1
|
Song Z, Henze L, Casar C, Schwinge D, Schramm C, Fuss J, Tan L, Prinz I. Human γδ T cell identification from single-cell RNA sequencing datasets by modular TCR expression. J Leukoc Biol 2023; 114:630-638. [PMID: 37437101 DOI: 10.1093/jleuko/qiad069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
Accurately identifying γδ T cells in large single-cell RNA sequencing (scRNA-seq) datasets without additional single-cell γδ T cell receptor sequencing (sc-γδTCR-seq) or CITE-seq (cellular indexing of transcriptomes and epitopes sequencing) data remains challenging. In this study, we developed a TCR module scoring strategy for human γδ T cell identification (i.e. based on modular gene expression of constant and variable TRA/TRB and TRD genes). We evaluated our method using 5' scRNA-seq datasets comprising both sc-αβTCR-seq and sc-γδTCR-seq as references and demonstrated that it can identify γδ T cells in scRNA-seq datasets with high sensitivity and accuracy. We observed a stable performance of this strategy across datasets from different tissues and different subtypes of γδ T cells. Thus, we propose this analysis method, based on TCR gene module scores, as a standardized tool for identifying and reanalyzing γδ T cells from 5'-end scRNA-seq datasets.
Collapse
Affiliation(s)
- Zheng Song
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Lara Henze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Johannes Fuss
- Center for Translational Neuro- and Behavioral Sciences, Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen, Alfredstrasse 68-72, 45130 Essen, Germany
| | - Likai Tan
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
- Department of Anaesthesia and Intensive Care (AIC), Prince of Wales Hospital, Shatin, The Chinese University of Hong Kong, New Territories, 4/F Main Clinical Block and Trauma Centre, Hong Kong, China
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
3
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
4
|
Van Rhijn I, Le Nours J. CD1 and MR1 recognition by human γδ T cells. Mol Immunol 2021; 133:95-100. [PMID: 33636434 PMCID: PMC8075093 DOI: 10.1016/j.molimm.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
The two main T cell lineages, αβ and γδ T cells, play a central role in immunity. Unlike αβ T cells that recognize antigens bound to the Major Histocompatibility Complex (MHC) or MHC class I-like antigen-presenting molecules, the ligands for γδ T cell receptors (TCRs) are much more diverse. However, it is now clear that γδ TCRs can also recognize MHC class I-like molecules, including CD1b, CD1c, CD1d and the MHC class I-related protein 1 (MR1). Yet, our understanding at the molecular level of γδ T cell immunity to CD1 and MR1 is still very limited. Here, we discuss new molecular paradigms underpinning γδ TCRs recognition of antigens, antigen-presenting molecules or both. The recent discovery of recognition of MR1 by a γδ TCR at a position located underneath the antigen display platform reinforces the view that γδ TCRs can approach their ligands from many directions, unlike αβ TCRs that bind MHC, CD1 and MR1 targets in an aligned, end to end fashion.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, and Harvard Medical School, Boston, MA, 02115, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands.
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
Reading the B-cell receptor immunome in chronic lymphocytic leukemia: revelations and applications. Exp Hematol 2020; 93:14-24. [PMID: 32976948 DOI: 10.1016/j.exphem.2020.09.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
B-Cell receptor (BCR) sequencing has been the force driving many recent advances in chronic lymphocytic leukemia (CLL) research. Here, we discuss the general principles, revelations, and applications of reading the BCR immunome in the context of CLL. First, IGHV mutational status, obtained by measuring the mutational imprint on the IGHV gene of the CLL clonotype, is the cornerstone of CLL risk stratification. Furthermore, the discovery of "BCR-stereotyped" groups of unrelated patients that share not only a highly similar BCR on their leukemic clone, but also certain clinical characteristics has provided insights key to understanding disease ontogeny. Additionally, whereas the BCR repertoire of most CLL patients is characterized by a single dominant rearrangement, next-generation sequencing (NGS) has revealed a rich subclonal landscape in a larger than previously expected proportion of CLL patients. We review the mechanisms underlying these "multiple dominant" cases, including V(D)J-recombination errors, failure of allelic exclusion, intraclonal diversification, and "true" bi- or oligoclonality, and their implications, in detail. Finally, BCR repertoire sequencing can be used for sensitive quantification of minimal residual disease to potentially unprecedented depth. To surmount pitfalls inherent to this approach and develop internationally harmonized protocols, the EuroClonality-NGS Working Group has been established.
Collapse
|
6
|
Taylor EB, Chinchar VG, Quiniou SMA, Wilson M, Bengtén E. Cloning and characterization of antiviral cytotoxic T lymphocytes in channel catfish, Ictalurus punctatus. Virology 2019; 540:184-194. [PMID: 31929000 DOI: 10.1016/j.virol.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
To determine the role of piscine anti-viral cytotoxic cells, we analyzed the response of channel catfish to Ictalurid herpesvirus 1, commonly designated channel catfish virus (CCV). Peripheral blood leukocytes (PBL) from catfish immunized with MHC-matched, CCV-infected G14D cells (G14D-CCV) showed marked lysis of G14D-CCV but little to no lysis of uninfected allogenic (3B11) or syngeneic (G14D) cells. Expansion of effectors by in vitro culture in the presence of irradiated G14D-CCV cells generated cultures with enhanced cytotoxicity and often broader target range. Cytotoxic effectors expressed rearranged TCR genes, perforin, granzyme, and IFN-γ. Four clonal cytotoxic lines were developed and unique TCR gene rearrangements including γδ were detected. Furthermore, catfish CTL clones were either CD4+/CD8- or CD4-/CD8-. Two CTL lines showed markedly enhanced killing of G14D-CCV targets, while the other two lines displayed a broader target range. Collectively, catfish virus-specific CTL display unique features that illustrate the diversity of the ectothermic vertebrate immune response.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - V Gregory Chinchar
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Stoneville, MS, 38776, USA
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
7
|
Gebert C, Correia L, Li Z, Petrie HT, Love PE, Pfeifer K. Chromosome choice for initiation of V-(D)-J recombination is not governed by genomic imprinting. Immunol Cell Biol 2017; 95:473-477. [PMID: 28244489 PMCID: PMC5788196 DOI: 10.1038/icb.2017.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
V-(D)-J recombination generates the antigen receptor diversity necessary for immune cell function, while allelic exclusion ensures that each cell expresses a single antigen receptor. V-(D)-J recombination of the Ig, Tcrb, Tcrg and Tcrd antigen receptor genes is ordered and sequential so that only one allele generates a productive rearrangement. The mechanism controlling sequential rearrangement of antigen receptor genes, in particular how only one allele is selected to initiate recombination while at least temporarily leaving the other intact, remains unresolved. Genomic imprinting, a widespread phenomenon wherein maternal or paternal allele inheritance determines allele activity, could represent a regulatory mechanism for controlling sequential V-(D)-J rearrangement. We used strain-specific single-nucleotide polymorphisms within antigen receptor genes to determine if maternal vs paternal inheritance could underlie chromosomal choice for the initiation of recombination. We found no parental chromosomal bias in the initiation of V-(D)-J recombination in T or B cells, eliminating genomic imprinting as a potential regulator for this tightly regulated process.
Collapse
Affiliation(s)
- Claudia Gebert
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Lauren Correia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Zhenhu Li
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | | | - Paul E Love
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|
8
|
Christopoulos P, Bukatz D, Kock S, Malkovsky M, Finke J, Fisch P. Improved analysis of TCRγδ variable region expression in humans. J Immunol Methods 2016; 434:66-72. [DOI: 10.1016/j.jim.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
|
9
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
10
|
Cimini E, Agrati C, D’Offizi G, Vlassi C, Casetti R, Sacchi A, Lionetti R, Bordoni V, Tumino N, Scognamiglio P, Martini F. Primary and Chronic HIV Infection Differently Modulates Mucosal Vδ1 and Vδ2 T-Cells Differentiation Profile and Effector Functions. PLoS One 2015; 10:e0129771. [PMID: 26086523 PMCID: PMC4472518 DOI: 10.1371/journal.pone.0129771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
Gut-associated immune system has been identified as a major battlefield during the early phases of HIV infection. γδ T-cells, deeply affected in number and function after HIV infection, are able to act as a first line of defence against invading pathogens by producing antiviral soluble factors and by killing infected cells. Despite the relevant role in mucosal immunity, few data are available on gut-associated γδ T-cells during HIV infection. Aim of this work was to evaluate how primary (P-HIV) and chronic (C-HIV) HIV infection affects differentiation profile and functionality of circulating and gut-associated Vδ1 and Vδ2 T-cells. In particular, circulating and mucosal cells were isolated from respectively whole blood and residual gut samples from HIV-infected subjects with primary and chronic infection and from healthy donors (HD). Differentiation profile and functionality were analyzed by multiparametric flow cytometry. P-HIV and C-HIV were characterized by an increase in the frequency of effector Vδ1-T cells both in circulating and mucosal compartments. Moreover, during P-HIV mucosal Vδ1 T-cells expressed high levels of CD107a, suggesting a good effector cytotoxic capability of these cells in the early phase of infection that was lost in C-HIV. P-HIV induced an increase in circulating effector Vδ2 T-cells in comparison to C-HIV and HD. Notably, P-HIV as well as HD were characterized by the ability of mucosal Vδ2 T-cells to spontaneously produce IFN-γ that was lost in C-HIV. Altogether, our data showed for the first time a functional capability of mucosal Vδ1 and Vδ2 T-cells during P-HIV that was lost in C-HIV, suggesting exhaustion mechanisms induced by persistent stimulation.
Collapse
Affiliation(s)
- Eleonora Cimini
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
- Virology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
- * E-mail:
| | - Gianpiero D’Offizi
- Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Chrysoula Vlassi
- Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Rita Casetti
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Alessandra Sacchi
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Raffaella Lionetti
- Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
- Gastrointestinal Endoscopy Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Veronica Bordoni
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Nicola Tumino
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Paola Scognamiglio
- Epidemiology Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| | - Federico Martini
- Cellular Immunology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Via Portuense, 292, 00149, Rome, Italy
| |
Collapse
|
11
|
Brady BL, Oropallo MA, Yang-Iott KS, Serwold T, Hochedlinger K, Jaenisch R, Weissman IL, Bassing CH. Position-dependent silencing of germline Vß segments on TCRß alleles containing preassembled VßDJßCß1 genes. THE JOURNAL OF IMMUNOLOGY 2010; 185:3564-73. [PMID: 20709953 DOI: 10.4049/jimmunol.0903098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genomic organization of TCRbeta loci enables Vbeta-to-DJbeta2 rearrangements on alleles with assembled VbetaDJbetaCbeta1 genes, which could have deleterious physiologic consequences. To determine whether such Vbeta rearrangements occur and, if so, how they might be regulated, we analyzed mice with TCRbeta alleles containing preassembled functional VbetaDJbetaCbeta1 genes. Vbeta10 segments were transcribed, rearranged, and expressed in thymocytes when located immediately upstream of a Vbeta1DJbetaCbeta1 gene, but not on alleles with a Vbeta14DJbetaCbeta1 gene. Germline Vbeta10 transcription was silenced in mature alphabeta T cells. This allele-dependent and developmental stage-specific silencing of Vbeta10 correlated with increased CpG methylation and decreased histone acetylation over the Vbeta10 promoter and coding region. Transcription, rearrangement, and expression of the Vbeta4 and Vbeta16 segments located upstream of Vbeta10 were silenced on alleles containing either VbetaDJbetaCbeta1 gene; sequences within Vbeta4, Vbeta16, and the Vbeta4/Vbeta16-Vbeta10 intergenic region exhibited constitutive high CpG methylation and low histone acetylation. Collectively, our data indicate that the position of Vbeta segments relative to assembled VbetaDJbetaCbeta1 genes influences their rearrangement and suggest that DNA sequences between Vbeta segments may form boundaries between active and inactive Vbeta chromatin domains upstream of VbetaDJbetaCbeta genes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vgamma9Vdelta2 T cells. AIDS 2009; 23:555-65. [PMID: 19238075 DOI: 10.1097/qad.0b013e3283244619] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE gammadelta T cells bearing the Vgamma9Vdelta2 T-cell receptor exert many antiviral effector functions in humans, including release of anti-HIV factors and direct cytotoxicity against virus-infected cells. Moreover, they are known to activate dendritic cells, improving antigen presentation function. After HIV infection, Vgamma9Vdelta2 T-cell number and reactivity are rapidly affected and they decrease upon disease progression. Bisphosphonate drugs such as zoledronic acid (Zol), used to treat bone diseases, have been shown to induce in vivo, in combination with interleukin-2, Vgamma9Vdelta2 T-cells' activation. The aim of this work was to verify whether the administration of Zol in combination with interleukin-2 in HIV-infected patients might improve Vgamma9Vdelta2 T-cell function, including immune adjuvancy mediated by gammadelta-dendritic cell cross-talk. DESIGN AND METHODS In HIV patients naive to antiretroviral therapy, we analyzed the effect of combined Zol and interleukin-2 treatment, in comparison to Zol alone, on Vgamma9Vdelta2 T-cell number, maturation and function, on dendritic cell activation and on HIV-specific CD8 T-cell response. RESULTS Zol and interleukin-2-combined treatment induced in-vivo Vgamma9Vdelta2 T-cell expansion and maturation. Paralleling Vgamma9Vdelta2 T-cell activation, increased dendritic cell maturation and HIV-specific CD8 T-cell responses were found. CONCLUSION The specific modulation of Vgamma9Vdelta2 T-cell number and responsiveness after HIV infection may be at least transiently restored in vivo by Zol and interleukin-2 treatment. In this way, the immune effector mechanisms, secondary to Vgamma9Vdelta2 T-cell activation, were improved, suggesting a possible adjuvancy role of Zol and interleukin-2 treatment in restoring innate and specific competence in HIV-infected persons.
Collapse
|
13
|
Trichet V, Benezech C, Dousset C, Gesnel MC, Bonneville M, Breathnach R. Complex Interplay of Activating and Inhibitory Signals Received by Vγ9Vδ2 T Cells Revealed by Target Cell β2-Microglobulin Knockdown. THE JOURNAL OF IMMUNOLOGY 2006; 177:6129-36. [PMID: 17056540 DOI: 10.4049/jimmunol.177.9.6129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor cells often escape immunosurveillance by down-regulating MHC class I molecule expression. For human Vgamma9Vdelta2 T cells, a major peripheral blood T cell subset with broad antitumor reactivity, this down-regulation can affect signals transmitted by both the inhibitory and the activating MHC class I and Ib-specific NK receptors (NKRs) that these lymphocytes frequently express. To assess the overall impact of MHC down-regulation on Vgamma9Vdelta2 T cell activation, we used stable beta(2)-microglobulin knockdown to generate tumor cells with a approximately 10-fold down-modulation of all MHC class I molecules. This down-modulation had little effect on T cell proliferation or cytokine production, but modified tumor cell killing efficiency. Ab-blocking studies identified ILT2 as an important inhibitor of tumor cell killing by Vgamma9Vdelta2 T cells. Down-modulation of MHC class I and Ib molecules severely reduced ILT2 inhibitory signaling, but still allowed signaling by activating CD94-based receptors. It also unveiled a frequent enhancing effect of NKG2D on tumor killing by Vgamma9Vdelta2 T cells. Current models suggest that activating NKRs have less affinity for their MHC ligands than homologous inhibitory NKRs. Our results show that, despite this, activating NKRs recognizing MHC class I molecules play an important role in the increased killing by Vgamma9Vdelta2 T cells of tumor cells with down-regulated MHC class I molecule expression, and suggest that these T cells will best lyse tumor cells combining MHC class I molecule expression down-regulation with up-regulated NKG2D ligand expression.
Collapse
Affiliation(s)
- Valérie Trichet
- Institut National de la Santé et de la Recherche Médicale, Unité 601, Nantes, France
| | | | | | | | | | | |
Collapse
|
14
|
Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF. Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential--differences between men and mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:1543-52. [PMID: 16424183 PMCID: PMC1592528 DOI: 10.4049/jimmunol.176.3.1543] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To evaluate the role of the TCR in the alphabeta/gammadelta lineage choice during human thymocyte development, molecular analyses of the TCRbeta locus in gammadelta cells and the TCRgamma and delta loci in alphabeta cells were undertaken. TCRbeta variable gene segments remained largely in germline configuration in gammadelta cells, indicating that commitment to the gammadelta lineage occurred before complete TCRbeta rearrangements in most cases. The few TCRbeta rearrangements detected were primarily out-of-frame, suggesting that productive TCRbeta rearrangements diverted cells away from the gammadelta lineage. In contrast, in alphabeta cells, the TCRgamma locus was almost completely rearranged with a random productivity profile; the TCRdelta locus contained primarily nonproductive rearrangements. Productive gamma rearrangements were, however, depleted compared with preselected cells. Productive TCRgamma and delta rearrangements rarely occurred in the same cell, suggesting that alphabeta cells developed from cells unable to produce a functional gammadelta TCR. Intracellular TCRbeta expression correlated with the up-regulation of CD4 and concomitant down-regulation of CD34, and plateaued at the early double positive stage. Surprisingly, however, some early double positive thymocytes retained gammadelta potential in culture. We present a model for human thymopoiesis which includes gammadelta development as a default pathway, an instructional role for the TCR in the alphabeta/gammadelta lineage choice, and a prolonged developmental window for beta selection and gammadelta lineage commitment. Aspects that differ from the mouse are the status of TCR gene rearrangements at the nonexpressed loci, the timing of beta selection, and maintenance of gammadelta potential through the early double positive stage of development.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Child
- Coculture Techniques
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Humans
- Infant
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Mice
- Models, Immunological
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Michelle L. Joachims
- Immunobiology and Cancer Program Oklahoma Medical Research Foundation 825 NE 13 St. Oklahoma City, OK 73104
| | - Jennifer L. Chain
- Immunobiology and Cancer Program Oklahoma Medical Research Foundation 825 NE 13 St. Oklahoma City, OK 73104
- Department of Microbiology and
| | - Scott W. Hooker
- Immunobiology and Cancer Program Oklahoma Medical Research Foundation 825 NE 13 St. Oklahoma City, OK 73104
| | | | - Linda F. Thompson
- Immunobiology and Cancer Program Oklahoma Medical Research Foundation 825 NE 13 St. Oklahoma City, OK 73104
- Department of Microbiology and
- Address correspondence and reprint requests to Dr. Linda F. Thompson, Oklahoma Medical Research Foundation, 825 NE 13 St., Oklahoma City, OK 73104. Phone: (405) 271-7235; FAX:(405) 271-7128. E-mail address:
| |
Collapse
|
15
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Boucontet L, Sepúlveda N, Carneiro J, Pereira P. Mechanisms controlling termination of V-J recombination at the TCRgamma locus: implications for allelic and isotypic exclusion of TCRgamma chains. THE JOURNAL OF IMMUNOLOGY 2005; 174:3912-9. [PMID: 15778346 DOI: 10.4049/jimmunol.174.7.3912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analyses of Vgamma-Jgamma rearrangements producing the most commonly expressed TCRgamma chains in over 200 gammadelta TCR(+) thymocytes showed that assembly of TCRgamma V-region genes display properties of allelic exclusion. Moreover, introduction of functionally rearranged TCRgamma and delta transgenes results in a profound inhibition of endogenous TCRgamma rearrangements in progenitor cells. The extent of TCRgamma rearrangements in these cells is best explained by a model in which initiation of TCRgamma rearrangements at both alleles is asymmetric, occurs at different frequencies depending on the V or J segments involved, and is terminated upon production of a functional gammadelta TCR. Approximately 10% of the cells studied contained two functional TCRgamma chains involving different V and Jgamma gene segments, thus defining a certain degree of isotypic inclusion. However, these cells are isotypically excluded at the level of cell surface expression possibly due to pairing restrictions between different TCRgamma and delta chains.
Collapse
Affiliation(s)
- Laurent Boucontet
- Unité du Développement des Lymphocytes, Centre National de la Recherche Scientifique Unité de Recherche Associée 1961, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
17
|
Scotet E, Martinez LO, Grant E, Barbaras R, Jenö P, Guiraud M, Monsarrat B, Saulquin X, Maillet S, Estève JP, Lopez F, Perret B, Collet X, Bonneville M, Champagne E. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005; 22:71-80. [PMID: 15664160 DOI: 10.1016/j.immuni.2004.11.012] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Revised: 11/18/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Vgamma9Vdelta2 T lymphocytes, a major gammadelta T lymphocyte subset in humans, display cytolytic activity against various tumor cells upon recognition of yet uncharacterized structures. Here, we show that an entity related to the mitochondrial F1-ATPase is expressed on tumor cell surface and promotes tumor recognition by Vgamma9Vdelta2 T cells. When immobilized, purified F1-ATPase induces selective activation of this lymphocyte subset. The Vgamma9Vdelta2 T cell receptors (TCR) and the F1-ATPase also bind a delipidated form of apolipoprotein A-I (apo A-I), as demonstrated by surface plasmon resonance. Moreover, the presence of apo A-I in the culture medium is required for optimal activation of Vgamma9Vdelta2 T cells by tumors expressing F1-ATPase. This study thus describes an unanticipated tumor recognition mechanism by Vgamma9Vdelta2 lymphocytes and a possible link between gammadelta T cell immunity and lipid metabolism.
Collapse
Affiliation(s)
- Emmanuel Scotet
- Inserm U601, Institut de Biologie, 9 quai Moncousu, F-44035 Nantes Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Couedel C, Lippert E, Bernardeau K, Bonneville M, Davodeau F. Allelic exclusion at the TCR delta locus and commitment to gamma delta lineage: different modalities apply to distinct human gamma delta subsets. THE JOURNAL OF IMMUNOLOGY 2004; 172:5544-52. [PMID: 15100297 DOI: 10.4049/jimmunol.172.9.5544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of a beta-chain, as a pre-TCR, in T cell precursors prevents further rearrangements on the alternate beta allele through a strict allelic exclusion process and enables precursors to undergo differentiation. However, whether allelic exclusion applies to the TCR delta locus is unknown and the role of the gamma delta TCR in gamma delta lineage commitment is still unclear. Through the analysis of the rearrangement status of the TCR gamma, delta, and beta loci in human gamma delta T cell clones, expressing either the TCR V delta 1 or V delta 2 variable regions, we show that the rate of partial rearrangements at the delta locus is consistent with an allelic exclusion process. The overrepresentation of clones with two functional TCR gamma chains indicates that a gamma delta TCR selection process is required for the commitment of T cell precursors to the gamma delta lineage. Finally, while complete TCR beta rearrangements were observed in several V delta 2 T cell clones, these were seldom found in V delta 1 cells. This suggests a competitive alpha beta/gamma delta lineage commitment in the former subset and a precommitment to the gamma delta lineage in the latter. We propose that these distinct behaviors are related to the developmental stage at which rearrangements occur, as suggested by the patterns of accessibility to recombination sites that characterize the V delta 1 and V delta 2 subsets.
Collapse
MESH Headings
- Adult
- Alleles
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cell Lineage/genetics
- Cell Lineage/immunology
- Clone Cells
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Genetic Markers/immunology
- Humans
- Infant, Newborn
- Reading Frames/genetics
- Reading Frames/immunology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic/immunology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Chrystelle Couedel
- Institut National de la Santé et de la Recherche Médicale Unité 463, Institut de Biologie, Nantes, France
| | | | | | | | | |
Collapse
|
19
|
Krotkova A, Smith E, Nerz G, Falk I, Eichmann K. Delayed and restricted expression limits putative instructional opportunities of Vgamma1.1/Vgamma2 gammadelta TCR in alphabeta/gammadelta lineage choice in the thymus. THE JOURNAL OF IMMUNOLOGY 2004; 173:25-32. [PMID: 15210755 DOI: 10.4049/jimmunol.173.1.25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of alphabeta and gammadelta T cells depends on productive rearrangement of the appropriate TCR genes and their subsequent expression as proteins. TCRbeta and TCRgammadelta proteins first appear in DN3 and DN4 thymocytes, respectively. So far, it is not clear whether this is due to a delayed expression of TCRgammadelta proteins or to a more rapid progression to DN4 of thymocytes expressing TCRgammadelta. The answer to this question bears on the distinction between instructive and stochastic models of alphabeta/gammadelta lineage decision. To study this question, we first monitored initial TCR protein expression in wild-type and TCR transgenic mice in reaggregate thymic organ cultures. A TCRbeta transgene was expressed in nearly all DN3 and DN4 cells, accelerated DN3 to DN4 transition, and strongly diminished the number of cells that express TCRgammadelta proteins. In contrast, TCRgammadelta transgenes were expressed only in a fraction of DN4 cells, did not accelerate DN3 to DN4 transition, and did not reduce the number of DN4 cells expressing TCRbeta proteins. The TCRbeta transgene partially inhibited endogenous TCRgamma rearrangements, whereas the TCRgammadelta transgenes did not inhibit endogenous TCRbeta rearrangements. Second, we analyzed frequencies of productive TCRbeta and TCRgammadelta V(D)J junctions in DN3 and DN4 subsets. Most importantly, frequencies of productive TCRgammadelta rearrangements (Vdelta5, Vgamma1.1, and Vgamma2) appeared unselected in DN3. The results suggest a late and restricted expression of the corresponding gammadeltaTCR, severely limiting their putative instructional opportunities in alphabeta/gammadelta divergence.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Gene Rearrangement, T-Lymphocyte
- Genes, T-Cell Receptor beta
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocytes/physiology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anna Krotkova
- Max-Planck-Institut für Immunbiologie, Stübeweg 541, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Pon RA, Freedman MS. Study of Herpesvirus saimiri immortalization of gammadelta T cells derived from peripheral blood and CSF of multiple sclerosis patients. J Neuroimmunol 2003; 139:119-32. [PMID: 12799029 DOI: 10.1016/s0165-5728(03)00157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human gammadelta T cells are an integral part of the innate immune system and have been difficult to study owing primarily to their relatively low abundance and their fastidious culture properties associated with short in vitro lifespan. Their increased presence within multiple sclerosis (MS) white matter plaques compared to peripheral blood (PB) suggests a specific interaction with central nervous system (CNS) tissues. This fact, together with their innate ability to lyse human oligodendrocytes in culture implicate them possibly in the pathogenesis of MS. To further investigate their potential role in MS, we studied whether gammadelta T cells could be effectively immortalized using Herpesvirus saimiri (HVS), so that they could be studied in longer-term cultures. Effective culture conditions were established resulting in efficient HVS growth transformation of multiple PB and CSF gammadelta T cell lines and clones that could exist in IL-2-dependent culture for periods in excess of 2 years. Phenotypic and functional comparison studies with parental nontransformed gammadelta T cells were performed to characterize the changes that possibly induced by viral transformation. Using panels of transformed gammadelta T cell clones representing discrete gammadelta TcR subtypes, there was no apparent correlation between intracytoplasmic cytokine expression or tumor cell cytotoxicity with a specific TcR. All transformed gammadelta T cells analyzed, regardless of their compartment of origin, strongly expressed intracytoplasmic IFN-gamma and TNF-alpha, but little IL-2 or anti-inflammatory IL-4 or IL-10. These results indicate that HVS transformation of gammadelta T cells can be used to generate lines and clones from both the CSF and PB compartments for further study and elucidation of their potential role in MS pathogenesis.
Collapse
Affiliation(s)
- Robert A Pon
- Division of Neurology, Department of Medicine, University of Ottawa, Ottawa Hospital-General Campus, 501 Smyth Rd., K1H 8L6, Ottawa, Ont., Canada
| | | |
Collapse
|
21
|
Malkovsky M, Fisch P, Wallace M, Sen A, Mejia G, Lewis MG, Lisziewicz J, Lori F, Poccia F. Gamma/delta T cells. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1529-1049(02)00154-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
23
|
Robak E, Niewiadomska H, Robak T, Bartkowiak J, Błoński JZ, Woźniacka A, Pomorski L, Sysa-Jedrezejowska A. Lymphocyctes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediators Inflamm 2001; 10:179-89. [PMID: 11577994 PMCID: PMC1781712 DOI: 10.1080/09629350124724] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human Tgammadelta lymphocytes constitute from 1 to 15% of all peripheral blood lymphocytes. Recent work has demonstrated that this population plays a major role in the pathogenesis of infectious and immune diseases. Increased numbers of gammadelta T cells have been found in affected skin from systemic sclerosis and chronic cutaneous lupus erythematosus patients. In our study, we have determined the numbers of Tgammadelta lymphocytes and their subpopulations in peripheral blood from 29 patients with systemic lupus erythematosus (SLE) and in 19 healthy volunteers using flow cytometry and specific monoclonal antibodies. The same cells in uninvolved skin from SLE patients and human controls using immunohistochemical analysis were estimated. T-Cell receptor (TCR) delta chain gene rearrangement was identified with primers for Vdelta1, Vdelta2 and Vdelta3 by the polymerase chain reaction. Statistical analysis showed a significantly decreased number of gammadelta T cells in SLE patients (26.4+/-16.9/microl) compared with the control group (55.3+/-20.6/microl (p < 0.001). The number of Vdelta2 TCR+ and Vgamma9 TCR+ subpopulations was also lower in SLE patients than in healthy persons. No statistical correlation between disease activity and the number of gammadelta T cells was demonstrated. The percentage of Tgammadelta lymphocytes in clinically normal skin from SLE patients was twice (22.0+/-9.4%) that found in the skin from healthy persons (11.1+/-5.5%) (p < 0.002). Higher percentages of the Vdelta2 TCR+ and Vgamma9 TCR+ subpopulation of lymphocytes were found in the skin from SLE patients. We have also found positive correlation between the percentage of Tgammadelta lymphocytes in skin and the activity of SLE (r=0.594, p < 0.001), and between subpopulation Vdelta3 TCR+ and disease activity (r=0.659, p< 0.001). In conclusion, the results of our studies demonstrate that, in patients with SLE, accumulation of Tgammadelta lymphocytes can be seen in clinically normal skin, and the percentage of these cells correlates with the activity of the disease.
Collapse
Affiliation(s)
- E Robak
- Department of Dermatology and Venereology, University of Lódz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Leduc I, Hempel WM, Mathieu N, Verthuy C, Bouvier G, Watrin F, Ferrier P. T cell development in TCR beta enhancer-deleted mice: implications for alpha beta T cell lineage commitment and differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1364-73. [PMID: 10903739 DOI: 10.4049/jimmunol.165.3.1364] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T cell differentiation in the mouse thymus is an intricate, highly coordinated process that requires the assembly of TCR complexes from individual components, including those produced by the precisely timed V(D)J recombination of TCR genes. Mice carrying a homozygous deletion of the TCR beta transcriptional enhancer (E beta) demonstrate an inhibition of V(D)J recombination at the targeted TCR beta locus and a block in alpha beta T cell differentiation. In this study, we have characterized the T cell developmental defects resulting from the E beta-/- mutation, in light of previously reported results of the analyses of TCR beta-deficient (TCR beta-/-) mice. Similar to the latter mice, production of TCR beta-chains is abolished in the E beta-/- animals, and under these conditions differentiation into cell-surface TCR-, CD4+CD8+ double positive (DP) thymocytes depends essentially on the cell-autonomous expression of TCR delta-chains and, most likely, TCR gamma-chains. However, contrary to previous reports using TCR beta-/- mice, a minor population of TCR gamma delta+ DP thymocytes was found within the E beta-/- thymi, which differ in terms of T cell-specific gene expression and V(D)J recombinase activity, from the majority of TCR-, alpha beta lineage-committed DP thymocytes. We discuss these data with respect to the functional role of E beta in driving alpha beta T cell differentiation and the mechanism of alpha beta T lineage commitment.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/immunology
- Flow Cytometry
- Gene Deletion
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Genes, T-Cell Receptor beta/genetics
- Genes, T-Cell Receptor delta/genetics
- Genes, T-Cell Receptor gamma/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- I Leduc
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The process of clonal selection is a central feature of the immune system, but immune specificity is also regulated by receptor selection, in which the fate of a lymphocyte's antigen receptor is uncoupled from that of the cell itself. Whereas clonal selection controls cell death or survival in response to antigen receptor signaling, receptor selection regulates the process of V(D)J recombination, which can alter or fix antigen receptor specificity. Receptor selection is carried out in both T and B cells and can occur at different stages of lymphocyte differentiation, in which it plays a key role in allelic exclusion, positive selection, receptor editing, and the diversification of the antigen receptor repertoire. Thus, the immune system takes advantage of its control of V(D)J recombination to modify antigen receptors in such a way that self/non-self discrimination is enhanced. New information about receptor editing in T cells and B-1 B cells is also discussed.
Collapse
Affiliation(s)
- D Nemazee
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
26
|
Taupin JL, Halary F, Déchanet J, Peyrat MA, Ragnaud JM, Bonneville M, Moreau JF. An enlarged subpopulation of T lymphocytes bearing two distinct gammadelta TCR in an HIV-positive patient. Int Immunol 1999; 11:545-52. [PMID: 10323207 DOI: 10.1093/intimm/11.4.545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although T cell clone monospecificity is ensured by several allelic exclusion processes operating at either the genotypic or phenotypic levels, clones expressing two distinct alphabeta or gammadelta TCR have been described in several instances. Thus far, the origin of dual TCR-expressing cells and the homeostatic mechanisms controlling the size of this subset in the periphery remain poorly understood. In the course of a phenotypic analysis of gammadelta T cells in HIV-infected patients, we detected the presence of a T cell subset stained by both Vdelta2- and Vdelta3-specific mAb, which represented a large fraction (up to 16.5%) of gammadelta peripheral blood lymphocytes (PBL) in one HIV patient. The presence of two distinct functional delta chains on these cells was confirmed by phenotypic and molecular analysis of TCR transcripts expressed by Vdelta2+Vdelta3+ T cell clones derived from this patient. For 18 months, the absolute number of these cells varied similarly to the other PBL subsets, before becoming undetectable in blood samples. Moreover, most of these cells expressed CD8 receptors, which are classically found on activated, but not resting, gammadelta T cells. Taken together, these data suggest that dual TCR-expressing T cells are subjected to peripheral expansions and contractions presumably following antigen recognition, which would argue against a systematic counter-selection of these cells during peripheral antigen-driven responses.
Collapse
Affiliation(s)
- J L Taupin
- CNRS UMR 5540, Université de Bordeaux II, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- D Kabelitz
- Paul-Ehrlich-Institute, Dept. of Immunology, Langen, Germany
| |
Collapse
|
28
|
Sleckman BP, Khor B, Monroe R, Alt FW. Assembly of productive T cell receptor delta variable region genes exhibits allelic inclusion. J Exp Med 1998; 188:1465-71. [PMID: 9782123 PMCID: PMC2213415 DOI: 10.1084/jem.188.8.1465] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1998] [Indexed: 11/26/2022] Open
Abstract
The generation of a productive "in-frame" T cell receptor beta (TCR beta), immunoglobulin (Ig) heavy (H) or Ig light (L) chain variable region gene can result in the cessation of rearrangement of the alternate allele, a process referred to as allelic exclusion. This process ensures that most alphabeta T cells express a single TCR beta chain and most B cells express single IgH and IgL chains. Assembly of TCR alpha and TCR gamma chain variable region genes exhibit allelic inclusion and alphabeta and gammadelta T cells can express two TCR alpha or TCR gamma chains, respectively. However, it was not known whether assembly of TCR delta variable regions genes is regulated in the context of allelic exclusion. To address this issue, we have analyzed TCR delta rearrangements in a panel of mouse splenic gammadelta T cell hybridomas. We find that, similar to TCR alpha and gamma variable region genes, assembly of TCR delta variable region genes exhibits properties of allelic inclusion. These findings are discussed in the context of gammadelta T cell development and regulation of rearrangement of TCR delta genes.
Collapse
Affiliation(s)
- B P Sleckman
- Howard Hughes Medical Institute, Children's Hospital and Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Machugh ND, Mburu JK, Carol MJ, Wyatt CR, Orden JA, Davis WC. Identification of two distinct subsets of bovine gamma delta T cells with unique cell surface phenotype and tissue distribution. Immunology 1997; 92:340-5. [PMID: 9486106 PMCID: PMC1363794 DOI: 10.1046/j.1365-2567.1997.00350.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe the characterization of two subsets of bovine gamma delta T cells having distinct cell surface phenotype and tissue distribution. One population expresses the previously described 215,000 MW WC1 antigen and is negative for the cell-surface differentiation antigens CD2, CD4, and CD8. The second population expresses CD2 and CD8 but not WC1 and appears to have a T-cell receptor (TCR) rearrangement distinct from that of the WC1+ population. The WC1- population is found in large numbers in spleen and intestine. In addition, this subset is not recognized by a number of monoclonal antibodies (mAbs) specific for TCR families that are well represented in the WC1+ population. The results indicate that the gamma delta T-cell population in cattle is considerably larger than previously described and that this population can be subdivided into two distinct subsets based on cell-surface phenotype and tissue distribution.
Collapse
Affiliation(s)
- N D Machugh
- International Livestock Research Institute Nairobi, Kenya
| | | | | | | | | | | |
Collapse
|
31
|
Rassenti LZ, Kipps TJ. Lack of allelic exclusion in B cell chronic lymphocytic leukemia. J Exp Med 1997; 185:1435-45. [PMID: 9126924 PMCID: PMC2196272 DOI: 10.1084/jem.185.8.1435] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1997] [Revised: 02/24/1997] [Indexed: 02/04/2023] Open
Abstract
We determined the immunoglobulin (Ig) V(H) subgroup expressed by the leukemia cells of 108 patients with B cell chronic lymphocytic leukemia (CLL). Surprisingly, we found that six samples (5%) each expressed Ig of more than one V(H) subgroup. Southern blot analysis demonstrated that these samples each had rearrangements involving both Ig heavy chain alleles. Nucleic acid sequence analyses of the Ig cDNA revealed each to express two functional Ig V(H) genes: V(H)3-33 and V(H)4-39; V(H)3-7 and V(H)4-39; V(H)3-23 and V(H)4-61; V(H)2-70 and V(H)3-30.3; or V(H)3-30 and V(H)4-b (DP67). One sample expressed three Ig V(H) genes: V(H)2-70, V(H)3-7, and V(H)4-59. Despite having more than one Ig heavy chain transcript, each sample was found to express only one functional Ig light chain. From the primary sequence, we deduced that the Ig of some of these CLL samples should react with Lc1, a monoclonal antibody (mAb) reactive with a supratypic cross-reactive idiotype present on Ig encoded by a subgroup of Ig V(H)4 genes (namely, V(H)4-39, V(H)4-b [DP-67], V(H)4-59, or V(H)4-61), and B6, an mAb that reacts with Ig encoded by certain Ig V(H)3 genes (namely, V(H)3-23, V(H)3-30, or V(H)3-30.3), and/or modified staphylococcal protein A (SpA), a 45-kilodalton bacterial "superantigen" that reacts with most Ig of the V(H)3 subgroup. Flow cytometric analyses revealed that such samples did in fact react with Lc1 and B6 and/or SpA, but not with control mAbs of irrelevant specificity. This study demonstrates that a subset of CLL patients have leukemic B cells that express more than one functional Ig heavy chain.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- DNA, Neoplasm/genetics
- Flow Cytometry
- Gene Expression Regulation
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Molecular Sequence Data
- Polymorphism, Restriction Fragment Length
- RNA, Neoplasm/genetics
- Receptors, Antigen, B-Cell/analysis
Collapse
Affiliation(s)
- L Z Rassenti
- Department of Medicine, University of California at San Diego, La Jolla 92093-0663, USA
| | | |
Collapse
|
32
|
Hoffman ES, Passoni L, Crompton T, Leu TM, Schatz DG, Koff A, Owen MJ, Hayday AC. Productive T-cell receptor beta-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev 1996; 10:948-62. [PMID: 8608942 DOI: 10.1101/gad.10.8.948] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Productive gene rearrangement at the T-cell receptor (TCR) beta-chain locus facilitates formation of the "pre-TCR," a molecular complex that is important for the subsequent development of alpha beta T cells. The transition of thymocytes from a population of cells undergoing TCRbeta chain genes to a population enriched in cells with productively rearranged TCRbeta chain genes is known as "beta selection." This is the first point in alpha beta T-cell development at which the products of an activated TCR locus define cell phenotype. Toward an understanding of these events, this study has focused on a set of thymocytes defined by cell surface phenotype as HSA+ CD44low CD25+, in which the bulk of TCRbeta gene rearrangement occurs. The analysis of this set, presented here, allows its novel subdivision into two subsets that are respectively strong candidates for cells immediately prior to and immediately following TCRbeta selection. Cells that have passed beta selection differ from the preceding cells by several criteria, including hyperphosphorylation of Rb, increased expression of cyclins A and B, down-regulation of p27, increased CDK2 activity, an induction of cdc2 activity, and progression through DNA synthesis. Consistent with these changes being attributable to productive TCRbeta chain gene rearrangement, the identified "beta-selected" subset is not detected in mutant mice that cannot assemble a pre-TCR. Interestingly, there is a coincident selective and transient down-regulation of the protein RAG2, on which TCR gene rearrangement obligatorily depends. Together, these findings demonstrate that productive TCR gene rearrangement is associated with events that can ensure thymocyte expansion and monoclonality.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/analysis
- Cell Cycle
- Cell Separation
- Clone Cells
- Cyclins/metabolism
- DNA-Binding Proteins
- Female
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation, Developmental
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Homeodomain Proteins
- Hyaluronan Receptors/analysis
- Mice
- Mice, Inbred C57BL
- Proteins/metabolism
- RNA, Messenger/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/analysis
- Retinoblastoma Protein/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- Thymus Gland/cytology
Collapse
Affiliation(s)
- E S Hoffman
- Department of Biology, Yale University, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Eshima K, Suzuki H, Yamazaki S, Shinohara N. Derivation of T-cell receptor alpha-chain double expresser lines from normal murine mature T cells. Immunology 1996; 87:205-12. [PMID: 8698381 PMCID: PMC1384275 DOI: 10.1046/j.1365-2567.1996.471534.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Because the T-cell receptor (TCR) alpha-chain locus is known to lack allelic exclusion of rearrangements, and as a recent report revealed the existence of alpha-chain double expressers among normal human peripheral blood lymphocytes (PBL), the possible existence of TCR alpha-chain double expressers among mature murine T cells was examined. Although two-colour staining analysis of normal T-cell populations did not immediately reveal recognizable clusters of V alpha double expressers, alternative in vitro stimulations of normal murine T cells with antibodies to two different TCR V alpha chains reproducibly induced TCR alpha-chain double-expresser lines. TCR complexes with different alpha-chains on such T cells were both shown to be functional. The cell lines were heterogeneous with respect to V beta usage and the ratio of the expressed amounts of the two alpha-chains on the surface. The ratio of the two expressed alpha-chains was found to be very stable over a long period of time. These results are consistent with the earlier report on alpha-chain double expressers among human T cells and also show normal occurrence of TCR alpha-chain double expressers in murine T-cell populations.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Cell Culture Techniques
- Cell Division/immunology
- Cell Line
- Cytotoxicity, Immunologic
- Exocytosis/immunology
- Flow Cytometry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Spleen/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- K Eshima
- Department of Applied Biological Chemistry, University of Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Romagné F, Peyrat MA, Leget C, Davodeau F, Houde I, Necker A, Hallet MM, Vié H, Bonneville M. Structural analysis of gamma delta TCR using a novel set of TCR gamma and delta chain-specific monoclonal antibodies generated against soluble gamma delta TCR. Evidence for a specific conformation adopted by the J delta 2 region and for a V delta 1 polymorphism. J Immunol Methods 1996; 189:25-36. [PMID: 8576577 DOI: 10.1016/0022-1759(95)00224-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently showed that secretion of non-chimeric disulfide-linked human gamma delta TCR ('soluble' TCR, sTCR) comprising V gamma 9 and V delta 2 regions could be achieved by simply introducing translational termination codons upstream from the sequences encoding TCR transmembrane region. Here we extended these findings by demonstrating efficient secretion and heterodimerization of gamma delta sTCR comprising V gamma 8, V delta 1 and V delta 3 regions, obtained via the same strategy. After immunization against immunoaffinity-purified soluble TCR, several hundreds of TCR-specific monoclonal antibodies (mAb) were generated, which fell in at least seven groups. One set of mAb was directed against a V gamma 8-specific epitope. Strikingly, despite the high degree of sequence homology between V gamma 8 and other V gamma I domains, none of these mAb were crossreactive with other members of the V gamma I family. Three other sets of mAbs were shown to recognize delta chains comprising V delta 1, V delta 2 and V delta 3 regions respectively, regardless of their junctional sequence or of the gamma chain to which they were paired. Among the V delta 1-specific mAb, some specifically recognized V delta 1D delta J delta C delta chains while others reacted with both V delta 1 D delta J delta C delta and V delta 1J alpha C alpha chains, which suggested V domain conformational alterations induced by the C region. Moreover, reactivity of one V delta 1-specific mAb (#R6.11) was affected by a polymorphic residue located on the predicted CDR4 loop of the V delta region. Two delta chain-specific mAb (#178 and #515) showed a highly unusual reactivity, which was negatively affected by particular V delta and J delta sequences: (i) mAb #515 and #178 recognized all TCR delta chains except those comprising V delta 1 or V delta 2 regions, respectively and (ii) within TCR delta chains carrying 'permissive' V delta regions, none of those comprising the J delta 2 region were recognized by #515 and/or #178 mAbs, which suggested a highly specific conformation adopted by this particular J delta sequence. Apart from its usefulness in TCR structural studies, this novel set of mAb represents an important tool for the characterization and isolation of gamma delta T cells expressing particular combinations of V gamma/V delta regions and for analysis of V alpha/V delta usage by alpha beta T cells. Moreover, since our present data strongly suggest that gamma delta TCR are easier to obtain in a soluble form than alpha beta TCR, an efficient strategy for the generation of V alpha region-specific mAb might be to immunize with chimeric gamma delta sTCR comprising particular V alpha regions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibody Specificity
- Base Sequence
- CHO Cells
- Cricetinae
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunization
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Polymorphism, Genetic/immunology
- Protein Conformation
- Protein Engineering
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
Collapse
|
35
|
Migone N, Padovan S, Zappador C, Giachino C, Bottaro M, Matullo G, Carbonara C, Libero GD, Casorati G. Restriction of the T-cell receptor V delta gene repertoire is due to preferential rearrangement and is independent of antigen selection. Immunogenetics 1995; 42:323-332. [PMID: 7590965 DOI: 10.1007/bf00179393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To determine whether the limited V gene usage by the T-cell receptor delta (TCRD) chain is dictated by preferential rearrangement or by antigen selection, we characterized and compared the TCRDV gene repertoire of the productive with that of the unproductive allele in 80 human TCRG/TCRD clones. Six different V genes were found on the expressed allele; two of them, provisionally named DV7 and DV8, have not been described before on the surface of TCRG/TCRD T cells. Overall, six V genes and six non-V elements were isolated from the unproductive allele. Interestingly, the same set of genes was rearranged both in the productive and in the unproductive chromosome. These findings seem to suggest that antigen-independent mechanisms play a major role in the restriction of the TCRDV gene repertoire.
Collapse
Affiliation(s)
- N Migone
- Dipartimento di Genetica, Biologia e Chimica Medica, Universita di Torino and CNR Immunogenetica ed Oncologia Sperimentale, Via Santena 19, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Orsini DL, Kooy YM, Struyk L, Ossendorp F, Van den Elsen P, Koning F. Identification of two distinct function gamma delta TCR complexes on the surface of a human T cell clone. Scand J Immunol 1995; 41:499-503. [PMID: 7725069 DOI: 10.1111/j.1365-3083.1995.tb03598.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study we describe the expression of two T cell receptor (TCR) gamma chains on the surface of a human T cell clone isolated from the peripheral blood. Each gamma chain was part of an independent and functional TCR. The dual receptor T cell clone (and all subclones derived from this clone) had stable expression of this phenotype. Immunoprecipitation studies revealed the expression of non-disulfide linked TCRs by this V gamma 4+V gamma 9+V delta 1+ T cell clone, which was in agreement with the finding that both V gamma gene transcripts were rearranged to C gamma 2-associated joining elements. Both gamma chains were derived from productive rearrangements of different (allelic) genes coding for a V gamma 4+ and a V gamma 9+ gamma-chain, and both were coupled to a V delta 1+ delta chain. Incubation of this V gamma 4+V gamma 9+V delta 1+ T cell clone with TCR gamma-chain-specific MoAbs rapidly induced an increase in intracellular Ca++, indicating that both gamma-chains are functional. Furthermore, this clone responded to stimulation with S. aureus derived superantigens. We suggest therefore that exogenous (super)antigens can trigger dual receptor T cells resulting in activation of these T cells.
Collapse
Affiliation(s)
- D L Orsini
- Department of Immunohaematology, University Hospital Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Schneider MK, Grönvik KO. Acute graft-versus-host reaction in SCID mice leads to an abnormal expansion of CD8+ V beta 14+ and a broad inactivation of donor T cells followed by a host-restricted tolerance and a normalization of the TCR V beta repertoire in the chronic phase. Scand J Immunol 1995; 41:373-83. [PMID: 7899825 DOI: 10.1111/j.1365-3083.1995.tb03581.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The persistence and selection of allogeneic CBA/J T lymphocytes were studied during graft-versus-host (GvH) reaction in immunodeficient C.B-17 SCID (SCID) mice. After neonatal injection the donor cells primarily migrated to the spleen plus lymph nodes (SL) and the thymus of the recipients. Thirteen days post engraftment, CD8+ cells in SL had increased five times in cell number with an 18-fold increase of CD8+ V beta 14+ cells, paralleled by clinical signs of GvH disease (GvHD). Donor lymphocytes from these mice were proliferative unresponsive to allogeneic Balb/c or C57Bl/6 SL cells, whereas 8 weeks post injection the tolerance was confined to H-2d specific donor cells. Here, spleens had a total cell content similar to untreated SCID mice but the average percentage of donor cells had reached 25%. Moreover, the CD4/CD8 cell ratio in the donor population in SL and thymus had changed to normal and the TCR V beta repertoire was similar to that of the originally injected cells. Following secondary transfer into syngeneic CBA/Ca nu/nu recipients donor cells regained a significant but reduced response to H-2d stimulators indicating that the antigen specific tolerance of allogeneic donor cells in the SCID mice was due, at least in part, to a reversible state of anergy.
Collapse
Affiliation(s)
- M K Schneider
- National Veterinary Institute, Laboratory for Vaccine Research, Uppsala, Sweden
| | | |
Collapse
|
38
|
Davodeau F, Peyrat MA, Romagné F, Necker A, Hallet MM, Vié H, Bonneville M. Dual T cell receptor beta chain expression on human T lymphocytes. J Exp Med 1995; 181:1391-8. [PMID: 7699325 PMCID: PMC2191978 DOI: 10.1084/jem.181.4.1391] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Allelic exclusion of lymphocyte antigen receptor chains has been hypothesized as a mechanism developed by the immune system to ensure efficient lymphocyte repertoire selection and tight control of lymphocyte specificity. It was effectively shown to be operative for both the immunoglobulin (Ig) and the T cell receptor (TCR) beta chain genes. Our present observations suggest that close to 1% of human T lymphocytes escape this allelic control, and express two surface TCR beta chains with distinct superantigenic reactivities. Since this high frequency of dual beta chain expressors did not result in any dramatic immune dysregulations, these results question the need for a mechanism ensuring clonal monospecificity through allelic exclusion.
Collapse
Affiliation(s)
- F Davodeau
- Institut National de la Santé et de la Recherche Médicale U211, Institut de Biologie, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Giachino C, Padovan E, Lanzavecchia A. kappa+lambda+ dual receptor B cells are present in the human peripheral repertoire. J Exp Med 1995; 181:1245-50. [PMID: 7869042 PMCID: PMC2191910 DOI: 10.1084/jem.181.3.1245] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is a common notion that mature B lymphocytes express either kappa or lambda light (L) chains, although the mechanism that leads to such isotypic exclusion is still debated. We have investigated the extent of L chain isotypic exclusion in normal human peripheral blood B lymphocytes. By three-color staining with anti-CD19, anti-kappa, and anti-lambda antibodies we could estimate that 0.2-0.5% of peripheral blood B cells from healthy adults express both kappa and lambda on the cell surface. The kappa+lambda+ cells were sorted, immortalized by Epstein-Barr virus, and five independent clones were characterized in detail. All clones express both kappa and lambda on the cell surface and produce immunoglobulin M that contain both kappa and lambda chains in the same molecule, i.e., hybrid antibodies. Sequencing of the L chains revealed in three out of five clones evidence for somatic mutations. It is interesting to note that among a panel of single receptor B cell clones we identified two lambda+ clones that carried a productively rearranged kappa, which was inactivated by a stop codon generated by somatic mutation. These findings indicate that dual receptor B lymphocytes can be found among mature antigen-selected B cells and suggest that somatic mutation can contribute to increase the degree of isotypic exclusion by inactivating a passenger, nonselected L chain.
Collapse
Affiliation(s)
- C Giachino
- Basel Institute for Immunology, Switzerland
| | | | | |
Collapse
|
40
|
Nick S, Pileri P, Tongiani S, Uematsu Y, Kappos L, De Libero G. T cell receptor gamma delta repertoire is skewed in cerebrospinal fluid of multiple sclerosis patients: molecular and functional analyses of antigen-reactive gamma delta clones. Eur J Immunol 1995; 25:355-63. [PMID: 7875196 DOI: 10.1002/eji.1830250208] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To study the relevance of gamma delta T cells in multiple sclerosis (MS) we analyzed the T cell receptor (TCR) gamma delta repertoire and the antigen reactivity of gamma delta clones isolated from cerebrospinal fluid (CSF). In T cell cultures derived from CSF we found an increased percentage of V delta 1+ cells as compared to peripheral blood of the same donors. Phenotypic analysis of cells from MS CSF with V gamma- and V delta-specific monoclonal antibodies (mAb) showed that the V delta 1 chain is most frequently associated with gamma chains belonging to the V gamma 1 family. Sequence analysis of TCR genes revealed heterogeneity of junctional regions in both delta and gamma genes indicating polyclonal expansion. gamma delta clones were established and some recognized glioblastoma, astrocytoma or monocytic cell lines. Stimulation with these targets induced serine esterase release and lymphokine expression characteristic of the TH0-like phenotype. Remarkably, these tumor-reactive gamma delta cells were not detected in the peripheral blood using PCR oligotyping, but were found in other CSF lines independently established from the same MS patient. Altogether, these results demonstrate that in the CSF there is a skewed TCR gamma delta repertoire and suggest that gamma delta cells reacting against brain-derived antigens might have been locally expanded.
Collapse
Affiliation(s)
- S Nick
- Department of Research, University Hospital, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Bucht A, Söderström K, Esin S, Grunewald J, Hagelberg S, Magnusson I, Wigzell H, Grönberg A, Kiessling R. Analysis of gamma delta V region usage in normal and diseased human intestinal biopsies and peripheral blood by polymerase chain reaction (PCR) and flow cytometry. Clin Exp Immunol 1995; 99:57-64. [PMID: 7813110 PMCID: PMC1534135 DOI: 10.1111/j.1365-2249.1995.tb03472.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intestinal population of gamma delta T cell receptor (TCR)-bearing cells was characterized with regard to V delta and V gamma subtype expression. For this purpose, we utilized V gene-specific PCR of mRNA prepared from intestinal biopsies. Predominant expression of the V delta 1 subtype was demonstrated in the small intestine of patients with coeliac disease and in the inflamed colon of patients with inflammatory bowel diseases (IBD: ulcerative colitis and Crohn's disease) as well as in colon biopsies taken from macroscopically normal areas of colon. Although intestinal gamma delta T cells preferentially expressed V delta 1, other V delta transcripts could be detected, of which V delta 2 and V delta 5 were commonly expressed. Analysis of biopsies from mesenteric lymph nodes demonstrated a V delta repertoire similar to the mucosa. In peripheral blood on the other hand, high expression of both V delta 2 and V delta 1 was found. The predominant expression of V delta 1 transcripts in the intestinal mucosa of IBD patients correlated well with protein cell surface expression as analysed by flow cytometry using V delta 1- and V delta 2-specific antibodies. Selective expansion of gamma delta T cells could not be demonstrated within the inflamed mucosa as shown by mRNA analysis and flow cytometry. Instead, IBD patients demonstrated a decreased proportion of TCR gamma delta-carrying T cells in the inflamed mucosa compared with macroscopically normal area of colon. On the other hand, a significantly increased percentage of T cells bearing the gamma delta TCR was found in peripheral blood of patients with Crohn's disease compared with healthy individuals, indicating that local mucosal inflammation may influence the circulating gamma delta T cell population.
Collapse
MESH Headings
- Base Sequence
- Biopsy
- Blood/immunology
- Celiac Disease/immunology
- Child
- Colitis, Ulcerative/immunology
- Crohn Disease/immunology
- Flow Cytometry
- Gene Expression
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
Collapse
Affiliation(s)
- A Bucht
- Department of Pharmacology, Uppsala University Hospital, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miller JF, Flavell RA. T-cell tolerance and autoimmunity in transgenic models of central and peripheral tolerance. Curr Opin Immunol 1994; 6:892-9. [PMID: 7710713 DOI: 10.1016/0952-7915(94)90010-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Experiments with transgenic mice expressing genes encoding both antigens in defined tissues and T-cell receptor genes of known specificities have enhanced our understanding of the mechanisms involved in the pathogenesis of autoimmune states. They have also shed light on the means by which potentially autoreactive cells may be prevented from exerting their autoaggressive potential. The value of the transgenic approach is that it can overcome the low frequency of peptide-specific T cells occurring in normal animals, and also provide a tissue-specific, cognate antigen that is absent in controls. These factors allow reactive T cells to be isolated or quantified by flow cytometry and their responses to antigen in vitro and in vivo be defined.
Collapse
Affiliation(s)
- J F Miller
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | |
Collapse
|
43
|
Davodeau F, Peyrat MA, Gaschet J, Hallet MM, Triebel F, Vié H, Kabelitz D, Bonneville M. Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes. J Exp Med 1994; 180:1685-91. [PMID: 7964454 PMCID: PMC2191748 DOI: 10.1084/jem.180.5.1685] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Base Sequence
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- Cell Line
- Gene Rearrangement, T-Lymphocyte
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- F Davodeau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U211, Institut de Biologie, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Caspar-Bauguil S, Arnaud J, Huchenq A, Hein WR, Geisler C, Rubin B. A highly conserved phenylalanine in the alpha, beta-T cell receptor (TCR) constant region determines the integrity of TCR/CD3 complexes. Scand J Immunol 1994; 40:323-36. [PMID: 8091132 DOI: 10.1111/j.1365-3083.1994.tb03469.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, we have investigated the importance of a phenylalanine (phe195) in the Tcr-C alpha region on Tcr-alpha,beta/CD3 membrane expression. An exchange of phe195 with a tyrosine residue does not affect Tcr/CD3 membrane expression; however, exchange with aspartic acid, histidine or valine prohibit completely Tcr/CD3 membrane expression. This seems to be due to a lack of interaction between mutated Tcr-alpha,beta/CD3-gamma epsilon,delta epsilon complexes and zeta 2 homodimers. The Tcr-C alpha region around phe195 seems together with the same region in the Tcr-C beta region to constitute an interaction site for zeta 2 homodimers. The presence of phe195 on both Tcr-C alpha and Tcr-C beta causes high avidity interaction with zeta 2 homodimers, whereas his195 in both Tcr-C gamma and Tcr-C delta results in an apparently lower avidity interaction with zeta 2 homodimers. It is suggested that the phe195 region (on beta-strand F) and eventually adjacent aromatic amino acid residues on beta-strand B region may play an important role in Tcr-alpha,beta/CD3 membrane expression, in Tcr-alpha,beta/CD3 competition with Tcr-gamma,delta/CD3 complexes for zeta 2 homodimers and in the control of formation of 'mixed' Tcr heterodimers.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Evolution
- CD3 Complex/biosynthesis
- Cell Line
- Cell Membrane/metabolism
- Conserved Sequence
- DNA, Complementary
- Humans
- Molecular Sequence Data
- Phenylalanine/physiology
- Point Mutation
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sequence Homology, Amino Acid
- Sheep
- T-Lymphocytes/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Caspar-Bauguil
- Immunopathology and Human Genetics Center (CIGH), Toulouse, France
| | | | | | | | | | | |
Collapse
|
45
|
Rubin B, Arnaud J, Caspar-Bauguil S, Conte F, Huchenq A. Biological function of the extracellular domain of the T-cell receptor constant region. Scand J Immunol 1994; 39:517-25. [PMID: 8009170 DOI: 10.1111/j.1365-3083.1994.tb03408.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/physiology
Collapse
Affiliation(s)
- B Rubin
- Laboratoire d'Immunologie Cellulaire et Moléculaire, CRPG/CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
46
|
Dudley EC, Petrie HT, Shah LM, Owen MJ, Hayday AC. T cell receptor beta chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1994; 1:83-93. [PMID: 7534200 DOI: 10.1016/1074-7613(94)90102-3] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The identification is made in normal mice of the stages in T cell development at which the rearranged beta chain of the T cell receptor (TCR) is utilized to promote T cell maturation, independent of the TCR alpha chain. In addition, evidence is provided that utilization of beta chains in T cell progenitors does not preclude differentiation to TCR gamma delta + T cells. This is consistent with the view that an initial consequence of beta chain expression by early thymocytes is clonal expansion, increasing the size of the pool of useful precursors. This allows the proposal to be made that allelic exclusion may be a byproduct of cell cycle regulation during early thymocyte differentiation, which may in turn explain why the efficiency of allelic exclusion varies at different TCR or immunoglobulin loci.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carrier Proteins/metabolism
- Cell Differentiation
- DNA/genetics
- DNA Primers/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hyaluronan Receptors
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-2/metabolism
- Receptors, Lymphocyte Homing/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- E C Dudley
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
47
|
Zhang XM, Tonnelle C, Lefranc MP, Huck S. T cell receptor gamma cDNA in human fetal liver and thymus: variable regions of gamma chains are restricted to V gamma I or V9, due to the absence of splicing of the V10 and V11 leader intron. Eur J Immunol 1994; 24:571-8. [PMID: 8125127 DOI: 10.1002/eji.1830240312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although complete in-frame transcripts of the human T cell receptor gamma V10 and V11 genes have been described, the corresponding gamma chains have never been found in gamma delta T cell receptors. In this study, we show that the leader intron of all V10 and V11 cDNA isolated from fetal thymus, fetal liver and adult peripheral blood lymphocytes are unspliced. We demonstrate that, due to the absence of splicing, V10 and V11 are pseudogenes and cannot be expressed in gamma chains. They are the first pseudogenes of this type described in a rearranging T cell receptor/immunoglobulin locus. Therefore the gamma repertoire at the protein level is limited to subgroup V gamma I and to V9. By analysis of the gamma polymerase chain reaction products from total cDNA, we find that the gamma locus is active in early ontogeny (8 weeks), as shown by the presence of rearranged V9 and V10 gene transcripts in the liver. At 13 weeks, the V gamma I genes as well as V9 and V10 have undergone productive rearrangements in the liver, and in the thymus. Most rearrangements, if not all, involve the T cell receptor gamma C1 region (JP1, JP, J1 segments) in both tissues, confirming the accessibility of the C1 region in early stages of development.
Collapse
Affiliation(s)
- X M Zhang
- Laboratoire d'Immunogénétique Moléculaire, Montpellier, France
| | | | | | | |
Collapse
|
48
|
Schondelmaier S, Wesch D, Pechhold K, Kabelitz D. V gamma gene usage in peripheral blood gamma delta T cells. Immunol Lett 1993; 38:121-6. [PMID: 8294139 DOI: 10.1016/0165-2478(93)90176-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The majority (50-90%) of gamma delta T cells in the peripheral blood of adult individuals expresses a T-cell receptor (TCR) which uses V gamma 9 and V delta 2 as variable elements. Little is known about the distribution of other V gamma gene elements in the remaining 10-50% of gamma delta T cells. Here we have studied the V gamma gene expression in peripheral blood gamma delta T cells by 3-color flow cytometry analysis applying established monoclonal antibodies (mAb) directed against V gamma 9 and V gamma 4, as well as a novel mAb directed against V gamma 2, V gamma 3 and V gamma 4. On average, 79.9% of gamma delta T cells expressed V gamma 9, 11.9% V gamma 2/V gamma 3, 4.4% V gamma 4, and 7.5% one of the remaining V gamma 5, V gamma 8, V gamma 10 or V gamma 11 elements. There were remarkable variations in the gamma delta subset composition between individual donors. The majority (69.8%) of V gamma 2/V gamma 3/V gamma 4-bearing cells co-expressed V delta 1, while on average only 17.8% of V gamma 2/V gamma 3/V gamma 4-bearing cells co-expressed V delta 2. This is in contrast to V gamma 9-bearing gamma delta T cells, of which 83.1% used V delta 2 and only 12.7% V delta 1. Taken together, this data identifies V gamma 2/V gamma 3 as the second most frequently used set of V gamma elements in human peripheral blood gamma delta T cells.
Collapse
Affiliation(s)
- S Schondelmaier
- Department of Immunology, Paul Ehrlich Institute, Langen, Germany
| | | | | | | |
Collapse
|