1
|
Bernardini A, Mantovani R. Q-rich activation domains: flexible 'rulers' for transcription start site selection? Trends Genet 2025; 41:275-285. [PMID: 39648061 DOI: 10.1016/j.tig.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Recent findings broadened the function of RNA polymerase II (Pol II) proximal promoter motifs from quantitative regulators of transcription to important determinants of transcription start site (TSS) position. These motifs are recognized by transcription factors (TFs) that we propose to term 'ruler' TFs (rTFs), such as NRF1, NF-Y, YY1, ZNF143, BANP, and members of the SP, ETS, and CRE families, sharing as a common feature a glutamine-rich (Q-rich) effector domain also enriched in valine, isoleucine, and threonine (QVIT-rich). We propose that rTFs guide TSS location by constraining the position of the pre-initiation complex (PIC) during its promoter recognition phase through a specialized, and still enigmatic, class of activation domains.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
2
|
Mohanty S, Lekven AC. Divergent functions of the evolutionarily conserved, yet seemingly dispensable, Wnt target, sp5. Differentiation 2025; 141:100829. [PMID: 39675112 DOI: 10.1016/j.diff.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The activation of sp5 in response to Wnt/β-catenin signaling is observed in many species during axis patterning, neural crest induction, maintenance and differentiation of stem cells. Indeed, the conserved response of sp5 orthologs to Wnt-mediated activation is the basis for this gene commonly being used as a readout for Wnt signaling activity. However, several seemingly conflicting findings regarding the function of sp5 in the context of Wnt signaling cast this gene in an enigmatic light. In this review, we examine current knowledge of sp5 structure and function, its relationship to Wnt signaling in varied contexts, and present perspectives on how progress on this interesting gene can move forward.
Collapse
Affiliation(s)
- Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| |
Collapse
|
3
|
Rezaei S, Timani KA, Liu Y, He JJ. Ectopic USP15 expression inhibits HIV-1 transcription involving changes in YY1 deubiquitination and stability. Front Cell Infect Microbiol 2024; 14:1371655. [PMID: 39624264 PMCID: PMC11609158 DOI: 10.3389/fcimb.2024.1371655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction Protein homeostasis is maintained by the opposing action of ubiquitin ligase and deubiquitinase, two important components of the ubiquitin-proteasome pathway, and contributes to both normal physiological and pathophysiological processes. The current study aims to delineate the roles of ubiquitin-specific protease 15 (USP15), a member of the largest deubiquitinase family, in HIV-1 gene expression and replication. Methods We took advantage of highly selective and specific ubiquitin variants (UbV), which were recently designed and developed for USP15, and ascertained the inhibitory effects of USP15 on HIV-1 gene expression and production by transfection and Western blotting. We also used real-time RT-PCR, transcription factor profiling, subcellular fractionation, immunoprecipitation followed by Western blotting to determine the transcription factors involved and the underlying molecular mechanisms. Results We first confirmed the specificity of USP15-mediated HIV-1 gene expression and virus production. We then showed that the inhibition of HIV-1 production by USP15 occurred at the transcription level, associated with an increased protein level of YY1, a known HIV-1 transcription repressor. Moreover, we demonstrated that USP15 regulated YY1 deubiquitination and stability. Lastly, we demonstrated that YY1 siRNA knockdown significantly diminished the inhibition of USP15 on HIV-1 gene expression and virus production. Conclusion These findings together demonstrate that stabilization of YY1 protein by USP15 deubiquitinating activity contributes to USP15-mediated inhibition of HIV-1 transcription and may help the development of USP15-specific UbV inhibitors as an anti-HIV strategy.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Khalid A. Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
4
|
Huang D, Tu Z, Karnoub AE, Wei W, Rezaeian AH. Busulfan Chemotherapy Downregulates TAF7/TNF-α Signaling in Male Germ Cell Dysfunction. Biomedicines 2024; 12:2220. [PMID: 39457533 PMCID: PMC11504710 DOI: 10.3390/biomedicines12102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Huang C, Xia M, Qiao H, Liu Z, Lin Y, Sun H, Yu B, Fang P, Wang J. Tetramerization of upstream stimulating factor USF2 requires the elongated bent leucine zipper of the bHLH-LZ domain. J Biol Chem 2023; 299:105240. [PMID: 37690682 PMCID: PMC10570711 DOI: 10.1016/j.jbc.2023.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Upstream stimulating factors (USFs), including USF1 and USF2, are key components of the transcription machinery that recruit coactivators and histone-modifying enzymes. Using the classic basic helix-loop-helix leucine zipper (bHLH-LZ) domain, USFs bind the E-box DNA and form tetramers that promote DNA looping for transcription initiation. The structural basis by which USFs tetramerize and bind DNA, however, remains unknown. Here, we report the crystal structure of the complete bHLH-LZ domain of USF2 in complex with E-box DNA. We observed that the leucine zipper (LZ) of USF2 is longer than that of other bHLH-LZ family transcription factors and that the C-terminus of USF2 forms an additional α-helix following the LZ region (denoted as LZ-Ext). We also found the elongated LZ-Ext facilitates compact tetramer formation. In addition to the classic interactions between the basic region and DNA, we show a highly conserved basic residue in the loop region, Lys271, participates in DNA interaction. Together, these findings suggest that USF2 forms a tetramer structure with a bent elongated LZ-Ext region, providing a molecular basis for its role as a key component of the transcription machinery.
Collapse
Affiliation(s)
- Cao Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zaizhou Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yuqi Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hanyin Sun
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Jing Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Mockenhaupt K, Tyc KM, McQuiston A, Gonsiewski AK, Zarei-Kheirabadi M, Hariprashad A, Biswas DD, Gupta AS, Olex AL, Singh SK, Waters MR, Dupree JL, Dozmorov MG, Kordula T. Yin Yang 1 controls cerebellar astrocyte maturation. Glia 2023; 71:2437-2455. [PMID: 37417428 PMCID: PMC10529878 DOI: 10.1002/glia.24434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.
Collapse
Affiliation(s)
- Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Katarzyna M. Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, Virginia
| | - Adam McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Alexandra K. Gonsiewski
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Masoumeh Zarei-Kheirabadi
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Avani Hariprashad
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Debolina D. Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Angela S. Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Sandeep K. Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Michael R. Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeff L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
- Research Service, Central Virginia VA Health Care System, Richmond, Virginia
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
8
|
Bergman DT, Jones TR, Liu V, Ray J, Jagoda E, Siraj L, Kang HY, Nasser J, Kane M, Rios A, Nguyen TH, Grossman SR, Fulco CP, Lander ES, Engreitz JM. Compatibility rules of human enhancer and promoter sequences. Nature 2022; 607:176-184. [PMID: 35594906 PMCID: PMC9262863 DOI: 10.1038/s41586-022-04877-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters1. A proposed model for this specificity is that promoters have sequence-encoded preferences for certain enhancers, for example, mediated by interacting sets of transcription factors or cofactors2. This 'biochemical compatibility' model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila3-9. However, the degree to which human enhancers and promoters are intrinsically compatible has not yet been systematically measured, and how their activities combine to control RNA expression remains unclear. Here we design a high-throughput reporter assay called enhancer × promoter self-transcribing active regulatory region sequencing (ExP STARR-seq) and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify simple rules for enhancer-promoter compatibility, whereby most enhancers activate all promoters by similar amounts, and intrinsic enhancer and promoter activities multiplicatively combine to determine RNA output (R2 = 0.82). In addition, two classes of enhancers and promoters show subtle preferential effects. Promoters of housekeeping genes contain built-in activating motifs for factors such as GABPA and YY1, which decrease the responsiveness of promoters to distal enhancers. Promoters of variably expressed genes lack these motifs and show stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.
Collapse
Affiliation(s)
- Drew T Bergman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Vincent Liu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Judhajeet Ray
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evelyn Jagoda
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Layla Siraj
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biophysics Graduate Program, Harvard University, Cambridge, MA, USA
| | - Helen Y Kang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Kane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Antonio Rios
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tung H Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bristol Myers Squibb, Cambridge, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Ling L, Li F, Yang P, Oates RD, Silber S, Kurischko C, Luca FC, Leu NA, Zhang J, Yue Q, Skaletsky H, Brown LG, Rozen S, Page DC, Wang PJ, Zheng K. Genetic characterization of a missense mutation in the X-linked TAF7L gene identified in an oligozoospermic man. Biol Reprod 2022; 107:157-167. [PMID: 35554494 PMCID: PMC9310510 DOI: 10.1093/biolre/ioac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
While hundreds of knockout mice show infertility as a major phenotype, causative genic mutations of male infertility in humans remain rather limited. Here we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to glycine is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptome profiles in the Taf7l (D144G) mutant testes. These results support this TAF7L mutation as a risk factor for oligozoospermia in humans.
Collapse
Affiliation(s)
- Li Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Fangfang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Robert D Oates
- Department of Urology, Boston University Medical Center, Boston, MA 02118, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO 63017, USA
| | - Cornelia Kurischko
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Francis C Luca
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Helen Skaletsky
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Laura G Brown
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Steve Rozen
- Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore
| | - David C Page
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Rooney RJ. Multiple domains in the 50 kDa form of E4F1 regulate promoter-specific repression and E1A trans-activation. Gene 2020; 754:144882. [PMID: 32535047 DOI: 10.1016/j.gene.2020.144882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 11/28/2022]
Abstract
The 50 kDa N-terminal product of the cellular transcription factor E4F1 (p50E4F1) mediates E1A289R trans-activation of the adenovirus E4 gene, and suppresses E1A-mediated transformation by sensitizing cells to cell death. This report shows that while both E1A289R and E1A243R stimulate p50E4F1 DNA binding activity, E1A289R trans-activation, as measured using GAL-p50E4F1 fusion proteins, involves a p50E4F1 transcription regulatory (TR) region that must be promoter-bound and is dependent upon E1A CR3, CR1 and N-terminal domains. Trans-activation is promoter-specific, as GAL-p50E4F1 did not stimulate commonly used artificial promoters and was strongly repressive when competing against GAL-VP16. p50E4F1 and E1A289R stably associate in vivo using the p50E4F1 TR region and E1A CR3, although their association in vitro is indirect and paradoxically disrupted by MAP kinase phosphorylation of E1A289R, which stimulates E4 trans-activation in vivo. Multiple cellular proteins, including TBP, bind the p50E4F1 TR region in vitro. The mechanistic implications for p50E4F1 function are discussed.
Collapse
Affiliation(s)
- Robert J Rooney
- Department of Genetics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Martínez-Morales PL, Ortiz-Mateos CA, Reyes-Pineda J, Reyes-Vallejo T, Aguilar-Lemarroy A, Jave-Suárez LF, Santos-López G, Reyes-Leyva J, Milflores-Flores L, Vallejo-Ruiz V. Identification and characterization of the V3 promoter of the ST3GAL4 gene. Biosci Trends 2020; 14:144-150. [DOI: 10.5582/bst.2019.01331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Patricia L. Martínez-Morales
- CONACYT- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Metepec, Puebla, Mexico
| | | | - Jonatan Reyes-Pineda
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Adriana Aguilar-Lemarroy
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco, Mexico
| | - Luis F. Jave-Suárez
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco, Mexico
| | - Gerardo Santos-López
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Metepec, Puebla, Mexico
| | - Julio Reyes-Leyva
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Metepec, Puebla, Mexico
| | | | - Verónica Vallejo-Ruiz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Metepec, Puebla, Mexico
| |
Collapse
|
12
|
Xu Y, Man N, Karl D, Martinez C, Liu F, Sun J, Martinez CJ, Martin GM, Beckedorff F, Lai F, Yue J, Roisman A, Greenblatt S, Duffort S, Wang L, Sun X, Figueroa M, Shiekhattar R, Nimer S. TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nat Commun 2019. [PMID: 31664040 DOI: 10.1038/s41467-019-12735-z.pmid:31664040;pmcid:pmc6820555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia.
Collapse
Affiliation(s)
- Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Camilo Jose Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Fan Lai
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Jingyin Yue
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Alejandro Roisman
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Xu Y, Man N, Karl D, Martinez C, Liu F, Sun J, Martinez CJ, Martin GM, Beckedorff F, Lai F, Yue J, Roisman A, Greenblatt S, Duffort S, Wang L, Sun X, Figueroa M, Shiekhattar R, Nimer S. TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nat Commun 2019; 10:4925. [PMID: 31664040 PMCID: PMC6820555 DOI: 10.1038/s41467-019-12735-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia. AML1-ETO is a fusion protein in which acetylation of lysine-43 is critical to leukemogenesis. Here, they show that TAF1 is required for AML1-ETO mediated gene expression such that it binds to acetylated AML1-ETO to facilitate the association of AML1-ETO with chromatin, and consequently, promotes leukemic self-renewal.
Collapse
Affiliation(s)
- Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Camilo Jose Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Fan Lai
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Jingyin Yue
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Alejandro Roisman
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
14
|
Chen X, Cai Y, Liu Q, Pan L, Shi S, Liu X, Chen Y, Li J, Wang J, Li Y, Li X, Wang S. ETS1 and SP1 drive DHX15 expression in acute lymphoblastic leukaemia. J Cell Mol Med 2018; 22:2612-2621. [PMID: 29512921 PMCID: PMC5908128 DOI: 10.1111/jcmm.13525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022] Open
Abstract
DHX15 plays a role in leukaemogenesis and leukaemia relapse. However, the mechanism underlying the transcriptional regulation of DHX15 in ALL has not been elucidated. Our present study aimed to explore the functional promoter region of DHX15 and to investigate the transcription factors controlling the transcription of this gene. A luciferase assay performed with several truncated constructs identified a 501-bp region as the core promoter region of DHX15. Site-directed mutagenesis, electrophoretic mobility shift and chromatin immunoprecipitation assays showed that ETS1 and SP1 occupied the DHX15 promoter. Furthermore, knockdown of ETS1 and SP1 resulted in suppression of DHX15, whereas the overexpression of these genes led to up-regulation of DHX15. Interestingly, in samples obtained from patients with ALL at diagnosis, both ETS1 and SP1 correlated positively with DHX15 expression. Additionally, differences in methylation of the DHX15 core promoter region were not observed between the patients and controls. In conclusion, we identified the core promoter region of DHX15 and demonstrated that ETS1 and SP1 regulated DHX15 expression in ALL.
Collapse
Affiliation(s)
- Xiang‐Lei Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yuan‐Hua Cai
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Qiao Liu
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Li‐Li Pan
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Shui‐Ling Shi
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Xiao‐Li Liu
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yuan Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Jing‐Gang Li
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Jing Wang
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yang Li
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Xiao‐Fan Li
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Shao‐Yuan Wang
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| |
Collapse
|
15
|
Lu R, Mucaki EJ, Rogan PK. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs. Nucleic Acids Res 2017; 45:e27. [PMID: 27899659 PMCID: PMC5389469 DOI: 10.1093/nar/gkw1036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.
Collapse
Affiliation(s)
- Ruipeng Lu
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada
| | - Peter K Rogan
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada.,Department of Oncology, Western University, London, Ontario, N6A 4L6, Canada.,Cytognomix Inc., London, Ontario, N5X 3X5, Canada
| |
Collapse
|
16
|
Role of Litopenaeus vannamei Yin Yang 1 in the Regulation of the White Spot Syndrome Virus Immediate Early Gene ie1. J Virol 2017; 91:JVI.02314-16. [PMID: 28077637 DOI: 10.1128/jvi.02314-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.
Collapse
|
17
|
Gray LR, Cowley D, Welsh C, Lu HK, Brew BJ, Lewin SR, Wesselingh SL, Gorry PR, Churchill MJ. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol Psychiatry 2016; 21:574-84. [PMID: 26303660 PMCID: PMC4804184 DOI: 10.1038/mp.2015.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
Latency-reversing agents (LRAs), including histone deacetylase inhibitors (HDACi), are being investigated as a strategy to eliminate latency in HIV-infected patients on suppressive antiretroviral therapy. The effectiveness of LRAs in activating latent infection in HIV strains derived from the central nervous system (CNS) is unknown. Here we show that CNS-derived HIV-1 strains possess polymorphisms within and surrounding the Sp transcription factor motifs in the long terminal repeat (LTR). These polymorphisms result in decreased ability of the transcription factor specificity protein 1 to bind CNS-derived LTRs, reducing the transcriptional activity of CNS-derived viruses. These mutations result in CNS-derived viruses being less responsive to activation by the HDACi panobinostat and romidepsin compared with lymphoid-derived viruses from the same subjects. Our findings suggest that HIV-1 strains residing in the CNS have unique transcriptional regulatory mechanisms, which impact the regulation of latency, the consideration of which is essential for the development of HIV-1 eradication strategies.
Collapse
Affiliation(s)
- L R Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - D Cowley
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - C Welsh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - H K Lu
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - B J Brew
- Departments of Neurology, Immunology and Infectious Diseases and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - S R Lewin
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia,Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
| | - S L Wesselingh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P R Gorry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia,School of Applied Sciences and Program in Metabolism, Exercise and Disease, Health Initiatives Research Institute, RMIT University, Melbourne, Victoria, Australia,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - M J Churchill
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Department of Medicine, Monash University, Melbourne, Victoria, Australia,Department of Microbiology, Monash University, Melbourne, Victoria, Australia,Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia. E-mail:
| |
Collapse
|
18
|
Khalil MI, Che X, Sung P, Sommer MH, Hay J, Arvin AM. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication. Virology 2016; 492:82-91. [PMID: 26914506 DOI: 10.1016/j.virol.2016.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/30/2016] [Accepted: 02/14/2016] [Indexed: 12/29/2022]
Abstract
VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt.
| | - Xibing Che
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - Phillip Sung
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - Marvin H Sommer
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - John Hay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY, United States
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Zeng Y, Li H, Zhang X, Shang J, Kang Y. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte. Biochem Biophys Res Commun 2016; 470:54-60. [PMID: 26772882 DOI: 10.1016/j.bbrc.2015.12.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/23/2015] [Indexed: 11/13/2022]
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ、IL2、IL15、IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1.
Collapse
Affiliation(s)
- Yanli Zeng
- Department of Infectious Diseases, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Hui Li
- The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000, China
| | - Xiaoju Zhang
- Department of Respiratory Medicine, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Jia Shang
- Department of Infectious Diseases, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Yi Kang
- Department of Infectious Diseases, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China.
| |
Collapse
|
20
|
O’Rawe J, Wu Y, Dörfel M, Rope A, Au P, Parboosingh J, Moon S, Kousi M, Kosma K, Smith C, Tzetis M, Schuette J, Hufnagel R, Prada C, Martinez F, Orellana C, Crain J, Caro-Llopis A, Oltra S, Monfort S, Jiménez-Barrón L, Swensen J, Ellingwood S, Smith R, Fang H, Ospina S, Stegmann S, Den Hollander N, Mittelman D, Highnam G, Robison R, Yang E, Faivre L, Roubertie A, Rivière JB, Monaghan K, Wang K, Davis E, Katsanis N, Kalscheuer V, Wang E, Metcalfe K, Kleefstra T, Innes A, Kitsiou-Tzeli S, Rosello M, Keegan C, Lyon G. TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations. Am J Hum Genet 2015; 97:922-32. [PMID: 26637982 PMCID: PMC4678794 DOI: 10.1016/j.ajhg.2015.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022] Open
Abstract
We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.
Collapse
|
21
|
Makino J, Nii M, Kamiya T, Hara H, Adachi T. Oxidized low-density lipoprotein accelerates the destabilization of extracellular-superoxide dismutase mRNA during foam cell formation. Arch Biochem Biophys 2015; 575:54-60. [PMID: 25906743 DOI: 10.1016/j.abb.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022]
Abstract
Extracellular-superoxide dismutase (EC-SOD) is one of the main anti-oxidative enzymes that protect cells against the damaging effects of superoxide. In the present study, we investigated the regulation of EC-SOD expression during the oxidized low density lipoprotein (oxLDL)-induced foam cell formation of THP-1-derived macrophages. The uptake of oxLDL into THP-1-derived macrophages was increased and EC-SOD expression was decreased in a time-dependent manner by oxLDL. Furthermore, EC-SOD suppression by oxLDL was mediated by the binding to scavenger receptors, especially CD36, from the results with siRNA experience. EC-SOD expression is known to be regulated by histone acetylation and binding of the transcription factor Sp1/3 to the EC-SOD promoter region in human cell lines. However, oxLDL did not affect these processes. On the other hand, the stability of EC-SOD mRNA was decreased by oxLDL. Moreover, oxLDL promoted destabilization of ectopically expressed mRNA from EC-SOD or chimeric Cu,Zn-SOD gene with the sequence corresponding to 3'UTR of EC-SOD mRNA, whereas oxLDL had no effect on ectopic mRNA produced from EC-SOD gene lacking the sequence. These results suggested that oxLDL decreased the expression of EC-SOD, which, in turn, accelerated the destabilization of EC-SOD mRNA, leading to weaker protection against oxidative stress and atherosclerosis.
Collapse
Affiliation(s)
- Junya Makino
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Miyuki Nii
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Hirokazu Hara
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
22
|
Takahashi H, Takigawa I, Watanabe M, Anwar D, Shibata M, Tomomori-Sato C, Sato S, Ranjan A, Seidel CW, Tsukiyama T, Mizushima W, Hayashi M, Ohkawa Y, Conaway JW, Conaway RC, Hatakeyama S. MED26 regulates the transcription of snRNA genes through the recruitment of little elongation complex. Nat Commun 2015; 6:5941. [PMID: 25575120 DOI: 10.1038/ncomms6941] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023] Open
Abstract
Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)-which contains the transcription elongation factor ELL/EAF-was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Ichigaku Takigawa
- Creative Research Institution, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Delnur Anwar
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Mio Shibata
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Chris W Seidel
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Wataru Mizushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masayasu Hayashi
- Department of Advanced Medical Initiatives, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Joan W Conaway
- 1] Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA [2] Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS 66160, USA
| | - Ronald C Conaway
- 1] Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA [2] Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS 66160, USA
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
23
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Wang H, Curran EC, Hinds TR, Wang EH, Zheng N. Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Res 2014; 24:1433-44. [PMID: 25412659 PMCID: PMC4260347 DOI: 10.1038/cr.2014.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/07/2023] Open
Abstract
The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest integral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA. Importantly, mutations of these residues not only compromise DNA binding by TAF1, but also abrogate its ability to rescue the ts13 mutant phenotype. Together, our results resolve the structural organization of the TAF1-TAF7 module in TFIID and unveil a critical promoter-binding function of TAF1 in transcription regulation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Curran
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Edith H Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| |
Collapse
|
25
|
Churchill MJ, Cowley DJ, Wesselingh SL, Gorry PR, Gray LR. HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research. J Neurovirol 2014; 21:290-300. [PMID: 25060300 DOI: 10.1007/s13365-014-0271-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4(+) T cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbour persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognised and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS.
Collapse
Affiliation(s)
- Melissa J Churchill
- Center for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne, 3004, Victoria, Australia,
| | | | | | | | | |
Collapse
|
26
|
Promoter identification and transcriptional regulation of the metastasis gene MACC1 in colorectal cancer. Mol Oncol 2013; 7:929-43. [PMID: 23800415 DOI: 10.1016/j.molonc.2013.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 02/08/2023] Open
Abstract
MACC1, Metastasis associated in colon cancer 1, is a newly identified prognostic biomarker for colorectal cancer metastasis and patient survival, when determined in the primary tumor or patient blood. MACC1 induces cell motility and proliferation in cell culture and metastasis in mouse models. MACC1 acts as a transcriptional regulator of the receptor tyrosine kinase gene Met via binding to its promoter. However, no information about the promoter of the MACC1 gene and its transcriptional regulation has been reported so far. Here we report the identification of the MACC1 promoter using a promoter luciferase construct that directs transcription of MACC1. To gain insights into the essential domains within this promoter region, we constructed 5' truncated deletion constructs. Our results show that the region from -426 to -18 constitutes the core promoter and harbors functional motifs for the binding of AP-1, Sp1, and C/EBP transcription factors as validated by site directed mutagenesis study. Using electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we demonstrated the physical interaction of these transcription factors to a minimal essential MACC1 core promoter sequence. Knock down of these transcription factors using RNAi strategy reduced MACC1 expression (P < 0.001), and resulted in decrease of cell migration (P < 0.01) which could be specifically rescued by ectopic overexpression of MACC1. In human colorectal tumors, expression levels of c-Jun and Sp1 correlated significantly to MACC1 (P = 0.0007 and P = 0.02, respectively). Importantly, levels of c-Jun and Sp1 also showed significant correlation to development of metachronous metastases (P = 0.01 and P = 0.001, respectively). This is the first study identifying the MACC1 promoter and its transcriptional regulation by AP-1 and Sp1. Knowledge of the transcriptional regulation of the MACC1 gene will implicate in enhanced understanding of its role in cancer progression and metastasis.
Collapse
|
27
|
Abstract
HIV-1 can establish a state of latent infection at the level of individual T cells. Latently infected cells are rare in vivo and appear to arise when activated CD4(+) T cells, the major targets cells for HIV-1, become infected and survive long enough to revert back to a resting memory state, which is nonpermissive for viral gene expression. Because latent virus resides in memory T cells, it persists indefinitely even in patients on potent antiretroviral therapy. This latent reservoir is recognized as a major barrier to curing HIV-1 infection. The molecular mechanisms of latency are complex and include the absence in resting CD4(+) T cells of nuclear forms of key host transcription factors (e.g., NFκB and NFAT), the absence of Tat and associated host factors that promote efficient transcriptional elongation, epigenetic changes inhibiting HIV-1 gene expression, and transcriptional interference. The presence of a latent reservoir for HIV-1 helps explain the presence of very low levels of viremia in patients on antiretroviral therapy. These viruses are released from latently infected cells that have become activated and perhaps from other stable reservoirs but are blocked from additional rounds of replication by the drugs. Several approaches are under exploration for reactivating latent virus with the hope that this will allow elimination of the latent reservoir.
Collapse
Affiliation(s)
- Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
28
|
Schmitz B, Salomon A, Rötrige A, Ritter M, Ringelstein EB, Fischer JW, Paul M, Brand E, Brand SM. Interindividual transcriptional regulation of the human biglycan gene involves three common molecular haplotypes. Arterioscler Thromb Vasc Biol 2013; 33:871-80. [PMID: 23393390 DOI: 10.1161/atvbaha.112.301073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The extracellular matrix proteoglycan biglycan (BGN) is involved in cardiovascular disease pathophysiology, as it mediates the subendothelial retention of atherogenic apolipoprotein B-containing lipoproteins, affects adaptive remodeling after myocardial infarction, and exerts proinflammatory effects in macrophages. In a cardiovascular disease-related setting of vascular endothelial cells and human monocytes, we examined the molecular mechanisms of common molecular haplotypes affecting human BGN transcriptional regulation. APPROACH AND RESULTS After the molecular characterization of the BGN promoter, we determined the prevalence of BGN promoter variants (1199 base pair portion) in 87 individuals of European ancestry, and identified 3 molecular haplotypes by subcloning and sequencing of subjects' single DNA strands: MolHap1 [G(-578)-G(-151)-G(+94)] MolHap2 [G(-578)-A(-151)-T(+94)] and MolHap3 [A(-578)-G(-151)-G(+94)]. By 5' rapid amplification of cDNA-ends, we detected 1 additional upstream transcription start site at position -46 in EA.hy926 endothelial cells. Reporter gene assays located the BGN core promoter to the region spanning positions -39 and +162. Strongest promoter activity was mapped to the region between -1231 and -935. The introduction of MolHap2 and MolHap3 into the active BGN promoter led to a significant loss of transcriptional activity (all probability values <0.05), compared with MolHap1. By use of electrophoretic mobility shift assays, chromatin immunoprecipitation assays, and cotransfection of transcription factors, we identified specificity protein 1, v-ets erythroblastosis virus E26 oncogene homolog (ETS) family members, and an activator protein-1 complex to interact differentially with the BGN promoter in the context of each individual MolHap. CONCLUSIONS Our results indicate that molecular haplotypes within the BGN promoter may contribute to the molecular basis of interindividually different transcriptional BGN regulation, possibly modulating the predisposition to cardiovascular disease-related phenotypes.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute for Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia. Mol Cell Biol 2012; 32:4595-610. [PMID: 22966206 DOI: 10.1128/mcb.00724-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the functions of hypoxia-inducible factor 1α (HIF1α)/aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF2α/ARNT (HIF2) proteins in activating hypoxia-inducible genes are well established, the role of other transcription factors in the hypoxic transcriptional response is less clear. We report here for the first time that the basic helix-loop-helix-leucine-zip transcription factor upstream stimulatory factor 2 (USF2) is required for the hypoxic transcriptional response, specifically, for hypoxic activation of HIF2 target genes. We show that inhibiting USF2 activity greatly reduces hypoxic induction of HIF2 target genes in cell lines that have USF2 activity, while inducing USF2 activity in cells lacking USF2 activity restores hypoxic induction of HIF2 target genes. Mechanistically, USF2 activates HIF2 target genes by binding to HIF2 target gene promoters, interacting with HIF2α protein, and recruiting coactivators CBP and p300 to form enhanceosome complexes that contain HIF2α, USF2, CBP, p300, and RNA polymerase II on HIF2 target gene promoters. Functionally, the effect of USF2 knockdown on proliferation, motility, and clonogenic survival of HIF2-dependent tumor cells in vitro is phenocopied by HIF2α knockdown, indicating that USF2 works with HIF2 to activate HIF2 target genes and to drive HIF2-depedent tumorigenesis.
Collapse
|
30
|
Loewenstein PM, Wu SY, Chiang CM, Green M. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro. Virology 2012; 428:70-5. [PMID: 22521914 DOI: 10.1016/j.virol.2012.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/03/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
Abstract
The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.
Collapse
Affiliation(s)
- Paul M Loewenstein
- St. Louis University School of Medicine, Institute for Molecular Virology, 1100 S. Grand Ave., Saint Louis, MO 63104, USA
| | | | | | | |
Collapse
|
31
|
Duval C, Gaudreault M, Vigneault F, Touzel-Deschênes L, Rochette PJ, Masson-Gadais B, Germain L, Guérin SL. Rescue of the transcription factors Sp1 and NFI in human skin keratinocytes through a feeder-layer-dependent suppression of the proteasome activity. J Mol Biol 2012; 418:281-99. [PMID: 22420942 DOI: 10.1016/j.jmb.2012.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/01/2022]
Abstract
Co-culturing human skin keratinocytes along with a feeder layer has proven to considerably improve their proliferative properties by delaying massive induction of terminal differentiation. Through a yet unclear mechanism, we recently reported that irradiated 3T3 (i3T3) fibroblasts used as a feeder layer increase the nuclear content of Sp1, a positive transcription factor (TF) that plays a critical role in many cellular functions including cell proliferation, into both adult skin keratinocytes and newborn skin keratinocytes. In this study, we examined the influence of i3T3 on the expression and DNA binding of NFI, another TF important for cell proliferation and cell cycle progression, and attempted to decipher the mechanism by which the feeder layer contributes at maintaining higher levels of these TFs in skin keratinocytes. Our results indicate that co-culturing both adult skin keratinocytes and newborn skin keratinocytes along with a feeder layer dramatically increases glycosylation of NFI and may prevent it from being degraded by the proteasome.
Collapse
Affiliation(s)
- Céline Duval
- LOEX/CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHA, Québec, QC, Canada G1S4L8
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
33
|
Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 2011; 286:9373-81. [PMID: 21252234 PMCID: PMC3058969 DOI: 10.1074/jbc.m110.207720] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Indexed: 01/07/2023] Open
Abstract
Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H(+))-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positive endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes.
Collapse
Affiliation(s)
- Chengliang Zhang
- From the Department of Biomedical and Integrative Physiology and
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Aimin Li
- From the Department of Biomedical and Integrative Physiology and
- the Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchun Zhang
- Genetics Program, Michigan State University, East Lansing, Michigan 48824 and
| | - Hua Xiao
- From the Department of Biomedical and Integrative Physiology and
| |
Collapse
|
34
|
van Heeringen SJ, Akhtar W, Jacobi UG, Akkers RC, Suzuki Y, Veenstra GJC. Nucleotide composition-linked divergence of vertebrate core promoter architecture. Genome Res 2011; 21:410-21. [PMID: 21284373 DOI: 10.1101/gr.111724.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists; however for most of these motifs, the distribution across species is unknown. Here we report on the comparison of human and amphibian promoter sequences. We have used oligo-capping in combination with deep sequencing to determine transcription start sites in Xenopus tropicalis. To systematically predict regulatory elements, we have developed a de novo motif finding pipeline using an ensemble of computational tools. A comprehensive comparison of human and amphibian promoter sequences revealed both similarities and differences in core promoter architecture. Some of the differences stem from a highly divergent nucleotide composition of Xenopus and human promoters. Whereas the distribution of some core promoter motifs is conserved independently of species-specific nucleotide bias, the frequency of another class of motifs correlates with the single nucleotide frequencies. This class includes the well-known TATA box and SP1 motifs, which are more abundant in Xenopus and human promoters, respectively. While these motifs are enriched above the local nucleotide background in both organisms, their frequency varies in step with this background. These differences are likely adaptive as these motifs can recruit TFIID to either CpG island or sharply initiating promoters. Our results highlight both the conserved and diverged aspects of vertebrate transcription, most notably showing co-opted motif usage to recruit the transcriptional machinery to promoters with diverging nucleotide composition. This shows how sweeping changes in nucleotide composition are compatible with highly conserved mechanisms of transcription initiation.
Collapse
Affiliation(s)
- Simon J van Heeringen
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The last decade has seen an incredible breakthrough in technologies that allow histones, transcription factors (TFs), and RNA polymerases to be precisely mapped throughout the genome. From this research, it is clear that there is a complex interaction between the chromatin landscape and the general transcriptional machinery and that the dynamic control of this interface is central to gene regulation. However, the chromatin remodeling enzymes and general TFs cannot, on their own, recognize and stably bind to promoter or enhancer regions. Rather, they are recruited to cis regulatory regions through interaction with site-specific DNA binding TFs and/or proteins that recognize epigenetic marks such as methylated cytosines or specifically modified amino acids in histones. These "recruitment" factors are modular in structure, reflecting their ability to interact with the genome via one region of the protein and to simultaneously bind to other regulatory proteins via "effector" domains. In this chapter, we provide examples of common effector domains that can function in transcriptional regulation via their ability to (a) interact with the basal transcriptional machinery and general co-activators, (b) interact with other TFs to allow cooperative binding, and (c) directly or indirectly recruit histone and chromatin modifying enzymes.
Collapse
Affiliation(s)
- Seth Frietze
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA,
| | | |
Collapse
|
36
|
Liao M, Zhang Y, Kang JH, Dufau ML. Coactivator function of positive cofactor 4 (PC4) in Sp1-directed luteinizing hormone receptor (LHR) gene transcription. J Biol Chem 2010; 286:7681-91. [PMID: 21193408 DOI: 10.1074/jbc.m110.188532] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LHR has an essential role in sexual development and reproductive function, and its transcription is subjected to several modes of regulation. In this study, we investigated PC4 coactivator function in the control of LHR transcription. Knockdown of PC4 by siRNA inhibited the LHR basal promoter activity and trichostatin A (TSA)-induced gene transcriptional activation and expression in MCF-7 cells. While overexpression of PC4 alone had no effect on the LHR gene, it significantly enhanced Sp1- but not Sp3-mediated LHR transcriptional activity. PC4 directly interacts with Sp1 at the LHR promoter, and this interaction is negatively regulated by PC4 phosphorylation. The coactivator domain (22-91 aa) of PC4 and DNA binding domain of Sp1 are essential for PC4/Sp1 interaction. ChIP assay revealed significant occupancy of PC4 at the LHR promoter that increased upon TSA treatment. Disruption of PC4 expression significantly reduced TSA-induced recruitment of TFIIB and RNAP II, at the promoter. PC4 functions are beyond TSA-induced phosphatase release, PI3K-mediated Sp1 phosphorylation, and HDAC1/2/mSin3A co-repressor release indicating its role as linker coactivator of Sp1 and the transcriptional machinery. These findings demonstrated a critical aspect of LHR modulation whereby PC4 acts as a coactivator of Sp1 to contribute to the human of LHR transcription.
Collapse
Affiliation(s)
- Mingjuan Liao
- Molecular Endocrinology Section, Program of Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
37
|
Easley R, Carpio L, Dannenberg L, Choi S, Alani D, Van Duyne R, Guendel I, Klase Z, Agbottah E, Kehn-Hall K, Kashanchi F. Transcription through the HIV-1 nucleosomes: effects of the PBAF complex in Tat activated transcription. Virology 2010; 405:322-33. [PMID: 20599239 DOI: 10.1016/j.virol.2010.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/22/2010] [Accepted: 06/03/2010] [Indexed: 01/07/2023]
Abstract
The SWI/SNF complex remodels nucleosomes, allowing RNA Polymerase II access to the HIV-1 proviral DNA. It has not been determined which SWI/SNF complex (BAF or PBAF) remodels nucleosomes at the transcription start site. These complexes differ in only three subunits and determining which subunit(s) is required could explain the regulation of Tat activated transcription. We show that PBAF is required for chromatin remodeling at the nuc-1 start site and transcriptional elongation. We find that Baf200 is required to ensure activation at the LTR level and for viral production. Interestingly, the BAF complex was observed on the LTR whereas PBAF was present on both LTR and Env regions. We found that Tat activated transcription facilitates removal of histones H2A and H2B at the LTR, and that the FACT complex may be responsible for their removal. Finally, the BAF complex may play an important role in regulating splicing of the HIV-1 genome.
Collapse
Affiliation(s)
- Rebecca Easley
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Temporal regulation of Cat-1 (cationic amino acid transporter-1) gene transcription during endoplasmic reticulum stress. Biochem J 2010; 429:215-24. [PMID: 20408811 DOI: 10.1042/bj20100286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of the Cat-1 gene (cationic amino acid transporter-1) is induced in proliferating cells and in response to a variety of stress conditions. The expression of the gene is mediated via a TATA-less promoter. In the present study we show that an Sp1 (specificity protein 1)-binding site within a GC-rich region of the Cat-1 gene controls its basal expression and is important for induction of the gene during the UPR (unfolded protein response). We have shown previously that induction of Cat-1 gene expression during the UPR requires phosphorylation of the translation initiation factor eIF2alpha (eukaryotic initiation factor 2alpha) by PERK (protein-kinase-receptor-like endoplasmic reticulum kinase), one of the signalling pathways activated during the UPR. This leads to increased translation of the transcription factor ATF4 (activating transcription factor 4). We also show that a second signalling pathway is required for sustained transcriptional induction of the Cat-1 gene during the UPR, namely activation of IRE1 (inositol-requiring enzyme 1) leading to alternative splicing of the mRNA for the transcription factor XBP1 (X-box-binding protein 1). The resulting XBP1s (spliced XBP1) can bind to an ERSE (endoplasmic-reticulum-stress-response-element), ERSE-II-like, that was identified within the Cat-1 promoter. Surprisingly, eIF2alpha phosphorylation is required for accumulation of XBP1s. We propose that the signalling via phosphorylated eIF2alpha is required for maximum induction of Cat-1 transcription during the UPR by inducing the accumulation of both ATF4 and XBP1s.
Collapse
|
39
|
Galibert MD, Corre S. In vivo and in vitro tools to identify and study transcriptional regulation of USF-1 target genes. Methods Mol Biol 2010; 647:339-55. [PMID: 20694678 DOI: 10.1007/978-1-60761-738-9_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In response to environmental stress, cells trigger a number of molecular mechanisms to control their survival and growth. These include changes in gene expression with corresponding Post-translational modifications to critical transcriptional-control proteins. Transcription is a highly-regulated process that is impacted by a large number of ubiquitous and specific factors. In order to determine how gene expression is regulated in response to environmental cues, it is necessary to correlate modifications to specific transcription proteins with an accurate assessment of the transcriptional response. This chapter details quantitative Real Time PCR (qPCR) and Luciferase assay protocols to illustrate, both in vivo and in vitro, the role of the USF-1 transcription factor in the UV-dependant regulation of pigmentation genes (POMC and MC1R). The procedures have been optimized for the USF-1 transcription factor and the regulation of specific target genes in response to physiological UV doses.
Collapse
Affiliation(s)
- Marie-Dominique Galibert
- Genetic and Development Institute of Rennes, Transcriptional Regulation and Oncogenesis Team, Rennes University, Rennes, France.
| | | |
Collapse
|
40
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
41
|
Zhang SM, Sun Y, Fan R, Xu QZ, Liu XD, Zhang X, Wang Y, Zhou PK. HIV-1 Tat regulates cyclin B1 by promoting both expression and degradation. FASEB J 2009; 24:495-503. [PMID: 19825974 DOI: 10.1096/fj.09-143925] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclin B1, an important cell cycle regulator, was up-regulated in lymphocytes of human immunodeficiency virus (HIV)-infected patients. However, the mechanism of cyclin B1 up-regulation and the effects of the up-regulation on the host cells remain unclear. Here, we show that HIV-encoded Tat protein regulates cyclin B1 levels in two different ways: first, Tat stimulates the transcription of cyclin B1, which increases cyclin B1 levels and promotes the cells apoptosis; and second, Tat stimulates polyubiquitination-mediated degradation of cyclin B1 through binding to the N-terminal of cyclin B1 (aa 61-129) that is just downstream of the D box, which prevents excessive levels of cyclin B1 in the cells. These results suggest that Tat-regulating cyclin B1 affects the status of HIV: Tat stimulates cyclin B1 expression to slow down the host cell cycle progress and to promote the host cell apoptosis, which might facilitate HIV release; Tat stimulates cyclin B1 degradation to prevent overaccumulation of cyclin B1, which might facilitate HIV replication. Taken together, our results reveal for the first time how HIV-Tat regulates cyclin B1 and keeps its balance in the cells.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pelka P, Ablack JNG, Shuen M, Yousef AF, Rasti M, Grand RJ, Turnell AS, Mymryk JS. Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 2009; 391:90-8. [PMID: 19541337 DOI: 10.1016/j.virol.2009.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/22/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
The conserved region 3 (CR3) portion of the human adenovirus (HAdV) 5 E1A protein functions as a potent transcriptional activator that induces expression of viral early genes during infection. Expression of HAdV-5 CR3 in the yeast Saccharomyces cerevisiae inhibits growth, as do the corresponding regions of the HAdV-3, 4, 9, 12 and 40 E1A proteins, which represent the remaining five HAdV subgroups. Growth inhibition is alleviated by disruption of the SAGA transcriptional regulatory complex, suggesting that CR3 targets the yeast SAGA complex. In yeast, transcriptional activation by several, but not all, of the CR3 regions requires the Gcn5 acetyltransferase component of SAGA. The CR3 regions of HAdV-3, 5, 9 and 40, but not HAdV-4 and 12 interact with the pCAF acetyltransferase, a mammalian ortholog of yeast Gcn5. Disruption of the previously described N-terminal pCAF binding site abrogates binding by the HAdV-5 243R E1A protein, but not the larger 289R E1A protein, which is otherwise identical except for the presence of CR3. RNA interference directed against pCAF decreased HAdV-5 CR3 dependent transcriptional activation in mammalian cells. Our results identify a second independent binding site for pCAF in E1A and suggest that it contributes to CR3 dependent transcriptional activation.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Corre S, Primot A, Baron Y, Le Seyec J, Goding C, Galibert MD. Target gene specificity of USF-1 is directed via p38-mediated phosphorylation-dependent acetylation. J Biol Chem 2009; 284:18851-62. [PMID: 19389701 DOI: 10.1074/jbc.m808605200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How transcription factors interpret the output from signal transduction pathways to drive distinct programs of gene expression is a key issue that underpins development and disease. The ubiquitously expressed basic-helix-loop-helix leucine zipper upstream stimulating factor-1 binds E-box regulatory elements (CANNTG) to regulate a wide number of gene networks. In particular, USF-1 is a key component of the tanning process. Following UV irradiation, USF-1 is phosphorylated by the p38 stress-activated kinase on threonine 153 and directly up-regulates expression of the POMC, MC1R, TYR, TYRP-1 and DCT genes. However, how phosphorylation on Thr-153 might affect the activity of USF-1 is unclear. Here we show that, in response to DNA damage, oxidative stress and cellular infection USF-1 is acetylated in a phospho-Thr-153-dependent fashion. Phospho-acetylated USF-1 is nuclear and interacts with DNA but displays altered gene regulatory properties. Phospho-acetylated USF-1 is thus proposed to be associated with loss of transcriptional activation properties toward several target genes implicated in pigmentation process and cell cycle regulation. The identification of this critical stress-dependent USF-1 modification gives new insights into understanding USF-1 gene expression modulation associated with cancer development.
Collapse
Affiliation(s)
- Sébastien Corre
- Signaling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted RH8 OTL, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Singh U, Bongcam-Rudloff E, Westermark B. A DNA sequence directed mutual transcription regulation of HSF1 and NFIX involves novel heat sensitive protein interactions. PLoS One 2009; 4:e5050. [PMID: 19337383 PMCID: PMC2660424 DOI: 10.1371/journal.pone.0005050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Though the Nuclear factor 1 family member NFIX has been strongly implicated in PDGFB-induced glioblastoma, its molecular mechanisms of action remain unknown. HSF1, a heat shock-related transcription factor is also a powerful modifier of carcinogenesis by several factors, including PDGFB. How HSF1 transcription is controlled has remained largely elusive. METHODOLOGY/PRINCIPAL FINDINGS By combining microarray expression profiling and a yeast-two-hybrid screen, we identified that NFIX and its interactions with CGGBP1 and HMGN1 regulate expression of HSF1. We found that CGGBP1 organizes a bifunctional transcriptional complex at small CGG repeats in the HSF1 promoter. Under chronic heat shock, NFIX uses CGGBP1 and HMGN1 to get recruited to this promoter and in turn affects their binding to DNA. Results show that the interactions of NFIX with CGGBP1 and HMGN1 in the soluble fraction are heat shock sensitive due to preferential localization of CGGBP1 to heterochromatin after heat shock. HSF1 in turn was found to bind to the NFIX promoter and repress its expression in a heat shock sensitive manner. CONCLUSIONS/SIGNIFICANCE NFIX and HSF1 exert a mutual transcriptional repressive effect on each other which requires CGG repeat in HSF1 promoter and HSF1 binding site in NFIX promoter. We unravel a unique mechanism of heat shock sensitive DNA sequence-directed reciprocal transcriptional regulation between NFIX and HSF1. Our findings provide new insights into mechanisms of transcription regulation under stress.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail: (US); (BW)
| | | | - Bengt Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail: (US); (BW)
| |
Collapse
|
45
|
Liu R, Zhou A, Ren D, He A, Hu X, Zhang W, Yang L, Liu M, Li H, Zhou J, Xiang S, Zhang J. Transcription factor specificity protein 1 (SP1) and activating protein 2α (AP-2α) regulate expression of human KCTD10 gene by binding to proximal region of promoter. FEBS J 2009; 276:1114-24. [DOI: 10.1111/j.1742-4658.2008.06855.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Pelka P, Ablack JNG, Torchia J, Turnell AS, Grand RJA, Mymryk JS. Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic Acids Res 2009; 37:1095-106. [PMID: 19129215 PMCID: PMC2651774 DOI: 10.1093/nar/gkn1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 portion of E1A and this association is required for oncogenic transformation by E1A. We report here that transcriptional activation by 13S E1A is inhibited by co-expression of sub-stoichiometric amounts of the smaller 12S E1A isoform, which lacks CR3. Transcriptional inhibition by E1A 12S maps to the N-terminus and correlates with the ability to bind p300/CBP, suggesting that E1A 12S is sequestering this limiting factor from 13S E1A. This is supported by the observation that the repressive effect of E1A 12S is reversed by expression of exogenous p300 or CBP, but not by a CBP mutant lacking actyltransferase activity. Furthermore, we show that transcriptional activation by 13S E1A is greatly reduced by siRNA knockdown of p300 and that CR3 binds p300 independently of the well-characterized N-terminal/CR1-binding site. Importantly, CR3 is also required to recruit p300 to the adenovirus E4 promoter during infection. These results identify a new functionally significant interaction between E1A CR3 and the p300/CBP acetyltransferases, expanding our understanding of the mechanism by which this potent transcriptional activator functions.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Understanding the diverse activities of the multisubunit core promoter recognition complex TFIID in vivo requires knowledge of how individual subunits contribute to overall functions of this TATA box-binding protein (TBP)/TBP-associated factor (TAF) complex. By generating altered holo-TFIID complexes in Drosophila we identify the ETO domain of TAF4 as a coactivator domain likely targeted by Pygopus, a protein that is required for Wingless-induced transcription of naked cuticle. These results establish a coactivator function of TAF4 and provide a strategy to dissect mechanisms of TFIID function in vivo.
Collapse
|
48
|
Sun F, Xie Q, Ma J, Yang S, Chen Q, Hong A. Nuclear factor Y is required for basal activation and chromatin accessibility of fibroblast growth factor receptor 2 promoter in osteoblast-like cells. J Biol Chem 2008; 284:3136-3147. [PMID: 19047043 PMCID: PMC2631964 DOI: 10.1074/jbc.m808992200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) plays an important regulatory
role in bone development. However, the regulatory mechanisms controlling FGFR2
expression remain poorly understood. Here we have identified a role for the
nuclear factor Y (NF-Y) in constitutive activation of FGFR2. A unique DNase I
hypersensitive site was detected in the region encompassing nucleotides -270
to +230 after scanning a large range covering 33.3 kilobases around the
transcription start site of FGFR2. Using a PCR-based chromatin accessibility
assay, an open chromatin conformation was detected around the proximal
5′ fragment of FGFR2 gene. Deletion constructs of the 5′-flanking
region of FGFR2 were fused to a luciferase reporter gene. After transient
transfection in C3H10T1/2, ME3T3-E1, and C2C12 as well as primary osteoblasts,
a minimal region -86/+139 that is highly homologous to the human sequence and
bears a CCAAT box was identified as the core promoter. Electrophoretic
mobility shift assay supershift and chromatin immunoprecipitation demonstrated
that the CCAAT box was the binding site for NF-Y. Deletion of NF-Y consensus
sequence resulted in the total loss of NF-Y promoter activity. Overexpression
of NF-Y protein and transfection of NF-Y small interfering RNAs in the cells
substantially changed the promoter activity. Moreover, NF-Y small interfering
RNAs greatly inhibited the endogenous FGFR2 transcription level and the
chromatin accessibility and H3 acetylation across the promoter. Taken
together, our results demonstrate that interaction of NF-Y at the CCAAT box is
pivotal to FGFR2 gene transcription partly through the construction of a local
open chromatin configuration across the promoter.
Collapse
Affiliation(s)
- Fenyong Sun
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - Qiuling Xie
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - Ji Ma
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - Songhai Yang
- Shaoguan Tielu Hospital, Shaoguan, 512023, Guangdong, China
| | - Qiongyu Chen
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China
| | - An Hong
- Institute of Genetic Engineering, Jinan University, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Guangzhou 510632, China.
| |
Collapse
|
49
|
De Marco A, Biancotto C, Knezevich A, Maiuri P, Vardabasso C, Marcello A. Intragenic transcriptional cis-activation of the human immunodeficiency virus 1 does not result in allele-specific inhibition of the endogenous gene. Retrovirology 2008; 5:98. [PMID: 18983639 PMCID: PMC2586024 DOI: 10.1186/1742-4690-5-98] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/04/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) favors integration in active genes of host chromatin. It is believed that transcriptional interference of the viral promoter over the endogenous gene or vice versa might occur with implications in HIV-1 post-integrative transcriptional latency. RESULTS In this work a cell line has been transduced with a HIV-based vector and selected for Tat-inducible expression. These cells were found to carry a single silent integration in sense orientation within the second intron of the HMBOX1 gene. The HIV-1 Tat transactivator induced the viral LTR and repressed HMBOX1 expression independently of vector integration. Instead, single-cell quantitative in situ hybridization revealed that allele-specific transcription of HMBOX1 carrying the integrated provirus was not affected by the transactivation of the viral LTR in cis. CONCLUSION A major observation of the work is that the HIV-1 genome has inserted in genes that are also repressed by Tat and this could be an advantage for the virus during transcriptional reactivation. In addition, it has also been observed that transcription of the provirus and of the endogenous gene in which it is integrated may coexist at the same time in the same genomic location.
Collapse
Affiliation(s)
- Alex De Marco
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
The alpha-1-antitrypsin gene promoter in human A549 lung derived cells, and a novel transcription initiation site. Int J Biochem Cell Biol 2008; 41:1157-64. [PMID: 19010440 DOI: 10.1016/j.biocel.2008.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/17/2008] [Accepted: 10/22/2008] [Indexed: 11/20/2022]
Abstract
Alpha-1-antitrypsin (AAT), also called serine proteinase inhibitor A1 (Serpin A1), is the most abundant serpin in human plasma. A major physiological role of AAT is to protect the lung from the destructive effects of excess uninhibited neutrophil elastase. During inflammation, circulating levels of AAT may increase twofold-to-threefold as part of the acute-phase response. The liver is the main contributor to this increase. However, local synthesis may provide an important mechanism for controlling neutrophil elastase activity at sites of inflammation, and previous studies have shown a marked increase in production after cytokine stimulation. In the current study we report a distinct transcription initiation site for AAT expression in the lung alveolar epithelial cell line A549, which is located nine bases upstream of the previously mapped full-length monocyte transcription start-site, and show using site-directed mutagenesis that two Sp1 sites and a putative TATA box are functional. EMSA experiments provide evidence for Sp1 and Sp3 binding to these two Sp1 sites. We have also mapped the minimal promoter region and a cell-specific element essential for expression in A549 cells, both of which reside in an 865bp fragment upstream of the transcription start-site. Understanding the mechanisms of AAT gene regulation in a lung-derived cell line has important implications for understanding the control of localised lung tissue damage which occurs as a result of excess proteolytic activity.
Collapse
|