1
|
Wang Y, Wu H, Gao H, Ren Q, Ni K, Liu S, Ma W, Wang J, Liu Z, Liu R. Hybrid Thin Film Encapsulation for Improving the Stability of PbS Quantum Dot Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404984. [PMID: 39031101 DOI: 10.1002/smll.202404984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Indexed: 07/22/2024]
Abstract
The instability to moisture, heat, and ultraviolet (UV) light is the main problem in the application of quantum dot solar cells (QDSCs). Thin film encapsulation can effectively improve their operational stability. However, it is difficult to achieve multiple barrier effects with single layer of encapsulated film. Here, a hybrid thin-film encapsulation strategy is reported to encapsulate lead sulfide QDSCs, which can isolate moisture and partial thermal, and prevent the penetration of UV light, thus retarding the surface oxidation process of the quantum dots. After 60 h, the encapsulated device retains a normalized power conversion efficiency of 83.8% and 80.6% at 85% humidity and 75 °C, respectively, which is three and six times of the value obtained in unencapsulated devices. At continuous UV illumination, encapsulated device exhibits five times higher stability than the reference. This strategy provides the way for the overall improvement of the operating stability of lead sulfide QDSCs in harsh environments of high humidity, high temperature, and UV light.
Collapse
Affiliation(s)
- Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Haotian Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qinyi Ren
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kun Ni
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shanfei Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianxiang Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Zeke Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
2
|
Chen S, Zu B, Wu L. Optical Applications of CuInSe 2 Colloidal Quantum Dots. ACS OMEGA 2024; 9:43288-43301. [PMID: 39494032 PMCID: PMC11525504 DOI: 10.1021/acsomega.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 11/05/2024]
Abstract
The distinctive chemical, physical, electrical, and optical properties of semiconductor quantum dots (QDs) make them a highly fascinating nanomaterial that has been extensively studied. The CuInSe2 (CIS) QDs demonstrates great potential as a nontoxic alternative to CdSe and PbSe QDs for realizing high-performance solution-processed semiconductor devices. The CIS QDs show strong light absorption and bright emission across the visible and infrared spectrum and have been designed to exhibit optical gain. The special characteristics of these properties are of great significance in the fields of solar energy conversion, display, and electronic devices. Here, we present a comprehensive overview of the potential applications of colloidal CIS QDs in various fields, with a particular focus on solar energy conversion (such as QD solar cells, QD-sensitized solar cells, and QD luminescence solar concentrators), solar-to-hydrogen production (such as photocatalytic and photoelectrochemical H2 production), and QD electronics (such as QD transistors, QD light-emitting diodes, and QD photodetectors). Furthermore, we offer our insights into the current challenges and future opportunities associated with CIS QDs for further research.
Collapse
Affiliation(s)
- Song Chen
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Bingqian Zu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Liang Wu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| |
Collapse
|
3
|
Ćwilich A, Larowska-Zarych D, Kowalik P, Polok K, Bujak P, Duda M, Kazimierczuk T, Gadomski W, Pron A, Kłopotowski Ł. Carrier Dynamics and Recombination Pathways in Ag-In-Zn-S Quantum Dots. J Phys Chem Lett 2024; 15:10479-10487. [PMID: 39392672 PMCID: PMC11514015 DOI: 10.1021/acs.jpclett.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Strong tolerance to off-stoichiometry of group I-III-VI semiconductors in their nanocrystal form allows fabrication of multinary, alloyed structures of desired properties. In particular, alloyed Cu-In-Zn-S and Ag-In-Zn-S quantum dots (QDs) have recently emerged as efficient fluorophors, in which tailoring the composition allows tuning the optical properties, and achieving photoluminescence (PL) quantum yields approaching unity. However, poor understanding of the carrier recombination mechanism in these materials limits their further development. In this work, by studying transient absorption and temperature dependent PL on bare QDs and QDs conjugated with electron scavenger molecules, we obtain a detailed picture of carrier dynamics. Our results challenge the prevailing assumption that the PL is due to a donor-acceptor-pair transition. We show that the PL occurs as a result of a recombination of a delocalized electron with a localized hole.
Collapse
Affiliation(s)
- Adam Ćwilich
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | | | - Patrycja Kowalik
- Faculty
of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Kamil Polok
- Faculty
of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Piotr Bujak
- Faculty
of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Magdalena Duda
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | | | | | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | |
Collapse
|
4
|
Sheikh T, Mir WJ, Alofi A, Skoroterski M, Zhou R, Nematulloev S, Hedhili MN, Hassine MB, Khan MS, Yorov KE, Hasanov BE, Liao H, Yang Y, Shamim A, Abulikemu M, Mohammed OF, Bakr OM. Surface-Reconstructed InAs Colloidal Nanorod Quantum Dots for Efficient Deep-Shortwave Infrared Emission and Photodetection. J Am Chem Soc 2024; 146:29094-29103. [PMID: 39385061 DOI: 10.1021/jacs.4c10755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Shortwave infrared (SWIR) light emitters and detectors are crucial in numerous applications. Conventionally, SWIR devices rely on epitaxially grown narrow bandgap semiconductors, such as InGaAs, which are expensive to fabricate and difficult to integrate with silicon complementary metal-oxide-semiconductors (CMOS). Colloidal quantum dots (CQDs) have emerged as low-cost alternatives to epitaxially grown semiconductors, offering integration with CMOS through solution-processing methods. However, the predominant SWIR-active CQD systems rely on heavy-metal-containing compositions (PbS and HgTe), hindering the adoption of CQD SWIR technology. InAs CQDs are promising substitutes in SWIR applications. However, synthesizing SWIR-active InAs CQDs is challenging, often constraining them to the visible or near-infrared regions. To achieve SWIR bandgaps, large InAs CQDs are typically required; such CQDs are prone to having surface traps that quench photogenerated charge carriers, adversely affecting device performance. Here, we report a two-step synthesis of surface-passivated SWIR-active InAs/ZnSe core/shell colloidal nanorod quantum dots (CNQDs). These surface-passivated CNQDs are highly emissive and tunable over the entire technologically important region (1200-1800 nm) of the SWIR window with photoluminescence quantum yields as high as 60%. Using these SWIR-active InAs/ZnSe CNQDs, we demonstrated an SWIR-active InAs CQD photodetector, achieving a record high external quantum efficiency of ∼15% at ∼1450 nm and a low dark current of ∼10-2 mA/cm2.
Collapse
Affiliation(s)
- Tariq Sheikh
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wasim J Mir
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdulilah Alofi
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Maksim Skoroterski
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Renqian Zhou
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Saidkhodzha Nematulloev
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Nejib Hedhili
- KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Ben Hassine
- KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mudeha Shafat Khan
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khursand E Yorov
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bashir E Hasanov
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hanguang Liao
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yiming Yang
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Atif Shamim
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Fu Z, Musolino SF, Qing W, Li H, de Zwart FJ, Zheng Z, Cai M, Gao Y, de Bruin B, Dai X, Wulff JE, Zhang H. Direct Photopatterning of Colloidal Quantum Dots with Electronically Optimized Diazirine Cross-Linkers. J Am Chem Soc 2024; 146:28895-28905. [PMID: 39381921 DOI: 10.1021/jacs.4c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Colloidal quantum dots (QDs) with a wide color gamut and high luminescent efficiency are promising for next-generation electronic and photonic devices. However, precise and scalable patterning of QDs without degrading their properties and their integration into commercially relevant devices, such as digitally addressable QD light-emitting diode (QLED) displays, remain challenging. Here, we develop electronically optimized diazirine-based cross-linkers for nondestructive, direct photopatterning of QDs and, ultimately, building the active-matrix QLED displays. The key to the cross-linker design is the introduction of electron-donating substituents that permit the formation of ground-state singlet carbenes for air-stable and benign QD photopatterning. Under ambient conditions, these cross-linkers enable the patterning of heavy metal-free QDs at a resolution of over 13,000 pixels per inch using commercial i-line photolithography. The patterned QD layers fully preserved their optical and optoelectronic properties. Pixelated electroluminescent devices with patterned InP/ZnSe/ZnS QD layers show a peak external quantum efficiency of 15.3% and a maximum luminance of about 40,000 cd m-2, outperforming those made by existing QD patterning approaches. We further show the seamless integration of patterned QLEDs with thin-film transistor circuits and the fabrication of dual-color active-matrix displays. These results underscore the importance of designing photochemistry for QD patterning, and promise the implementation of direct photopatterning methods in manufacturing commercial QLED displays and other integrated QD device platforms.
Collapse
Affiliation(s)
- Zhong Fu
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Stefania F Musolino
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- XLYNX Materials, Inc., Victoria, British Columbia V8P 5C2, Canada
| | - Wenyue Qing
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Zhi Zheng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Mingfeng Cai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Hao Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Frank K, Henke NA, Lampe C, Lorenzen T, März B, Sun X, Haas S, Gutowski O, Dippel AC, Mayer V, Müller-Caspary K, Urban AS, Nickel B. Antisolvent controls the shape and size of anisotropic lead halide perovskite nanocrystals. Nat Commun 2024; 15:8952. [PMID: 39420017 PMCID: PMC11486954 DOI: 10.1038/s41467-024-53221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Colloidal lead halide perovskite nanocrystals have potential for lighting applications due to their optical properties. Precise control of the nanocrystal dimensions and composition is a prerequisite for establishing practical applications. However, the rapid nature of their synthesis precludes a detailed understanding of the synthetic pathways, thereby limiting the optimisation. Here, we deduce the formation mechanisms of anisotropic lead halide perovskite nanocrystals, 1D nanorods and 2D nanoplatelets, by combining in situ X-ray scattering and photoluminescence spectroscopy. In both cases, emissive prolate nanoclusters form when the two precursor solutions are mixed. The ensuing antisolvent addition induces the divergent anisotropy: The intermediate nanoclusters are driven into a dense hexagonal mesophase, fusing to form nanorods. Contrastingly, nanoplatelets grow freely dispersed from dissolving nanoclusters, stacking subsequently in lamellar superstructures. Shape and size control of the nanocrystals are determined primarily by the antisolvent's dipole moment and Hansen hydrogen bonding parameter. Exploiting the interplay of antisolvent and organic ligands could enable more complex nanocrystal geometries in the future.
Collapse
Affiliation(s)
- Kilian Frank
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Nina A Henke
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Carola Lampe
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Tizian Lorenzen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Benjamin März
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Xiao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | - Sylvio Haas
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | | | - Veronika Mayer
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Knut Müller-Caspary
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany.
| | - Bert Nickel
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany.
| |
Collapse
|
7
|
Han L, Ma Z, Wang Z, Zhang Z, Yang X, Tang Z, Liu T, Jiang J, Zhang Y, Yang H. Ternary Ag 3AuS 2 Nanocrystals for Thin-Film Solar Cells. Inorg Chem 2024; 63:19382-19389. [PMID: 39348238 DOI: 10.1021/acs.inorgchem.4c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The concept of clean and pollution-free energy development has promoted the rise of environmentally friendly silver-based chalcogenide nanocrystal (NC) solar cells, but currently reported silver-based NCs need complex synthesis processes at high temperatures that may bring zerovalent noble metal impurities for their high redox potentials. In this study, we report a facile synthesis of novel Ag3AuS2 NCs by injecting highly active oleylamine sulfur complexes as sulfur sources into metal precursor solutions at low temperatures of 60 °C. The obtained Ag3AuS2 NCs exhibit broad absorption spectra and high molar extinction coefficients (106 M-1 cm-1). Then, the Ag3AuS2 NCs are applied as the light-absorbing active layer in environmentally friendly thin-film solar cells. By introducing a hybrid mixture of charge acceptors and donors (NCs/P3HT hybrid film) at the interface, the device gains an absorption increment and enhanced charge extraction, achieving a final power conversion efficiency of 3.38%. This work demonstrates the enormous potential of Ag3AuS2 NCs from low-temperature preparation for photovoltaic applications.
Collapse
Affiliation(s)
- Liangri Han
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixuan Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ziyan Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaoyu Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tong Liu
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
8
|
Badoni S, Terlecki M, Carret S, Poisson JF, Charpentier T, Okuno H, Wolska-Pietkiewicz M, Lee D, Lewiński J, De Paëpe G. Atomic-Level Structure of the Organic-Inorganic Interface of Colloidal ZnO Nanoplatelets from Dynamic Nuclear Polarization-Enhanced NMR. J Am Chem Soc 2024; 146:27655-27667. [PMID: 39321384 DOI: 10.1021/jacs.4c09113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Colloidal semiconductor nanoplatelets (NPLs) have emerged as a new class of nanomaterials that can exhibit substantially distinct optical properties compared to those of isotropic quantum dots, which makes them prime candidates for new-generation optoelectronic devices. Insights into the structure and anisotropic growth of NPLs can offer a blueprint for their controlled fabrication. Here, we present an atomic-level investigation of the organic-inorganic interface structure in ultrathin and stable benzamidine (bza)-supported ZnO NPLs prepared by the modified one-pot self-supporting organometallic approach. High-resolution transmission electron microscopy analysis showed a well-faceted hexagonal shape of ZnO NPLs with lateral surfaces terminated by nonpolar (101̅0) facets. The basal surfaces are flat and well-formed on one side and corrugated on the other side, which indicates that the layer-by-layer growth in the thickness of the NPLs likely occurs only in one direction via the expansion of 2D islands on the surface. The ligand coordination modes were elucidated using state-of-the-art dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy supported by density functional theory chemical shift calculations. Specifically, it was found that (101̅0) nonpolar facets are stabilized by neutral L-type bza-H ligands with hydrogen bond-supported η1-coordination mode, while polar (0001) and (0001̅) facets are covered by μ2-coordinated X-type anionic bza ligands with different conformations of aromatic rings. Moreover, the ligand packing on (101̅0) lateral facets was determined using 13C natural abundance (∼1.1%) homonuclear dipolar correlation experiments. Overall, an in-depth understanding of the growth mechanism and the unique bimodal X-type/L-type ligand coordination shell of ZnO NPLs is provided, which will facilitate further design of anisotropic nano-objects.
Collapse
Affiliation(s)
- Saumya Badoni
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| | - Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | | - Thibault Charpentier
- CEA, CNRS, NIMBE, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette 91191 Cedex, France
| | - Hanako Okuno
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| | | | - Daniel Lee
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Gaël De Paëpe
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
9
|
Vighnesh K, Sergeev AA, Hassan MS, Portniagin AS, Sokolova AV, Zhu D, Sergeeva KA, Kershaw SV, Wong KS, Rogach AL. Red-Emitting CsPbI 3/ZnSe Colloidal Nanoheterostructures with Enhanced Optical Properties and Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400745. [PMID: 38804826 DOI: 10.1002/smll.202400745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Producing heterostructures of cesium lead halide perovskites and metal-chalcogenides in the form of colloidal nanocrystals can improve their optical features and stability, and also govern the recombination of charge carriers. Herein, the synthesis of red-emitting CsPbI3/ZnSe nanoheterostructures is reported via an in situ hot injection method, which provides the crystallization conditions for both components, subsequently leading to heteroepitaxial growth. Steady-state absorption and photoluminescence studies alongside X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence on a type-I band alignment for CsPbI3/ZnSe nanoheterostructures, which exhibit photoluminescence quantum yield of 96% due to the effective passivation of surface defects, and an enhancement in carrier lifetime. Furthermore, the heterostructure growth of ZnSe domains leads to significant improvement in the stability of the CsPbI3 nanocrystals under ambient conditions and against thermal and UV irradiation stress.
Collapse
Affiliation(s)
- Kunnathodi Vighnesh
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Aleksandr A Sergeev
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Md Samim Hassan
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Arsenii S Portniagin
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Anastasiia V Sokolova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Ding Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Kseniia A Sergeeva
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
10
|
Wang B, Hu H, Yuan M, Yang J, Liu J, Gao L, Zhang J, Tang J, Lan X. Short-Wave Infrared Detection and Imaging Employing Size-Customized HgTe Nanocrystals. SMALL METHODS 2024; 8:e2301557. [PMID: 38381091 DOI: 10.1002/smtd.202301557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Indexed: 02/22/2024]
Abstract
HgTe nanocrystals (NCs) possess advantages including tunable infrared absorption spectra, solution processability, and low fabrication costs, offering new avenues for the advancement of next-generation infrared detectors. In spite of great synthetic advances, it remains essential to achieve customized synthesis of HgTe NCs in terms of industrial applications. Herein, by taking advantage of a high critical nucleation concentration of HgTe NCs, a continuous-dropwise (CD) synthetic approach that features the addition of the anion precursors in a feasible drop-by-drop fashion is demonstrated. The slow reaction dynamics enable size-customized synthesis of HgTe NCs with sharp band tails and wide absorption range fully covering the short- and mid-infrared regions. More importantly, the intrinsic advantages of CD process ensure high-uniformity and scale-up synthesis from batch to batch without compromising the excitonic features. The resultant HgTe nanocrystal photodetectors show a high room-temperature detectivity of 8.1 × 1011 Jones at 1.7 µm cutoff absorption edge. This CD approach verifies a robust method for controlled synthesis of HgTe NCs and might have important implications for scale-up synthesis of other nanocrystal materials.
Collapse
Affiliation(s)
- Binbin Wang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Huicheng Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Mohan Yuan
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Ji Yang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
| | - Liang Gao
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jianbing Zhang
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Tang
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xinzheng Lan
- School of Optical and Electronic Information (OEI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
11
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
12
|
Li X, Tong X, Xia L, Zhao H, Luo J, Li Z, Wang ZM. Modulating Eco-friendly Colloidal AgGaS 2 Quantum Dots for Highly Efficient Photodetection and Image Sensing via Direct Growth of Ternary AgInS 2 Shell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404261. [PMID: 39344213 DOI: 10.1002/smll.202404261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Tailoring the optoelectronic characteristics of colloidal quantum dots (QDs) by constructing a core/shell structure offers the potential to achieve high-performing solution-processed photoelectric conversion and information processing applications. In this work, the direct growth of wurtzite ternary AgInS2 (AIS) shell on eco-friendly AgGaS2 (AGS) core QDs is realized, giving rise to broadened visible light absorption, prolonged exciton lifetime and enhanced photoluminescence quantum yield (PLQY). Ultrafast transient absorption spectroscopy demonstrats that the photoinduced carrier separation and transfer kinetics of AGS QDs are significantly optimized following the AIS shell coating. As-synthesized environmentally benign AGS/AIS core/shell QDs are employed to fabricate photodetectors (PDs), showing a remarkable responsivity of 38.4 A W-1 and a detectivity of 2.4 × 1012 Jones under visible light illumination (405 nm). Moreover, the fabricated QDs-PDs exhibit superior image-sensing capability to record complex patterns with high resolution (160 × 160 pixels) under visible light illumination at 405 and 532 nm. The findings indicate that the direct growth of multinary narrow-band shell materials on eco-friendly QDs holds great promise to implement future "green", cost-effective and high-performance optoelectronic sensing/imaging systems.
Collapse
Affiliation(s)
- Xin Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- School of Electrical and Information Engineering, Panzhihua University, Panzhihua, 617000, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Li Xia
- School of Electrical and Information Engineering, Panzhihua University, Panzhihua, 617000, P. R. China
| | - Hongyang Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jingyin Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhuojian Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|
13
|
Xiang W, Bai C, Zhang Z, Gu B, Wang X, Zhang J. Modulation of High-Intensity Optical Properties in CdS/CdSe/CdS Spherical Quantum Wells by CdSe Layer Thickness. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1568. [PMID: 39404295 PMCID: PMC11478250 DOI: 10.3390/nano14191568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Spherical quantum wells (SQWs) have proven to be excellent materials for suppressing Auger recombination due to their expanded confinement volume. However, research on the factors and mechanisms of their high-intensity optical properties, such as multiexciton properties and third-order optical nonlinearities, remains incomplete, limiting further optimization of these properties. Here, a series of CdS/CdSe (xML)/CdS SQWs with varying CdSe layer thicknesses were prepared. The modulation effects of CdSe shell variations on the PL properties, defect distribution, biexciton binding energy, and third-order optical nonlinearities of the SQWs were investigated, and their impact on the material's multiexciton properties was further analyzed. Results showed that the typical CdS/CdSe(3ML)/CdS sample exhibited a large volume-normalized two-photon absorption cross-section (18.17 × 102 GM/nm3) and favorable biexciton characteristics. Optical amplification was observed at 12.4 μJ/cm2 and 1.02 mJ/cm2 under one-photon (400 nm) and two-photon (800 nm) excitation, respectively. Furthermore, different amplified spontaneous emission spectra were observed for the first time under one/two-photon excitation. This phenomenon was attributed to thermal effects overcoming the biexciton binding energy. This study provides valuable insights for further optimizing multiexciton gain characteristics in SQWs and developing optical gain applications.
Collapse
Affiliation(s)
- Wenbin Xiang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; (W.X.); (C.B.); (B.G.)
| | - Chunzheng Bai
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; (W.X.); (C.B.); (B.G.)
| | - Zhen Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University, Nanjing 210093, China; (Z.Z.); (X.W.)
| | - Bing Gu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; (W.X.); (C.B.); (B.G.)
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University, Nanjing 210093, China; (Z.Z.); (X.W.)
| | - Jiayu Zhang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; (W.X.); (C.B.); (B.G.)
| |
Collapse
|
14
|
Ding T, Song YM, Wang MW, Liu H, Jiang J, Xu JC, Liu HC, Ng KW, Wang SP. Atomic Layer-Deposited Silane Coupling Agent for Interface Passivation of Quantum Dot Light-Emitting Diodes. J Phys Chem Lett 2024; 15:9233-9238. [PMID: 39226074 PMCID: PMC11403656 DOI: 10.1021/acs.jpclett.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inserting an insulating layer between the charge transport layer (CTL) and quantum dot emitting layer (QDL) is widely used in improving the performance of quantum dot light-emitting diodes (QLEDs). However, the additional layer inevitably leads to energy loss and joule heat. Herein, a monolayer silane coupling agent is used to modify the said interfaces via the self-limiting adsorption effect. Because the ultrathin layers induce negligible series resistance to the device, they can partially passivate the interfacial defects on the electron transport side and help confine the electrons within the QDL on the hole transport side. These interfacial modifications can not only suppress the nonradiative recombination but also slow down the aging of the hole transport layer. The findings here underline a low-temperature adsorption-based strategy for effective interfacial modification which can be used in any layer-by-layer device structures.
Collapse
Affiliation(s)
- Ting Ding
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Yin-Man Song
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Meng-Wei Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Hang Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Jing Jiang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Jin-Cheng Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Hong-Chao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Kar-Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
15
|
Ferraresi LJA, Kara G, Burnham NA, Furrer R, Dirin DN, La Mattina F, Kovalenko MV, Calame M, Shorubalko I. AFM-IR of Electrohydrodynamically Printed PbS Quantum Dots: Quantifying Ligand Exchange at the Nanoscale. NANO LETTERS 2024; 24:10908-10914. [PMID: 39168468 PMCID: PMC11378332 DOI: 10.1021/acs.nanolett.4c02631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD structures. However, achieving a complete bulk exchange is challenging, and the conventional vibrational analysis lacks the required spatial resolution. Infrared nanospectroscopy enables quantitative analysis of vibrational signals and structural topography on the nanometer scale upon ligand substitution on lead sulfide cQDs. A solution of ethanedithiol led to rapid (∼60 s) exchange of ≤90% of the ligands, in structures up to ∼750 nm thick. Prolonged exposures (>1 h) caused the degradation of the microstructures, with a systematic removal of cQDs regulated by surface:bulk ratios and solvent interactions. This study establishes a method for the development of devices through a combination of tunable photoactive materials, additive manufacturing of microstructures, and their quantitative nanometer-scale analysis.
Collapse
Affiliation(s)
- Lorenzo J A Ferraresi
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gökhan Kara
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Nancy A Burnham
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Departments of Physics and Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
- Concrete and Asphalt Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Roman Furrer
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N Dirin
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Fabio La Mattina
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Michel Calame
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department of Physics and Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Ivan Shorubalko
- Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
16
|
Al Mahfuz MM, Islam R, Ko DK. Artificial Amacrine Retinal Circuits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46454-46460. [PMID: 39169757 DOI: 10.1021/acsami.4c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Event-based imaging represents a new paradigm in visual information processing that addresses the speed and energy efficiency shortcomings inherently present in the current complementary metal oxide semiconductor-based machine vision. Realizing such imaging systems has previously been sought using very large-scale integration technologies that have complex circuitries consisting of many photodiodes, differential amplifiers, capacitors, and resistors. Here, we demonstrate that event-driven sensing can be achieved using a simple one-resistor, one-capacitor (1R1C) circuit, where the capacitor is modified with colloidal quantum dots (CQDs) to have a photoresponse. This sensory circuit emulates the motion-tracking function of the biological retina, in which the amacrine cells in the bipolar-to-ganglion synaptic pathway produce a transient spiking signal only in response to changes in light intensity but remain inactive under constant illumination. When extended to a 2D imaging array, the individual sensors work independently and output signals only when a change in the light intensity is detected; hence, the concept of the frame in image processing is thereby removed. In this work, we present the fabrication and characterization of a CQD photocapacitor-based 1R1C circuit that has a spectral response at 1550 nm in the short-wave infrared (SWIR). We report on the key performance parameters including peak responsivity, noise, and optical noise equivalent power and discuss the operating mechanism that is responsible for spiking responses in these artificial retinal circuits. The present work sets the foundation for expanding the bioinspired vision sensor capability toward midwave infrared (MWIR) and long-wave infrared (LWIR) spectral regions that are invisible to human eyes and mainstream semiconductor technologies.
Collapse
Affiliation(s)
- Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Rakina Islam
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
17
|
Lee EJ, Lee W, Yun TH, You HR, Kim HJ, Yu HN, Kim SK, Kim Y, Ahn H, Lim J, Yim C, Choi J. Suppression of Thermally Induced Surface Traps in Colloidal Quantum Dot Solids via Ultrafast Pulsed Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400380. [PMID: 38564784 DOI: 10.1002/smll.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Thermal annealing (TA) of colloidal quantum dot (CQD) films is considered an important process for recent high-performing CQD solar cells (SCs) due to its beneficial effects on CQD solids, including enhanced electrical conductivity, denser packing of CQD films, and the removal of organic residues and solvents. However, the conventional TA for CQDs, which requires several minutes, leads to hydroxylation and oxidation on the CQD surface, resulting in the formation of trap states and a subsequent decline in SC performance. To address these challenges, this study introduces a flashlight annealing (FLA) technique that significantly reduces the annealing time to the millisecond scale. Through the FLA approach, it successfully suppressed hydroxylation and oxidation, resulting in decreased trap states within the CQD solids while simultaneously preserving their charge transport properties. As a result, CQD SCs treated with FLA exhibited a notable improvement, achieving an open-circuit voltage of 0.66 V compared to 0.63 V in TA-treated devices, leading to an increase in power conversion efficiency from 12.71% to 13.50%.
Collapse
Affiliation(s)
- Eon Ji Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Wonjong Lee
- Graduate School of Energy Science and Technology, Chungnam National University (CNU), 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Tae Ho Yun
- Department of Precision Mechanical Engineering, Kyungpook National University (KNU), 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk, 37224, Republic of Korea
| | - Hyung Ryul You
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hae Jeong Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Han Na Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Soo-Kwan Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Younghoon Kim
- Department of Applied Chemistry, Kookmin University (KMU), Seoul, 02707, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory (PAL), 80, Jigok-ro 127 beon-gil, Nam-gu, Gyeongsangbuk-do, Pohang-si, 37673, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University (CNU), 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Changyong Yim
- Department of Energy Chemical Engineering, Kyungpook National University (KNU), 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk, 37224, Republic of Korea
- Convergence Research Center of Mechanical and Chemical Engineering (CRCMCE), Kyungpook National University (KNU), 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk, 37224, Republic of Korea
- Department of Advanced Science and Technology Convergence, Kyungpook National University (KNU), 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk, 37224, Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
18
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
19
|
Hu S, Huang J, Arul R, Sánchez-Iglesias A, Xiong Y, Liz-Marzán LM, Baumberg JJ. Robust consistent single quantum dot strong coupling in plasmonic nanocavities. Nat Commun 2024; 15:6835. [PMID: 39122720 PMCID: PMC11315915 DOI: 10.1038/s41467-024-51170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Strong coupling between a single quantum emitter and an optical cavity (at rate Ω) accesses fundamental quantum optics and provides an essential building block for photonic quantum technologies. However, the minimum mode volume of conventional dielectric cavities restricts their operation to cryogenic temperature for strong coupling. Here we harness surface self-assembly to make deterministic strong coupling at room temperature using CdSe/CdS quantum dots (QDs) in nanoparticle-on-mirror (NPoM) plasmonic nanocavities. We achieve a fabrication yield of ~70% for single QD strong coupling by optimizing their size and nano-assembly. A clear and reliable Rabi splitting is observed both in the scattering of each nanocavity and their photoluminescence, which are however not equal. Integrating these quantum elements with electrical pumping allows demonstration of strong coupling in their electroluminescence. This advance provides a straightforward way to achieve practical quantum devices at room temperature, and opens up exploration of their nonlinear, electrical, and quantum correlation properties.
Collapse
Affiliation(s)
- Shu Hu
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, China.
| | - Junyang Huang
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Rakesh Arul
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Yuling Xiong
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jeremy J Baumberg
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
21
|
Yue L, Li J, Yao C, Chen J, Yan C, Wang X, Cao J. Nonequilibrium Lattice Dynamics of Individual and Attached PbSe Quantum Dots under Photoexcitation. J Phys Chem Lett 2024; 15:7667-7673. [PMID: 39037601 DOI: 10.1021/acs.jpclett.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Quantum dot (QD) solids are emerging materials for many optoelectronic applications. To enhance interdot coupling and charge transport, surface ligands can be removed, allowing individual QDs to be attached along specific crystal orientations (termed "oriented attachment"). Optimizing the electronic and optical properties of QD solids demands a comprehensive understanding of the nanoscale energy flow in individual and attached QDs under photoexcitation. In this work, we employed ultrafast electron diffraction to directly measure how oriented attachment along ⟨100⟩ directions affects the nonequilibrium lattice dynamics of lead selenide QDs. The oriented attachment anisotropically alters the ultrafast energy relaxation along specific crystal axes. Along the ⟨100⟩ directions, both the lattice deformation and atomistic random motions are suppressed in comparison with those of individual QDs. Conversely, the effects are enhanced along the unattached ⟨111⟩ directions due to ligand removal. The oriented attachment switches the major lattice thermalization pathways from ⟨100⟩ to ⟨111⟩ directions.
Collapse
Affiliation(s)
- Luye Yue
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjun Li
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changyuan Yao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Yan
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jianming Cao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
22
|
Derelli D, Frank K, Grote L, Mancini F, Dippel AC, Gutowski O, Nickel B, Koziej D. Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X-Ray Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311714. [PMID: 38501853 DOI: 10.1002/smll.202311714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.
Collapse
Affiliation(s)
- Davide Derelli
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Kilian Frank
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lukas Grote
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Federica Mancini
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- Current affiliation: National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, CNR - ISSMC (former ISTEC), 64 I-48018, Via Granarolo, FAENZA (RA), Italy
| | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Dorota Koziej
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| |
Collapse
|
23
|
Li S, Fan W, Chen Q, Zhang X. Facile Light-Driven Synthesis of Highly Luminous Sulfur Quantum Dots for Fluorescence Sensing and Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39074383 DOI: 10.1021/acsami.4c05739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Sulfur quantum dots (SQDs) are emerging fluorescent nanomaterials, whereas most of the methods for synthesizing SQDs are limited to thermal synthesis. In this study, we report the first case of a light-driven strategy for facile synthesis of SQDs and further applied the SQDs for fluorescence cell imaging. The light-driven synthesis strategy only utilized Na2S as the sulfur source and nano-TiO2 as the photosensitizer. Under ultraviolet illumination, the nano-TiO2 photosensitizer generated a large number of •O2- and •OH to oxidize S2- to Sx2- and further to elemental sulfur, which could be obtained as monodispersed SQDs after etching by H2O2. The prepared SQDs exhibit excellent tunable photoluminescence properties, superior stability, and a uniform small size, with particle diameters in the range of 0.5-4 nm, and the fluorescence absolute quantum yield is as high as 27.8%. Meanwhile, the prepared SQDs also exhibited extreme biocompatibility and stability, and we further applied it for intracellular imaging and Hg2+ sensing with satisfactory results. In comparison to the widely reported thermal synthesis, the light-driven synthesis method is greener and simpler, opening a new way for the preparation of biocompatible SQDs.
Collapse
Affiliation(s)
- Sheng Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China
| | - Wentong Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China
| | - Qiulin Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China
| |
Collapse
|
24
|
Li X, Zhao J, Xiao H, Zhang H, Zhou M, Zhang X, Yan X, Tang A, Chen L. Multiparticle Synergistic Electrophoretic Deposition Strategy for High-Efficiency and High-Resolution Displays. ACS NANO 2024; 18:17715-17724. [PMID: 38916440 DOI: 10.1021/acsnano.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Colloidal nanoparticles offer unique photoelectric properties, making them promising for functional applications. Multiparticle systems exhibit synergistic effects on the functional properties of their individual components. However, precisely controlled assembly of multiparticles to form patterned building blocks for solid-state devices remains challenging. Here, we demonstrate a versatile multiparticle synergistic electrophoretic deposition (EPD) strategy to achieve controlled assembly, high-efficiency, and high-resolution patterns. Through elaborate surface design and charge regulation of nanoparticles, we achieve precise control over the particle distribution (gradient or homogeneous structure) in multiparticle films using the EPD technique. The multiparticle system integrates silicon oxide and titanium oxide nanoparticles, synergistically enhancing the emission efficiency of quantum dots to a high level in the field. Furthermore, we demonstrate the superiority of our strategy to integrate multiparticle into large-area full-color display panels with a high resolution over 1000 pixels per inch. The results suggest great potential for developing multiparticle systems and expanding diverse functional applications.
Collapse
Affiliation(s)
- Xuefei Li
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Jinyang Zhao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hui Xiao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hangchuan Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Miao Zhou
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xin Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xiaolin Yan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lixuan Chen
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| |
Collapse
|
25
|
Wang CW, Wang QJ. Extending the detection limit: innovations in infrared quantum dot photodetectors reaching up to 18 μm. LIGHT, SCIENCE & APPLICATIONS 2024; 13:154. [PMID: 38977660 PMCID: PMC11231191 DOI: 10.1038/s41377-024-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A regrowth method was used to synthesize large-sized colloidal quantum dots (CQDs). With the assistance of doping engineering, the synthesized CQD detectors demonstrate exceptional long-wavelength infrared detection performance, reaching up to 18 μm, significantly extending the spectral response limit for CQD-based infrared detectors. These detectors also achieve a reasonably high detectivity of 6.6 × 108 Jones.
Collapse
Affiliation(s)
- Chong Wu Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qi Jie Wang
- Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
26
|
Li J, Zhang X, Liu Z, Wu H, Wang A, Luo Z, Wang J, Dong W, Wang C, Wen S, Dong Q, Yu WW, Zheng W. Optimizing Energy Levels and Improving Film Compactness in PbS Quantum Dot Solar Cells by Silver Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311461. [PMID: 38386310 DOI: 10.1002/smll.202311461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/23/2024]
Abstract
PbS quantum dot (QD) solar cells harvest near-infrared solar radiation. Their conventional hole transport layer has limited hole collection efficiency due to energy level mismatch and poor film quality. Here, how to resolve these two issues by using Ag-doped PbS QDs are demonstrated. On the one hand, Ag doping relieves the compressive stress during layer deposition and thus improves film compactness and homogeneity to suppress leakage currents. On the other hand, Ag doping increases hole concentration, which aligns energy levels and increases hole mobility to boost hole collection. Increased hole concentration also broadens the depletion region of the active layer, decreasing interface charge accumulation and promoting carrier extraction efficiency. A champion power conversion efficiency of 12.42% is achieved by optimizing the hole transport layer in PbS QD solar cells, compared to 9.38% for control devices. Doping can be combined with compressive strain relief to optimize carrier concentration and energy levels in QDs, and even introduce other novel phenomena such as improved film quality.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Zeke Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Wu
- Department of Chemistry-Angström, Physical Chemistry, Uppsala University, Uppsala, 75120, Sweden
| | - Anran Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhao Luo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jianxun Wang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Wei Dong
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Chen Wang
- College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China
| | - Shanpeng Wen
- College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - William W Yu
- School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
27
|
Zhang L, Chen Y, Cao S, Yuan D, Tang X, Wang D, Gao Y, Zhang J, Zhao Y, Yang X, Lu Z, Fan Q, Sun B. Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402756. [PMID: 38696647 PMCID: PMC11234412 DOI: 10.1002/advs.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Colloidal quantum dots (CQDs) are promising optoelectronic materials for solution-processed thin film optoelectronic devices. However, the large surface area with abundant surface defects of CQDs and trap-assisted non-radiative recombination losses at the interface between CQDs and charge-transport layer limit their optoelectronic performance. To address this issue, an interface heterojunction strategy is proposed to protect the CQDs interface by incorporating a thin layer of polyethyleneimine (PEIE) to suppress trap-assisted non-radiative recombination losses. This thin layer not only acts as a protective barrier but also modulates carrier recombination and extraction dynamics by forming heterojunctions at the buried interface between CQDs and charge-transport layer, thereby enhancing the interface charge extraction efficiency. This enhancement is demonstrated by the shortened lifetime of carrier extraction from 0.72 to 0.46 ps. As a result, the resultant PbS CQD solar cells achieve a power-conversion-efficiency (PCE) of 13.4% compared to 12.2% without the heterojunction.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Yong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Shuang Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Defei Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Xu Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Dengke Wang
- Department of PhysicsCenter for Optoelectronics Engineering ResearchYunnan UniversityKunming650091China
| | - Yajun Gao
- LONGi Central R&D InstituteLONGi Green Energy Technology Co.Xi'anChina
| | - Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Yongbiao Zhao
- Department of PhysicsCenter for Optoelectronics Engineering ResearchYunnan UniversityKunming650091China
| | - Xichuan Yang
- Institute of Artificial PhotosynthesisState Key Laboratory of Fine ChemicalsDUT−KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology (DUT)2 Linggong Rd.Dalian116024China
| | - Zhenghong Lu
- Department of PhysicsCenter for Optoelectronics Engineering ResearchYunnan UniversityKunming650091China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)School of Material Science and EngineeringNanjing University of Posts and Telecommunications (NJUPT)9 Wenyuan Rd.Nanjing210023China
| |
Collapse
|
28
|
Deng YH, Pang C, Kheradmand E, Leemans J, Bai J, Minjauw M, Liu J, Molkens K, Beeckman J, Detavernier C, Geiregat P, Van Thourhout D, Hens Z. Short-Wave Infrared Colloidal QD Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402002. [PMID: 38657973 DOI: 10.1002/adma.202402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Ultrafast short-wavelength infrared (SWIR) photodetection is of great interest for emerging automated vision and spatial mapping technologies. Colloidal quantum dots (QDs) stand out for SWIR photodetection compared to epitaxial (In,Ga)As or (Hg,Cd)Te semiconductors by their combining a size-tunable bandgap and a suitability for cost-effective, solution-based processing. However, achieving ultrafast, nanosecond-level response time has remained an outstanding challenge for QD-based SWIR photodiodes (QDPDs). Here, record 4 ns response time in PbS-based QDPDs that operate at SWIR wavelengths is reported, a result reaching the requirement of SWIR light detection and ranging based on colloidal QDs. These ultrafast QDPDs combine a thin active layer to reduce the carrier transport time and a small area to inhibit slow capacitive discharging. By implementing a concentration gradient ligand exchange method, high-quality p-n junctions are fabricated in these ultrathin QDPDs. Moreover, these ultrathin QDPDs attain an external quantum efficiency of 42% at 1330 nm, due to a 2.5-fold enhanced light absorption through the formation of a Fabry-Perot cavity within the QDPD and the highly efficient extraction (98%) of photogenerated charge carriers. Based on these results, it is estimated that a further increase of the charge-carrier mobility can lead to PbS QDPDs with sub-nanosecond response time.
Collapse
Affiliation(s)
- Yu-Hao Deng
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
| | - Chao Pang
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
- Photonics Research Group, Ghent University, Ghent, 9052, Belgium
| | - Ezat Kheradmand
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
| | - Jing Bai
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
| | - Matthias Minjauw
- Department of Solid State Sciences, Ghent University, Ghent, 9000, Belgium
| | - Jiayi Liu
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
- Department of Electronics and Information Systems, Ghent University, Ghent, 9052, Belgium
| | - Korneel Molkens
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
- Photonics Research Group, Ghent University, Ghent, 9052, Belgium
| | - Jeroen Beeckman
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
- Department of Electronics and Information Systems, Ghent University, Ghent, 9052, Belgium
| | | | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
| | - Dries Van Thourhout
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
- Photonics Research Group, Ghent University, Ghent, 9052, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Ghent University, Ghent, 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent, 9052, Belgium
| |
Collapse
|
29
|
Yu M, Yang J, Zhang X, Yuan M, Zhang J, Gao L, Tang J, Lan X. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311830. [PMID: 38501495 DOI: 10.1002/adma.202311830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Colloidal Quantum Dots (CQDs) of mercury telluride (HgTe) hold particular appeal for infrared photodetection due to their widely tunable infrared absorption and good compatibility with silicon electronics. While advances in surface chemistry have led to improved CQD solids, the chemical stability of HgTe material is not fully emphasized. In this study, it is aimed to address this issue and identifies a Se-stabilization strategy based on the surface coating of Se on HgTe CQDs via engineering in the precursor reactivity. The presence of Se-coating enables HgTe CQDs with improved colloidal stability, passivation, and enhanced degree of freedom in doping tuning. This enables the construction of optimized p-i-n HgTe CQD infrared photodetectors with an ultra-low dark current 3.26 × 10-6 A cm⁻2 at -0.4 V and room-temperature specific detectivity of 5.17 × 1011 Jones at wavelength ≈2 um, approximately one order of magnitude improvement compared to that of the control device. The stabilizing effect of Se is well preserved in the thin film state, contributing to much improved device stability. The in-synthesis Se-stabilization strategy highlights the importance of the chemical stability of materials for the construction of semiconductor-grade CQD solids and may have important implications for other high-performance CQD optoelectronic devices.
Collapse
Affiliation(s)
- Mengxuan Yu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ji Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xingchen Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Mohan Yuan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jianbing Zhang
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Yuexing Road, Shenzhen, 518057, P. R. China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Yuexing Road, Shenzhen, 518057, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiang Tang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xinzheng Lan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
30
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
31
|
Xu W, Chen Y, Niederberger M, Tervoort E, Mei J, Peng DL. Self-Assembled Preparation of Porous Nickel Phosphide Superparticles with Tunable Phase and Porosity for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309435. [PMID: 38229146 DOI: 10.1002/smll.202309435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Self-assembly of colloidal nanoparticles enables the easy building of assembly units into higher-order structures and the bottom-up preparation of functional materials. Nickel phosphides represent an important group of catalysts for hydrogen evolution reaction (HER) from water splitting. In this paper, the preparation of porous nickel phosphide superparticles and their HER efficiencies are reported. Ni and Ni2P nanoparticles are self-assembled into binary superparticles via an oil-in-water emulsion method. After annealing and acid etching, the as-prepared Ni-Ni2P binary superparticles change into porous nickel phosphide superparticles. The porosity and crystalline phase of the superparticles can be tuned by adjusting the ratio of Ni and Ni2P nanoparticles. The resulting porous superparticles are effective in driving HER under acidic conditions, and the modulation of porosity and phase further optimize the electrochemical performance. The prepared Ni3P porous superparticles not only possess a significantly enhanced specific surface area compared to solid Ni-Ni2P superparticles but also exhibit an excellent HER efficiency. The calculations based on the density functional theories show that the (110) crystal facet exhibits a relatively lower Gibbs free energy of hydrogen adsorption. This work provides a self-assembly approach for the construction of porous metal phosphide nanomaterials with tunable crystalline phase and porosity.
Collapse
Affiliation(s)
- Wanjie Xu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuanzhi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Elena Tervoort
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Jie Mei
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
32
|
Kamath A, Guyot-Sionnest P. The "energy gap law" for mid-infrared nanocrystals. J Chem Phys 2024; 160:200901. [PMID: 38785281 DOI: 10.1063/5.0206018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Colloidal quantum dots are of increasing interest for mid-infrared detection and emission, but device performances will vastly benefit from reducing the non-radiative recombination. Empirically, the photoluminescence quantum yield decreases exponentially toward the mid-infrared, which appears similar to the energy gap law known for molecular fluorescence in the near-infrared. For molecules, the mechanism is electron-vibration coupling and fast internal vibrational relaxation. Here, we explore the possible mechanisms for inorganic quantum dots. The primary mechanism is assigned to an electric dipole near-field energy transfer from the quantum dot electronic transitions to the infrared absorption of surface organic ligands and then to the multiphonon absorption of the quantum dot inorganic core or the surrounding inorganic matrix. In order to obtain luminescent quantum dots in the 3-10 μm range, we motivate the importance of using inorganic matrices, which have a higher infrared transparency compared to organic materials. At longer wavelengths, inter-quantum dot energy transfer is noted to be much faster than radiative relaxation, indicating that bright mid-infrared colloidal quantum dot films might then benefit from dilution.
Collapse
Affiliation(s)
- Ananth Kamath
- James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Philippe Guyot-Sionnest
- James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
33
|
Zhang L, Wang S, Shi Y, Xu J, Cao S, Deng Z, Chen Y, Zhang J, Yang X, Meng Z, Fan Q, Sun B. Organic hole transport materials for high performance PbS quantum dot solar cells. Chem Commun (Camb) 2024; 60:5294-5297. [PMID: 38659410 DOI: 10.1039/d4cc01194e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We developed a triazatruxene-based hole transport material (HTM), 3Ka-DBT-3Ka, aiming to enhance band alignment and augment charge generation and collection in devices, as an alternative for 1,2-ethanedithiol (EDT). The PbS CQD solar cells employing 3Ka-DBT-3Ka as the HTM achieve a peak efficiency of 11.4%, surpassing devices employing the conventional PbS-EDT HTM (8.9%).
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Shunqiang Wang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Yi Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Jiazi Xu
- Tengzhou Huashu Intelligent Manufacturing Academy, Zaozhuang, 277599, Shandong, China
| | - Shuang Cao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Zijian Deng
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 2 Linggong Rd., Dalian 116024, China
| | - Yong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Xichuan Yang
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), 2 Linggong Rd., Dalian 116024, China
| | - Zhen Meng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China
| |
Collapse
|
34
|
Wu H, Wu C, Guo C, Hu J, Guo D, He S. Highly Wavelength-Selective Self-Powered Solar-Blind Ultraviolet Photodetector Based on Colloidal Aluminum Nitride Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2312127. [PMID: 38698570 DOI: 10.1002/smll.202312127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/20/2024] [Indexed: 05/05/2024]
Abstract
Colloidal quantum dots are semiconductor nanocrystals endowed with unique optoelectronic properties. A major challenge to the field is the lack of methods for synthesizing quantum dots exhibit strong photo-response in the deep-ultraviolet (DUV) band. Here, a facile solution-processed method is presented for synthesizing ultrawide bandgap aluminium nitride quantum dots (AlN QDs) showing distinguished UV-B photoluminescence. Combined with the strong optical response in solar blind band, a solution-processed, self-powered AlN-QDs/β-Ga2O3 solar-blind photodetector is demonstrated. The photodetector is characterized with a high responsivity of 1.6 mA W-1 under 0 V bias and specific detectivity 7.60 × 10-11 Jones under 5 V bias voltage with good solar blind selectivity. Given the solution-processed capability of the devices and extraordinary properties of AlN QDs, this study anticipates the utilization of AlN QDs will open up unique opportunities for cost-effective industrial production of high-performance DUV optoelectronics for large-scale applications.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Chao Wu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Chenyu Guo
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jun Hu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daoyou Guo
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Ningbo Research Institute, Ningbo, 315100, P. R. China
- Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, Stockholm, S-100 44, Sweden
| |
Collapse
|
35
|
Wang H, Pinna J, Romero DG, Di Mario L, Koushki RM, Kot M, Portale G, Loi MA. PbS Quantum Dots Ink with Months-Long Shelf-Lifetime Enabling Scalable and Efficient Short-Wavelength Infrared Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311526. [PMID: 38327037 DOI: 10.1002/adma.202311526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Indexed: 02/09/2024]
Abstract
The phase-transfer ligand exchange of PbS quantum dots (QDs) has substantially simplified device fabrication giving hope for future industrial exploitation. However, this technique when applied to QDs of large size (>4 nm) gives rise to inks with poor colloidal stability, thus hindering the development of QDs photodetectors in short-wavelength infrared range. Here, it is demonstrated that methylammonium lead iodide ligands can provide sufficient passivation of PbS QDs of size up to 6.7 nm, enabling inks with a minimum of ten-week shelf-life time, as proven by optical absorption and solution-small angle X-ray scattering. Furthermore, the maximum linear electron mobility of 4.7 × 10-2 cm2 V-1 s-1 is measured in field-effect transistors fabricated with fresh inks, while transistors fabricated with the same solution after ten-week storage retain 74% of the average starting electron mobility, demonstrating the outstanding quality both of the fresh and aged inks. Finally, photodetectors fabricated via blade-coating exhibit 76% external quantum efficiency at 1300 nm and 1.8 × 1012 Jones specific detectivity, values comparable with devices fabricated using ink with lower stability and wasteful methods such as spin-coating.
Collapse
Affiliation(s)
- Han Wang
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jacopo Pinna
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - David Garcia Romero
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Lorenzo Di Mario
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Razieh Mehrabi Koushki
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Mordechai Kot
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Giuseppe Portale
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Maria Antonietta Loi
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
36
|
Liu Y, Liu J, Deng C, Wang B, Xia B, Liang X, Yang Y, Li S, Wang X, Li L, Lan X, Fei P, Zhang J, Gao L, Tang J. Planar Cation Passivation on Colloidal Quantum Dots Enables High-Performance 0.35-1.8 µm Broadband TFT Imager. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313811. [PMID: 38358302 DOI: 10.1002/adma.202313811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Solution-processed colloidal quantum dots (CQDs) are promising candidates for broadband photodetectors from visible light to shortwave infrared (SWIR). However, large-size PbS CQDs sensitive to longer SWIR are mainly exposed with nonpolar (100) facets on the surface, which lack robust passivation strategies. Herein, an innovative passivation strategy that employs planar cation, is introduced to enable face-to-face coupling on (100) facets and strengthen halide passivation on (111) facets. The defect density of CQDs film (Eg ≈ 0.74 eV) is reduced from 2.74 × 1015 to 1.04 × 1015 cm-3, coupled with 0.1 eV reduction in the activation energy of defects. The resultant CQDs photodiodes exhibit a low dark current density of 14 nA cm-2 with a high external quantum efficiency (EQE) of 62%, achieving a linear dynamic range of 98 dB, a -3dB bandwidth of 103 kHz and a detectivity of 4.7 × 1011 Jones. The comprehensive performance of the CQDs photodiodes outperforms previously reported CQDs photodiodes operating at >1.6 µm. By monolithically integrated with thin-film transistor (TFT) readout circuit, the broadband CQDs imager covering 0.35-1.8 µm realizes the functions including silicon wafer perspectivity and material discrimination, showing its potential for wide range of applications.
Collapse
Affiliation(s)
- Yuxuan Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, 225 Chaoyang New Street, Wenzhou, 325035, P. R. China
| | - Chengjie Deng
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Bo Wang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Bing Xia
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xinyi Liang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yang Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Shengman Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G 2V4, Canada
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xinzheng Lan
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Peng Fei
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Jianbing Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, 225 Chaoyang New Street, Wenzhou, 325035, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, 518057, China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, 225 Chaoyang New Street, Wenzhou, 325035, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, 518057, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
37
|
Mir WJ, Sheikh T, Nematulloev S, Maity P, Yorov KE, Emwas AH, Hedhili MN, Khan MS, Abulikemu M, Mohammed OF, Bakr OM. One-Pot Colloidal Synthesis Enables Highly Tunable InSb Short-Wave Infrared Quantum Dots Exhibiting Carrier Multiplication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306535. [PMID: 38063843 DOI: 10.1002/smll.202306535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/18/2023] [Indexed: 05/12/2024]
Abstract
Colloidal quantum dots (CQDs) are emerging materials for short-wave infrared (SWIR, ≈1100-3000 nm) photodetectors, which are technologically important for a broad array of applications. Unfortunately, the most developed SWIR CQD systems are Pb and Hg chalcogenides; their toxicity and regulated compositions limit their applications. InSb CQD system is a potential environmentally friendly alternative, whose bandgap in theory, is tunable via quantum confinement across the SWIR spectrum. However, InSb CQDs are difficult to exploit, due to their complex syntheses and uncommon reactive precursors, which greatly hinder their application and study. Here, a one-pot synthesis strategy is reported using commercially available precursors to synthesize-under standard colloidal synthesis conditions-high-quality, size-tunable InSb CQDs. With this strategy, the large Bohr exciton radius of InSb can be exploited for tuning the bandgap of the CQDs over a wide range of wavelengths (≈1250-1860 nm) across the SWIR region. Furthermore, by changing the surface ligands of the CQDs from oleic acid (OA) to 1-dodecanthiol (DDT), a ≈20-fold lengthening in the excited-state lifetime, efficient carrier multiplication, and slower carrier annihilation are observed. The work opens a wide range of SWIR applications to a promising class of Pb- and Hg-free CQDs.
Collapse
Affiliation(s)
- Wasim J Mir
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tariq Sheikh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Partha Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Khursand E Yorov
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- KAUST - Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Nejib Hedhili
- KAUST - Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mudeha Shafat Khan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mutalifu Abulikemu
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Kim S, Lee K, Gwak N, Shin S, Seo J, Noh SH, Kim D, Lee Y, Kong H, Yeo D, Kim TA, Lee SY, Jang J, Oh N. Colloidal Synthesis of P-Type Zn 3As 2 Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310671. [PMID: 38279779 DOI: 10.1002/adma.202310671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Zinc pnictides, particularly Zn3As2, hold significant promise for optoelectronic applications owing to their intrinsic p-type behavior and appropriate bandgaps. However, despite the outstanding properties of colloidal Zn3As2 nanocrystals, research in this area is lacking because of the absence of suitable precursors, occurrence of surface oxidation, and intricacy of the crystal structures. In this study, a novel and facile solution-based synthetic approach is presented for obtaining highly crystalline p-type Zn3As2 nanocrystals with accurate stoichiometry. By carefully controlling the feed ratio and reaction temperature, colloidal Zn3As2 nanocrystals are successfully obtained. Moreover, the mechanism underlying the conversion of As precursors in the initial phases of Zn3As2 synthesis is elucidated. Furthermore, these nanocrystals are employed as active layers in field-effect transistors that exhibit inherent p-type characteristics with native surface ligands. To enhance the charge transport properties, a dual passivation strategy is introduced via phase-transfer ligand exchange, leading to enhanced hole mobilities as high as 0.089 cm2 V-1 s-1. This study not only contributes to the advancement of nanocrystal synthesis, but also opens up new possibilities for previously underexplored p-type nanocrystal research.
Collapse
Affiliation(s)
- Seongchan Kim
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kyumin Lee
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Namyoung Gwak
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seungki Shin
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jaeyoung Seo
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Hoon Noh
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Doyeon Kim
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yunseo Lee
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyein Kong
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Dongjoon Yeo
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tae Ann Kim
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung-Yong Lee
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jaeyoung Jang
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Nuri Oh
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
39
|
Lee HC, Park JH, In SI, Yang J. Recent advances in photoelectrochemical hydrogen production using I-III-VI quantum dots. NANOSCALE 2024. [PMID: 38683106 DOI: 10.1039/d4nr01040j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photoelectrochemical (PEC) water splitting, recognized for its potential in producing solar hydrogen through clean and sustainable methods, has gained considerable interest, particularly with the utilization of semiconductor nanocrystal quantum dots (QDs). This minireview focuses on recent advances in PEC hydrogen production using I-III-VI semiconductor QDs. The outstanding optical and electrical properties of I-III-VI QDs, which can be readily tuned by modifying their size, composition, and shape, along with an inherent non-toxic nature, make them highly promising for PEC applications. The performance of PEC devices using these QDs can be enhanced by various strategies, including ligand modification, defect engineering, doping, alloying, and core/shell heterostructure engineering. These approaches have notably improved the photocurrent densities for hydrogen production, achieving levels comparable to those of conventional heavy-metal-based counterparts. Finally, this review concludes by addressing the present challenges and future prospects of these QDs, underlining crucial steps for their practical applications in solar hydrogen production.
Collapse
Affiliation(s)
- Hyo Cheol Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Ji Hye Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Su-Il In
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
40
|
Yu C, Shan Y, Zhu J, Sun D, Zheng X, Zhang N, Hou J, Fang Y, Dai N, Liu Y. Heterojunctions of Mercury Selenide Quantum Dots and Halide Perovskites with High Lattice Matching and Their Photodetection Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1864. [PMID: 38673221 PMCID: PMC11051518 DOI: 10.3390/ma17081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Heterojunction semiconductors have been extensively applied in various optoelectronic devices due to their unique carrier transport characteristics. However, it is still a challenge to construct heterojunctions based on colloidal quantum dots (CQDs) due to stress and lattice mismatch. Herein, HgSe/CsPbBrxI3-x heterojunctions with type I band alignment are acquired that are derived from minor lattice mismatch (~1.5%) via tuning the ratio of Br and I in halide perovskite. Meanwhile, HgSe CQDs with oleylamine ligands can been exchanged with a halide perovskite precursor, acquiring a smooth and compact quantum dot film. The photoconductive detector based on HgSe/CsPbBrxI3-x heterojunction presents a distinct photoelectric response under an incident light of 630 nm. The work provides a promising strategy to construct CQD-based heterojunctions, simultaneously achieving inorganic ligand exchange, which paves the way to obtain high-performance photodetectors based on CQD heterojunction films.
Collapse
Affiliation(s)
- Chengye Yu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Yufeng Shan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.Z.); (N.D.)
| | - Jiaqi Zhu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.Z.); (N.D.)
| | - Dingyue Sun
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Xiaohong Zheng
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
| | - Ning Dai
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.Z.); (N.D.)
- State Key Labratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (C.Y.); (D.S.); (X.Z.); (N.Z.); (J.H.)
- State Key Labratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
41
|
Qiao S, Qiu Y, Lu Y, Wang Z, Yuan M, Ji Q. One-Dimensional MoS 2 Nanoscrolls as Miniaturized Memories. NANO LETTERS 2024; 24:4498-4504. [PMID: 38587933 DOI: 10.1021/acs.nanolett.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Dimensionality of materials is closely related to their physical properties. For two-dimensional (2D) semiconductors such as monolayer molybdenum disulfide (MoS2), converting them from 2D nanosheets to one-dimensional (1D) nanoscrolls could contribute to remarkable electronic and optoelectronic properties, yet the rolling-up process still lacks sufficient controllability, which limits the development of their device applications. Herein we report a modified solvent evaporation-induced rolling process that halts at intermediate states and achieve MoS2 nanoscrolls with high yield and decent axial uniformity. The accordingly fabricated nanoscroll memories exhibit an on/off ratio of ∼104 and a retention time exceeding 103 s and can realize multilevel storage with pulsed gate voltages. Such open-end, high-curvature, and hollow 1D nanostructures provide new possibilities to manipulate the hysteresis windows and, consequently, the charge storage characteristics of nanoscale field-effect transistors, thereby holding great promise for the development of miniaturized memories.
Collapse
Affiliation(s)
- Shuo Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yuanyuan Qiu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yue Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zihan Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Mingxuan Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Qingqing Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
42
|
Xue X, Hao Q, Chen M. Very long wave infrared quantum dot photodetector up to 18 μm. LIGHT, SCIENCE & APPLICATIONS 2024; 13:89. [PMID: 38609412 PMCID: PMC11014860 DOI: 10.1038/s41377-024-01436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Colloidal quantum dots (CQDs) are of interest for optoelectronic devices because of the possibility of high-throughput solution processing and the wide energy gap tunability from ultraviolet to infrared wavelengths. People may question about the upper limit on the CQD wavelength region. To date, although the CQD absorption already reaches terahertz, the practical photodetection wavelength is limited within mid-wave infrared. To figure out challenges on CQD photoresponse in longer wavelength, would reveal the ultimate property on these nanomaterials. What's more, it motivates interest in bottom-up infrared photodetection with less than 10% cost compared with epitaxial growth semiconductor bulk. In this work, developing a re-growth method and ionic doping modification, we demonstrate photodetection up to 18 μm wavelength on HgTe CQD. At liquid nitrogen temperature, the responsivity reaches 0.3 A/W and 0.13 A/W, with specific detectivity 6.6 × 108 Jones and 2.3 × 109 Jones for 18 μm and 10 μm CQD photoconductors, respectively. This work is a step toward answering the general question on the CQD photodetection wavelength limitation.
Collapse
Affiliation(s)
- Xiaomeng Xue
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, 311421, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Physics Department, Changchun University of Science and Technology, Changchun, 130022, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, 311421, China.
- Physics Department, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
43
|
Feld LG, Boehme SC, Morad V, Sahin Y, Kaul CJ, Dirin DN, Rainò G, Kovalenko MV. Quantifying Förster Resonance Energy Transfer from Single Perovskite Quantum Dots to Organic Dyes. ACS NANO 2024; 18:9997-10007. [PMID: 38547379 PMCID: PMC11008358 DOI: 10.1021/acsnano.3c11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.
Collapse
Affiliation(s)
- Leon G. Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yesim Sahin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christoph J. Kaul
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N. Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Huang X, Qin Y, Guo T, Liu J, Hu Z, Shang J, Li H, Deng G, Wu S, Chen Y, Lin T, Shen H, Ge J, Meng X, Wang X, Chu J, Wang J. Long-Range Hot-Carrier Transport in Topologically Connected HgTe Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307396. [PMID: 38225755 DOI: 10.1002/advs.202307396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
The utilization of hot carriers as a means to surpass the Shockley-Queasier limit represents a promising strategy for advancing highly efficient photovoltaic devices. Quantum dots, owing to their discrete energy states and limited multi-phonon cooling process, are regarded as one of the most promising materials. However, in practical implementations, the presence of numerous defects and discontinuities in colloidal quantum dot (CQD) films significantly curtails the transport distance of hot carriers. In this study, the harnessing of excess energies from hot-carriers is successfully demonstrated and a world-record carrier diffusion length of 15 µm is observed for the first time in colloidal systems, surpassing existing hot-carrier materials by more than tenfold. The observed phenomenon is attributed to the specifically designed honeycomb-like topological structures in a HgTe CQD superlattice, with its long-range periodicity confirmed by High-Resolution Transmission Electron Microscopy(HR-TEM), Selected Area Electron Diffraction(SAED) patterns, and low-angle X-ray diffraction (XRD). In such a superlattice, nonlocal hot carrier transport is supported by three unique physical properties: the wavelength-independent responsivity, linear output characteristics and microsecond fast photoresponse. These findings underscore the potential of HgTe CQD superlattices as a feasible approach for efficient hot carrier collection, thereby paving the way for practical applications in highly sensitive photodetection and solar energy harvesting.
Collapse
Affiliation(s)
- Xinning Huang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Yilu Qin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Tianle Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jingjing Liu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Zhourui Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Jiale Shang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Hongfu Li
- Kunming Institute of Physics, Kunming, Yunnan, 650223, China
| | - Gongrong Deng
- Kunming Institute of Physics, Kunming, Yunnan, 650223, China
| | - Shuaiqin Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai, Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, China
| | - Yan Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai, Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, China
| | - Tie Lin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Hong Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Xiangjian Meng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Junhao Chu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 330106, China
- Frontier Institute of Chip and System, Institute of Optoelectronics, Shanghai, Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, China
| |
Collapse
|
45
|
Lee J, Zhao T, Yang S, Muduli M, Murray CB, Kagan CR. One-pot heat-up synthesis of short-wavelength infrared, colloidal InAs quantum dots. J Chem Phys 2024; 160:071103. [PMID: 38380752 DOI: 10.1063/5.0187162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
III-V colloidal quantum dots (QDs) promise Pb and Hg-free QD compositions with which to build short-wavelength infrared (SWIR) optoelectronic devices. However, their synthesis is limited by the availability of group-V precursors with controllable reactivities to prepare monodisperse, SWIR-absorbing III-V QDs. Here, we report a one-pot heat-up method to synthesize ∼8 nm edge length (∼6.5 nm in height) tetrahedral, SWIR-absorbing InAs QDs by increasing the [In3+]:[As3+] ratio introduced using commercially available InCl3 and AsCl3 precursors and by decreasing the concentration and optimizing the volume of the reducing reagent superhydride to control the concentration of In(0) and As(0) intermediates through QD nucleation and growth. InAs QDs are treated with NOBF4, and their deposited films are exchanged with Na2S to yield n-type InAs QD films. We realize the only colloidal InAs QD photoconductors with responsivity at the technologically important wavelength of 1.55 μm.
Collapse
Affiliation(s)
- J Lee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - T Zhao
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - S Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - M Muduli
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - C B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - C R Kagan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
47
|
Huang J, Hu S, Kos D, Xiong Y, Jakob LA, Sánchez-Iglesias A, Guo C, Liz-Marzán LM, Baumberg JJ. Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas. ACS NANO 2024; 18:3323-3330. [PMID: 38215048 PMCID: PMC10832344 DOI: 10.1021/acsnano.3c10092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability. These QD nanojunctions exhibit robust photoresponse characteristics, with plasmonically enhanced photocurrent spectra matching the QD solution absorption. We demonstrate electroluminescence from individual plasmonic nanoantennas, extending the device lifetime beyond 40 min by utilizing a 3 nm electron-blocking polymer layer. In addition, we reveal a giant voltage-dependent redshift of up to 62 meV due to the quantum-confined Stark effect and determine the exciton polarizability of the CdSe QD monolayer to be 4 × 10-5 meV/(kV/cm)2. These developments provide a foundation for accessing scalable quantum light sources and high-speed, tunable optoelectronic systems operating under ambient conditions.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Dean Kos
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Yuling Xiong
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Lukas A. Jakob
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Ana Sánchez-Iglesias
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Chenyang Guo
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 43009, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, U.K.
| |
Collapse
|
48
|
Meng L, Xu Q, Zhang J, Wang X. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chem Commun (Camb) 2024; 60:1072-1088. [PMID: 38174780 DOI: 10.1039/d3cc04315k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Colloidal quantum dots (CQDs) are a promising class of materials for next-generation optoelectronic devices, such as displays, LEDs, lasers, photodetectors, and solar cells. CQDs can be obtained at low cost and in large quantities using wet chemistry. CQDs have also been produced using various materials, such as CdSe, InP, perovskites, PbS, PbSe, and InAs. Some of these CQD materials absorb and emit photons in the visible region, making them excellent candidates for displays and LEDs, while others interact with low-energy photons in the near-infrared (NIR) region and are intensively utilized in NIR lasers, NIR photodetectors, and solar cells. In this review, we have focused on NIR CQD materials and reviewed the development of CQD materials for solar cells, NIR lasers, and NIR photodetectors since the first set of reports on CQD materials in these particular applications.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Applied Physics, Aalto University, Espoo, Finland
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, Finland
| | - Qiwei Xu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Jiangwen Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
49
|
Lee SY, Chae D, Kim J, Oh S, Lim H, Kim J, Lee H, Oh SJ. Smart building block with colored radiative cooling devices and quantum dot light emitting diodes. NANOSCALE 2024; 16:1664-1672. [PMID: 38168818 DOI: 10.1039/d3nr04884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we design a smart building block with quantum-dot light-emitting diode (QLED) and colored radiative cooling devices. A smart light-emitting building block is fabricated using a bottom-inverted QLED that emits green light, an insulating layer, and a top radiative cooling structure that emits mid-infrared light. The heat generated during QLED operation is measured and analyzed to investigate the correlation between heat and QLED degradation. The top cooling part is designed to have no impact on the QLED's performance and utilizes Ag-polydimethylsiloxane as a visible-light reflector and mid-infrared absorber/emitter. For the colored cooling part, white radiative cooling paint is used instead of Ag-polydimethylsiloxane to improve cooling performance, and red and yellow paints are employed to realize vivid red and yellow colors, respectively. We demonstrate a smart imitation house system with a smart light-emitting building block as the roof and analyze the cooling of the heat generated during QLED operation. A maximum cooling effect of up to 9.6 °C is observed compared to the imitation house system without the smart light-emitting building block, effectively dissipating heat generated during QLED operation. The smart light-emitting building block presented in this study opens new avenues in the fields of lighting and cooling systems.
Collapse
Affiliation(s)
- Sang Yeop Lee
- Department of Materials Science and Engineering, Korea University 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Dongwoo Chae
- Department of Materials Science and Engineering, Korea University 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jungho Kim
- Department of Advanced Materials Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, Republic of Korea.
| | - Seongkeun Oh
- Department of Materials Science and Engineering, Korea University 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Hangyu Lim
- Department of Materials Science and Engineering, Korea University 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jiwan Kim
- Department of Advanced Materials Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, Republic of Korea.
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
50
|
Souza Junior JB, Mouriño B, Gehlen MH, Moraes DA, Bettini J, Varanda LC. Acid selenites as new selenium precursor for CdSe quantum dot synthesis. Heliyon 2024; 10:e23837. [PMID: 38205302 PMCID: PMC10777003 DOI: 10.1016/j.heliyon.2023.e23837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Chemical precursors for nanomaterials synthesis have become essential to tune particle size, composition, morphology, and unique properties. New inexpensive precursors investigation that precisely controls these characteristics is highly relevant. We studied new Se precursors, the acid selenites (R-O-SeOOH), to synthesize CdSe quantum dots (QDs). They were produced at room temperature by the Image 1 reaction with alcohols having different alkyl chains and were characterized by 1H NMR confirming their structures. This unprecedented precursor generates high-quality CdSe nanocrystals with narrow size distribution in the zinc-blend structure showing controlled optical properties. Advanced characterization detailed the CdSe structure showing stacking fault defects and its dependence on the used R-O-SeOOH. The QDs formation was examined using a time-dependent growth kinetics model. Differences in the nanoparticle surface structure influenced the optical properties, and they were correlated to the Se-precursor nature. Small alkyl chain acid selenites generally lead to more controlled QDs morphology, while the bigger alkyl chain leads to slightly upper quantum yields. Acid selenites can potentially replace Se-precursors at competitive costs in the metallic chalcogenide nanoparticles. Image 1 is chemically stable, and alcohols are cheap and less toxic than the reactants used today, making acid selenites a more sustainable Se precursor.
Collapse
Affiliation(s)
- João B. Souza Junior
- Colloidal Materials Group, Physical-Chemistry Department, Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos - SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas - SP, Brazil
| | - Beatriz Mouriño
- Colloidal Materials Group, Physical-Chemistry Department, Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos - SP, Brazil
| | - Marcelo H. Gehlen
- Colloidal Materials Group, Physical-Chemistry Department, Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos - SP, Brazil
| | - Daniel A. Moraes
- Colloidal Materials Group, Physical-Chemistry Department, Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos - SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas - SP, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas - SP, Brazil
| | - Laudemir C. Varanda
- Colloidal Materials Group, Physical-Chemistry Department, Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590, São Carlos - SP, Brazil
| |
Collapse
|