1
|
El Nachef L, Bodgi L, Estavoyer M, Buré S, Jallas AC, Granzotto A, Restier-Verlet J, Sonzogni L, Al-Choboq J, Bourguignon M, Pujo-Menjouet L, Foray N. Prediction of Cancer Proneness under Influence of X-rays with Four DNA Mutability and/or Three Cellular Proliferation Assays. Cancers (Basel) 2024; 16:3188. [PMID: 39335159 PMCID: PMC11430126 DOI: 10.3390/cancers16183188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Context: Although carcinogenesis is a multi-factorial process, the mutability and the capacity of cells to proliferate are among the major features of the cells that contribute together to the initiation and promotion steps of cancer formation. Particularly, mutability can be quantified by hyper-recombination rate assessed with specific plasmid assay, hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations frequency rate, or MRE11 nuclease activities. Cell proliferation can be assessed by flow cytometry by quantifying G2/M, G1 arrests, or global cellular evasion. METHODS All these assays were applied to skin untransformed fibroblasts derived from eight major cancer syndromes characterized by their excess of relative cancer risk (ERR). RESULTS Significant correlations with ERR were found between hyper-recombination assessed by the plasmid assay and G2/M arrest and described a third-degree polynomial ERR function and a sigmoidal ERR function, respectively. The product of the hyper-recombination rate and capacity of proliferation described a linear ERR function that permits one to better discriminate each cancer syndrome. CONCLUSIONS Hyper-recombination and cell proliferation were found to obey differential equations that better highlight the intrinsic bases of cancer formation. Further investigations to verify their relevance for cancer proneness induced by exogenous agents are in progress.
Collapse
Affiliation(s)
- Laura El Nachef
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Larry Bodgi
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Maxime Estavoyer
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France
| | - Simon Buré
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France
| | - Anne-Catherine Jallas
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Joëlle Al-Choboq
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay-Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Laurent Pujo-Menjouet
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France
| | - Nicolas Foray
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| |
Collapse
|
2
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
3
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Michaelson-Cohen R, Murik O, Zeligson S, Lobel O, Weiss O, Picard E, Mann T, Mor-Shaked H, Zeevi DA, Segel R. Combining cytogenetic and genomic technologies for deciphering challenging complex chromosomal rearrangements. Mol Genet Genomics 2022; 297:925-933. [PMID: 35488049 DOI: 10.1007/s00438-022-01898-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Complex chromosomal rearrangements (CCRs), a class of structural variants (SVs) involving more than two chromosome breaks, were classically thought to be extremely rare. As advanced technologies become more available, it has become apparent that CCRs are more common than formerly thought, and are a substantial cause of genetic disorders. We attempted a novel approach for solving the mechanism of challenging CCRs, which involve repetitive sequences, by precisely identifying sequence-level changes and their order. Chromosomal microarray (CMA) and FISH analyses were used for interpretation of SVs detected by whole exome sequencing (WES). Breakpoint junctions were analyzed by Nanopore sequencing, a novel long-read whole genome sequencing tool. A large deletion identified by WES, encompassing the FOXF1 enhancer, was the cause of alveolar capillary dysplasia and respiratory insufficiency, resulting in perinatal death. CMA analysis of the newborn's mother revealed two duplications encompassing the deleted region in the proband, raising our hypothesis that the deletion resulted from the mother's CCR. Breakpoint junctions of complex SVs were determined at the nucleotide level using Nanopore long-read sequencing. According to sequencing results of breakpoint junctions, the CCR in the newborn was considered the consequence of at least one double-strand break during meiosis, and reassembly of DNA fragments by intra-chromosomal homologous recombination. Our comprehensive approach, combining cytogenetics and long-read sequencing, enabled delineation of the exact breakpoints in a challenging CCR, and proposal of a mechanism in which it arises. We suggest applying our integrative approach combining technologies for deciphering future challenging CCRs, enabling risk assessment in families.
Collapse
Affiliation(s)
- Rachel Michaelson-Cohen
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel. .,Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel. .,Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| | - Omer Murik
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sharon Zeligson
- Cytogenomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Orit Lobel
- Cytogenomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Omri Weiss
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Cytogenomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Elie Picard
- Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Pediatric Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tzvia Mann
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - David A Zeevi
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Reeval Segel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Cytogenomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Hong Z, Liu T, Wan L, Fa P, Kumar P, Cao Y, Prasad CB, Qiu Z, Joseph L, Hongbing W, Li Z, Wang QE, Guo P, Guo D, Yilmaz AS, Lu L, Papandreou I, Jacob NK, Yan C, Zhang X, She QB, Ma Z, Zhang J. Targeting Squalene Epoxidase Interrupts Homologous Recombination via the ER Stress Response and Promotes Radiotherapy Efficacy. Cancer Res 2022; 82:1298-1312. [PMID: 35045984 PMCID: PMC8983553 DOI: 10.1158/0008-5472.can-21-2229] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene. Given that SQLE is frequently overexpressed in human cancer, this study investigated the importance of SQLE in breast cancer and non-small cell lung cancer (NSCLC), two cancers often treated with radiotherapy. SQLE-positive IHC staining was observed in 68% of breast cancer and 56% of NSCLC specimens versus 15% and 25% in normal breast and lung tissue, respectively. Importantly, SQLE expression was an independent predictor of poor prognosis, and pharmacologic inhibition of SQLE enhanced breast and lung cancer cell radiosensitivity. In addition, SQLE inhibition enhanced sensitivity to PARP inhibition. Inhibition of SQLE interrupted homologous recombination by suppressing ataxia-telangiectasia mutated (ATM) activity via the translational upregulation of wild-type p53-induced phosphatase (WIP1), regardless of the p53 status. SQLE inhibition and subsequent squalene accumulation promoted this upregulation by triggering the endoplasmic reticulum (ER) stress response. Collectively, these results identify a novel tumor-specific radiosensitizer by revealing unrecognized cross-talk between squalene metabolites, ER stress, and the DNA damage response. Although SQLE inhibitors have been used as antifungal agents in the clinic, they have not yet been used as antitumor agents. Repurposing existing SQLE-inhibiting drugs may provide new cancer treatments. SIGNIFICANCE Squalene epoxidase inhibitors are novel tumor-specific radiosensitizers that promote ER stress and suppress homologous recombination, providing a new potential therapeutic approach to enhance radiotherapy efficacy.
Collapse
Affiliation(s)
- Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, P.R. China
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Lingfeng Wan
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pankaj Kumar
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Yanan Cao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Chandra Bhushan Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Liu Joseph
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Wang Hongbing
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Lanchun Lu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Zhefu Ma
- Department Breast Surgery and Plastic Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
- Department Breast & Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| |
Collapse
|
6
|
El-Nachef L, Al-Choboq J, Restier-Verlet J, Granzotto A, Berthel E, Sonzogni L, Ferlazzo ML, Bouchet A, Leblond P, Combemale P, Pinson S, Bourguignon M, Foray N. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int J Mol Sci 2021; 22:7158. [PMID: 34281212 PMCID: PMC8267933 DOI: 10.3390/ijms22137158] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term "radiosensitivity" was used by the pioneers at the beginning of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell death, a confusion emerged in the literature from the 1930s, as "radiosensitivity" was indifferently used to describe the toxic, cancerous, or aging effect of IR. In parallel, the predisposition to radiation-induced adverse tissue reactions (radiosensitivity), notably observed after radiotherapy appears to be caused by different mechanisms than those linked to predisposition to radiation-induced cancer (radiosusceptibility). This review aims to document these differences in order to better estimate the different radiation-induced risks. It reveals that there are very few syndromes associated with the loss of biological functions involved directly in DNA damage recognition and repair as their role is absolutely necessary for cell viability. By contrast, some cytoplasmic proteins whose functions are independent of genome surveillance may also act as phosphorylation substrates of the ATM protein to regulate the molecular response to IR. The role of the ATM protein may help classify the genetic syndromes associated with radiosensitivity and/or radiosusceptibility.
Collapse
Affiliation(s)
- Laura El-Nachef
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Joelle Al-Choboq
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Juliette Restier-Verlet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Adeline Granzotto
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Elise Berthel
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Neolys Diagnostics, 67960 Entzheim, France
| | - Laurène Sonzogni
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Audrey Bouchet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Pierre Leblond
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Patrick Combemale
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Stéphane Pinson
- Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France;
| | - Michel Bourguignon
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| |
Collapse
|
7
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, Popovic M, Vassena R, Veiga A. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open 2019; 2019:hoy024. [PMID: 30895264 PMCID: PMC6396646 DOI: 10.1093/hropen/hoy024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN, SIZE, DURATION This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS, SETTING, METHODS The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS, REASONS FOR CAUTION This is a non-systematic review of current literature. Some references may have escaped the experts’ analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTEREST(S) ESHRE provided funding for the authors’ on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation—Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable. ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Blood Transfusion and Human Tissues, Barrio Labeaga S/N, Galdakao, Spain
| | - B Aran
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands.,Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Vrije Univeristeit Brussel, Laarbeeklaan 103, Jette (Brussels), Belgium
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Panula
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - M Popovic
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain.,Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
9
|
Variation in Recombination Rate: Adaptive or Not? Trends Genet 2017; 33:364-374. [DOI: 10.1016/j.tig.2017.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/30/2023]
|
10
|
Lavin MF, Yeo AJ, Kijas AW, Wolvetang E, Sly PD, Wainwright C, Sinclair K. Therapeutic targets and investigated treatments for Ataxia-Telangiectasia. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1254618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Individual response to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:369-386. [PMID: 27919342 DOI: 10.1016/j.mrrev.2016.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
The human response to ionizing radiation (IR) varies among individuals. The first evidence of the individual response to IR was reported in the beginning of the 20th century. Considering nearly one century of observations, we here propose three aspects of individual IR response: radiosensitivity for early or late adverse tissue events after radiotherapy on normal tissues (non-cancer effects attributable to cell death); radiosusceptibility for IR-induced cancers; and radiodegeneration for non-cancer effects that are often attributable to mechanisms other than cell death (e.g., cataracts and circulatory disease). All the molecular and cellular mechanisms behind IR-induced individual effects are not fully elucidated. However, some specific assays may help their quantification according to the dose and to the genetic status. Accumulated data on individual factors have suggested that the individual IR response cannot be ignored and raises some clinical and societal issues. The individual IR response therefore needs to be taken into account to better evaluate the risks related to IR exposure.
Collapse
|
12
|
Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 2016; 22:411-9. [PMID: 26932460 DOI: 10.1093/humupd/dmw005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the recent development of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing technology, the possibility to genetically manipulate the human germline (gametes and embryos) has become a distinct technical possibility. Although many technical challenges still need to be overcome in order to achieve adequate efficiency and precision of the technology in human embryos, the path leading to genome editing has never been simpler, more affordable, and widespread. OBJECTIVE AND RATIONALE In this narrative review we seek to understand the possible impact of CRISR/Cas9 technology on human reproduction from the technical and ethical point of view, and suggest a course of action for the scientific community. SEARCH METHODS This non-systematic review was carried out using Medline articles in English, as well as technical documents from the Human Fertilisation and Embryology Authority and reports in the media. The technical possibilities of the CRISPR/Cas9 technology with regard to human reproduction are analysed based on results obtained in model systems such as large animals and laboratory rodents. Further, the possibility of CRISPR/Cas9 use in the context of human reproduction, to modify embryos, germline cells, and pluripotent stem cells is reviewed based on the authors' expert opinion. Finally, the possible uses and consequences of CRISPR/cas9 gene editing in reproduction are analysed from the ethical point of view. OUTCOMES We identify critical technical and ethical issues that should deter from employing CRISPR/Cas9 based technologies in human reproduction until they are clarified. WIDER IMPLICATIONS Overcoming the numerous technical limitations currently associated with CRISPR/Cas9 mediated editing of the human germline will depend on intensive research that needs to be transparent and widely disseminated. Rather than a call to a generalized moratorium, or banning, of this type of research, efforts should be placed on establishing an open, international, collaborative and regulated research framework. Equally important, a societal discussion on the risks, benefits, and preferred applications of the new technology, including all relevant stakeholders, is urgently needed and should be promoted, and ultimately guide research priorities in this area.
Collapse
Affiliation(s)
- R Vassena
- Clínica EUGIN, Barcelona 08029, Spain
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - R Peco
- Center for Regenerative Medicine in Barcelona (CMRB), 08003 Barcelona, Spain
| | - G Pennings
- Bioethics Institute Ghent (BIG), Faculty of Arts and Philosophy, Ghent University, Ghent, Belgium
| | - A Raya
- Center for Regenerative Medicine in Barcelona (CMRB), 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - A Veiga
- Center for Regenerative Medicine in Barcelona (CMRB), 08003 Barcelona, Spain Reproductive Medicine Service, Hospital Universitari Quiron Dexeus, Barcelona, Spain
| |
Collapse
|
13
|
Hisama FM, Oshima J, Martin GM. How Research on Human Progeroid and Antigeroid Syndromes Can Contribute to the Longevity Dividend Initiative. Cold Spring Harb Perspect Med 2016; 6:a025882. [PMID: 26931459 DOI: 10.1101/cshperspect.a025882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although translational applications derived from research on basic mechanisms of aging are likely to enhance health spans and life spans for most of us (the longevity dividend), there will remain subsets of individuals with special vulnerabilities. Medical genetics is a discipline that describes such "private" patterns of aging and can reveal underlying mechanisms, many of which support genomic instability as a major mechanism of aging. We review examples of three classes of informative disorders: "segmental progeroid syndromes" (those that appear to accelerate multiple features of aging), "unimodal progeroid syndromes" (those that impact on a single disorder of aging), and "unimodal antigeroid syndromes," variants that provide enhanced protection against specific disorders of aging; we urge our colleagues to expand our meager research efforts on the latter, including ancillary somatic cell genetic approaches.
Collapse
Affiliation(s)
- Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195
| | - Junko Oshima
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195 Department of Medicine, Chiba University, Chiba 260-8670, Japan
| | - George M Martin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
14
|
Scarbrough PM, Weber RP, Iversen ES, Brhane Y, Amos CI, Kraft P, Hung RJ, Sellers TA, Witte JS, Pharoah P, Henderson BE, Gruber SB, Hunter DJ, Garber JE, Joshi AD, McDonnell K, Easton DF, Eeles R, Kote-Jarai Z, Muir K, Doherty JA, Schildkraut JM. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2016; 25:193-200. [PMID: 26637267 PMCID: PMC4713268 DOI: 10.1158/1055-9965.epi-15-0649] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. METHODS We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. RESULTS We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. CONCLUSIONS Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. IMPACT Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria.
Collapse
Affiliation(s)
- Peter M Scarbrough
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - John S Witte
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Pharoah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom. Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Stephen B Gruber
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amit D Joshi
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Kevin McDonnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Doug F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Ros Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom. Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
15
|
Beraldi R, Chan CH, Rogers CS, Kovács AD, Meyerholz DK, Trantzas C, Lambertz AM, Darbro BW, Weber KL, White KAM, Rheeden RV, Kruer MC, Dacken BA, Wang XJ, Davis BT, Rohret JA, Struzynski JT, Rohret FA, Weimer JM, Pearce DA. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum Mol Genet 2015; 24:6473-84. [PMID: 26374845 DOI: 10.1093/hmg/ddv356] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/01/2015] [Indexed: 11/14/2022] Open
Abstract
Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions.
Collapse
Affiliation(s)
- Rosanna Beraldi
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - Chun-Hung Chan
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | | | - Attila D Kovács
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Allyn M Lambertz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin W Darbro
- Department of Cytogenetics/Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA and
| | - Krystal L Weber
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - Katherine A M White
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | - Richard V Rheeden
- Department of Cytogenetics/Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA and
| | - Michael C Kruer
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA
| | | | | | | | | | | | | | - Jill M Weimer
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA, School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - David A Pearce
- Children's Health Research Center, Sanford Research, 2301 E. 60 Street North, Sioux Falls, SD 57104, USA, School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
16
|
Bastos de Oliveira FM, Kim D, Cussiol JR, Das J, Jeong MC, Doerfler L, Schmidt KH, Yu H, Smolka MB. Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol Cell 2015; 57:1124-1132. [PMID: 25752575 PMCID: PMC4369404 DOI: 10.1016/j.molcel.2015.01.043] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/25/2014] [Accepted: 01/27/2015] [Indexed: 01/09/2023]
Abstract
The Mec1/Tel1 kinases (human ATR/ATM) play numerous roles in the DNA replication stress response. Despite the multi-functionality of these kinases, studies of their in vivo action have mostly relied on a few well-established substrates. Here we employed a combined genetic-phosphoproteomic approach to monitor Mec1/Tel1 signaling in a systematic, unbiased, and quantitative manner. Unexpectedly, we find that Mec1 is highly active during normal DNA replication, at levels comparable or higher than Mec1's activation state induced by replication stress. This "replication-correlated" mode of Mec1 action requires the 9-1-1 clamp and the Dna2 lagging-strand factor and is distinguishable from Mec1's action in activating the downstream kinase Rad53. We propose that Mec1/ATR performs key functions during ongoing DNA synthesis that are distinct from their canonical checkpoint role during replication stress.
Collapse
Affiliation(s)
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - José Renato Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jishnu Das
- Department of Biological Statistics and Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Min Cheol Jeong
- Department of Biological Statistics and Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lillian Doerfler
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition. Virology 2013; 443:69-79. [PMID: 23706308 DOI: 10.1016/j.virol.2013.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Abstract
The expression of the E6 protein from certain members of the HPV genus β (β HPV 5 and 8 E6) can disrupt p53 signaling by diminishing the steady state levels of two p53 modifying enzymes, ATR and p300. Here, we show that β-HPV 5 and 8 E6 are also capable of reducing the steady state levels of another p53 modifying enzyme, ATM, and as a result restrict LINE-1 retrotransposition. Furthermore, we show that the reduction of both ATM and LINE-1 retrotransposition is dependent upon the ability of β-HPV 8 E6 to bind and degrade p300. We use inhibitors and dominant negative mutants to confirm that ATM is needed for efficient LINE-1 retrotransposition. Furthermore, neither sensitivity to LINE-1 expression nor LINE-1 induced DSB formation is altered in an ATM deficient background. Together, these data illustrate the broad impact some β-HPVs have on DNA damage signaling by promoting p300 degradation.
Collapse
|
18
|
Kass EM, Helgadottir HR, Chen CC, Barbera M, Wang R, Westermark UK, Ludwig T, Moynahan ME, Jasin M. Double-strand break repair by homologous recombination in primary mouse somatic cells requires BRCA1 but not the ATM kinase. Proc Natl Acad Sci U S A 2013; 110:5564-9. [PMID: 23509290 PMCID: PMC3619303 DOI: 10.1073/pnas.1216824110] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Homology-directed repair (HDR) is a critical pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Efficient HDR is thought to be crucial for maintenance of genomic integrity during organismal development and tumor suppression. However, most mammalian HDR studies have focused on transformed and immortalized cell lines. We report here the generation of a Direct Repeat (DR)-GFP reporter-based mouse model to study HDR in primary cell types derived from diverse lineages. Embryonic and adult fibroblasts from these mice as well as cells derived from mammary epithelium, ovary, and neonatal brain were observed to undergo HDR at I-SceI endonuclease-induced DSBs at similar frequencies. When the DR-GFP reporter was crossed into mice carrying a hypomorphic mutation in the breast cancer susceptibility gene Brca1, a significant reduction in HDR was detected, showing that BRCA1 is critical for HDR in somatic cell types. Consistent with an HDR defect, Brca1 mutant mice are highly sensitive to the cross-linking agent mitomycin C. By contrast, loss of the DSB signaling ataxia telangiectasia-mutated (ATM) kinase did not significantly alter HDR levels, indicating that ATM is dispensable for HDR. Notably, chemical inhibition of ATM interfered with HDR. The DR-GFP mouse provides a powerful tool for dissecting the genetic requirements of HDR in a diverse array of somatic cell types in a normal, nontransformed cellular milieu.
Collapse
Affiliation(s)
| | - Hildur R. Helgadottir
- Developmental Biology Program
- Weill Graduate School of Medical Sciences of Cornell University, and
| | - Chun-Chin Chen
- Developmental Biology Program
- Weill Graduate School of Medical Sciences of Cornell University, and
| | | | | | | | - Thomas Ludwig
- Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| | - Maria Jasin
- Developmental Biology Program
- Weill Graduate School of Medical Sciences of Cornell University, and
| |
Collapse
|
19
|
Courilleau C, Chailleux C, Jauneau A, Grimal F, Briois S, Boutet-Robinet E, Boudsocq F, Trouche D, Canitrot Y. The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks. ACTA ACUST UNITED AC 2013; 199:1067-81. [PMID: 23266955 PMCID: PMC3529529 DOI: 10.1083/jcb.201205059] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chromatin remodeling enzyme p400 forms a complex with Rad51 and is required for its recruitment to double-strand breaks during DNA repair by homologous recombination. DNA damage signaling and repair take place in a chromatin context. Consequently, chromatin-modifying enzymes, including adenosine triphosphate–dependent chromatin remodeling enzymes, play an important role in the management of DNA double-strand breaks (DSBs). Here, we show that the p400 ATPase is required for DNA repair by homologous recombination (HR). Indeed, although p400 is not required for DNA damage signaling, DNA DSB repair is defective in the absence of p400. We demonstrate that p400 is important for HR-dependent processes, such as recruitment of Rad51 to DSB (a key component of HR), homology-directed repair, and survival after DNA damage. Strikingly, p400 and Rad51 are present in the same complex and both favor chromatin remodeling around DSBs. Altogether, our data provide a direct molecular link between Rad51 and a chromatin remodeling enzyme involved in chromatin decompaction around DNA DSBs.
Collapse
Affiliation(s)
- Céline Courilleau
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, UMR 5088, Université de Toulouse and 2 Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Köcher S, Rieckmann T, Rohaly G, Mansour WY, Dikomey E, Dornreiter I, Dahm-Daphi J. Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase. Nucleic Acids Res 2012; 40:8336-47. [PMID: 22730303 PMCID: PMC3458552 DOI: 10.1093/nar/gks604] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.
Collapse
Affiliation(s)
- Sabrina Köcher
- Institute of Radiobiology and Molecular Radiation Oncology, Philipps-University of Marburg, Baldingerstr. 35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Shin MH, Yuan M, Zhang H, Margolick JB, Kai M. ATM-dependent phosphorylation of the checkpoint clamp regulates repair pathways and maintains genomic stability. Cell Cycle 2012; 11:1796-803. [PMID: 22453082 PMCID: PMC3372382 DOI: 10.4161/cc.20161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Upon genotoxic stress and during normal S phase, ATM phosphorylates the checkpoint clamp protein Rad9 in a manner that depends on Ser272. Ser272 is the only known ATM-dependent phosphorylation site in human Rad9. However, Ser272 phosphorylation is not required for survival or checkpoint activation after DNA damage. The physiological function of Ser272 remains elusive. Here, we show that ATM-dependent Rad9(Ser272) phosphorylation requires the MRN complex and controls repair pathways. Furthermore, the mutant cells accumulate large numbers of chromosome breaks and induce gross chromosomal rearrangements. Our findings establish a new and unexpected role for ATM: it phosphorylates the checkpoint clamp in order to control repair pathways, thereby maintaining genomic integrity during unperturbed cell cycle and upon DNA damage.
Collapse
Affiliation(s)
- Min Hwa Shin
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Ming Yuan
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Mihoko Kai
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
22
|
Shin S, Wolgamott L, Yoon SO. Glycogen synthase kinase (GSK)-3 and mammalian target of rapamycin complex 1 (mTORC1) cooperate to regulate protein S6 kinase 1 (S6K1). Cell Cycle 2012; 11:1053-4. [DOI: 10.4161/cc.11.6.19784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Lavin M, Khanna K, Beamish H, Teale B, Hobson K, Watters D. Defect in Radiation Signal Transduction in Ataxia-telangiectasia. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M.F. Lavin
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - K.K. Khanna
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| | - H. Beamish
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - B. Teale
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| | - K. Hobson
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - D. Watters
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| |
Collapse
|
24
|
Meyn M, Strasfeld L, Allen C. Testing the Role of p53 in the Expression of Genetic Instability and Apoptosis in Ataxia-telangiectasia. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551971] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- M.S. Meyn
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - L. Strasfeld
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - C. Allen
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
25
|
Mamon HJ, Dahlberg W, Azzam EI, Nagasawa H, Muto MG, Little JB. Differing effects of breast cancer 1, early onset (BRCA1) and ataxia‐telangiectasia mutated (ATM) mutations on cellular responses to ionizing radiation. Int J Radiat Biol 2009; 79:817-29. [PMID: 14630541 DOI: 10.1080/09553000310001610952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The ataxia-telangiectasia mutated (ATM) gene encodes a protein kinase, the activation of which is an early event in the cellular response to ionizing radiation. One of the many substrates of ATM is BRCA1 (breast cancer 1, early onset gene), which has been associated with susceptibility to breast and ovarian cancer, and has been implicated in DNA repair processes. Various cellular responses to radiation were analysed in cells with mutations in ATM or BRCA1 in an attempt to clarify which effects of ATM can be mediated through BRCA1. MATERIALS AND METHODS The response to radiation of cells with mutations in ATM or BRCA1 was examined, as were BRCA1-mutant tumour cells transfected with an exogenous wild-type BRCA1 allele. Assays included cell-survival curves, studies of potentially lethal damage repair, measurement of chromosomal aberrations and of G1 arrest, and Western blot analysis of lysates of irradiated cells to determine the phosphorylation of the product of the human Mdm2 gene (HDM2). RESULTS Both ATM and BRCA1 mutations were associated with sensitivity to ionizing radiation, deficient repair of potentially lethal damage and markedly increased chromosomal aberrations. A BRCA1-mutated tumour cell line HCC1937, like ATM mutant cells, did not exhibit a normal G1 arrest but, unlike ATM mutant cells, did exhibit phosphorylation of HDM2. Expression of wild-type BRCA1 in HCC1937 cells partially restored radioresistance, restored repair of potentially lethal damage and markedly reduced radiation-induced chromosomal aberrations. G1 arrest, however, was not restored by expression of BRCA1. CONCLUSIONS The results are consistent with a model in which ATM phosphorylation of BRCA1 regulates DNA repair functions, particularly those involved in potentially lethal damage repair and chromosomal integrity, but not other aspects of the cellular response to radiation such as G1 cell cycle arrest. To the authors' knowledge, this is the first demonstration of the ability of exogenously expressed BRCA1 to restore the ability to perform potentially lethal damage repair and maintain chromosomal integrity in irradiated cells.
Collapse
Affiliation(s)
- H J Mamon
- Laboratory of Radiobiology Harvard School of Public Health 655 Huntington Avenue Boston MA 02115 USA.
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- J. Thacker
- DNA Repair and Mutagenesis Group, MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD, UK
| |
Collapse
|
27
|
Affiliation(s)
- I.R. Kirsch
- Navy Medical Oncology Branch, National Cancer Institute, Bethesda, MD, 20889-5105, U.S.A
| |
Collapse
|
28
|
Affiliation(s)
- D.G. Harnden
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 9BX, UK
| |
Collapse
|
29
|
Saintigny Y, Roche S, Meynard D, Lopez BS. Homologous recombination is involved in the repair response of mammalian cells to low doses of tritium. Radiat Res 2008; 170:172-83. [PMID: 18666811 DOI: 10.1667/rr1089.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 04/14/2008] [Indexed: 11/03/2022]
Abstract
Radioactive compounds incorporated in tissues can have biological effects resulting from energy deposition in subcellular compartments. We addressed the genetic consequences of [(3)H] or [(14)C]thymidine incorporation into mammalian DNA. Low doses of [(3)H]thymidine in CHO cells led to enhanced sensitivity compared with [(14)C]thymidine. Compared with wild-type cells, homologous recombination (HR)-deficient cells were more sensitive to lower doses of [(3)H]thymidine but not to any dose of [(14)C]thymidine. XRCC4-defective cells, however, were sensitive to both low and high doses of [(3)H] and [(14)C]thymidine, suggesting introduction of DNA double-strand breaks, which were confirmed by gamma-H2AX focus formation. While gamma rays induced measurable HR only at toxic doses, sublethal levels of [(3)H] or [(14)C]thymidine strongly induced HR. The level of stimulation was in an inverse relationship to the emitted energies. The RAD51 gene conversion pathway was involved, because [(3)H]thymidine induced RAD51 foci, and [(3)H]thymidine-induced HR was abrogated by expression of dominant negative RAD51. In conclusion, both HR and non-homologous end-joining pathways were involved after labeled nucleotide incorporation (low doses); genetic effects were negatively correlated with the energy emitted but were positively correlated with the energy deposited in the nucleus, suggesting that low-energy beta-particle emitters, at non-toxic doses, may induce genomic instability.
Collapse
Affiliation(s)
- Yannick Saintigny
- Institut de Radiobiologie Cellulaire et Moleculaire, CEA-Centre National de la Recherche Scientifique, UMR 217, Fontenay-aux-Roses Cédex, France
| | | | | | | |
Collapse
|
30
|
Macrae CJ, McCulloch RD, Ylanko J, Durocher D, Koch CA. APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. DNA Repair (Amst) 2008; 7:292-302. [PMID: 18077224 DOI: 10.1016/j.dnarep.2007.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
Abstract
Nonhomologous end-joining (NHEJ) is the major mammalian DNA double-strand break (DSB) repair pathway of DSBs induced by DNA damaging agents. NHEJ is initiated by the recognition of DSBs by the DNA end-binding heterodimer, Ku, and the final step of DNA end-joining is accomplished by the XRCC4-DNA ligase IV complex. We demonstrate that Aprataxin and PNK-like factor (APLF), an endo/exonuclease with an FHA domain and unique zinc fingers (ZFs), interacts with both Ku and XRCC4-DNA ligase IV in human cells. The interaction of APLF with XRCC4-DNA ligase IV is FHA- and phospho-dependent, and is mediated by CK2 phosphorylation of XRCC4 in vitro. In contrast, APLF associates with Ku independently of the FHA and ZF domains, and APLF complexes with Ku at DNA ends. APLF undergoes ionizing radiation (IR) induced ATM-dependent hyperphosphorylation at serine residue 116, which is highly conserved across mammalian APLF homologues. We demonstrate further that depletion of APLF in human cells by siRNA is associated with impaired NHEJ. Collectively, these results suggest that APLF is an ATM target that is involved in NHEJ and facilitates DSB repair, likely via interactions with Ku and XRCC4-DNA ligase IV.
Collapse
Affiliation(s)
- Chloe J Macrae
- Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
31
|
Joubert A, Zimmerman KM, Bencokova Z, Gastaldo J, Chavaudra N, Favaudon V, Arlett CF, Foray N. DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity? Int J Radiat Biol 2008; 84:107-25. [PMID: 18246480 DOI: 10.1080/09553000701797039] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Human diseases associated with acute radiation responses are rare genetic disorders with common clinical and biological features including radiosensitivity, genomic instability, chromosomal aberrations, and frequently immunodeficiency. To determine what molecular assays are predictive of cellular radiosensitivity whatever the genes mutations, the existence of a quantitative correlation between cellular radiosensitivity and unrepaired DNA double-strand breaks (DSB) repair defects was examined in a collection of 40 human fibroblasts representing 8 different syndromes. MATERIALS AND METHODS A number of techniques such as pulsed-field gel electrophoresis, plasmid assay and immunofluorescence with antibodies against MRE11, MDC1, 53BP1 and phosphorylated forms of H2AX, DNA-PK were applied systematically. RESULTS AND CONCLUSIONS Survival fraction at 2 Gy was found to be inversely proportional to the amount of unrepaired DSB, whatever the genes mutations and the assay applied. However, no single assay discriminates the full range of human radiosensitivity. Particularly, nuclear foci formed by the phosphorylation of H2AX do not predict well moderate radiosensitivities. Our findings suggest the existence of an ATM-dependent interplay between the activation of DNA-PK and MRE11. A classification of diseases according their cellular radiosensitivity, their molecular response to radiation and the functional assays permitting their evaluation is proposed.
Collapse
Affiliation(s)
- Aurélie Joubert
- Inserm, U647, ID17, European Synchrotron Radiation Facility, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wiktor-Brown DM, Olipitz W, Hendricks CA, Rugo RE, Engelward BP. Tissue-specific differences in the accumulation of sequence rearrangements with age. DNA Repair (Amst) 2008; 7:694-703. [PMID: 18358792 DOI: 10.1016/j.dnarep.2008.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/12/2007] [Accepted: 01/15/2008] [Indexed: 01/31/2023]
Abstract
Mitotic homologous recombination (HR) is a critical pathway for the accurate repair of DNA double strand breaks (DSBs) and broken replication forks. While generally error-free, HR can occur between misaligned sequences, resulting in deleterious sequence rearrangements that can contribute to cancer and aging. To learn more about the extent to which HR occurs in different tissues during the aging process, we used Fluorescent Yellow Direct Repeat (FYDR) mice in which an HR event in a transgene yields a fluorescent phenotype. Here, we show tissue-specific differences in the accumulation of recombinant cells with age. Unlike pancreas, which shows a dramatic 23-fold increase in recombinant cell frequency with age, skin shows no increase in vivo. In vitro studies indicate that juvenile and aged primary fibroblasts are similarly able to undergo HR in response to endogenous and exogenous DNA damage. Therefore, the lack of recombinant cell accumulation in the skin is most likely not due to an inability to undergo de novo HR events. We propose that tissue-specific differences in the accumulation of recombinant cells with age result from differences in the ability of recombinant cells to persist and clonally expand within tissues.
Collapse
Affiliation(s)
- Dominika M Wiktor-Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | |
Collapse
|
33
|
Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18:134-47. [PMID: 18157161 DOI: 10.1038/cr.2007.111] [Citation(s) in RCA: 931] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
Collapse
Affiliation(s)
- Meena Shrivastav
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine and Cancer Center, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
34
|
Primary Immunodeficiencies. PEDIATRIC ALLERGY, ASTHMA AND IMMUNOLOGY 2008. [PMCID: PMC7121684 DOI: 10.1007/978-3-540-33395-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary immunodeficiencies (PIDs), once considered to be very rare, are now increasingly recognized because of growing knowledge in the immunological field and the availability of more sophisticated diagnostic techniques and therapeutic modalities [161]. However in a database of >120,000 inpatients of a general hospital for conditions suggestive of ID 59 patients were tested, and an undiagnosed PID was found in 17 (29%) of the subjects tested [107]. The publication of the first case of agammaglobulinemia by Bruton in 1952 [60] demonstrated that the PID diagnosis is first done in the laboratory. However, PIDs require specialized immunological centers for diagnosis and management [33]. A large body of epidemiological evidence supports the hypothesis of the existence of a close etiopathogenetic relation between PID and atopy [73]. In particular, an elevated frequency of asthma, food allergy (FA), atopic dermatitis and enteric pathologies can be found in various PIDs. In addition we will discuss another subject that is certainly of interest: the pseudo-immunodepressed child with recurrent respiratory infections (RRIs), an event that often requires medical intervention and that very often leads to the suspicion that it involves antibody deficiencies [149].
Collapse
|
35
|
Day TK, Hooker AM, Zeng G, Sykes PJ. Low dose X-radiation adaptive response in spleen and prostate of Atm knockout heterozygous mice. Int J Radiat Biol 2007; 83:523-34. [PMID: 17613125 DOI: 10.1080/09553000701420582] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the effect of being heterozygous for a knockout mutation in the ataxia telangiectasia (Atm) gene on radiation adaptive response. MATERIALS AND METHODS DNA recombination, as measured by pKZ1 inversion frequency, was quantified by histochemistry in Atm knockout heterozygous prostate and spleen 3 days after treatment with a priming dose of 0.01 or 10 mGy X-radiation 4 h prior to a challenge dose of 1,000 mGy. RESULTS In spleen and prostate, a single dose of 0.01 mGy caused an induction in inversion frequency but a dose of 10 mGy prevented the induction of a proportion of endogenous inversions. Both doses induced an adaptive response, of similar magnitude, to a subsequent high challenge dose for chromosomal inversions in both spleen and prostate. The adaptive response completely prevented the induction of inversions from a 1,000 mGy challenge dose and also a proportion of endogenous inversions. The adaptive responses and distribution of inversions across gland cross-sections observed here in Atm knockout heterozygote prostate were similar to those induced in Atm wild-type prostate in a previous study. CONCLUSIONS Being heterozygous for a knockout mutation in the Atm gene does not affect the endogenous pKZ1 inversion frequency, the inversion response to single low radiation doses used here, or the induction of a radiation adaptive response for inversions in pKZ1 mouse spleen or prostate.
Collapse
Affiliation(s)
- Tanya K Day
- Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | | | | | | |
Collapse
|
36
|
Zhang K, Zhu J, Shendure J, Porreca GJ, Aach JD, Mitra RD, Church GM. Long-range polony haplotyping of individual human chromosome molecules. Nat Genet 2006; 38:382-7. [PMID: 16493423 DOI: 10.1038/ng1741] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/05/2006] [Indexed: 11/09/2022]
Abstract
We report a method for multilocus long-range haplotyping on human chromosome molecules in vitro based on the DNA polymerase colony (polony) technology. By immobilizing thousands of intact chromosome molecules within a polyacrylamide gel on a microscope slide and performing multiple amplifications from single molecules, we determined long-range haplotypes spanning a 153-Mb region of human chromosome 7 and found evidence of rare mitotic recombination events in human lymphocytes. Furthermore, the parallel nature of DNA polony technology allows efficient haplotyping on pooled DNAs from a population on one slide, with a throughput three orders of magnitudes higher than current molecular haplotyping methods. Linkage disequilibrium statistics established by our pooled DNA haplotyping method are more accurate than statistically inferred haplotypes. This haplotyping method is well suited for candidate gene-based association studies as well as for investigating the pattern of recombination in mammalian cells.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006; 357:1383-93. [PMID: 16490214 PMCID: PMC4136747 DOI: 10.1016/j.jmb.2006.01.089] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/28/2022]
Abstract
Long interspersed element-1 (L1) is an autonomous retroelement that is active in the human genome. The proposed mechanism of insertion for L1 suggests that cleavage of both strands of genomic DNA is required. We demonstrate that L1 expression leads to a high level of double-strand break (DSB) formation in DNA using immunolocalization of gamma-H2AX foci and the COMET assay. Similar to its role in mediating DSB repair in response to radiation, ATM is required for L1-induced gamma-H2AX foci and for L1 retrotransposition. This is the first characterization of a DNA repair response from expression of a non-long terminal repeat (non-LTR) retrotransposon in mammalian cells as well as the first demonstration that a host DNA repair gene is required for successful integration. Notably, the number of L1-induced DSBs is greater than the predicted numbers of successful insertions, suggesting a significant degree of inefficiency during the integration process. This result suggests that the endonuclease activity of endogenously expressed L1 elements could contribute to DSB formation in germ-line and somatic tissues.
Collapse
Affiliation(s)
- Stephen L. Gasior
- Tulane Cancer Center and Department of Epidemiology Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
| | - Timothy P. Wakeman
- Stanley S. Scott Cancer Center and Department of Genetics Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 406 New Orleans, LA 70112, USA
| | - Bo Xu
- Stanley S. Scott Cancer Center and Department of Genetics Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 406 New Orleans, LA 70112, USA
| | - Prescott L. Deininger
- Tulane Cancer Center and Department of Epidemiology Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
- Corresponding author
| |
Collapse
|
38
|
Dumay A, Laulier C, Bertrand P, Saintigny Y, Lebrun F, Vayssière JL, Lopez BS. Bax and Bid, two proapoptotic Bcl-2 family members, inhibit homologous recombination, independently of apoptosis regulation. Oncogene 2006; 25:3196-205. [PMID: 16407825 DOI: 10.1038/sj.onc.1209344] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In order to analyse the relationships between regulation of apoptosis and homologous recombination (HR), we overexpressed proapoptotic Bax or only-BH3 Bid proteins or antiapoptotic Bcl-2 or Bcl-XL, in hamster CHO cells or in SV40-transformed human fibroblasts. We measured HR induced by gamma-rays, UVC or a specific double-strand cleavage targeted in the recombination substrate by the meganuclease I-SceI. We show here that the induction of both recombinant cells and recombinant colonies was impaired when expressing Bcl-2 family members, in hamster as well as in human cells. Moreover, the pro- as well as antiapoptotic Bcl-2 family members inhibited HR, independently of degradation of the RAD51 recombination protein and of their impact on apoptosis. These data reveal a mechanism of HR downregulation by potentially proapoptotic proteins, distinct from and parallel to degradation of recombination proteins, a situation that should also optimize the efficiency of programmed cell death.
Collapse
Affiliation(s)
- A Dumay
- UMR 217 CNRS/CEA, DSV, DRR, Fontenay aux Roses Cédex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Hendricks CA, Engelward BP. "Recombomice": the past, present, and future of recombination-detection in mice. DNA Repair (Amst) 2005; 3:1255-61. [PMID: 15336621 DOI: 10.1016/j.dnarep.2004.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
Homology directed repair (HDR) provides an efficient strategy for repairing and tolerating many types of DNA lesions, such as strand breaks, base damage, and crosslinks. Recombinational repair and lesion avoidance pathways that involve homology searching are integral to normal DNA replication. Indeed, it is estimated that at least ten HDR events take place each time a mammalian cell divides. HDR is associated with the transfer and exchange of DNA sequences. Usually, homologous sequences are aligned perfectly and flanking sequences are not exchanged. However, those sequence misalignments and exchanges that do occur can lead to rearrangements that contribute to cancer (e.g. deletions, inversions, translocations or loss of heterozygosity (LOH)). In order to reveal genetic and environmental factors that modulate HDR in mammals, several approaches have been used to detect recombination events in vivo. Here, we briefly review three methods for detecting homologous recombination in mice, namely: sister chromatid exchange (SCE), LOH, and recombination at tandem repeats. We conclude with a more detailed description of the recently developed "Fluorescent Yellow Direct Repeat" (FYDR) mouse model, which exploits enhanced yellow fluorescent protein (EYFP) for detecting mitotic homologous recombination in vivo. Applications of the FYDR mice are described, as well as the broader potential for using fluorescent proteins to detect recombination in various tissues/cell types in vivo.
Collapse
Affiliation(s)
- Carrie A Hendricks
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Drexler GA, Rogge S, Beisker W, Eckardt-Schupp F, Zdzienicka MZ, Fritz E. Spontaneous homologous recombination is decreased in Rad51C-deficient hamster cells. DNA Repair (Amst) 2005; 3:1335-43. [PMID: 15336628 DOI: 10.1016/j.dnarep.2004.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 05/04/2004] [Accepted: 05/05/2004] [Indexed: 11/29/2022]
Abstract
The Chinese hamster cell mutant, CL-V4B that is mutated in the Rad51 paralog gene, Rad51C (RAD51L2), has been described to exhibit increased sensitivity to DNA cross-linking agents, genomic instability, and an impaired Rad51 foci formation in response to DNA damage. To directly examine an effect of the Rad51C protein on homologous recombination (HR) in mammalian cells, we compared the frequencies and rates of spontaneous HR in CL-V4B cells and in parental wildtype V79B cells, using a recombination reporter plasmid in host cell reactivation assays. Our results demonstrate that HR is reduced but not abolished in the CL-V4B mutant. We thus, provide direct evidence for a role of mammalian Rad51C in HR processes. The reduced HR events described here help to explain the deficient phenotypes observed in Rad51C mutants and support an accessory role of Rad51C in Rad51-mediated recombination.
Collapse
Affiliation(s)
- Guido A Drexler
- Institute of Molecular Radiobiology, GSF-National Research Center for Environment and Health, Neuherberg D-85758, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Richardson C. RAD51, genomic stability, and tumorigenesis. Cancer Lett 2005; 218:127-39. [PMID: 15670890 DOI: 10.1016/j.canlet.2004.08.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 08/06/2004] [Indexed: 12/19/2022]
Abstract
Genomic instability is characteristic of malignant cells, and a strong correlation exists between abnormal karyotype and tumorigenicity. Increased expression of the homologous recombination and DNA repair protein Rad51 has been reported in immortalized cell lines and multiple primary tumor cell types which could alter recombination pathways to contribute to the chromosomal rearrangements found in these cells. In addition, Rad51 participates in a complex network of interactions that includes DNA damage sensors, tumor suppressors, and cell cycle and apoptotic regulators, and mutation of many of these proteins have also been associated with tumor initiation or progression. Insights into the connection between disregulated Rad51 and malignant phenotype indicate that Rad51 is a potential target for new anti-cancer regimens including those that use siRNA technology.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Pathology, Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1150 St Nicholas Ave., New York, NY 10032, USA.
| |
Collapse
|
42
|
Shackelford RE. Pharmacologic manipulation of the ataxia–telangiectasia mutated gene product as an intervention in age-related disease. Med Hypotheses 2005; 65:363-9. [PMID: 15922113 DOI: 10.1016/j.mehy.2005.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 02/11/2005] [Indexed: 11/24/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by progressive ataxia, elevated cancer incidence, and premature aging. A-T cells, Atm-deficient mice, and individuals with A-T show increased oxidant sensitivity, genomic instability, altered IGF-1 and p53 signaling, and rapid telomere shortening compared to normal controls. The gene mutated in A-T, ATM, regulates DNA repair, IGF-1 and p53 signaling, age pigment removal, antioxidant capacity, and telomere maintenance - pathways involved in and often attenuated with aging. Interestingly, flavonoids with chemopreventative effects, such as quercetin, genistein, and epigallocatechin gallate activate ATM. Since ATM activates pathways which increase genomic stability, oxidant resistance, and/or telomere stability, and since many diseases of old age (i.e., cancer, cardiovascular and neurodegenerative disease), result from attenuation of these pathways, pharmacologic manipulation of ATM activity via flavonoid intake may prove useful in slowing the appearance of age-associated disease.
Collapse
Affiliation(s)
- Rodney E Shackelford
- Lousiana State University at Shreveport, Department of Pathology, 1501 Kings Hwy, PO Box 33932, Shreveport, LA 711030-3932, USA.
| |
Collapse
|
43
|
D'Anjou H, Chabot C, Chartrand P. Preferential accessibility to specific genomic loci for the repair of double-strand breaks in human cells. Nucleic Acids Res 2004; 32:6136-43. [PMID: 15562005 PMCID: PMC534631 DOI: 10.1093/nar/gkh952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dynamic organization of the human genome in the nucleus is gaining recognition as a determining factor in its functional regulation. In order to be expressed, replicated or repaired, a genomic locus has to be present at the right place at the right time. In the present study, we have investigated the choice of a double-strand break (DSB) repair partner for a given genomic loci in an ATM-deficient human fibroblast cell line. We found that partner choice is restricted such that a given genomic locus preferentially uses certain sites in the genome to repair itself. These preferential sites can be in the vicinity of the damage site or megabases away or on other chromosomes entirely, while potential sites closer to the break along the length of the chromosome can be ignored. Moreover, there can be more than a 10-fold difference in usage between repair sites located only 10 kb apart. Interestingly, arms of a given chromosome are less accessible to one another than to other chromosomes. Altogether, these results indicate that the accessibility between genomic sites in the human genome during DSB repair is specific and conserved in a cell population.
Collapse
Affiliation(s)
- Hélène D'Anjou
- Molecular Biology Program, Montreal Cancer Institute, CHUM, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
44
|
Drexler GA, Wilde S, Beisker W, Ellwart J, Eckardt-Schupp F, Fritz E. The rate of extrachromosomal homologous recombination within a novel reporter plasmid is elevated in cells lacking functional ATM protein. DNA Repair (Amst) 2004; 3:1345-53. [PMID: 15336629 DOI: 10.1016/j.dnarep.2004.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 05/03/2004] [Accepted: 05/05/2004] [Indexed: 11/19/2022]
Abstract
Homologous recombination between identical stretches of DNA depends on the coordinated action of many tightly regulated proteins. Cellular defects in homologous recombination are strongly associated with increased genomic instability and tumorigenesis. In cells of the cancer-prone syndrome ataxia telangiectasia (A-T), increased intrachromosomal recombination has been demonstrated, while extrachromosomal recombination has been discussed controversially. We constructed a novel, episomally replicating pGrec recombination vector containing two mutated alleles of the enhanced green fluorescent protein (eGFP) gene. Homologous recombination can reconstitute functional wildtype eGFP, thus allowing detection of recombination events based on cellular eGFP fluorescence. Using an isogenic cell pair of A-T fibroblasts and derivatives complemented by an ATM expression vector, we were able to demonstrate in A-T cells high extrachromosomal recombination rates, which are suppressed upon ectopic ATM expression. We thus found that ATM deficiency increases spontaneous recombination not only in intrachromosomal but also in extrachromosomal substrates, suggesting that lack of ATM increases homologous recombination independent of the chromatin structure.
Collapse
Affiliation(s)
- Guido A Drexler
- Institute of Molecular Radiobiology, D-85758 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Kovalchuk O, Hendricks CA, Cassie S, Engelward AJ, Engelward BP. In vivo Recombination After Chronic Damage Exposure Falls to Below Spontaneous Levels in “Recombomice”. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.567.2.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
All forms of cancer are initiated by heritable changes in gene expression. Although point mutations have been studied extensively, much less is known about homologous recombination events, despite its role in causing sequence rearrangements that contribute to tumorigenesis. Although transgenic mice that permit detection of point mutations have provided a fundamental tool for studying point mutations in vivo, until recently, transgenic mice designed specifically to detect homologous recombination events in somatic tissues in vivo did not exist. We therefore created fluorescent yellow direct repeat mice, enabling automated detection of recombinant cells in vivo for the first time. Here, we show that an acute dose of ionizing radiation induces recombination in fluorescent yellow direct repeat mice, providing some of the first direct evidence that ionizing radiation induces homologous recombination in cutaneous tissues in vivo. In contrast, the same total dose of radiation given under chronic exposure conditions suppresses recombination to levels that are significantly below those of unexposed animals. In addition, global methylation is suppressed and key DNA repair proteins are induced in tissues from chronically irradiated animals (specifically AP endonuclease, polymerase β, and Ku70). Thus, increased clearance of recombinogenic lesions may contribute to suppression of homologous recombination. Taken together, these studies show that fluorescent yellow direct repeat mice provide a rapid and powerful assay for studying the recombinogenic effects of both short-term and long-term exposure to DNA damage in vivo and reveal for the first time that exposure to ionizing radiation can have opposite effects on genomic stability depending on the duration of exposure.
Collapse
Affiliation(s)
- Olga Kovalchuk
- 1Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Carrie A. Hendricks
- 2Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Scott Cassie
- 1Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Bevin P. Engelward
- 2Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| |
Collapse
|
46
|
Canitrot Y, Capp JP, Puget N, Bieth A, Lopez B, Hoffmann JS, Cazaux C. DNA polymerase beta overexpression stimulates the Rad51-dependent homologous recombination in mammalian cells. Nucleic Acids Res 2004; 32:5104-12. [PMID: 15452277 PMCID: PMC521661 DOI: 10.1093/nar/gkh848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexpression of DNA polymerase beta (polbeta), an error-prone DNA repair enzyme, has been shown to result in mutagenesis, aneuploidy and tumorigenesis. To further investigate the molecular basis leading to cancer-associated genetic changes, we examined whether the DNA polbeta could affect homologous recombination (HR). Using mammalian cells carrying an intrachromosomal recombination marker we showed that the DNA polbeta overexpression increased the HR mostly by enhancing gene conversion. Concomitantly, we observed the generation of DNA strand breaks as well as a DNA polbeta-dependent formation of Rad51 foci. The stimulation of HR was abolished by the coexpression of a dominant negative form of Rad51, suggesting that the Rad51 was involved in the increased HR events. The expression of different DNA polbeta mutants lacking polymerase activity did not result in HR stimulation, indicating that the DNA synthesis activity of DNA polbeta was related to this phenotype. These results provide new insights into the molecular mechanisms of the genetic instability observed in DNA polbeta overexpressing tumour cells.
Collapse
Affiliation(s)
- Yvan Canitrot
- Genetic Instability and Cancer Group, Institut de Pharmacologie et de Biologie Structurale UMR CNRS 5089, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Treuner K, Helton R, Barlow C. Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice. Oncogene 2004; 23:4655-61. [PMID: 15122331 DOI: 10.1038/sj.onc.1207604] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ataxia Telangiectasia (A-T) is an autosomal recessive disease caused by loss of function of the protein kinase ATM. Atm-deficient mice display several phenotypes consistent with the human disease, including predisposition to cancer, growth retardation, cell-proliferation defects and infertility. A-T patients have a several hundred fold increased risk of developing lymphomas and leukemias, which are typically highly invasive. By reducing homologous recombination through genetic deletion of the Rad52 protein, we were able to decrease substantially the development of T-cell lymphomas in Atm-/- mice, resulting in an increased life span of the double mutant mice. Additionally, we were able to partially rescue the T-cell development of Atm-/- mice. Other phenotypes, including growth defects, genomic instability, infertility and radiosensitivity, were not rescued. Our results suggest that excessive recombination is an important contributor to tumorigenesis in A-T.
Collapse
Affiliation(s)
- Kai Treuner
- The Salk Institute for Biological Studies, The Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
48
|
Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 2004; 24:4151-65. [PMID: 15121837 PMCID: PMC400471 DOI: 10.1128/mcb.24.10.4151-4165.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage checkpoint pathways sense DNA lesions and transduce the signals into appropriate biological responses, including cell cycle arrest, induction of transcriptional programs, and modification or activation of repair factors. Here we show that the Saccharomyces cerevisiae Sae2 protein, known to be involved in processing meiotic and mitotic double-strand breaks, is required for proper recovery from checkpoint-mediated cell cycle arrest after DNA damage and is phosphorylated periodically during the unperturbed cell cycle and in response to DNA damage. Both cell cycle- and DNA damage-dependent Sae2 phosphorylation requires the main checkpoint kinase, Mec1, and the upstream components of its pathway, Ddc1, Rad17, Rad24, and Mec3. Another pathway, involving Tel1 and the MRX complex, is also required for full DNA damage-induced Sae2 phosphorylation, that is instead independent of the downstream checkpoint transducers Rad53 and Chk1, as well as of their mediators Rad9 and Mrc1. Mutations altering all the favored ATM/ATR phosphorylation sites of Sae2 not only abolish its in vivo phosphorylation after DNA damage but also cause hypersensitivity to methyl methanesulfonate treatment, synthetic lethality with RAD27 deletion, and decreased rates of mitotic recombination between inverted Alu repeats, suggesting that checkpoint-mediated phosphorylation of Sae2 is important to support its repair and recombination functions.
Collapse
Affiliation(s)
- Enrico Baroni
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
49
|
Little KCE, Chartrand P. Genomic DNA is captured and amplified during double-strand break (DSB) repair in human cells. Oncogene 2004; 23:4166-72. [PMID: 15048077 DOI: 10.1038/sj.onc.1207570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genomic stability is maintained by the surveillance and repair of DNA damage. Here, we describe a mechanism whereby repair of extrachromosomal DNA double-strand breaks (DSBs) in human cells can be accompanied by capture of genomic DNA fragments. The availability of the human genome sequence enabled us to characterize these inserts in cells from a normal individual and from a patient with ataxia telangiectasia (AT), deficient for the damage response kinase ATM and prone to genomic instability. We find AT cells exhibit insertions of human chromosomal DNA fragments in excess of 17 kb during DSB repair, whereas we detected no such genomic inserts in normal cells. However, the presence of simian virus 40 (SV40), used to transform these cell lines, resulted in capture of genomic DNA associated with sites of viral integration in both cell types. The genomic instability at sites of SV40 integration was exported to other sites of DNA damage, and acquisition of the viral origin of replication resulted in gene amplification through autonomous replication of the plasmid harbouring the repaired extrachromosomal DSB. Should this same phenomenon apply to the repair of chromosomal DSBs, genome rearrangements made possible via this DSB insertional repair pose risks to genomic integrity, and may contribute to tumorigenic progression.
Collapse
Affiliation(s)
- Kevin C E Little
- Department of Medicine, Division of Experimental Medicine, McGill University, and Centre de recherche CHUM, Hôpital Notre Dame and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
50
|
Abstract
Werner syndrome (WS) is one of three heritable human genetic instability/cancer predisposition syndromes that result from mutations in a member of the gene family encoding human RecQ helicases. Cellular defects are a prominent part of the WS phenotype. Here we review recent work to identify in vivo functions of the WS protein and discuss how loss of function leads to cellular defects. These new results provide clues to the origin of cell lineage-specific defects in WS patients and suggest a broader role for Werner protein function in determining disease risk in the general population.
Collapse
Affiliation(s)
- Raymond J Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|