1
|
Thakur S, Vasudev PG. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 2022; 49:10995-11008. [PMID: 36074230 DOI: 10.1007/s11033-022-07825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants' research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.
Collapse
Affiliation(s)
- Sudipa Thakur
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India.
| | - Prema G Vasudev
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
| |
Collapse
|
2
|
Halder D, Purkayastha P. A flavonol that acts as a potential DNA minor groove binder as also an efficient G-quadruplex loop binder. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Hou J, Liu H, Wang L, Duan L, Li S, Wang X. Molecular Toxicity of Metal Oxide Nanoparticles in Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7996-8004. [PMID: 29944347 DOI: 10.1021/acs.est.8b01464] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal oxide nanoparticles can exert adverse effects on humans and aquatic organisms; however, their toxic mechanisms are still unclear. We investigated the toxic effects and mechanisms of copper oxide, zinc oxide, and nickel oxide nanoparticles in Danio rerio using microarray analysis and the comet assay. Copper oxide nanoparticles were more lethal than the other metal oxide nanoparticles. Gene ontology analysis of genes that were differentially expressed following exposure to all three metal oxide nanoparticles showed that the nanoparticles mainly affected nucleic acid metabolism in the nucleus via alterations in nucleic acid binding. KEGG analysis classified the differentially expressed genes to the genotoxicity-related pathways "cell cycle", "Fanconi anemia", "DNA replication", and "homologous recombination". The toxicity of metal oxide nanoparticles may be related to impairments in DNA synthesis and repair, as well as to increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Jing Hou
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Haiqiang Liu
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Luyao Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Linshuai Duan
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
| | - Xiangke Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| |
Collapse
|
4
|
Abstract
RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379–405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204–209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173–1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6–17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae, which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis, antibiotic resistance, biofilm formation, and virulence in pathogens. Knowledge of RcsB structure represents a unique opportunity to explore mechanisms that regulate the Rcs phosphorelay system and its role in the family Enterobacteriaceae.
Collapse
|
5
|
Stracke R, Thiedig K, Kuhlmann M, Weisshaar B. Analyzing Synthetic Promoters Using Arabidopsis Protoplasts. Methods Mol Biol 2018; 1482:67-81. [PMID: 27557761 DOI: 10.1007/978-1-4939-6396-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This chapter describes a transient protoplast co-transfection method that can be used to quantitatively study in vivo the activity and function of promoters and promoter elements (reporters), and their induction or repression by transcription factors (effectors), stresses, hormones, or metabolites. A detailed protocol for carrying out transient co-transfection assays with Arabidopsis At7 protoplasts and calculating the promoter activity is provided.
Collapse
Affiliation(s)
- Ralf Stracke
- Genome Research, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Katharina Thiedig
- Genome Research, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Melanie Kuhlmann
- Genome Research, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Genome Research, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
6
|
Lee M, Walker C, Cooper M, Forrow SM, Hartley JA. Sequence Selective Molecular Recognition of Long DNA Sequences by Oligomethylene-Linked Oligoimidazole Analogs of Distamycin. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159400900101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have studied a series of homologous N-to-N oligomethylene linked bis(diimidazole) analogs 4a-f (number of methylene groups = 1 to 6, re spectively) and a dipicolinamide congener 4g that bind to long GC-containing sequences of DNA. Results from an ethidium binding assay reveal that, for 4a-f, the compounds with an even number of methylene groups have larger ap parent binding constants, Kapp, than those with an odd number. The Kapp values of the compounds with an odd number of methylene groups are close to that of their monomeric analog 3 suggesting that they may be binding to DNA in a monodentate fashion. The binding of these compounds to T4 DNA and their larger binding constants for poly(dG-dC) over poly(dA-dT) indicated minor groove binding selectivity and tolerance for GC sequences. The ability of com pounds 4b-f to bind selectively to DNA was illustrated by an MPE-Fe(II) foot printing study which showed that compound 4f gave the most distinct foot prints. CD titration studies on compounds 4b, d, and f further demonstrated the GC tolerance of these compounds and that they can bind to 7 ~ 8 base pairs of DNA in a bidentate fashion. The minor groove and bidentate bind ing of the ethylene linked compound 4b on the underlined sequence of
Collapse
Affiliation(s)
- Moses Lee
- Department of Chemistry Furman University Greenville, SC 29613
| | - Clint Walker
- Department of Chemistry Furman University Greenville, SC 29613
| | - Monica Cooper
- Department of Chemistry Furman University Greenville, SC 29613
| | - Steven M. Forrow
- Department of Oncology University College London Medical School London, W1P 8BT, U.K
| | - John A. Hartley
- Department of Oncology University College London Medical School London, W1P 8BT, U.K
| |
Collapse
|
7
|
Haleel A, Arthi P, Dastagiri Reddy N, Veena V, Sakthivel N, Arun Y, Perumal PT, Kalilur Rahiman A. DNA binding, molecular docking and apoptotic inducing activity of nickel(ii), copper(ii) and zinc(ii) complexes of pyridine-based tetrazolo[1,5-a]pyrimidine ligands. RSC Adv 2014. [DOI: 10.1039/c4ra11197d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The biological activity of metal(ii) complexes of tetrazolo[1,5-a]pyrimidine ligands show that the copper(ii) complexes may act as promising anticancer agents.
Collapse
Affiliation(s)
- A. Haleel
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai-600 014, India
| | - P. Arthi
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai-600 014, India
| | | | - V. Veena
- Department of Biotechnology
- Pondicherry University
- Pondicherry-605 014, India
| | - N. Sakthivel
- Department of Biotechnology
- Pondicherry University
- Pondicherry-605 014, India
| | - Y. Arun
- Organic Chemistry Division
- CSIR-Central Leather Research Institute
- Chennai-600 020, India
| | - P. T. Perumal
- Organic Chemistry Division
- CSIR-Central Leather Research Institute
- Chennai-600 020, India
| | - A. Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai-600 014, India
| |
Collapse
|
8
|
DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Khan GS, Shah A, Zia-ur-Rehman, Barker D. Chemistry of DNA minor groove binding agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 115:105-18. [DOI: 10.1016/j.jphotobiol.2012.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 12/19/2022]
|
10
|
Liskamp RMJ. Conformationally restricted amino acids and dipeptides, (non)peptidomimetics and secondary structure mimetics. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19941130102] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Affiliation(s)
- Brian W. Matthews
- a Institute of Molecular Biology and Department of Physics , University of Oregon , Eugene , Oregon , 97403 , USA
| |
Collapse
|
12
|
Isogai Y, Ito Y, Ikeya T, Shiro Y, Ota M. Design of λ Cro Fold: Solution Structure of a Monomeric Variant of the De Novo Protein. J Mol Biol 2005; 354:801-14. [PMID: 16289118 DOI: 10.1016/j.jmb.2005.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 10/02/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
One of the classical DNA-binding proteins, bacteriophage lambda Cro, forms a homodimer with a unique fold of alpha-helices and beta-sheets. We have computationally designed an artificial sequence of 60 amino acid residues to stabilize the backbone tertiary structure of the lambda Cro dimer by simulated annealing using knowledge-based structure-sequence compatibility functions. The designed amino acid sequence has 25% identity with that of natural lambda Cro and preserves Phe58, which is important for formation of the stably folded structure of lambda Cro. The designed dimer protein and its monomeric variant, which was redesigned by the insertion of a beta-hairpin sequence at the C-terminal region to prevent dimerization, were synthesized and biochemically characterized to be well folded. The designed protein was monomeric under a wide range of protein concentrations and its solution structure was determined by NMR spectroscopy. The solved structure is similar to that of a monomeric variant of natural lambda Cro with a root-mean-square deviation of the polypeptide backbones at 2.1A and has a well-packed protein core. Thus, our knowledge-based functions provide approximate but essential relationships between amino acid sequences and protein structures, and are useful for finding novel sequences that are foldable into a given target structure.
Collapse
Affiliation(s)
- Yasuhiro Isogai
- Bio-metal Science Laboratory, RIKEN Harima Institute/SPring8, Mikazuki, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
13
|
Rajski SR, Williams RM. Observations on the covalent cross-linking of the binding domain (BD) of the high mobility group I/Y (HMG I/Y) proteins to DNA by FR66979. Bioorg Med Chem 2000; 8:1331-42. [PMID: 10896111 DOI: 10.1016/s0968-0896(00)00078-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
FR66979, a drug closely related to the mitomycin C class of antitumor antibiotics, is shown to covalently cross-link DNA to the DNA-binding domain of the High Mobility Group I/Y (HMG I/Y) DNA-binding proteins in the minor groove.
Collapse
Affiliation(s)
- S R Rajski
- Department of Chemistry, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
14
|
Sharma SK, Tandon M, Lown JW. Design and synthesis of novel thiazole-containing cross-linked polyamides related to the antiviral antibiotic distamycin. J Org Chem 2000; 65:1102-7. [PMID: 10814060 DOI: 10.1021/jo991571g] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of naturally occurring oligopeptides includes netropsin, distamycin, anthelvencin, kikumycin B, amidinomycin, and norformycin. Netropsin (I) and distamycin (II) express their biological activities by targeting specific sequences of chemical functionalities in the minor groove of DNA. Both netropsin and distamycin can be regarded as polyamide chains in which each alpha-carbon has been replaced by a five-membered pyrrole ring. The repeat distance in such an augmented polyamide chain is almost the same as the distance from one base pair to the next along the floor of a minor groove within beta-DNA. In this paper we report the synthesis of 16-21 cross-linked polyamides containing a thiazole heterocyclic ring bearing the active functionalites NH(2), NHCHO, or H. 16 and 17 were synthesized by DCC and HOBt catalyzed reaction of 5 with 14 and 15, while the formylation products 18 and 19 were obtained by coupling the formylated 4-methyl-thiazolated acid 6 with 14 and 15. The deaminated compounds 20 and 21 were obtained by the coupling of 5-trichloroacetyl-4-methylthiazole 7 synthesized from 4-methylthiazole. All the six cross-linked polyamides 16-21 were tested for their DNA gyrase inhibition. The studies have shown these polyamides have better sequence recognition and a greater percentage of inhibition than the corresponding monomers. The compound 17 shows complete inhibition of gyrase at 0.5 microM concentration as compared to the naturally occurring distamycin at 1.0 microM.
Collapse
Affiliation(s)
- S K Sharma
- Department of Chemistry, University Of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | |
Collapse
|
15
|
Matsumoto S, Yukitake H, Ohara N, Dairi T, Kanbara H, Yamada T. Shotgun cloning and characterization of the thymidylate synthase-encoding gene from Mycobacterium bovis BCG. Microbiol Immunol 1998; 42:15-21. [PMID: 9525775 DOI: 10.1111/j.1348-0421.1998.tb01964.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shotgun cloning of a Mycobacterium bovis BCG (BCG) genome into pBluescript SK (+) successfully yielded a 0.9 kbp fragment, confirming the ability of Escherichia coli thyA mutant MH2702 to grow in a thymine-depleted medium. This DNA fragment contained a gene homologous to the thymidylate synthase (TS)-encoding genes (thyA) of other organisms. An inverted repeat sequence and open reading frame (ORF) were observed at the upstream region of the thyA. A computer analysis revealed that the protein encoded by this ORF possessed a structure unique for a DNA binding protein.
Collapse
Affiliation(s)
- S Matsumoto
- Nagasaki University School of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Binding energy of DNA-Cro protein complexes is analyzed in terms of DNA elasticity, using a sequence-dependent anisotropic bendability (SDAB) model of DNA, developed recently [M.M. Gromiha, M.G. Munteanu, A. Gabrielian and S. Pongor, J. Biol. Phys. 22(1996) 227-243.]. The protein is considered to bind aspecifically to DNA that reduces the freedom of movement in the DNA molecule. In cognate DNA, the Cro protein moves on to form specific interactions and bends DNA. A comparison of the experimental data [Y. Takeda, A. Sarai and V.M. Rivera, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 439-443.] with the calculated DNA stiffness data shows that delta G of the complex formation increases with stiffness of the ligand when the interactions are nonspecific ones, while an opposite trend is observed for specific binding. Both of these trends are in agreement with our approach using the SDAB model. A decomposition of the energy terms suggests that binding energy in the nonspecific case is used maily to compensate the free energy changes due to entropy lost by DNA, while the energy of specific interactions provide enough energy both to bend the DNA molecule and to change the conformation of the Cro protein upon ligand binding.
Collapse
Affiliation(s)
- M M Gromiha
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
18
|
Artz PG, Valentine KG, Opella SJ, Lu P. Lac repressor-operator interaction: N-terminal peptide backbone 1H and 15N chemical shifts upon complex formation with DNA. J Mol Recognit 1996; 9:13-22. [PMID: 8723315 DOI: 10.1002/(sici)1099-1352(199601)9:1<13::aid-jmr234>3.0.co;2-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
When the lac repressor tetramer is bound to its DNA operator, methylation protection shows the nearly symmetric operator half-sites are contracted asymmetrically. This asymmetric binding results from the DNA sequence/structure. The reported structure of lac repressor N-terminal fragment and an 11 base-pair operator left half-site provides no information concerning the effect of asymmetric binding, from left operator half-site to right half-site, upon the polypeptide backbone. We isolated uniformly 15N labeled 56 amino acid wild-type (HP56WT) and 64 residue mutant [Pro3 > Tyr3] (HP64tyr3) lac repressor N-terminal DNA binding fragments for 1H/15N NMR studies with the left and right operators separately. Spectral coincidence of these longer fragments, indicating structural similarity with a protease derived 51 amino acid fragment for which the amide correlations are assigned, allows for assignment of the common amide resonances. For both HP56WT and HP64tyr3, spectral overlap of the amide correlation peaks reveals the polypeptide backbones of the uncomplexed polypeptides are structurally similar. Likewise the complexes of the peptides to the 11 base-pair lac left operator half-site are similar. On the other hand, complexes of HP56WT and the left compared to the right lac operator half-site show different residues of the polypeptide are affected by binding different half-sites of the operator. Thus, the DNA sequence/structure transmits asymmetry to the polypeptide backbone of the interacting protein.
Collapse
Affiliation(s)
- P G Artz
- Department of Chemistry, Albright College, Reading, PA 19612-5234, USA
| | | | | | | |
Collapse
|
19
|
Nguyen CC, Saier MH. Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors. FEBS Lett 1995; 377:98-102. [PMID: 8543068 DOI: 10.1016/0014-5793(95)01344-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phylogenetic tree construction for 25 sequenced members of the LacI-GalR family (LGF) of transcription factors revealed that almost all branches are similar in length, radiating essentially from a single point. This observation suggests that most of these proteins arose by duplication events which occurred at a specific time in evolutionary history, and that further duplication events were rare. Analyses of the multiple alignment of the LGF proteins lead to suggestions regarding structure-function relationships and reveal that the helix-turn-helix DNA-binding motif of LGF proteins is similar in sequence to those of numerous non-homologous DNA-binding proteins.
Collapse
Affiliation(s)
- C C Nguyen
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | |
Collapse
|
20
|
Harris LF, Sullivan MR, Popken-Harris PD, Hickok DF. A one nanosecond molecular dynamics simulation of the glucocorticoid receptor protein in complex with a glucocorticoid response element DNA sequence in a 10 Angstrom water layer. J Biomol Struct Dyn 1995; 13:423-40. [PMID: 8825722 DOI: 10.1080/07391102.1995.10508852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated protein/DNA interactions, using molecular dynamics simulations computed for one nanosecond, between a 10 Angstom water layer model of the glucocorticoid receptor (GR) DNA binding domain (DBD) amino acids and DNA of a glucocorticoid receptor response element (GRE) consisting of 29 nucleotide base pairs. Hydrogen bonding interactions were monitored. In addition, van der Waals and electrostatic interaction energies were calculated. Amino acids of the GR DBD DNA recognition helix formed both direct and water mediated hydrogen bonds at cognate codon-anticodon nucleotide base and backbone sites within the GRE DNA right major groove halfsite. Likewise amino acids in a beta strand structure adjacent to the DNA recognition helix formed both direct and water mediated hydrogen bonds at cognate codon-anticodon nucleotide base and backbone sites within both the GRE right and left major groove halfsites. In addition, amino acids within a predicted alpha helix located on the carboxyl terminus of the GR DBD interacted at codon-anticodon nucleotide sites on the DNA backbone of the GRE right major groove flanking nucleotides. These interactions together induced breakage of Watson-Crick nucleotide base pairing hydrogen bonds, resulting in significant structural changes and bending of the DNA into the protein.
Collapse
Affiliation(s)
- L F Harris
- Abbott Northwestern Hospital Cancer Research Laboratory, Minneapolis, MN 55407, USA
| | | | | | | |
Collapse
|
21
|
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 1994; 58:162-210. [PMID: 7915817 PMCID: PMC372961 DOI: 10.1128/mr.58.2.162-210.1994] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
22
|
Abstract
Consideration is given to alternative approaches to the development of DNA sequence selective binding agents because of their potential applications in diagnosis and treatment of cancer as well as in molecular biology. The concept of lexitropsins, or information-reading molecules, is introduced within the antigene strategy as an alternative to, and complementary with, the antisense approach for cellular intervention and gene control. The chemical, physical and pharmacological factors involved in the design of effective lexitropsins are discussed and illustrated with experimental results. Among the factors contributing to the molecular recognition processes are: the presence and disposition of hydrogen bond accepting and donating groups, ligand shape, chirality, stereochemistry, flexibility and charge. For longer ligands, such as are required to target unique sequences in biological systems (14-16 base pairs), the critical feature is the phasing or spatial correspondence between repeat units in the ligand and the receptor. The recently discovered 2:1 lexitropsin-DNA binding motif provides a further refinement in molecular recognition in permitting discrimination between GC and CG base pairs. The application of these factors in the design and synthesis of novel agents which exhibit anticancer, antiviral and antiretroviral properties, and inhibition of critical cellular enzymes including topoisomerases is discussed. The emerging evidence of a relationship between sequence selectivity of the new agents and the biological responses they invoked is also described.
Collapse
Affiliation(s)
- J W Lown
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Parrick J, Porssa M. Synthesis of a nitro oligo--methylimidazole carboxamide derivative: A radiosensitiser targeted to DNA. Tetrahedron Lett 1993. [DOI: 10.1016/s0040-4039(00)74071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Ebright YW, Chen Y, Pendergrast PS, Ebright RH. Incorporation of an EDTA-metal complex at a rationally selected site within a protein: application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro. Biochemistry 1992; 31:10664-70. [PMID: 1329953 DOI: 10.1021/bi00159a004] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a simple procedure to incorporate an EDTA-metal complex at a rationally selected site within a full-length protein. Our procedure has two steps: In step 1, we use site-directed mutagenesis to introduce a unique solvent-accessible cysteine residue at the site of interest. In step 2, we derivatize the resulting protein with S-(2-pyridylthio)cysteaminyl-EDTA-metal, a novel aromatic disulfide derivative of EDTA-metal. We have used this procedure to incorporate an EDTA-iron complex at amino acid 2 of the helix-turn-helix motif of each of two helix-turn-helix motif sequence-specific DNA binding proteins, catabolite gene activator protein (CAP) and Cro, and we have analyzed EDTA-iron-mediated DNA affinity cleavage by the resulting protein derivatives. The CAP derivative cleaves DNA at base pair 2 of the DNA half-site in the protein-DNA complex, and the Cro derivative cleaves DNA at base pairs -3 to 5 of the DNA half-site in the protein-DNA complex. We infer that amino acid 2 of the helix-turn-helix motif of CAP is close to base pair 2 of the DNA half-site in the CAP-DNA complex in solution and that amino acid 2 of the helix-turn-helix motif of Cro is close to base pairs -3 to 5 of the DNA half-site in the Cro-DNA complex in solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y W Ebright
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08855
| | | | | | | |
Collapse
|
25
|
Deng T, Karin M. Construction and expression of a monomeric c-Jun protein that binds and activates transcription of AP-1-responsive genes. Proc Natl Acad Sci U S A 1992; 89:8572-6. [PMID: 1528863 PMCID: PMC49962 DOI: 10.1073/pnas.89.18.8572] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
c-Jun is a typical member of the bZIP (basic zipper) family of dimeric transcriptional activators. These proteins contain a basic region responsible for DNA sequence recognition and a leucine zipper that mediates dimerization. bZIP proteins regulate a large number of important physiological functions and, therefore, present an interesting target for molecular interference and mimicry. As a step toward the development of peptide and nonpeptide analogs of such proteins, we constructed a derivative of c-Jun that binds DNA as a monomer. This construction was done by connecting a second basic region to the natural basic region of c-Jun by means of a short peptide loop. Although the polypeptide backbone of the second basic region has an inverted polarity relative to that of the natural basic region, the monomeric c-Jun protein binds DNA with reasonably high affinity and indistinguishable specificity from the wild-type, dimeric c-Jun protein. Furthermore, the monomeric c-Jun protein can activate transcription in vivo. These findings indicate that the polypeptide backbone of the basic region contributes little to sequence recognition and that the leucine zipper is not directly involved in transcriptional activation.
Collapse
Affiliation(s)
- T Deng
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla 92093
| | | |
Collapse
|
26
|
Han KK, Martinage A. Possible relationship between coding recognition amino acid sequence motif or residue(s) and post-translational chemical modification of proteins. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1349-63. [PMID: 1426517 DOI: 10.1016/0020-711x(92)90060-e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The "code-sequence" of N-glycosylation site(s), the amino acids located around O-glycosylation site(s), the sequence motifs of several kinases, the sequence motifs of--sulfation, amidation, isoprenylation, myristoylation, palmitoylation and N-acetylation, Aspartic and Asparagine hydroxylation-site, gamma-carboxyglutamate domain, phosphopantetheine attachment site etc. are extensively listed, compared to those reported by "PROSITE" Computer Screen Center and discussed. 2. The structural aspects of protein-DNA recognition are quoted as discussion and conclusion.
Collapse
Affiliation(s)
- K K Han
- Unité INSERM N. 16, Lille, France
| | | |
Collapse
|
27
|
Abstract
Using a highly sensitive pulsed-flow microcalorimeter, we have measured the changes in enthalpy and determined the thermodynamic parameters delta H, delta S degree, delta G degree, and delta C(p) for Cro protein-DNA association reactions. The reactions studied include sequence-nonspecific DNA association and sequence-specific DNA associations involving single- and multiple-base alterations and/or single-amino acid alteration mutants. (i) The association of Cro protein with nonspecific DNA at 15 degrees C is characterized by delta H = +4.4 kcal.mol-1 (1 cal = 4.18J), delta S degrees = 49 cal.mol-1.K-1, delta G degrees = -9.7 kcal.mol-1, and delta Cp congruent to 0; the association with specific high-affinity operator OR3 DNA is characterized by delta H = +0.8 kcal.mol-1, delta S degree = 59 cal.mol-1.K-1, delta G degree = -16.1 kcal.mol-1, and delta Cp = -360 cal.mol-1.K-1, respectively. Both nonspecific and specific Cro-DNA associations are entropy-driven. (ii) Plots of delta H vs. delta Cp and delta S degree vs. delta Cp for the 20 association reactions studied fall into two correlation groups with linear slopes of +9.4 K and -20.5 K and of -0.03 and -0.14, respectively. These regression lines have common intercepts, at the delta H and delta S degree values of nonspecific association (where delta Cp congruent to 0). The results suggest that there are, at least, two distinct conformational subclasses in specific Cro-DNA complexes, stabilized by different combinations of enthalpic and entropic contributions. The delta G degree and delta Cp values form an approximately single linear correlation group as a consequence of compensatory contributions from delta H and delta S degree to delta G degree and to delta Cp. Cro protein-DNA associations share some similar thermodynamic properties with protein folding, but their overall energetics are quite different. Although the nonspecific complex is stabilized predominantly by electrostatic forces, it appears that H bonds, van der Waals contacts, hydrophobic effects, and charge interactions all contribute to the stability (delta G degree and delta Cp) of the specific complex. (iii) The variations in the values of the thermodynamic parameters are in general accord with our knowledge of the structure of the Cro-DNA complex.
Collapse
Affiliation(s)
- Y Takeda
- Laboratory of Molecular Biology, National Cancer Institute-Frederick Cancer Research Facility, MD 21701
| | | | | |
Collapse
|
28
|
Dong Q, Ebright RH. DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein. J Bacteriol 1992; 174:5457-61. [PMID: 1322886 PMCID: PMC206387 DOI: 10.1128/jb.174.16.5457-5461.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Xanthomonas campestris catabolite gene activator protein-like protein (CLP) can substitute for the Escherichia coli catabolite gene activator protein (CAP) in transcription activation at the lac promoter (V. de Crecy-Lagard, P. Glaser, P. Lejeune, O. Sismeiro, C. Barber, M. Daniels, and A. Danchin, J. Bacteriol. 172:5877-5883, 1990). We show that CLP has the same DNA binding specificity as CAP at positions 5, 6, and 7 of the DNA half site. In addition, we show that the amino acids at positions 1 and 2 of the recognition helix of CLP are identical to the amino acids at positions 1 and 2 of the recognition helix of CAP:i.e., Arg at position 1 and Glu at position 2.
Collapse
Affiliation(s)
- Q Dong
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08855
| | | |
Collapse
|
29
|
Gunasekera A, Ebright Y, Ebright R. DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42099-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Karslake C, Botuyan MV, Gorenstein DG. 31P NMR spectra of oligodeoxyribonucleotide duplex lac operator-repressor headpiece complexes: importance of phosphate ester backbone flexibility in protein-DNA recognition. Biochemistry 1992; 31:1849-58. [PMID: 1737038 DOI: 10.1021/bi00121a038] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 31P NMR spectra of various 14-base-pair lac operators bound to both wild-type and mutant lac repressor headpiece proteins were analyzed to provide information on the backbone conformation in the complexes. The 31P NMR spectrum of a wild-type symmetrical operator, d(TGTGAGCGCTCACA)2, bound to the N-terminal 56-residue headpiece fragment of a Y7I mutant repressor was nearly identical to the spectrum of the same operator bound to the wild-type repressor headpiece. In contrast, the 31P NMR spectrum of the mutant operator, d(TATAGAGCGCTCATA)2, wild-type headpiece complex was significantly perturbed relative to the wild-type repressor-operator complex. The 31P chemical shifts of the phosphates of a second mutant operator, d(TGTGTGCGCACACA)2, showed small but specific changes upon complexation with either the wild-type or mutant headpiece. The 31P chemical shifts of the phosphates of a third mutant operator, d(TCTGAGCGCTCAGA)2, showed no perturbations upon addition of the wild-type headpiece. The 31P NMR results provide further evidence for predominant recognition of the 5'-strand of the 5'-TGTGA/3'-ACACT binding site in a 2:1 protein to headpiece complex. It is proposed that specific, strong-binding operator-protein complexes retain the inherent phosphate ester conformational flexibility of the operator itself, whereas the phosphate esters are conformationally restricted in the weak-binding operator-protein complexes. This retention of backbone torsional freedom in strong complexes is entropically favorable and provides a new (and speculative) mechanism for protein discrimination of different operator binding sites. It demonstrates the potential importance of phosphate geometry and flexibility on protein recognition and binding.
Collapse
Affiliation(s)
- C Karslake
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
31
|
van der Klein-de Gunst FJ, van Boom JH, Liskamp RM. Computer-aided molecular modeling and design of DNA-inserting molecules. J Comput Aided Mol Des 1992; 6:33-46. [PMID: 1583538 DOI: 10.1007/bf00124385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intercalators are molecules capable of sliding between base pairs without disturbing the overall stacking pattern. In addition, there may exist molecules capable of inserting into a base pair thereby disrupting the hydrogen bonds and replacing them with new hydrogen bonds. A molecule probably capable of inserting, i.e., an insertor, is the diketopiperazine cyclo-[Gly-Gly] (1). A barbiturate (2), alloxan (3), a pyrimidine derivative (4) and a hydantoin (5) were also studied as possible insertors. Furthermore, molecules such as ethyleneurea (6), succinimide (7), as well as a malonamide derivative (8) and oxamide derivatives (9-11) were studied in order to investigate the arrangement and the number of hydrogen bonds necessary for insertion. Molecules 12-14 were designed and studied for their capacity to act as bisinsertors and/or bisintercalators. These molecules feature two diketopiperazine moieties which are connected via a diphenyl(thio)ether, i.e., 12 and 13, or a bisphenol A spacer, i.e., 14. The latter molecule (14) seems a promising candidate as a bisinsertor.
Collapse
|
32
|
Zhang XP, Gunasekera A, Ebright YW, Ebright RH. Derivatives of CAP having no solvent-accessible cysteine residues, or having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif. J Biomol Struct Dyn 1991; 9:463-73. [PMID: 1667734 DOI: 10.1080/07391102.1991.10507929] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein. CAP contains a unique solvent-accessible cysteine residue at amino acid 10 of the helix-turn-helix motif. In published work, we have constructed a prototype semi-synthetic site-specific DNA cleavage agent from CAP by use of cysteine-specific chemical modification to incorporate a nucleolytic chelator-metal complex at amino acid 10 of the helix-turn-helix motif [Ebright, R., Ebright, Y., Pendergrast, P.S. and Gunasekera, A., Proc. Natl. Acad. Sci. USA 87, 2882-2886 (1990)]. Construction of second-generation semi-synthetic site-specific DNA cleavage agents from CAP requires the construction of derivatives of CAP having unique solvent-accessible cysteine residues at sites within CAP other than amino acid 10 of the helix-turn-helix motif. In the present work, we have constructed and characterized two derivatives of CAP having no solvent-accessible cysteine residues: [Ser178]CAP and [Leu178]CAP. In addition, in the present work, we have constructed and characterized one derivative of CAP having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif: [Cys170;Ser178]CAP.
Collapse
Affiliation(s)
- X P Zhang
- Department of Chemistry and Waksman Institute, Rutgers University, New Brunswick, NJ 08855
| | | | | | | |
Collapse
|
33
|
Shin JA, Ebright RH, Dervan PB. Orientation of the Lac repressor DNA binding domain in complex with the left lac operator half site characterized by affinity cleaving. Nucleic Acids Res 1991; 19:5233-6. [PMID: 1923807 PMCID: PMC328881 DOI: 10.1093/nar/19.19.5233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lac repressor (LacR) is a helix-turn-helix motif sequence-specific DNA binding protein. Based on proton NMR spectroscopic investigations, Kaptein and co-workers have proposed that the helix-turn-helix motif of LacR binds to DNA in an orientation opposite to that of the helix-turn-helix motifs of lambda repressor, lambda cro, 434 repressor, 434 cro, and CAP [Boelens, R., Scheek, R., van Boom, J. and Kaptein, R., J. Mol. Biol. 193, 1987, 213-216]. In the present work, we have determined the orientation of the helix-turn-helix motif of LacR in the LacR-DNA complex by the affinity cleaving method. The DNA cleaving moiety EDTA.Fe was attached to the N-terminus of a 56-residue synthetic protein corresponding to the DNA binding domain of LacR. We have formed the complex between the modified protein and the left DNA half site for LacR. The locations of the resulting DNA cleavage positions relative to the left DNA half site provide strong support for the proposal of Kaptein and co-workers.
Collapse
Affiliation(s)
- J A Shin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
34
|
Di Laurenzio L, Frost LS, Finlay BB, Paranchych W. Characterization of the oriT region of the IncFV plasmid pED208. Mol Microbiol 1991; 5:1779-90. [PMID: 1943709 DOI: 10.1111/j.1365-2958.1991.tb01927.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA sequence analysis of a 2.2kb EcoRI-HindIII fragment from pED208, the derepressed form of the IncFV plasmid Folac, revealed sequences highly homologous to the oriT region, traM, and traJ genes of other IncF plasmids. The TraM protein was purified and immunoblots of fractionated cells containing pED208 or Folac showed that TraM was predominantly in the cytoplasm. Using DNA retardation assays and the DNase I footprinting technique, the TraM protein was found to bind to three large motifs in the oriT region: (I) an inverted repeat, (II) two direct repeats, and (III) the traM promoter region. These three footprint regions contained a Hinfl-like sequence (GANTC) that appeared 16 times, spaced 11-12 bp (or multiples thereof) apart, suggesting that TraM protein binds in a complex manner over this entire region.
Collapse
Affiliation(s)
- L Di Laurenzio
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
35
|
Khoury AM, Nick HS, Lu P. In vivo interaction of Escherichia coli lac repressor N-terminal fragments with the lac operator. J Mol Biol 1991; 219:623-34. [PMID: 1905359 DOI: 10.1016/0022-2836(91)90659-t] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.
Collapse
Affiliation(s)
- A M Khoury
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
36
|
Abstract
A segment of Escherichia coli bacteriophage 21 DNA encoding the late-gene regulator, Q21, and the late-gene leader RNA segment was sequenced; its structure is similar to those of the related phages lambda and 82. The leader RNA is about 45 nucleotides long and consists essentially entirely of sequences encoding the p-independent terminator that is the putative target of the antitermination activity of Q21. Like the corresponding regions of lambda and 82, the 21 late-gene promoter segment encodes an early transcription pause in vitro, at about nucleotide 18, during which Q21 presumably acts to modify RNA polymerase. The 21 Q gene, cloned in isolation, is active on the late-gene leader segment in trans, and its purified product is active as an antiterminator in vitro; Q21 represents a third late-gene antiterminator, in addition to those of lambda and 82. There is little evident similarity in the primary sequences of the three Q genes.
Collapse
Affiliation(s)
- H C Guo
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
37
|
|
38
|
Gunasekera A, Ebright YW, Ebright RH. DNA-sequence recognition by CAP: role of the adenine N6 atom of base pair 6 of the DNA site. Nucleic Acids Res 1990; 18:6853-6. [PMID: 2175880 PMCID: PMC332741 DOI: 10.1093/nar/18.23.6853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('Model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'Model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). One difference between the two models involves Glu181 of CAP. Model I predicts that Glu181 of CAP makes two specificity determining contacts: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site, and one H-bond with the adenine N6 atom of T:A at base pair 6 of the DNA half site. In contrast, Model II predicts that Glu181 makes only one specificity determining contact: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site. In the present work, we show that replacement of T:A at base pair 6 of the DNA half site by T:N6-methyl-adenine has no, or almost no, effect on the binding of CAP. We conclude, contrary to Model I, that Glu181 of CAP makes no contact with the adenine N6 atom of base pair 6 of the DNA half site.
Collapse
Affiliation(s)
- A Gunasekera
- Department of Chemistry, Rutgers University, New Brunswick, NJ
| | | | | |
Collapse
|
39
|
Lesser DR, Kurpiewski MR, Jen-Jacobson L. The energetic basis of specificity in the Eco RI endonuclease--DNA interaction. Science 1990; 250:776-86. [PMID: 2237428 DOI: 10.1126/science.2237428] [Citation(s) in RCA: 279] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High sequence selectivity in DNA-protein interactions was analyzed by measuring discrimination by Eco RI endonuclease between the recognition site GAATTC and systematically altered DNA sites. Base analogue substitutions that preserve the sequence-dependent conformational motif of the GAATTC site permit deletion of single sites of protein-base contact at a cost of +1 to +2 kcal/mol. However, the introduction of any one incorrect natural base pair costs +6 to +13 kcal/mol in transition state interaction energy, the resultant of the following interdependent factors: deletion of one or two hydrogen bonds between the protein and a purine base; unfavourable steric apposition between a group on the protein and an incorrectly placed functional group on a base; disruption of a pyrimidine contact with the protein; loss of some crucial interactions between protein and DNA phosphates; and an increased energetic cost of attaining the required DNA conformation in the transition state complex. Eco RI endonuclease thus achieves stringent discrimination by both "direct readout" (protein-base contracts) and "indirect readout" (protein-phosphate contacts and DNA conformation) of the DNA sequence.
Collapse
Affiliation(s)
- D R Lesser
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | | |
Collapse
|
40
|
Steitz TA. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q Rev Biophys 1990; 23:205-80. [PMID: 2204954 DOI: 10.1017/s0033583500005552] [Citation(s) in RCA: 460] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Structural studies of DNA-binding proteins and their complexes with DNA have proceeded at an accelerating pace in recent years due to important technical advances in molecular genetics, DNA synthesis, protein crystallography and nuclear magnetic resonance. The last major review on this subject by Pabo & Sauer (1984) summarized the structural and functional studies of the three sequence-specific DNA-binding proteins whose crystal structures were then known, theE. colicatabolite gene activator protein (CAP) (McKay & Steitz, 1981; McKayet al.1982; Weber & Steitz, 1987), acrorepressor from phage λ (Andersonet al.1981), and the DNA-binding proteolytic fragment ofλcIrepressor protein (Pabo & Lewis, 1982) Although crystallographic studies of theE. coli lacrepressor protein were initiated as early as 1971 when it was the only regulatory protein available in sufficient quantities for structural studies (Steitzet al.1974), little was established about the structural aspects of DNA-binding proteins until the structure of CAP was determined in 1980 followed shortly thereafter by the structure ofλcrorepressor and subsequently that of the λ repressor fragment. There are now determined at high resolution the crystal structures of seven prokaryotic gene regulatory proteins or fragments [CAP,λcro,λcIrepressor fragment, 434 repressor fragment (Andersonet al.1987), 434crorepressor (Wolbergeret al.1988),E. coli trprepressor (Schevitzet al.1985),E. coli metrepressor (Raffertyet al.1989)],EcoRI restriction endonuclease (McClarinet al.1986), DNAse I (Suck & Ofner, 1986), the catalytic domain of γδ resolvase (Hatfullet al.1989) and two sequence-independent double-stranded DNA-binding proteins [the Klenow fragment ofE. coliDNA polymerase I (Olliset al.1985) and theE. coliHu protein (Tanakaet al., 1984)].
Collapse
Affiliation(s)
- T A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University
| |
Collapse
|
41
|
Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A 1990; 87:6238-42. [PMID: 2117276 PMCID: PMC54508 DOI: 10.1073/pnas.87.16.6238] [Citation(s) in RCA: 224] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catabolite repression of the Bacillus subtilis alpha-amylase gene (amyE) involves an operator sequence located just downstream of the promoter (amyR), overlapping the transcription start site. Oligonucleotide site-directed mutagenesis of this sequence identified bases required for catabolite repression. Two mutations increased both the 2-fold symmetry of the operator and the repression ratio. Although many mutations reduced the repression ratio 3- to 11-fold, some also caused a 2-fold or greater increase in amylase production. Others caused hyperproduction without affecting catabolite repression. Homologous sequences in other catabolite-repressed B. subtilis promoters suggest a common regulatory site may be involved in catabolite repression.
Collapse
Affiliation(s)
- M J Weickert
- Department of Genetics, University of Wisconsin, Madison 53706
| | | |
Collapse
|
42
|
Halling C, Sunshine MG, Lane KB, Six EW, Calendar R. A mutation of the transactivation gene of satellite bacteriophage P4 that suppresses the rpoA109 mutation of Escherichia coli. J Bacteriol 1990; 172:3541-8. [PMID: 2193910 PMCID: PMC213326 DOI: 10.1128/jb.172.7.3541-3548.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Satellite bacteriophage P4 requires the products of the late genes of a helper such as P2 in order to grow lytically. The Escherichia coli rpoA109 mutation, which alters the alpha subunit of RNA polymerase, prevents transcription of the late genes of bacteriophage P2. Suppressor mutations that define the P2 ogr gene overcome this block. We found that P4 lytic growth using a P2 ogr+ prophage helper was prevented by the rpoA109 mutation but that this block was overcome when the P2 helper carried the suppressor mutation in the ogr gene. Furthermore, we isolated and characterized four independent mutations in P4, called org, that suppress the E. coli rpoA109 mutation by allowing P4 lytic growth using a P2 ogr+ helper. DNA sequence analysis revealed that the four independent org mutations are identical and that they occur in the P4 delta gene, which codes for a factor that positively regulates the transcription of the P2 and P4 late genes. delta is predicted to code for a basic 166-amino-acid residue protein. Each 83-residue half of the predicted delta gene product is similar to the predicted 72-residue proteins encoded by the ogr gene of P2 and the B gene of phage 186.
Collapse
Affiliation(s)
- C Halling
- Department of Molecular Biology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
43
|
Block A, Dangl JL, Hahlbrock K, Schulze-Lefert P. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc Natl Acad Sci U S A 1990; 87:5387-91. [PMID: 2371277 PMCID: PMC54329 DOI: 10.1073/pnas.87.14.5387] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genetic fine structure of cis-acting sequences previously shown to be necessary for light-regulated expression in the promoter of the parsley (Petroselinum crispum) chalcone synthase gene was analyzed. Site-directed mutations and changes in spacing between cis elements were measured in transient expression assays in parsley protoplasts. Clustered point mutations allowed assignment of functional borders. Single-base substitutions within a highly conserved cis element (box II/G box) defined a critical core of seven bases, 5'-ACGTGGC-3'. It is functionally equivalent to a second sequence-related element (box III), which could replace box II in an orientation-dependent manner. The activity of box II required the presence of another juxtaposed element (box I) at a defined distance. No distance requirement was observed between the two large separable promoter regions known to independently confer light-regulated expression. These data support our hypothesis that a cis-acting sequence that is present in a limited number of diversely regulated plant genes gains its functional capacity and specificity by combinatorial diversity involving flanking partner elements.
Collapse
Affiliation(s)
- A Block
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, Köln, Federal Republic of Germany
| | | | | | | |
Collapse
|
44
|
Zhang XP, Ebright RH. Substitution of 2 base pairs (1 base pair per DNA half-site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38360-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Zhang XP, Ebright RH. Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex. Proc Natl Acad Sci U S A 1990; 87:4717-21. [PMID: 2162054 PMCID: PMC54188 DOI: 10.1073/pnas.87.12.4717] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used site-directed mutagenesis to replace amino acid 1 of the recognition alpha-helix of the catabolite gene activator protein (CAP), Arg-180, with glycine and with alanine. Substitution of Arg-180 of CAP eliminated specificity between G.C, A.T, C.G, and T.A at base pair 5 of the DNA half-site. The effect was position-specific: substitution of Arg-180 did not eliminate specificity between G.C, A.T, C.G, and T.A at base pair 7 of the DNA half-site. We conclude, in agreement with the model for the structure of the CAP-DNA complex [Weber, I. & Steitz, T. (1984) Proc. Natl. Acad. Sci. USA 81, 3973-3977; and Ebright, R., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984) Proc. Natl. Acad. Sci. USA 81, 7274-7278], that Arg-180 of CAP makes a specificity-determining contact with base pair 5 of the DNA half-site in the CAP-DNA complex. The identification of the contact by Arg-180 in this report, in conjunction with the identification of the contact by Glu-181 in a previous report [Ebright, R., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984) Nature (London) 311, 232-235], provides information sufficient to define the orientation of the helix-turn-helix motif of CAP with respect to DNA in the CAP-DNA complex.
Collapse
Affiliation(s)
- X P Zhang
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08855
| | | |
Collapse
|
46
|
Abstract
The indirect solvent-induced effect on the free energy of binding of biopolymers is examined within the framework of classical statistical mechanics. We focus specifically on the role of the solute-solvent hydrogen bonding. In particular, we have estimated the first order solvent effect on the indirect interaction between two biopolymers. We find that the solvent-induced interactions between two hydrophilic groups through water-bridged hydrogen bonds could significantly enhance the binding free energy. Some preliminary estimates indicate that this effect is significant and perhaps could be crucial in molecular recognition processes. Furthermore, we have calculated, from crystal structure data, the distance distribution between all the oxygens and nitrogens on the surface of some proteins that do not belong to the binding domain. In most cases we found an enhanced peak in the range of 4-5 A, which is where we expect to find strong solvent-induced interactions.
Collapse
Affiliation(s)
- A Ben-Naim
- Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
47
|
Smith RG, Voss EW. Variable region primary structures of monoclonal anti-DNA autoantibodies from NZB/NZW F1 mice. Mol Immunol 1990; 27:463-70. [PMID: 2114528 DOI: 10.1016/0161-5890(90)90171-u] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
VH and VL region primary structures of five NZB/NZW F1 derived monoclonal anti-DNA autoantibodies were determined from cloned cDNA. Comparative analysis of VH genes showed that except for two VH genes that shared complete identity the overall VH gene usage was diverse. Comparison of VH genes with those utilized in a variety of antibody responses showed they were generally unique to the autoanti-DNA response although framework homologies allowed assignment of four of five VH genes to existing murine heavy chain gene families. Only one out of five D segments shared homology to existing germline D segments, and all were rearranged to JH3. V kappa genes showed restriction for four of five light chains to the V kappa 1 subgroup. The V kappa 1 subgroup has been shown previously to be utilized in several anti-DNA autoantibodies as well as a variety of antibodies to exogenous antigens. H and L chain amino acid residues associated with the active site of a ssDNA specific autoantibody, 04-01, are discussed based on recently obtained crystallographic data.
Collapse
Affiliation(s)
- R G Smith
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
48
|
Ebright RH, Gunasekera A, Zhang XP, Kunkel TA, Krakow JS. Lysine 188 of the catabolite gene activator protein (CAP) plays no role in specificity at base pair 7 of the DNA half site. Nucleic Acids Res 1990; 18:1457-64. [PMID: 2158078 PMCID: PMC330512 DOI: 10.1093/nar/18.6.1457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). The most important difference between the two models involves Lys188 of CAP. Model I predicts that Lys188 of CAP makes a specificity determining contact with base pair 7 of the DNA half site. In contrast, model II predicts that Lys188 makes no contact with base pair 7 of the DNA half site. In the present work, we have used site-directed mutagenesis to replace Lys188 of CAP by Asn, an amino acid unable to make the putative contact. We have assessed the specificities of the following proteins, both in vitro and in vivo: wild-type CAP, [Asn188]CAP, [Val181]CAP, and [Val181;Asn188]CAP. The results indicate that Lys188 makes no contribution to specificity at base pair 7 of the DNA half site. We propose, contrary to model I, that Lys188 makes no contact with base pair 7 of the DNA half site.
Collapse
Affiliation(s)
- R H Ebright
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08855
| | | | | | | | | |
Collapse
|
49
|
lac repressor: crystallization of intact tetramer and its complexes with inducer and operator DNA. Proc Natl Acad Sci U S A 1990; 87:1870-3. [PMID: 2408042 PMCID: PMC53585 DOI: 10.1073/pnas.87.5.1870] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intact lac repressor tetramer, which regulates expression of the lac operon in Escherichia coli, has been crystallized in the native form, with an inducer, and in a ternary complex with operator DNA and an anti-inducer. The crystals without DNA diffract to better than 3.5 A. They belong to the monoclinic space group C2 and have cell dimensions a = 164.7 A, b = 75.6 A, and c = 161.2 A, with alpha = gamma = 90 degrees and beta = 125.5 degrees. Cocrystals have been obtained with a number of different lac operator-related DNA fragments. The complex with a blunt-ended 16-base-pair strand yielded tetragonal bipyramids that diffract to 6.5 A. These protein-DNA cocrystals crack upon exposure to the gratuitous inducer isopropyl beta-D-thiogalactoside, suggesting a conformational change in the repressor-operator complex.
Collapse
|
50
|
Hoshizaki DK, Hill JE, Henry SA. The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39624-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|