hepatology 1999; 29:1114-23. [PMID: 10094955 DOI: 10.1002/hep.510290449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The B2 family represents a group of short repetitive sequences that are found throughout the rodent genome and are analogous to the human Alu sequences. Certain B2 subfamilies are transcribed by RNA polymerase III (pol III), and this transcription is in part controlled by the retinoblastoma protein. In addition to their putative role in retrotranspositional events, these actively transcribed B2 RNAs show a predicted highly stable secondary structure. Although B2 transcripts are normally confined to the nucleus, they demonstrate altered compartmentation after carcinogen treatment, in cancers, and in immortalized and/or transformed cell lines, the significance of which is unclear. Because modulation of B2 transcripts did not seem feasible with an antisense approach, we designed a triple ribozyme (TRz) construct to down-regulate B2 transcripts. The B2-targeted TRz undergoes efficient self-cleavage, resulting in liberation of the internal hammerhead Rz, which we targeted to a single-stranded region of the consensus B2 sequence. The liberated internal targeted Rz was 20 times more active than the corresponding double-G mutant construct that could not undergo self-cleavage, and 5 times more active than the same Rz flanked by nonspecific vector sequences. The B2-targeted TRz was used to develop stable transfectant clones from an SV40-immortalized hepatocyte cell line. These transfectant clones all showed variably reduced growth rates, accompanied by significant reductions in both cytoplasmic and nuclear B2 RNA levels: linear regression analyses showed that their growth rates were directly related to residual cytoplasmic B2 levels. Reverse-transcription polymerase chain reaction (RT-PCR) analyses documented efficient self-liberation of the internal targeted Rz in vivo, and showed that the relative cytoplasmic expression levels generally paralleled the magnitude of the decrease in B2 transcripts. The RT-PCR analyses further demonstrated that up to 20% of the Rz was located in the nucleus, which presumably reflects competition between autocatalytic processing and nucleocytoplasmic transport of the initial TRz transcript.
Collapse
Affiliation(s)
- T M Crone
- Departments of Pathology, The Cell and Molecular Biology Program, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Murray J, Buard J, Neil DL, Yeramian E, Tamaki K, Hollies C, Jeffreys AJ. Comparative Sequence Analysis of Human Minisatellites Showing Meiotic Repeat Instability. Genome Res 1999. [DOI: 10.1101/gr.9.2.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The highly variable human minisatellites MS32 (D1S8), MS31A (D7S21), and CEB1 (D2S90) all show recombination-based repeat instability restricted to the germline. Mutation usually results in polar interallelic conversion or occasionally in crossovers, which, at MS32 at least, extend into DNA flanking the repeat array, defining a localized recombination hotspot and suggesting that cis-acting elements in flanking DNA can influence repeat instability. Therefore, comparative sequence analysis was performed to search for common flanking elements associated with these unstable loci. All three minisatellites are located in GC-rich DNA abundant in dispersed and tandem repetitive elements. There were no significant sequence similarities between different loci upstream of the unstable end of the repeat array. Only one of the three loci showed clear evidence for putative coding sequences near the minisatellite. No consistent patterns of thermal stability or DNA secondary structure were shared by DNA flanking these loci. This work extends previous data on the genomic environment of minisatellites. In addition, this work suggests that recombinational activity is not controlled by primary or secondary characteristics of the DNA sequence flanking the repeat array and is not obviously associated with gene promoters as seen in yeast.[The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF048727(CEB1), AF048728 (MS31A), and AF048729 (MS32).]
Collapse
|
48
|
Ivics Z, Izsvák Z, Hackett PB. Genetic applications of transposons and other repetitive elements in zebrafish. Methods Cell Biol 1999; 60:99-131. [PMID: 9891333 DOI: 10.1016/s0091-679x(08)61896-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Z Ivics
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
49
|
Kuo KW, Sheu HM, Huang YS, Leung WC. Expression of transposon LINE-1 is relatively human-specific and function of the transcripts may be proliferation-essential. Biochem Biophys Res Commun 1998; 253:566-70. [PMID: 9918768 DOI: 10.1006/bbrc.1998.9811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new 1.7-kb LINE (L1) transcript has been discovered from the cDNA library of human small-cell lung cancer. The nucleotide sequence of 1.7-kb L1 transcript is 98.4% similar to that of open reading frame 2 (ORF2) found in consensus complete 6.5-kb L1. Although L1 DNA segments could be detected from both genomic DNAs of human and rodent cells by PCR, these L1 transcripts were not detectable from cellular RNA of rodent cells by RT-PCR and northern hybridization, implying that the expression of L1 was relatively human-specific. The functions of L1 transcripts in cells are not yet clear. This paper shows that L1 transcripts are essential for cell proliferation when determined by antisense oligonucleotides. Alternately, L1 transcripts exhibit in all human cells we have examined so far, and they map to all the human chromosomes. A sequence-similarity search in the GenBank database indicates that the major sequence of 1.7-kb L1 is integrated in human retinoblastoma (Rb), IL-2, and factor VIII genes. Since Rb and factor VIII genes have displayed high frequency of chromosomal deletions in various cancers and haemophilia A, the universal integration of long and homologous L1 segments in the genes and all chromosomes may be liable to promote abnormal DNA rearrangement.
Collapse
Affiliation(s)
- K W Kuo
- Department of Biochemistry, Kaohsiung Medical College, Taiwan.
| | | | | | | |
Collapse
|
50
|
Abstract
Available data on possible genetic impacts of mammalian retroposons are reviewed. Most important is the growing number of established examples showing the involvement of retroposons in modulation of expression of protein-coding genes transcribed by RNA polymerase II (Pol II). Retroposons contain conserved blocks of nucleotide sequence for binding of some important Pol II transcription factors as well as sequences involved in regulation of stability of mRNA. Moreover, these mobile genes provide short regions of sequence homology for illegitimate recombinations, leading to diverse genome rearrangements during evolution. Therefore, mammalian retroposons representing a significant fraction of noncoding DNA cannot be considered at present as junk DNA but as important genetic symbionts driving the evolution of regulatory networks controlling gene expression.
Collapse
Affiliation(s)
- N V Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|