1
|
Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-angiogenic therapy. Chin Med J (Engl) 2024; 137:2043-2051. [PMID: 39051171 PMCID: PMC11374217 DOI: 10.1097/cm9.0000000000003231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Anti-angiogenic drugs (AADs), which mainly target the vascular endothelial growth factor-A signaling pathway, have become a therapeutic option for cancer patients for two decades. During this period, tremendous clinical experience of anti-angiogenic therapy has been acquired, new AADs have been developed, and the clinical indications for AAD treatment of various cancers have been expanded using monotherapy and combination therapy. However, improvements in the therapeutic outcomes of clinically available AADs and the development of more effective next-generation AADs are still urgently required. This review aims to provide historical and perspective views on tumor angiogenesis to allow readers to gain mechanistic insights and learn new therapeutic development. We revisit the history of concept initiation and AAD discovery, and summarize the up-to-date clinical translation of anti-angiogenic cancer therapy in this field.
Collapse
Affiliation(s)
- Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Xiaoting Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shishuo Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
2
|
Li Y, Chen A, Hong A, Xiong S, Chen X, Xie Q. Shark Cartilage-Derived Anti-Angiogenic Peptide Inhibits Corneal Neovascularization. Bioengineering (Basel) 2024; 11:693. [PMID: 39061775 PMCID: PMC11273382 DOI: 10.3390/bioengineering11070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Corneal neovascularization is a significant cause of vision loss, often resulting in corneal clouding and chronic inflammation. Shark cartilage is widely recognized as a significant natural source of anti-angiogenic compounds. Our previous studies have shown that a polypeptide from white-spotted catshark (Chiloscyllium plagiosum Bonnet) has the potential to inhibit the angiogenesis of breast tumors. This study applied this peptide (SAIF) to a corneal alkali injury model to assess its effect on corneal neovascularization. Results revealed that SAIF inhibits endothelial cell proliferation, migration, and tube formation. SAIF inhibited VEGF-induced angiogenesis in the matrigel plug. Using the corneal alkali injury model, SAIF significantly inhibited corneal vascular neovascularization in mice. We found that SAIF not only significantly inhibited the upregulation of pro-angiogenic factors such as VEGF, bFGF, and PDGF expression induced by alkali injury, but also promoted the expression of anti-angiogenesis factor PEDF. Moreover, we also analyzed the MMPs and TIMPs involved in extracellular matrix (ECM) remodeling, angiogenesis, and lymphangiogenesis. We found that SAIF treatment inhibited the expression of pro-angiogenic factors like MMP1, MMP2, MMP3, MMP9, MMP13, and MMP14, and promoted the expression of anti-angiogenesis factors such as MMP7, TIMP1, TIMP2, and TIMP3. In conclusion, SAIF acts as an anti-angiogenic factor to inhibit the proliferation, migration, and tube formation of endothelial cells, inhibit pro-angiogenic factors, promote anti-angiogenic factors, and regulate the expression of MMPs, ultimately inhibiting corneal neovascularization.
Collapse
Affiliation(s)
- Yunxian Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
| | - Aoke Chen
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
- Guangdong Jida Engineering Research Center of Genetic Medicine Co., Ltd., Guangzhou 510535, China
| | - An Hong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Sheng Xiong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Xiaojia Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| |
Collapse
|
3
|
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schartl M. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks. Nat Commun 2023; 14:6628. [PMID: 37857613 PMCID: PMC10587355 DOI: 10.1038/s41467-023-42238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
| | - Du Kang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Kathleen Kulb
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Gavin P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Adam Phillippy
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Jacquelyn Mountcastle
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jennifer R Balacco
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Rebecca E Dale
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Gene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center of Systems Biology Dresden, 01307, Dresden, Germany
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, 3800, Australia.
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77483, USA.
| | - Manfred Schartl
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
4
|
Bressler EM, Adams S, Liu R, Colson YL, Wong WW, Grinstaff MW. Boolean logic in synthetic biology and biomaterials: Towards living materials in mammalian cell therapeutics. Clin Transl Med 2023; 13:e1244. [PMID: 37386762 PMCID: PMC10310979 DOI: 10.1002/ctm2.1244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The intersection of synthetic biology and biomaterials promises to enhance safety and efficacy in novel therapeutics. Both fields increasingly employ Boolean logic, which allows for specific therapeutic outputs (e.g., drug release, peptide synthesis) in response to inputs such as disease markers or bio-orthogonal stimuli. Examples include stimuli-responsive drug delivery devices and logic-gated chimeric antigen receptor (CAR) T cells. In this review, we explore recent manuscripts highlighting the potential of synthetic biology and biomaterials with Boolean logic to create novel and efficacious living therapeutics. MAIN BODY Collaborations in synthetic biology and biomaterials have led to significant advancements in drug delivery and cell therapy. Borrowing from synthetic biology, researchers have created Boolean-responsive biomaterials sensitive to multiple inputs including pH, light, enzymes and more to produce functional outputs such as degradation, gel-sol transition and conformational change. Biomaterials also enhance synthetic biology, particularly CAR T and adoptive T cell therapy, by modulating therapeutic immune cells in vivo. Nanoparticles and hydrogels also enable in situ generation of CAR T cells, which promises to drive down production costs and expand access to these therapies to a larger population. Biomaterials are also used to interface with logic-gated CAR T cell therapies, creating controllable cellular therapies that enhance safety and efficacy. Finally, designer cells acting as living therapeutic factories benefit from biomaterials that improve biocompatibility and stability in vivo. CONCLUSION By using Boolean logic in both cellular therapy and drug delivery devices, researchers have achieved better safety and efficacy outcomes. While early projects show incredible promise, coordination between these fields is ongoing and growing. We expect that these collaborations will continue to grow and realize the next generation of living biomaterial therapeutics.
Collapse
Affiliation(s)
- Eric M. Bressler
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Sarah Adams
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Rong Liu
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yolonda L. Colson
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
- Department of Chemistry and Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
5
|
Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 2023; 22:476-495. [PMID: 37041221 DOI: 10.1038/s41573-023-00671-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/13/2023]
Abstract
Angiogenesis is an essential process in normal development and in adult physiology, but can be disrupted in numerous diseases. The concept of targeting angiogenesis for treating diseases was proposed more than 50 years ago, and the first two drugs targeting vascular endothelial growth factor (VEGF), bevacizumab and pegaptanib, were approved in 2004 for the treatment of cancer and neovascular ophthalmic diseases, respectively. Since then, nearly 20 years of clinical experience with anti-angiogenic drugs (AADs) have demonstrated the importance of this therapeutic modality for these disorders. However, there is a need to improve clinical outcomes by enhancing therapeutic efficacy, overcoming drug resistance, defining surrogate markers, combining with other drugs and developing the next generation of therapeutics. In this Review, we examine emerging new targets, the development of new drugs and challenging issues such as the mode of action of AADs and elucidating mechanisms underlying clinical benefits; we also discuss possible future directions of the field.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
A Reassessment of the Barrier Effect of the Physis against Metaphyseal Osteosarcoma: A Comprehensive Pathological Study with Its Radiological and Clinical Follow-Up Correlations. Diagnostics (Basel) 2022; 12:diagnostics12020450. [PMID: 35204540 PMCID: PMC8870925 DOI: 10.3390/diagnostics12020450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor usually arising at the metaphysis of long bones, particularly around the knee. The physis has been regarded as a barrier capable of blocking tumor extension, thus allowing it to preserve their epiphysis and therefore improve functional results. With the objective of clarifying how effective the physis is as a barrier to tumor spread, a large series of skeletally immature patients with osteosarcoma were reviewed. From 452 metaphyseal osteosarcomas a selection of 282 cases in which the tumor was close or crossing the physis were carried out. This sub-sample was split into two groups according to the surgical treatment (epiphyseal preservation or not). The specimens obtained by resection were studied, and the physeal and metaphyseal areas were studied by multiple sections. Immunostaining against VEGF of physis was obtained in selected cases. In about half of the patients affected by metaphyseal malignant bone tumors, the growth plate and epiphysis were not compromised by the tumor. Three sequential invasive growth patterns of an osteosarcoma in its relationship with the physis could be distinguished. An intense angiogenesis and osteoclastic reaction could be observed in the growth plate in the free zone between the tumor and the physis. The local recurrence incidence was lower in the epiphyseal preservation treated patients than it was in the conventional treatment (8% vs. 12%). Most local recurrences appeared in the first 2 years. The overall survival of patients treated with epiphyseal preservation was better than that of the patients treated without preserving the epiphysis (73% vs. 59%; p = 0.03) at a mean follow-up of 18 years. We have described an angiogenic and osteoclastic reaction in the base of the growth plate in the proximity of the advance front of the tumor, which could facilitate the osteosarcoma invasion. It is also shown that the preoperative imaging method for examination is a valid approach for the decision to carry out epiphyseal preservation. Finally, we concluded that epiphyseal preservation combined with protective chemotherapy is an excellent clinical approach for selected patients with metaphyseal osteosarcoma.
Collapse
|
7
|
Nossin Y, Farrell E, Koevoet WJ, Datema F, Somoza RA, Caplan AI, van Osch GJ. The Releasate of Avascular Cartilage Demonstrates Inherent Pro-Angiogenic Properties In Vitro and In Vivo. Cartilage 2021; 13:559S-570S. [PMID: 34590881 PMCID: PMC8721614 DOI: 10.1177/19476035211047628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Cartilage is avascular and numerous studies have identified the presence of single anti- and pro-angiogenic factors in cartilage. To better understand the maintenance hyaline cartilage, we assessed the angiogenic potential of complete cartilage releasate with functional assays in vitro and in vivo. DESIGN We evaluated the gene expression profile of angiogenesis-related factors in healthy adult human articular cartilage with a transcriptome-wide analysis generated by next-generation RNAseq. The effect on angiogenesis of the releasate of cartilage tissue was assessed with a chick chorioallantoic membrane (CAM) assay as well as human umbilical vein endothelial cell (HUVEC) migration and proliferation assays using conditioned media generated from tissue-engineered cartilage derived from human articular and nasal septum chondrocytes as well as explants from bovine articular cartilage and human nasal septum. Experiments were done with triplicate samples of cartilage from 3 different donors. RESULTS RNAseq data of 3 healthy human articular cartilage donors revealed that the majority of known angiogenesis-related factors expressed in healthy adult articular cartilage are pro-angiogenic. The releasate from generated cartilage as well as from tissue explants, demonstrated at least a 3.1-fold increase in HUVEC proliferation and migration indicating a pro-angiogenic effect of cartilage. Finally, the CAM assay demonstrated that cartilage explants can indeed attract vessels; however, their ingrowth was not observed. CONCLUSION Using multiple approaches, we show that cartilage releasate has an inherent pro-angiogenic capacity. It remains vessel free due to anti-invasive properties associated with the tissue itself.
Collapse
Affiliation(s)
- Yannick Nossin
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Eric Farrell
- Department of Oral and
Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Wendy J.L.M. Koevoet
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Frank Datema
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal
Research Center, Case Western Reserve University, Cleveland, OH, USA,CWRU Center for Multimodal
Evaluation of Engineered-Cartilage, Cleveland, OH, USA
| | - Arnold I. Caplan
- Department of Biology, Skeletal
Research Center, Case Western Reserve University, Cleveland, OH, USA,CWRU Center for Multimodal
Evaluation of Engineered-Cartilage, Cleveland, OH, USA
| | - Gerjo J.V.M. van Osch
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands,Department of Orthopaedics,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, the
Netherlands,Department of Biomedical
Engineering, Faculty of Mechanical, Maritime, and Materials Engineering,
Delft University of Technology, Delft, the Netherlands,Gerjo J.V.M. van Osch, Departments
of Orthopaedics & Otorhinolaryngology, Erasmus MC, University
Medical Center Rotterdam, Room Ee1655c Wytemaweg 80, Rotterdam, 3015
CN, the Netherlands.
| |
Collapse
|
8
|
Osteogenic Competence and Potency of the Bone Induction Principle: Inductive Substrates That Initiate “Bone: Formation by Autoinduction”. J Craniofac Surg 2021; 33:971-984. [DOI: 10.1097/scs.0000000000008299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Hajdu SI. Pathfinders in oncology from the time the causal relation between tobacco use and lung cancer was established to publication of the first Cancer Staging Manual by the American Joint Committee on Cancer. Cancer 2021; 127:2828-2854. [PMID: 33970484 DOI: 10.1002/cncr.33561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022]
Abstract
During the period from 1962 to 1977, several antigens, notably carcinoembryonic antigen and prostate-specific antigen, were discovered and entered clinical use. Ultrasonography, positron emission tomography scanning, and magnetic resonance imaging were introduced, and adjuvant radiation and chemotherapy after limited surgery became routine procedures. Radioimmunoassay and immunohistochemistry techniques were standardized. The announcement in England and the United States that tobacco is a potent lung carcinogen was long delayed, important news. The US Cancer Act of 1971 made it possible to experiment with newly discovered drugs, transfer promising therapeutic agents from the laboratory to the clinic, and finance randomized clinical trials. Oncologists achieved a series of successes with combination chemotherapy in childhood cancers, adult lymphomas, and testis tumors. Clinical trials demonstrated that breast-conserving therapy is as effective as mastectomy. The discovery of retroviruses, reverse transcriptase, and vascular endothelial growth factor was coupled with learning about oncogenes. The 2-hit theory and the reciprocal translocation of chromosomes helped to solve some of the riddles of oncogenesis. The staging classification of cancers by the American Joint Committee on Cancer unified clinical and pathologic handling and prognostication of malignant tumors. The progress made in oncology between 1962 and 1977 came about through the dedicated work of many individuals. However, there were 9 pathfinders (3 medical oncologists, 2 surgeons, 1 medical nuclear physicist, 1 pediatrician geneticist, 1 hematologist geneticist, and 1 virologist) who, despite their diverse backgrounds, personalities, and interest, made extraordinary contributions to oncology.
Collapse
|
10
|
International consensus recommendations for target volume delineation specific to sacral metastases and spinal stereotactic body radiation therapy (SBRT). Radiother Oncol 2019; 145:21-29. [PMID: 31874346 DOI: 10.1016/j.radonc.2019.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE To interrogate inter-observer variability in gross tumour volume (GTV) and clinical target volume (CTV) delineation specific to the treatment of sacral metastases with spinal stereotactic body radiation therapy (SBRT) and develop CTV consensus contouring recommendations. MATERIALS AND METHODS Nine specialists with spinal SBRT expertise representing 9 international centres independently contoured the GTV and CTV for 10 clinical cases of metastatic disease within the sacrum. Agreement between physicians was calculated with an expectation minimisation algorithm using simultaneous truth and performance level estimation (STAPLE) and with kappa statistics. Optimised confidence level consensus contours were obtained using a voxel-wise maximum likelihood approach and the STAPLE contours for GTV and CTV were based on an 80% confidence level. RESULTS Mean GTV STAPLE agreement sensitivity and specificity was 0.70 (range, 0.54-0.87) and 1.00, respectively, and 0.55 (range, 0.44-0.64) and 1.00 for the CTV, respectively. Mean GTV and CTV kappa agreement was 0.73 (range, 0.59-0.83) and 0.59 (range, 0.41-0.70), respectively. Optimised confidence level consensus contours were identified by STAPLE analysis. Consensus recommendations for the CTV include treating the entire segment containing the disease in addition to the immediate adjacent bony anatomic segment at risk of microscopic extension. CONCLUSION Consensus recommendations for CTV target delineation specific to sacral metastases treated with SBRT were established using expert contours. This is a critical first step to achieving standardisation of target delineation practice in the sacrum and will serve as a baseline for meaningful pattern of failure analyses going forward.
Collapse
|
11
|
Abstract
AbstractThe ability to control the movement of molecules is both fascinating scientifically as well as being critically important to the well-being of our planet and its people. In particular, the sustained release of molecules over prolonged periods at controlled rates has had and will continue to have enormous implications for the delivery of substances in medicine, agriculture, the environment, nutrition, aquaculture, household consumer products, and numerous other areas. This field is advancing at a rapidly accelerating pace. In this article, I largely discuss our own work, starting 45 years ago, in enabling the controlled release of macromolecules from biocompatible polymers. I also discuss the synthesis of novel materials to affect molecular movement and I then examine external approaches for controlling the movement of molecules through materials, using forces such as electric, acoustic, and magnetic fields. I further discuss approaches for controlling molecular movement through physiologic barriers, such as the skin, lung, and intestine. Finally, I outline several future areas of this field, including how it can affect the developing world, the ability to control the movement of molecules into mammalian cells, and the design of intelligent approaches to control molecular delivery.
Collapse
|
12
|
da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:9-14. [PMID: 31384170 PMCID: PMC6682490 DOI: 10.1016/j.cej.2018.01.010] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polylactic acid (PLA) is the most commonly used biodegradable polymer in clinical applications today. Examples range from drug delivery systems, tissue engineering, temporary and long-term implantable devices; constantly expanding to new fields. This is owed greatly to the polymer's favorable biocompatibility and to its safe degradation products. Once coming in contact with biological media, the polymer begins breaking down, usually by hydrolysis, into lactic acid (LA) or to carbon dioxide and water. These products are metabolized intracellularly or excreted in the urine and breath. Bacterial infection and foreign-body inflammation enhance the breakdown of PLA, through the secretion of enzymes that degrade the polymeric matrix. The biodegradation occurs both on the surface of the polymeric device and inside the polymer body, by diffusion of water between the polymer chains. The median half-life of the polymer is 30 weeks; however, this can be lengthened or shortened to address the clinical needs. Degradation kinetics can be tuned by determining the molecular composition and the physical architecture of the device. Using L- or D- chirality of the LA will greatly slow or lengthen the degradation rates, respectively. Despite the fact that this polymer is more than 150 years old, PLA remains a fertile platform for biomedical innovation and fundamental understanding of how artificial polymers can safely coexist with biological systems.
Collapse
Affiliation(s)
- Dana da Silva
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Interdisciplinary Program for Biotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
13
|
Abstract
By synthesizing new polymeric materials and combining them with growth factors or cells, new tissues and organs can potentially be created for use in drug testing-thereby potentially reducing animal and human testing- and to treat disease. Examples discussed include blood vessels, heart muscle, spinal cord repair, artifi cial skin, cartilage, and pancreas.
Collapse
Affiliation(s)
- Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
14
|
Goldman E, Zinger A, da Silva D, Yaari Z, Kajal A, Vardi-Oknin D, Goldfeder M, Schroeder JE, Shainsky-Roitman J, Hershkovitz D, Schroeder A. Nanoparticles target early-stage breast cancer metastasis in vivo. NANOTECHNOLOGY 2017; 28:43LT01. [PMID: 28872058 DOI: 10.1088/1361-6528/aa8a3d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite advances in cancer therapy, treating cancer after it has metastasized remains an unmet clinical challenge. In this study we demonstrate that 100 nm liposomes target triple-negative murine breast-cancer metastases post intravenous administration. Metastatic breast cancer was induced in BALB/c mice either experimentally, by a tail vein injection of 4T1 cells, or spontaneously, after implanting a primary tumor xenograft. To track their biodistribution in vivo the liposomes were labeled with multi-modal diagnostic agents, including indocyanine green and rhodamine for whole-animal fluorescent imaging, gadolinium for magnetic resonance imaging (MRI), and europium for a quantitative biodistribution analysis. The accumulation of liposomes in the metastases peaked at 24 h post the intravenous administration, similar to the time they peaked in the primary tumor. The efficiency of liposomal targeting to the metastatic tissue exceeded that of a non-liposomal agent by 4.5-fold. Liposomes were detected at very early stages in the metastatic progression, including metastatic lesions smaller than 2 mm in diameter. Surprisingly, while nanoparticles target breast cancer metastasis, they may also be found in elevated levels in the pre-metastatic niche, several days before metastases are visualized by MRI or histologically in the tissue. This study highlights the promise of diagnostic and therapeutic nanoparticles for treating metastatic cancer, possibly even for preventing the onset of the metastatic dissemination by targeting the pre-metastatic niche.
Collapse
Affiliation(s)
- Evgeniya Goldman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel. The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
In vitro blood cell viability profiling of polymers used in molecular assembly. Sci Rep 2017; 7:9481. [PMID: 28842713 PMCID: PMC5573391 DOI: 10.1038/s41598-017-10169-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/04/2017] [Indexed: 11/17/2022] Open
Abstract
Biocompatible polymers have been extensively applied to molecular assembly techniques on a micro- and nanoscale to miniaturize functional devices for biomedical uses. However, cytotoxic assessments of developed devices are prone to partially focus on non-specific cells or cells associated with the specific applications. Thereby, since toxicity is dependent on the type of cells and protocols, we do not fully understand the relative toxicities of polymers. Additionally, we need to ensure the blood cell biocompatibility of developed devices prior to that of targeted cells because most of the devices contact the blood before reaching the targeted regions. Motivated by this issue, we focused on screening cytotoxicity of polymers widely used for the layer-by-layer assembly technique using human blood cells. Cytotoxicity at the early stage was investigated on twenty types of polymers (positively charged, negatively charged, or neutral) and ten combination forms via hemolysis, cell viability, and AnnexinV-FITC/PI staining assays. We determined their effects on the cell membrane depending on their surface chemistry by molecular dynamics simulations. Furthermore, the toxicity of LbL-assembled nanofilms was assessed by measuring cell viability. Based on this report, researchers can produce nanofilms that are better suited for drug delivery and biomedical applications by reducing the possible cytotoxicity.
Collapse
|
16
|
Fan H, Guo Z, Fu J, Li X, Li J, Wang Z. Surgical management of pelvic Ewing's sarcoma in children and adolescents. Oncol Lett 2017; 14:3917-3926. [PMID: 28943899 PMCID: PMC5605962 DOI: 10.3892/ol.2017.6677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/09/2017] [Indexed: 12/03/2022] Open
Abstract
The present study describes a novel surgical strategy used to treat immature pelvic Ewing's sarcoma (ES), one made possible owing to the intrinsic structure of the skeletally immature pelvis. A total of 12 children and adolescents with open triradiate cartilage received limb-salvage surgeries following a diagnosis of pelvic ES. In total, 3 patients with iliac lesions (2 lesions with extension into the sacrum) received surgical tumor excisions and allograft reconstructions. Another 8 patients with periacetabular lesions received trans-acetabular osteotomies and allograft reconstructions. No reconstruction was performed on 1 patient following excision of a pubic lesion. The median follow-up time was 39 months. At the time of the final follow-up appointment, 9 patients exhibited no evidence of disease, 2 patients had slow progressive pulmonary metastasis, 1 patient exhibited local recurrence of the disease and 1 patient had succumbed to the disease 24 months after surgery. Complications included issues with wound healing in 1 patient, a discrepancy in leg length in another and a screw loosening in a further patient. The patients had a mean Musculoskeletal Tumor Society score of 26 points and a mean International Society of Limb Salvage radiographic score of 90.1%. The proposed surgical strategy for children and adolescents with pelvic ES in the present study could provide a feasible solution for acetabulum salvage and local tumor control.
Collapse
Affiliation(s)
- Hongbin Fan
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zheng Guo
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Fu
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiangdong Li
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Li
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhen Wang
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
17
|
Warden S, Zaleske DJ, Glowacki J. Fate of a Chimeric Joint Construct in an Ectopic Site in SCID Mice. Cell Transplant 2017; 13:161-8. [PMID: 15129762 DOI: 10.3727/000000004773301843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study examines the use of a devitalized biological knee as a scaffold for repopulation with chondrocytes and tests the hypothesis that the devitalized scaffold would become repopulated with the foreign chondrocytes when placed in a suitable environment. Chimeric knee constructs were engineered in vitro and their ectopic in vivo fate was examined in SCID mice. The constructs were made by applying porous collagen sponges that contained viable bovine articular chondrocytes to shaved articular surfaces of devitalized embryonic chick knees. The chimeric joints were cultured for 1 week and were subsequently transplanted into dorsal subcutaneous pouches of 5-week-old mice. Specimens were prepared for histological analysis at 1, 3, 6, or 8 weeks after transplantation. Controls included empty collagen sponges, collagen sponges seeded with viable bovine chondrocytes, and devitalized chick knees without collagen sponge inserts. One week after in vitro incubation of the constructs, the porous collagen sponges with viable bovine chondrocytes were adherent to the shaved articular surfaces of the devitalized chick joints. There was abundant metachromatic neomatrix around the chondrocytes in the collagen sponges. During maintenance of the constructs in vivo, the chimeric joints exhibited dramatic changes. Bovine chondrocytes proliferated in the collagen sponges and formed abundant new matrix. Bovine chondrocytes migrated into preexisting chick cartilage canals at 1 week. Subsequently, bovine chondrocytes invaded the matrix of the devitalized chick knees. Bovine neocartilage obliterated the interface between the collagen sponge and the devitalized chick cartilage. With time in vivo, the bovine neocartilage expanded and replaced the chick matrix. The devitalized cartilage appears to provide a framework for supporting chondrogenesis in a chimeric joint.
Collapse
Affiliation(s)
- Scott Warden
- Skeletal Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
18
|
|
19
|
[The value of MRI in the diagnosis of joint involvement in malignant primitive tumors of the knee]. Bull Cancer 2016; 103:911-920. [PMID: 27823810 DOI: 10.1016/j.bulcan.2016.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Surgical treatment of malignant primitive tumors of bone needs a precise preoperative assessment of tumor local extension. Joint involvement (JI) represents the most important finding to determine, for the choice of surgical procedure (intra- or extra-articular resection). OBJECTIVE To determine the value of different MR signs for the diagnosis of joint involvement in malignant primitive tumors of the knee. METHODS Ten-year period retrospective study of 42 patients. Patients' clinical and imaging data have been studied. Two senior musculoskeletal radiologists have blindly and consensually reviewed imaging data. Histopathological data have been reviewed by an experimented pathologist. The results have been compared using several statistical methods to determine the global and detailed (sign by sign) diagnostic value and accuracy of MRI by reference to histopathology. RESULTS Some MR signs were performant in the diagnosis of joint involvement. The most sensitive were epiphyseal extension (Se: 100%), osteochondral extension (Se: 87.5%) and extension to the tibial spines (Se: 83.3%). The most specific MR signs were the presence of an intra-articular mass (Sp: 84.62%), extension to the intercondylar notch (Sp: 80.77%) and longitudinal axis≥120mm (Sp: 84.62%). CONCLUSION A rigorous and reproducible MR technique has to be used, the knee being explored in the transversal, sagittal and coronal planes. MR conclusion has to be clear and simple (intact, doubtful or involved joint). MR interpretation has to consider tumoral extension pathways. In doubtful cases, CT may help in this diagnosis by studying the bone cortex. LEVEL OF EVIDENCE IV.
Collapse
|
20
|
Li Z, Ba R, Wang Z, Wei J, Zhao Y, Wu W. Angiogenic Potential of Human Bone Marrow-Derived Mesenchymal Stem Cells in Chondrocyte Brick-Enriched Constructs Promoted Stable Regeneration of Craniofacial Cartilage. Stem Cells Transl Med 2016; 6:601-612. [PMID: 28191761 PMCID: PMC5442805 DOI: 10.5966/sctm.2016-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022] Open
Abstract
Craniofacial deformities caused by congenital defects or trauma remain challenges for clinicians, whereas current surgical interventions present limited therapeutic outcomes. Injection of bone marrow‐derived mesenchymal stem cells (BMSCs) into the defect is highly desirable because such a procedure is microinvasive and grafts are more flexible to fill the lesions. However, preventing hypertrophic transition and morphological contraction remain significant challenges. We have developed an “all host derived” cell transplantation system composed of chondrocyte brick (CB)‐enriched platelet‐rich plasma (P) gel and BMSCs (B). Without exogenous biomaterials or growth factors, such grafts regenerate cartilage efficiently and present great clinical promise. In immunodeficient mice, we compared performance of BMSCs and BMSCs lacking angiogenic potential in CB‐B‐P constructs and followed the cartilage maturation process by histology, immunostaining, micro‐computed tomography, and protein analysis. We determined that angiogenesis occurred quickly inside rudimentary cartilage derived from CB‐B‐P constructs after implantation, which improved tissue survival, tissue growth, and production of chondrogenic signals from chondrocytes. In contrast, silencing angiogenic potential of BMSCs led to poor chondrogenesis accompanied by necrosis. Chondrocyte bricks merged rapidly with angiogenesis, which constituted an enclosed chondrogenic niche and effectively inhibited runt‐related transcription factor‐2‐dependent hypertrophic transition of BMSCs as well as endochondral ossification; progressive chondrogenic differentiation of BMSCs resulted in vascularization regression, thus favoring persistent chondrogenesis and effectively augmenting nasal cartilage. In conclusion, these findings provided a novel, efficient approach to regenerating cartilage tissues in vivo. Chondrocyte bricks mixed with P provide transient vascularization and a persistently chondrogenic microenvironment for BMSCs; this provides a mini‐invasive approach for craniofacial cartilage reconstruction. Stem Cells Translational Medicine2017;6:601–612
Collapse
Affiliation(s)
- Zhiye Li
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ruikai Ba
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhifa Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jianhua Wei
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yimin Zhao
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wei Wu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
21
|
Odgren PR, Witwicka H, Reyes-Gutierrez P. The cast of clasts: catabolism and vascular invasion during bone growth, repair, and disease by osteoclasts, chondroclasts, and septoclasts. Connect Tissue Res 2016; 57:161-74. [PMID: 26818783 PMCID: PMC4912663 DOI: 10.3109/03008207.2016.1140752] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three named cell types degrade and remove skeletal tissues during growth, repair, or disease: osteoclasts, chondroclasts, and septoclasts. A fourth type, unnamed and less understood, removes nonmineralized cartilage during development of secondary ossification centers. "Osteoclasts," best known and studied, are polykaryons formed by fusion of monocyte precursors under the influence of colony stimulating factor 1 (CSF)-1 (M-CSF) and RANKL. They resorb bone during growth, remodeling, repair, and disease. "Chondroclasts," originally described as highly similar in cytological detail to osteoclasts, reside on and degrade mineralized cartilage. They may be identical to osteoclasts since to date there are no distinguishing markers for them. Because osteoclasts also consume cartilage cores along with bone during growth, the term "chondroclast" might best be reserved for cells attached only to cartilage. "Septoclasts" are less studied and appreciated. They are mononuclear perivascular cells rich in cathepsin B. They extend a cytoplasmic projection with a ruffled membrane and degrade the last transverse septum of hypertrophic cartilage in the growth plate, permitting capillaries to bud into it. To do this, antiangiogenic signals in cartilage must give way to vascular trophic factors, mainly vascular endothelial growth factor (VEGF). The final cell type excavates cartilage canals for vascular invasion of articular cartilage during development of secondary ossification centers. The "clasts" are considered in the context of fracture repair and diseases such as arthritis and tumor metastasis. Many observations support an essential role for hypertrophic chondrocytes in recruiting septoclasts and osteoclasts/chondroclasts by supplying VEGF and RANKL. The intimate relationship between blood vessels and skeletal turnover and repair is also examined.
Collapse
Affiliation(s)
- Paul R. Odgren
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655,Corresponding author: Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue, North, Worcester, MA 01655, USA, Phone: 508 856 8609, Fax: 508 856 1033,
| | - Hanna Witwicka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Pablo Reyes-Gutierrez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
22
|
Rapidly growing giant cell tumor of bone in a skeletally immature girl. Skeletal Radiol 2016; 45:567-73. [PMID: 26585568 DOI: 10.1007/s00256-015-2276-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 02/02/2023]
Abstract
Giant cell tumor of bone (GCTB) in skeletally immature patients is rare, and little is known regarding how fast GCTB can grow. We report a case of a 10-year-old skeletally immature girl with pathologically proven GCTB with obvious growth plate invasion that showed surprisingly rapid growth over only 14 days. A radiograph of the left knee revealed well-circumscribed, geographic bone destruction at the distal metaphysis of the femur with a focal cortical defect, suggesting a pathologic fracture. No abnormal mineralization or periosteal reaction was seen. A CT without contrast and an MRI demonstrated a homogeneous lesion with cortical disruption posteriorly and laterally with a slight soft tissue extension. Biopsy showed numerous multinucleated giant cells and spindle-shaped mononuclear cells without any sign of malignancy, suggesting GCTB. However, rapid lesion enlargement and destruction of the surrounding cortex were noted 14 days after biopsy. Considering the amount of bone destruction, traditional treatment of curettage and bone cement would not suffice to sustain structural strength. In addition, considering the patient's age, the tumor location, and the aggressive course, a malignant tumor, especially a giant cell-rich osteosarcoma, could not be excluded. Therefore, en bloc resection, including the growth plate and prosthetic replacement, were performed. Confirmation of GCTB was made from a pathologic evaluation, and a breach to the growth plate was identified. Since very little inflammatory reaction, degenerative change, or aneurysmal, bone, cyst-like change was found, the growth plate invasion was confirmed as due to GCTB extension, not due to the preoperative biopsy.
Collapse
|
23
|
Abstract
Materials chemistry has been fundamental to the enormous field that encompasses the delivery of molecules both to desired sites and/or at desired rates and durations. The field encompasses the delivery of molecules including fertilizers, pesticides, herbicides, food ingredients, fragrances and biopharmaceuticals. A personal perspective is provided on our early work in this field that has enabled the controlled release of ionic substances and macromolecules. Also discussed are new paradigms in creating biomaterials for human use, the non-invasive delivery of molecules through the skin and lungs, the development of intelligent delivery systems and extensions to nanomedicine. With the advent of potentially newer biopharmaceutics such as siRNA, mRNA and gene editing approaches and their use being limited by delivery, future research in this field may be more critical than ever before.
Collapse
|
24
|
Takebe T, Kobayashi S, Suzuki H, Mizuno M, Chang YM, Yoshizawa E, Kimura M, Hori A, Asano J, Maegawa J, Taniguchi H. Transient vascularization of transplanted human adult-derived progenitors promotes self-organizing cartilage. J Clin Invest 2014; 124:4325-34. [PMID: 25202983 DOI: 10.1172/jci76443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/07/2014] [Indexed: 01/13/2023] Open
Abstract
Millions of patients worldwide are affected by craniofacial deformations caused by congenital defects or trauma. Current surgical interventions have limited therapeutic outcomes; therefore, methods that would allow cartilage restoration are of great interest. A number of studies on embryonic limb development have shown that chondrogenesis is initiated by cellular condensation, during which mesenchymal progenitors aggregate and form 3D structures. Here, we demonstrated efficient regeneration of avascular elastic cartilage from in vitro-grown mesenchymal condensation, which recapitulated the early stages of chondrogenesis, including transient vascularization. After transplantation of vascularized condensed progenitors into immunodeficient mice, we used an intravital imaging approach to follow cartilage maturation. We determined that endothelial cells are present inside rudimentary cartilage (mesenchymal condensation) prior to cartilage maturation. Recreation of endothelial interactions in culture enabled a recently identified population of adult elastic cartilage progenitors to generate mesenchymal condensation in a self-driven manner, without requiring the support of exogenous inductive factors or scaffold materials. Moreover, the culture-grown 3D condensed adult-derived progenitors were amenable to storage via simple freezing methods and efficiently reconstructed 3D elastic cartilage upon transplantation. Together, our results indicate that transplantation of endothelialized and condensed progenitors represents a promising approach to realizing a regenerative medicine treatment for craniofacial deformations.
Collapse
|
25
|
Criscitiello MF. What the shark immune system can and cannot provide for the expanding design landscape of immunotherapy. Expert Opin Drug Discov 2014; 9:725-39. [PMID: 24836096 DOI: 10.1517/17460441.2014.920818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Sharks have successfully lived in marine ecosystems, often atop food chains as apex predators, for nearly one and a half billion years. Throughout this period they have benefitted from an immune system with the same fundamental components found in terrestrial vertebrates like man. Additionally, sharks have some rather extraordinary immune mechanisms which mammals lack. AREAS COVERED In this review the author briefly orients the reader to sharks, their adaptive immunity, and their important phylogenetic position in comparative immunology. The author also differentiates some of the myths from facts concerning these animals, their cartilage, and cancer. From thereon, the author explores some of the more remarkable capabilities and products of shark lymphocytes. Sharks have an isotype of light chain-less antibodies that are useful tools in molecular biology and are moving towards translational use in the clinic. These special antibodies are just one of the several tricks of shark lymphocyte antigen receptor systems. EXPERT OPINION While shark cartilage has not helped oncology patients, shark immunoglobulins and T cell receptors do offer exciting novel possibilities for immunotherapeutics. Much of the clinical immunology developmental pipeline has turned from traditional vaccines to passively delivered monoclonal antibody-based drugs for targeted depletion, activation, blocking and immunomodulation. The immunogenetic tools of shark lymphocytes, battle-tested since the dawn of our adaptive immune system, are well poised to expand the design landscape for the next generation of immunotherapy products.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Texas A&M Health Science Center, Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology , Mailstop 4467, College Station, TX 77843 , USA +1 979 845 4207 ; +1 979 862 1088 ;
| |
Collapse
|
26
|
Abstract
Cartilage is unique in being established as an avascular tissue during development. Cartilage also has the property of being resistant to tumor invasion with tumors arising on the periphery of cartilage and in bone, but sparing the cartilage. These properties have been investigated for many years beginning in the 1970's. Many anti-angiogenic molecules have been isolated from cartilage in small amounts. Portions of molecules from cartilage also possess anti-angiogenic properties when released from the parent protein by degradative extracellular enzymes. This review highlights a new anti-angiogenic and anti-tumor moiety from cartilage, the NH2-propeptide of type IIB collagen. When released from the procollagen during synthesis, the propeptide has the capacity to act on its own to protect the cartilage by killing of endothelial cell, osteoclasts and tumor cells.
Collapse
Affiliation(s)
- Linda J Sandell
- Department of Orthopaedic Surgery and Department of Cell Biology and Physiology, Musculoskeletal Research Center, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
27
|
Langer RS. Guest Editorial: Prologue. Isr J Chem 2013. [DOI: 10.1002/ijch.201310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Wells LA, Valic MS, Lisovsky A, Sefton MV. Angiogenic Biomaterials to Promote Tissue Vascularization and Integration. Isr J Chem 2013. [DOI: 10.1002/ijch.201300053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Langer R. Biomaterials and biotechnology: from the discovery of the first angiogenesis inhibitors to the development of controlled drug delivery systems and the foundation of tissue engineering. J Biomed Mater Res A 2013; 101:2449-55. [PMID: 23723136 DOI: 10.1002/jbm.a.34811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/20/2013] [Indexed: 01/19/2023]
Abstract
This paper describes the discovery of the first inhibitors of angiogenesis; the discoveries that led to the development of the first biocompatible controlled release systems for macromolecules, and findings that helped to create the field of tissue engineering. In addition, new paradigms for creating biomaterials, early work on nanotechnology in medicine and intelligent drug delivery systems are discussed.
Collapse
Affiliation(s)
- Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
30
|
Wu J, Chu CC. Water insoluble cationic poly(ester amide)s: synthesis, characterization and applications. J Mater Chem B 2013; 1:353-360. [DOI: 10.1039/c2tb00070a] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Langer R. Leading the way in biomedical engineering: an interview with Robert Langer. Interview by Hannah Stanwix, Commissioning Editor. Nanomedicine (Lond) 2012; 7:1483-4. [PMID: 23148539 DOI: 10.2217/nnm.12.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Professor Robert Langer obtained his Bachelor's Degree in Chemical Engineering from Cornell University (NY, USA) in 1970. He received his Sc.D. from the Massachusetts Institute of Technology (MA, USA) in 1974. He is currently the David H Koch Institute Professor at the Massachusetts Institute of Technology. Professor Langer is a member of the Institute of Medicine of the National Academy of Sciences, the National Academy of Engineering and the National Academy of Sciences. At the age of 43 he was the youngest person in history to be elected to all three United States National Academies. Throughout his career, Professor Langer has received over 200 awards including, notably, the Charles Stark Draper Prize (considered the equivalent of the Nobel Prize for engineers), the 2008 Millennium Prize, the 2006 United States National Medal of Science and the 2012 Priestley Medal. In 1996 he was awarded the Gairdner Foundation International Award (the only engineer ever to have been awarded this accolade). Professor Langer has also been the recipient of the Lemelson-MIT prize, which he was awarded with for being "one of history's most prolific inventors in medicine." Professor Langer was selected by Time Magazine in 2001 as one of the 100 most important people in the USA. He has received honorary degrees from several universities worldwide, including Harvard University (MA, USA), the Mt. Sinai School of Medicine (NY, USA), Yale University (CT, USA), the ETH Zurich (Zurich, Switzerland), the Technion-Israel Institute of Technology (Haifa, Israel), the Hebrew University of Jerusalem (Israel), the Université Catholique de Louvain (Louvain-La-Neuve, Belgium), Rensselaer Polytechnic Institute (NY, USA), Willamette University (OR, USA), the University of Liverpool (Liverpool, UK), Bates College (ME, USA), the University of Nottingham (Nottingham, UK), Albany Medical College (NY, USA), Pennsylvania State University (PA, USA), Northwestern University (IL, USA) and Uppsala University (Uppsala, Sweden), and was awarded with the University of California San Francisco Medal in 2009. Professor Langer has founded over 20 biotechnology companies and authored more than 1175 articles. He has over 800 issued or pending patents. Professor Langer is the most cited engineer in history.
Collapse
Affiliation(s)
- Robert Langer
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Simard B, Ratel D, Dupré I, Pautre V, Berger F. Shark cartilage extract induces cytokines expression and release in endothelial cells and induces E-selectin, plasminogen and t-PA genes expression through an antioxidant-sensitive mechanism. Cytokine 2012; 61:104-11. [PMID: 23063000 DOI: 10.1016/j.cyto.2012.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/01/2012] [Accepted: 08/30/2012] [Indexed: 11/24/2022]
Abstract
Neovastat® is a standardized extract of marine cartilage, an avascular tissue, which contains many biologically active molecules and has multiple antiangiogenic properties. In addition to VEGFR2 and MMPs inhibition, shark cartilage extract (SCE) has recently been shown to induce tissue plasminogen activator gene (PLAT) expression in bovine endothelial cells in a TNF like manner, by inducing the typical mediators NF-κB and JNK. There is now compelling evidences that the NF-κB and JNK pathways are activated by cytokines induced generation of reactive oxygen species (ROS). We used macroarray genes expression analysis on human umbilical vein endothelial cells, to investigate if that mechanism could mediate the effect of SCE. Transcriptomic results showed that SCE induced expression of several cytokines. Their impact must be important, given that treatment of endothelial cells with the cytokine TNF-α was able to reproduce most of the effects of cartilage extract on genes expression. In addition, most of the genes, known to be inducible by NF-κB or JNK following cytokines stimulation, were less induced by SCE when endothelial cells were pretreated with the antioxidant N-Acetylcysteine (NAC), suggesting a role of ROS in endothelial cell activation by SCE. Finally, the possible effects of PLAT, PLG, SELE, IL8 and PRDX2 (those validated by q-PCR) on angiogenesis, will also be discussed.
Collapse
Affiliation(s)
- Bryan Simard
- Grenoble Institut des Neurosciences, INSERM U 836, Équipe 7, BP 170, F38042 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cartilage is one of the very few naturally occurring avascular tissues where lack of angiogenesis is the guiding principle for its structure and function. This has attracted investigators who have sought to understand the biochemical basis for its avascular nature, hypothesising that it could be used in designing therapies for treating cancer and related malignancies in humans through antiangiogenic applications. Cartilage encompasses primarily a specialised extracellular matrix synthesised by chondrocytes that is both complex and unique as a result of the myriad molecules of which it is composed. Of these components, a few such as thrombospondin-1, chondromodulin-1, the type XVIII-derived endostatin, SPARC (secreted protein acidic and rich in cysteine) and the type II collagen-derived N-terminal propeptide (PIIBNP) have demonstrated antiangiogenic or antitumour properties in vitro and in vivo preclinical trials that involve several complicated mechanisms that are not completely understood. Thrombospondin-1, endostatin and the shark-cartilage-derived Neovastat preparation have also been investigated in human clinical trials to treat several different kinds of cancers, where, despite the tremendous success seen in preclinical trials, these molecules are yet to show success as anticancer agents. This review summarises the current state-of-the-art antiangiogenic characterisation of these molecules, highlights their most promising aspects and evaluates the future of these molecules in antiangiogenic applications.
Collapse
|
34
|
Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, Dvorak H, Langer R. Forty-year journey of angiogenesis translational research. Sci Transl Med 2012; 3:114rv3. [PMID: 22190240 DOI: 10.1126/scitranslmed.3003149] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Forty years ago, Judah Folkman predicted that tumor growth is dependent on angiogenesis and that inhibiting this process might be a new strategy for cancer therapy. This hypothesis formed the foundation of a new field of research that represents an excellent example of how a groundbreaking scientific discovery can be translated to yield benefits for patients. Today, antiangiogenic drugs are used to treat human cancers and retinal vascular diseases. Here, we guide readers through 40 years of angiogenesis research and discuss challenges of antiangiogenic therapy.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Antiangiogenic therapies that target VEGF or its receptors have become a mainstay of cancer therapy in multiple malignancies. However, the clinical efficacy of these agents is less than originally anticipated and, in most settings, requires the addition of cytotoxic chemotherapy suggesting that, as for other targeted therapies, VEGF inhibitors will require selection of patient subpopulations to achieve maximal clinical benefit. Without the identification and use of predictive biomarkers for VEGF-targeted agents, and other agents that target the vasculature, further improvements in current clinical outcomes are unlikely. Exciting new data presented in 2011 at the ESMO conference showed that retrospective evaluation of plasma concentrations of VEGF-A predicted progression-free survival and/or overall survival benefit from bevacizumab in phase III trials in certain tumour types; prospective evaluation of the assay is required. This endeavour should be followed by further biomarker research, requiring inter-laboratory collaboration and high-quality, adequately powered clinical trials.
Collapse
|
36
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
37
|
Xie Q, Yao S, Chen X, Xu L, Peng W, Zhang L, Zhang Q, Liang XF, Hong A. A polypeptide from shark troponin I can inhibit angiogenesis and tumor growth. Mol Biol Rep 2011; 39:1493-501. [PMID: 21750912 DOI: 10.1007/s11033-011-0887-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/14/2011] [Indexed: 12/24/2022]
Abstract
The shark troponin I gene (TnI) was found for the first time in this study to inhibit endothelial cell proliferation and angiogenesis. This shark TnI had 68.9% amino acid homology with human TnI, whereas the polypeptide from Lys91 to Leu123, which is thought to be the active site of TnI, had 78.8% homology with the corresponding fragment of human TnI. However, the polypeptide of shark had higher activity to inhibit the proliferation of HUVEC and tumor cell lines than that of human TnI. To investigate the anti-angiogenesis and anti-tumor effect of the shark TnI polypeptide, the DNA sequence of polypeptide (Lys91-Leu123) of white-spot catshark TnI(psTnI) was cloned and fused with the His-SUMO cDNA, followed by expression in Escherichia coli. After its purification by Ni(2+) affinity chromatography, the fusion His-SUMO-psTnI protein was digested with the SUMO enzyme to release psTnI. The inhibitory ability of this recombinant shark TnI polypeptide for angiogenesis was confirmed by chicken embryo allantoic membrane (CAM) test and IHC analysis. It was also found by breast carcinoma xenograft study in Balb/c mice that this polypeptide could inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Simard B, Bouamrani A, Jourdes P, Pernod G, Dimitriadou V, Berger F. Induction of the fibrinolytic system by cartilage extract mediates its antiangiogenic effect in mouse glioma. Microvasc Res 2011; 82:6-17. [PMID: 21406197 DOI: 10.1016/j.mvr.2011.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 11/24/2022]
Abstract
Both the antiangiogenic and antitumoral activity of shark cartilage extracts (SCE) have been demonstrated in animal models and clinical trials. Studies reported that SCE induces the expression of tissue plasminogen activator gene (PLAT) in endothelial cells and increases the activity of the protein (t-PA) in vitro. The aim of this study was to demonstrate the crucial role of t-PA induction in the antiangiogenic and antitumor activity of SCE in experimental glioma. This study showed antiangiogenic and antitumoral effects of SCE in three mice glioma models (C6, HGD and GL26). Histological examination suggested perivascular proteolysis and edema as well as important intratumoral necrosis, which artefactually increased the tumor volume at high doses. Thus, the antiangiogenic effect of SCE correlated with the presence of t-PA and angiostatin in degenerating vessels. Functional in vivo experiments were conducted to modulate the plasminogen pathway. No antiangiogenic effect was observed on tumors overexpressing the plasminogen activator inhibitor-1 (PAI-1). Moreover, therapeutical effects were neutralized in mice that were cotreated with ε-aminocaproic acid (EACA, 120 mg/kg p.o.), an inhibitor that blocks the high-affinity lysine binding sites of both plasminogen and plasmin. In contrast, cotreatment with N-acetylcysteine (NAC, 7,5mg/kg i.p.), a sulfhydril donor that reduces plasmin into angiostatin or other antiangiogenic fragments, increased the benefit of SCE on mice survival. In subcutaneous models, NAC prevented the increase in tumor volume caused by high doses of cartilage extract. In conclusion, this study indicates that induction of t-PA by shark cartilage extract plays an essential role in its antiangiogenic activity, but that control of excessive proteolysis by a plasmin reductor could prevent edema and uncover the full benefit of shark cartilage extract in the treatment of intracranial tumors.
Collapse
Affiliation(s)
- Bryan Simard
- Grenoble Institut des Neurosciences, INSERM U 836, équipe 7, BP 170, F38042, Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
39
|
The route of metastatic vertebral tumors extending to the adjacent vertebral body: a histological study. J Orthop Sci 2011; 16:203-11. [PMID: 21360258 DOI: 10.1007/s00776-011-0031-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Each vertebra can be regarded as a compartment surrounded by several anatomically characterized barriers. However, in some cases tumors extend beyond these barriers. The route of vertical extension to the adjacent vertebrae is unclear. The extent of vertical extension of a metastatic spinal tumor is important in making the preoperative decision regarding the cranio-caudal surgical margin. The objective of this study was to investigate the route of vertical extension of metastatic vertebral tumors. METHODS We examined 20 en bloc resected metastatic vertebral bodies in which the tumors had extended outside the vertebral body. Five to eight sagittal sections including the pedicle, and the lateral and central parts of the PLL were prepared from each resected specimen. The sections were stained with hematoxylin and eosin, and elastica van Gieson. Histological examination focused on the routes of the vertical extension of the tumor at each barrier tissue and the degree of tumor extension along each route. RESULTS Vertical extension of the tumor was observed at the ALL in 6 cases, at the central part of the PLL in 14 cases, at the lateral part of the PLL in 20 cases, at the cartilaginous endplate in 3 cases, and at the periosteum on the lateral side of vertebral body in 7 cases. The tumor had extended the farthest at the lateral part of the PLL in 18 cases, at the lateral side of the vertebral body in 1 case, and through the disc in 1 case. CONCLUSIONS Metastatic vertebral tumors most commonly extend vertically at the lateral part of the PLL. The lateral part of the PLL is raised by the tumor, which extends between the PLL and the posterior aspect of the disc.
Collapse
|
40
|
Liu Y, Paliwal S, Bankiewicz KS, Bringas JR, Heart G, Mitragotri S, Prausnitz MR. Ultrasound-enhanced drug transport and distribution in the brain. AAPS PharmSciTech 2010; 11:1005-17. [PMID: 20532711 PMCID: PMC2974134 DOI: 10.1208/s12249-010-9458-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 05/13/2010] [Indexed: 11/30/2022] Open
Abstract
Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm2. In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage.
Collapse
|
41
|
Abstract
Drugs that block angiogenesis are important components of first-line therapies for a number of human cancers. However, some of these agents have undesirable effects on the patient. Optimal delivery systems must be developed to maximize clinical benefits and minimize adverse effects in cancer patients. In this Perspective, we discuss these drug-related issues and propose ways to optimize antiangiogenic therapy by the development of new drug delivery systems.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
42
|
Wang Z, Bryan J, Franz C, Havlioglu N, Sandell LJ. Type IIB procollagen NH(2)-propeptide induces death of tumor cells via interaction with integrins alpha(V)beta(3) and alpha(V)beta(5). J Biol Chem 2010; 285:20806-17. [PMID: 20439458 DOI: 10.1074/jbc.m110.118521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage is resistant to tumor invasion. In the present study, we found that the NH(2)-propeptide of the cartilage-characteristic collagen, type IIB, PIIBNP, is capable of killing tumor cells. The NH(2)-propeptide is liberated into the extracellular matrix prior to deposition of the collagen fibrils. This peptide adheres to and kills cells from chondrosarcoma and cervical and breast cancer cell lines via the integrins alpha(v)beta(5) and alpha(v)beta(3). Adhesion is abrogated by blocking with anti alpha(v)beta(5) and alpha(v)beta(3) antibodies. When alpha(v) is suppressed by small intefering RNA, adhesion and cell killing are blocked. Normal chondrocytes from developing cartilage do not express alpha(v)beta(3) and alpha(v)beta(5) integrins and are thus protected from cell death. Morphological, DNA, and biochemical evidence indicates that the cell death is not by apoptosis but probably by necrosis. In an assay for invasion, PIIBNP reduced the number of cells crossing the membrane. In vivo, in a tumor model for breast cancer, PIIBNP was consistently able to reduce the size of the tumor.
Collapse
Affiliation(s)
- Zhepeng Wang
- Department of Orthopedic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MI 63110, USA
| | | | | | | | | |
Collapse
|
43
|
Robert S. Langer. Angew Chem Int Ed Engl 2009; 48:6760-2. [DOI: 10.1002/anie.200904208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Robert S. Langer. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Langer R. The evolution of biomaterials. Interview by Alison Stoddart and Victoria Cleave. NATURE MATERIALS 2009; 8:444-445. [PMID: 19458638 DOI: 10.1038/nmat2447] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
46
|
Langer R. A conversation with Robert Langer: pioneering biomedical scientist and engineer. Interview by Paul S. Weiss. ACS NANO 2009; 3:756-61. [PMID: 19397341 DOI: 10.1021/nn900350p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
47
|
Abstract
Microvascular permeability is a pharmacologic indicator of tumor response to therapy, and it is expected that this biomarker will evolve into a clinical surrogate endpoint and be integrated into protocols for determining patient response to antiangiogenic or antivascular therapies. This review discusses the physiological context of vessel permeability in an imaging setting, how it is affected by active and passive transport mechanisms, and how it is described mathematically for both theoretical and complex dynamic microvessel membranes. Many research groups have established dynamic-enhanced imaging protocols for estimating this important parameter. This review discusses those imaging modalities, the advantages and disadvantages of each, and how they compare in terms of their ability to deliver information about therapy-associated changes in microvessel permeability in humans. Finally, this review discusses future directions and improvements needed in these areas.
Collapse
Affiliation(s)
- Dominique Jennings
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona
| | | | - Robert J. Gillies
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona
- Department of Physiology, The University of Arizona, Tucson, Arizona
- Department of Biochemistry, The University of Arizona, Tucson, Arizona
- Department of Radiology, The University of Arizona, Tucson, Arizona
| |
Collapse
|
48
|
A review of Judah Folkman's remarkable achievements in biomedicine. Proc Natl Acad Sci U S A 2008; 105:13203-5. [PMID: 18772371 DOI: 10.1073/pnas.0806582105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Abstract
Development of therapies based on the growth inhibition of new blood vessels is among the most intensively studied approaches to the treatment of cancer and other angiogenesis-related diseases. Shark cartilage has been proven to have inhibitory effects on the endothelial cell angiogenesis, metastasis, cell adhesion and MMP (matrix metalloprotease) activity. In the present study, we have used a chromatography-based procedure for the isolation and partial purification of a shark cartilage protein fraction containing anti-angiogenesis activity. Proteins were extracted in 4 M guanidinium chloride, followed by sequential anion- and cation-exchange column chromatography. Angiogenesis assays were performed using the rat aortic ring and chick CAM (chorioallantoic membrane) assay models. The results show that the final fraction contains two proteins with molecular masses of 14.7 and 16 kDa. The protein fraction is able to block microvessel sprouting in the collagen-embedded rat aortic ring assay in vitro and inhibition of capillary sprouting in the CAM assay in vivo. It is suggested that these are partially purified anti-angiogenesis proteins, which have further biotechnological or biomedical applications.
Collapse
|
50
|
Folkman J, Taylor S, Spillberg C. The role of heparin in angiogenesis. CIBA FOUNDATION SYMPOSIUM 2008; 100:132-49. [PMID: 6197257 DOI: 10.1002/9780470720813.ch9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of experiments is described in which: (i) mast cells were found to accumulate at a tumour site before the ingrowth of new capillaries; (ii) heparin released by mast cells increased the migration of capillary endothelial cells in vitro; and (iii) heparin enhanced tumour angiogenesis in vivo. These experiments led to the discovery that protamine and platelet factor 4 are angiogenesis inhibitors. This finding suggests a central role for heparin or related glycosaminoglycans in the growth regulation of capillary blood vessels.
Collapse
|