1
|
Hadipour M, Haseli S. Work extraction from quantum coherence in non-equilibrium environment. Sci Rep 2024; 14:24876. [PMID: 39438638 PMCID: PMC11496670 DOI: 10.1038/s41598-024-75478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Ergotropy, which represents the maximum amount of work that can be extracted from a quantum system, has become a focal point of interest in the fields of quantum thermodynamics and information processing. In practical scenarios, the interaction of quantum systems with their surrounding environment is unavoidable. Recent studies have increasingly focused on analyzing open quantum systems affected by non-stationary environmental fluctuations due to their significant impact on various physical scenarios. While much research has concentrated on work extraction from these systems, it often assumes that the environmental degrees of freedom are substantial and that the environment is effectively in equilibrium. This has led us to explore work extraction from quantum systems under non-stationary environmental conditions. In this work, the dynamics of ergotropy will be investigated in a non-equilibrium environment for both Markovian and non-Markovian regime. In this study, both the coherent and incoherent parts of the ergotropy will be considered. It will be shown that for a non-equilibrium environment, the extraction of work is more efficient compared to when the environment is in equilibrium.
Collapse
Affiliation(s)
- Maryam Hadipour
- Faculty of Physics, Urmia University of Technology, Urmia, Iran
| | - Soroush Haseli
- Faculty of Physics, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
2
|
Rafeek R, Mondal D. Active Brownian information engine: Self-propulsion induced colossal performance. J Chem Phys 2024; 161:124116. [PMID: 39329308 DOI: 10.1063/5.0229087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The information engine is a feedback mechanism that extorts work from a single heat bath using the mutual information earned during the measurement. We consider an overdamped active Ornstein-Uhlenbeck particle trapped in a 1D harmonic oscillator. The particle experiences fluctuations from an inherent thermal bath with a diffusion coefficient (D) and an active reservoir, with characteristic correlation time (τa) and strength (Da). We design a feedback-driven active Brownian information engine (ABIE) and analyze its best performance criteria. The optimal functioning criteria, the information gained during measurement, and the excess output work are reliant on the dispersion of the steady-state distribution of the particle's position. The extent of enhanced performance of such ABIE depends on the relative values of two underlying time scales of the process, namely, thermal relaxation time (τr) and the characteristic correlation time (τa). In the limit of τa/τr → 0, one can achieve the upper bound on colossal work extraction as ∼0.202γ(D+Da) (γ is the friction coefficient). The excess amount of extracted work reduces and converges to its passive counterpart (∼0.202γD) in the limit of τa/τr → high. Interestingly, when τa/τr = 1, half the upper bound of excess work is achieved irrespective of the strength of either reservoirs, thermal or active. Finally, we look into the average displacement of active Brownian particles in each feedback cycle, which surpasses its thermal analog due to the broader marginal probability distribution.
Collapse
Affiliation(s)
- Rafna Rafeek
- Department of Chemistry and Center for Molecular and Optical Sciences and Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Debasish Mondal
- Department of Chemistry and Center for Molecular and Optical Sciences and Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
3
|
Gaida M, Nimmrichter S. Otto cycles with a quantum planar rotor. Phys Rev E 2024; 110:034109. [PMID: 39425317 DOI: 10.1103/physreve.110.034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024]
Abstract
We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled by means of external fields. By comparing the quantum and the classical description of the working medium, we single out genuine quantum effects with regard to the performance and the engine and refrigerator modes of the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to a quantum pendulum. Here we find a systematic disadvantage of the quantum rotor compared to its classical counterpart. In contrast, a genuine quantum advantage can be observed with a charged rotor generating a magnetic moment that is subjected to a controlled magnetic field. We prove that the classical rotor is inoperable as a working medium for any choice of parameters, whereas the quantum rotor supports an engine and a refrigerator mode, exploiting the quantum statistics during the cold strokes of the cycle.
Collapse
|
4
|
Onishchenko O, Guarnieri G, Rosillo-Rodes P, Pijn D, Hilder J, Poschinger UG, Perarnau-Llobet M, Eisert J, Schmidt-Kaler F. Probing coherent quantum thermodynamics using a trapped ion. Nat Commun 2024; 15:6974. [PMID: 39143048 PMCID: PMC11324868 DOI: 10.1038/s41467-024-51263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Quantum thermodynamics is aimed at grasping thermodynamic laws as they apply to thermal machines operating in the deep quantum regime, where coherence and entanglement are expected to matter. Despite substantial progress, however, it has remained difficult to develop thermal machines in which such quantum effects are observed to be of pivotal importance. In this work, we demonstrate the possibility to experimentally measure and benchmark a genuine quantum correction, induced by quantum friction, to the classical work fluctuation-dissipation relation. This is achieved by combining laser-induced coherent Hamiltonian rotations and energy measurements on a trapped ion. Our results demonstrate that recent developments in stochastic quantum thermodynamics can be used to benchmark and unambiguously distinguish genuine quantum coherent signatures generated along driving protocols, even in presence of experimental SPAM errors and, most importantly, beyond the regimes for which theoretical predictions are available (e.g., in slow driving).
Collapse
Affiliation(s)
- O Onishchenko
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - G Guarnieri
- Department of Physics and INFN - Sezione di Pavia, University of Pavia, Via Bassi 6, 27100, Pavia, Italy.
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany.
| | - P Rosillo-Rodes
- Institute for Cross-Disciplinary Physics and Complex Systems, Campus Universitat de les Illes Balears, E-07122, Palma, Spain
| | - D Pijn
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - J Hilder
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - U G Poschinger
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - M Perarnau-Llobet
- Department of Applied Physics, University of Geneva, 1211, Geneva, Switzerland
| | - J Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany
| | - F Schmidt-Kaler
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| |
Collapse
|
5
|
Wu W, An JH. Generalized Quantum Fluctuation Theorem for Energy Exchange. PHYSICAL REVIEW LETTERS 2024; 133:050401. [PMID: 39159107 DOI: 10.1103/physrevlett.133.050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
The nonequilibrium fluctuation relation is a cornerstone of quantum thermodynamics. It is widely believed that the system-bath heat exchange obeys the famous Jarzynski-Wójcik fluctuation theorem. However, this theorem is established in the Born-Markovian approximation under the weak-coupling condition. Via studying the energy exchange between a harmonic oscillator and its coupled bath in the non-Markovian dynamics, we establish a generalized quantum fluctuation theorem for energy exchange being valid for arbitrary coupling strength. The Jarzynski-Wójcik fluctuation theorem is recovered in the weak-coupling limit. We also find the average energy exchange exhibits rich nonequilibrium characteristics when different numbers of system-bath bound states are formed, which suggests a useful way to control the quantum heat. Deepening our understanding of the fluctuation relation in quantum thermodynamics, our result lays the foundation to design high-efficiency quantum heat engines.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Jun-Hong An
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Chen R, Craven GT. The effect of temperature oscillations on energy storage rectification in harmonic systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:405201. [PMID: 38988144 DOI: 10.1088/1361-648x/ad5d40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Rectification, the preferential transport of a current in one direction through a system, has garnered significant attention in molecules because of its importance for controlling thermal and electronic currents at the nanoscale. Here, we report the presence of energy storage rectification effects in a molecular chain. This phenomenon is generated by subjecting a harmonic molecular chain to an oscillating temperature gradient and showing that the energy absorption rate of the system depends on the direction of the gradient. We examine how the energy storage rectification ratios in the chain are affected by the oscillating gradient, asymmetry in the chain, and the system parameters. We find that energy storage rectification can be observed in harmonic lattice structures with time-dependent temperatures and that, correspondingly, anharmonicity is not required to generate this rectification mechanism in such systems.
Collapse
Affiliation(s)
- Renai Chen
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Galen T Craven
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| |
Collapse
|
7
|
Jin PY, Tan WY, Wang ZH, Xu YY. Fluctuation theorem in the quantum Otto engine with long-range interaction. Phys Rev E 2024; 110:014132. [PMID: 39160973 DOI: 10.1103/physreve.110.014132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
The fluctuation of the quantum Otto engine has recently received a lot of attention, while applying the many body with a long-range interaction to a quantum heat engine may enhance our ability of controlling it. Using the two-point measurement and its generalization, we explore the fluctuation theorem of work and heat in a single stroke as well as in a cycle. We discover that the fluctuations of work in a cycle as well as fluctuations of heat in a single stroke or cycle can be connected to the fluctuation of work in a single stroke. Then we numerically investigate the effect of a long-range interaction on these fluctuation theorems, and our result shows that the fluctuation can be improved by manipulating the long-range interaction.
Collapse
|
8
|
Łobejko M, Biswas T, Mazurek P, Horodecki M. Catalytic Advantage in Otto-like Two-Stroke Quantum Engines. PHYSICAL REVIEW LETTERS 2024; 132:260403. [PMID: 38996292 DOI: 10.1103/physrevlett.132.260403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 07/14/2024]
Abstract
We demonstrate how to incorporate a catalyst to enhance the performance of a heat engine. Specifically, we analyze efficiency in one of the simplest engine models, which operates in only two strokes and comprises of a pair of two-level systems, potentially assisted by a d-dimensional catalyst. When no catalysis is present, the efficiency of the machine is given by the Otto efficiency. Introducing the catalyst allows for constructing a protocol which overcomes this bound, while new efficiency can be expressed in a simple form as a generalization of Otto's formula: 1-(1/d)(ω_{c}/ω_{h}). The catalyst also provides a bigger operational range of parameters in which the machine works as an engine. Although an increase in engine efficiency is mostly accompanied by a decrease in work production (approaching zero as the system approaches Carnot efficiency), it can lead to a more favorable trade-off between work and efficiency. The provided example introduces new possibilities for enhancing performance of thermal machines through finite-dimensional ancillary systems.
Collapse
Affiliation(s)
- Marcin Łobejko
- Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
- International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | - Paweł Mazurek
- International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | |
Collapse
|
9
|
Paulino PJ, Lesanovsky I, Carollo F. Large Deviation Full Counting Statistics in Adiabatic Open Quantum Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:260402. [PMID: 38996317 DOI: 10.1103/physrevlett.132.260402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
The state of an open quantum system undergoing an adiabatic process evolves by following the instantaneous stationary state of its time-dependent generator. This observation allows one to characterize, for a generic adiabatic evolution, the average dynamics of the open system. However, information about fluctuations of dynamical observables, such as the number of photons emitted or the time-integrated stochastic entropy production in single experimental runs, requires controlling the whole spectrum of the generator and not only the stationary state. Here, we show how such information can be obtained in adiabatic open quantum dynamics by exploiting tools from large deviation theory. We prove an adiabatic theorem for deformed generators, which allows us to encode, in a biased quantum state, the full counting statistics of generic time-integrated dynamical observables. We further compute the probability associated with an arbitrary "rare" time history of the observable and derive a dynamics which realizes it in its typical behavior. Our results provide a way to characterize and engineer adiabatic open quantum dynamics and to control their fluctuations.
Collapse
|
10
|
Bu JT, Zhang JQ, Ding GY, Li JC, Zhang JW, Wang B, Ding WQ, Yuan WF, Chen L, Zhong Q, Keçebaş A, Özdemir ŞK, Zhou F, Jing H, Feng M. Chiral quantum heating and cooling with an optically controlled ion. LIGHT, SCIENCE & APPLICATIONS 2024; 13:143. [PMID: 38918396 PMCID: PMC11199633 DOI: 10.1038/s41377-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Quantum heat engines and refrigerators are open quantum systems, whose dynamics can be well understood using a non-Hermitian formalism. A prominent feature of non-Hermiticity is the existence of exceptional points (EPs), which has no counterpart in closed quantum systems. It has been shown in classical systems that dynamical encirclement in the vicinity of an EP, whether the loop includes the EP or not, could lead to chiral mode conversion. Here, we show that this is valid also for quantum systems when dynamical encircling is performed in the vicinity of their Liouvillian EPs (LEPs), which include the effects of quantum jumps and associated noise-an important quantum feature not present in previous works. We demonstrate, using a Paul-trapped ultracold ion, the first chiral quantum heating and refrigeration by dynamically encircling a closed loop in the vicinity of an LEP. We witness the cycling direction to be associated with the chirality and heat release (absorption) of the quantum heat engine (quantum refrigerator). Our experiments have revealed that not only the adiabaticity breakdown but also the Landau-Zener-Stückelberg process play an essential role during dynamic encircling, resulting in chiral thermodynamic cycles. Our observations contribute to further understanding of chiral and topological features in non-Hermitian systems and pave a way to exploring the relation between chirality and quantum thermodynamics.
Collapse
Affiliation(s)
- Jin-Tao Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jian-Qi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ge-Yi Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia-Chong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia-Wei Zhang
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China
| | - Bin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Qiang Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Fei Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Liang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China
| | - Qi Zhong
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ali Keçebaş
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Şahin K Özdemir
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Fei Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China.
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081, Changsha, China.
| | - Mang Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, 511458, Guangzhou, China.
- Department of Physics, Zhejiang Normal University, 321004, Jinhua, China.
| |
Collapse
|
11
|
Malavazi AHA, Ahmadi B, Mazurek P, Mandarino A. Detuning effects for heat-current control in quantum thermal devices. Phys Rev E 2024; 109:064146. [PMID: 39020883 DOI: 10.1103/physreve.109.064146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Navigating the intricacies of thermal management at the quantum scale is a challenge in the pursuit of advanced nanoscale technologies. To this extent, theoretical frameworks introducing minimal models mirroring the functionality of electronic current amplifiers and transistors, for instance, have been proposed. Different architectures of the subsystems composing a quantum thermal device can be considered, tacitly bringing drawbacks or advantages if properly engineered. This paper extends the prior research on thermotronics, studying a strongly coupled three-subsystem thermal device with a specific emphasis on a third excited level in the control subsystem. Our setup can be employed as a multipurpose device conditioned on the specific choice of internal parameters: heat switch, rectifier, stabilizer, and amplifier. The exploration of the detuned levels unveils a key role in the performance and working regime of the device. We observe a stable and strong amplification effect persisting over broad ranges of temperature. We conclude that considering a three-level system, as the one directly in contact with the control temperature, boosts output currents and the ability to operate our devices as a switch at various temperatures.
Collapse
Affiliation(s)
| | | | - Paweł Mazurek
- International Centre for Theory of Quantum Technologies, University of Gdańsk, Jana Bażyńskiego 1A, 80-309 Gdańsk, Poland
- Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | |
Collapse
|
12
|
Zhang JW, Wang B, Yuan WF, Li JC, Bu JT, Ding GY, Ding WQ, Chen L, Zhou F, Feng M. Energy-Conversion Device Using a Quantum Engine with the Work Medium of Two-Atom Entanglement. PHYSICAL REVIEW LETTERS 2024; 132:180401. [PMID: 38759168 DOI: 10.1103/physrevlett.132.180401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
Although entanglement is considered as an essential resource for quantum information processing, whether entanglement helps for energy conversion or output in the quantum regime is still lack of experimental witness. Here, we report on an energy-conversion device operating as a quantum engine with the working medium acted by two entangled ions confined in a harmonic potential. The two ions are entangled by virtually coupling to one of the vibrational modes shared by the two ions, and the quantum engine couples to a quantum load, which is another shared vibrational mode. We explore the energy conversion efficiency of the quantum engine and investigate the useful energy (i.e., the maximum extractable work) stored in the quantum load by tuning the two ions in different degrees of entanglement as well as detecting the change of the phonons in the load. Our observation provides, for the first time, quantitative evidence that entanglement fuels the useful energy produced by the quantum engine, but not helpful for the energy conversion efficiency. We consider that our results may be useful to the study of quantum batteries for which one of the most indexes is the maximum extractable energy.
Collapse
Affiliation(s)
- J-W Zhang
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - B Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - W-F Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-C Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-T Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - G-Y Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - W-Q Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - L Chen
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - F Zhou
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - M Feng
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
13
|
Rasola M, Möttönen M. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian. Sci Rep 2024; 14:9448. [PMID: 38658607 PMCID: PMC11043434 DOI: 10.1038/s41598-024-59881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
We propose a recipe for demonstrating an autonomous quantum heat engine where the working fluid consists of a harmonic oscillator, the frequency of which is tuned by a driving mode. The working fluid is coupled two heat reservoirs each exhibiting a peaked power spectrum, a hot reservoir peaked at a higher frequency than the cold reservoir. Provided that the driving mode is initialized in a coherent state with a high enough amplitude and the parameters of the utilized optomechanical Hamiltonian and the reservoirs are appropriate, the driving mode induces an approximate Otto cycle for the working fluid and consequently its oscillation amplitude begins to increase in time. We build both an analytical and a non-Markovian quasiclassical model for this quantum heat engine and show that reasonably powerful coherent fields can be generated as the output of the quantum heat engine. This general theoretical proposal heralds the in-depth studies of quantum heat engines in the non-Markovian regime. Further, it paves the way for specific physical realizations, such as those in optomechanical systems, and for the subsequent experimental realization of an autonomous quantum heat engine.
Collapse
Affiliation(s)
- Miika Rasola
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, 00076, Aalto, Finland.
| | - Mikko Möttönen
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, 00076, Aalto, Finland
- QTF Centre of Excellence, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 VTT, Espoo, Finland
| |
Collapse
|
14
|
Liu J, Jung KA. Quantum Carnot thermal machines reexamined: Definition of efficiency and the effects of strong coupling. Phys Rev E 2024; 109:044118. [PMID: 38755899 DOI: 10.1103/physreve.109.044118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Whether the strong coupling to thermal baths can improve the performance of quantum thermal machines remains an open issue under active debate. Here we revisit quantum thermal machines operating with the quasistatic Carnot cycle and aim to unveil the role of strong coupling in maximum efficiency. Our analysis builds upon definitions of excess work and heat derived from an exact formulation of the first law of thermodynamics for the working substance, which captures the non-Gibbsian thermal equilibrium state that emerges at strong couplings during quasistatic isothermal processes. These excess definitions differ from conventional ones by an energetic cost for maintaining the non-Gibbsian characteristics. With this distinction, we point out that one can introduce two different yet thermodynamically allowed definitions for efficiency of both the heat engine and refrigerator modes. We dub them excess and hybrid definitions, which differ in the way of defining the gain for the thermal machines at strong couplings by either just analyzing the energetics of the working substance or instead evaluating the performance from an external system upon which the thermal machine acts, respectively. We analytically demonstrate that the excess definition predicts that the Carnot limit remains the upper bound for both operation modes at strong couplings, whereas the hybrid one reveals that strong coupling can suppress the maximum efficiency rendering the Carnot limit unattainable. These seemingly incompatible predictions thus indicate that it is imperative to first gauge the definition for efficiency before elucidating the exact role of strong coupling, thereby shedding light on the ongoing investigation on strong-coupling quantum thermal machines.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Physics, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
- Institute for Quantum Science and Technology, Shanghai University, Shanghai 200444, China
| | | |
Collapse
|
15
|
Prakash A, Ayyadevara A, Krishnakumar E, Rangwala SA. Low divergence cold-wall oven for loading ion traps. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033202. [PMID: 38477655 DOI: 10.1063/5.0190629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
We present a compact cold-wall oven that is simple to build and align for loading miniature ion traps with calcium ions. The cold-wall oven, which is a metal-loaded capillary heated only through a portion of its length by the passage of a current, is described and characterized. An atomic beam with a low divergence of 14 mrad is produced. We perform Doppler-sensitive, resonant fluorescence measurements on the atomic beam to characterize the oven's performance. The emission of atoms from the oven is seen within ∼70 s after turning on the oven at an electric power consumption of <10 W. The flow rate is measured to be 1.5 ± 0.2 × 109 atoms s-1 at a temperature of 702 ± 7 K. The entire oven assembly is mounted on a CF16 feedthrough. This design can be extended to other species for producing a collimated atomic beam.
Collapse
Affiliation(s)
- Anand Prakash
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
| | - Akhil Ayyadevara
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
| | - E Krishnakumar
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
| | - S A Rangwala
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India
| |
Collapse
|
16
|
Gavrilov M, Zhang J, Yang O, Ha T. Free-energy measuring nanopore device. Phys Rev E 2024; 109:024404. [PMID: 38491642 DOI: 10.1103/physreve.109.024404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/05/2023] [Indexed: 03/18/2024]
Abstract
Free energies (FEs) in molecular sciences can be used to quantify the stability of folded molecules. In this article, we introduce nanopores for measuring FEs. We pull DNA hairpin-forming molecules through a nanopore, measure work, and estimate the FE change in the slow limit, and with the Jarzynski fluctuation theorem (FT) at fast pulling times. We also pull our molecule with optical tweezers, compare it to nanopores, and explore how sampling single molecules from equilibrium or a folded ensemble affects the FE estimate via the FT. The nanopore experiment helps us address and overcome the conceptual problem of equilibrium sampling in single-molecule pulling experiments. Only when molecules are sampled from an equilibrium ensemble do nanopore and tweezer FE estimates mutually agree. We demonstrate that nanopores are very useful tools for comparing FEs of two molecules at finite times and we propose future applications.
Collapse
Affiliation(s)
- Momčilo Gavrilov
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Jinghang Zhang
- Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Olivia Yang
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Taekjip Ha
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
- Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
17
|
Ruan H, Yuan J, Xu Y, He J, Ma Y, Wang J. Performance enhancement of quantum Brayton engine via Bose-Einstein condensation. Phys Rev E 2024; 109:024126. [PMID: 38491606 DOI: 10.1103/physreve.109.024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Bose-Einstein condensation is a quintessential characteristic of Bose systems. We investigate the finite-time performance of an endoreversible quantum Brayton heat engine operating with an ideal Bose gas with a finite number of particles confined in a d-dimensional harmonic trap. The working medium of these engines may work in the condensation, noncondensation, and near-critical point regimes, respectively. We demonstrate that the existence of the phase transition during the cycle leads to enhanced engine performance by increasing power output and efficiencies corresponding to maximum power and maximum efficient power. We also show that the quantum engine working across the Bose-Einstein condensation in N-particle Bose gas outperforms an ensemble of independent single-particle heat engines. The difference in the machine performance can be explained in terms of the behavior of specific heat at constant pressure near the critical point regime.
Collapse
Affiliation(s)
- Huilin Ruan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jiehong Yuan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yang Xu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Tejero Á, Manzano D, Hurtado PI. Atom-doped photon engine: Extracting mechanical work from a quantum system via radiation pressure. Phys Rev E 2024; 109:024141. [PMID: 38491628 DOI: 10.1103/physreve.109.024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
The possibility of efficiently converting heat into work at the microscale has triggered an intense research effort to understand quantum heat engines, driven by the hope of quantum superiority over classical counterparts. In this work, we introduce a model featuring an atom-doped optical quantum cavity propelling a classical piston through radiation pressure. The model, based on the Jaynes-Cummings Hamiltonian of quantum electrodynamics, demonstrates the generation of mechanical work through thermal energy injection. We establish the equivalence of the piston expansion work with Alicki's work definition, analytically for quasistatic transformations and numerically for finite-time protocols. We further employ the model to construct quantum Otto and Carnot engines, comparing their performance in terms of energetics, work output, efficiency, and power under various conditions. This model thus provides a platform to extract useful work from an open quantum system to generate net motion, and it sheds light on the quantum concepts of work and heat.
Collapse
Affiliation(s)
- Álvaro Tejero
- Electromagnetism and Condensed Matter Department and Carlos I Institute for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| | - Daniel Manzano
- Electromagnetism and Condensed Matter Department and Carlos I Institute for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| | - Pablo I Hurtado
- Electromagnetism and Condensed Matter Department and Carlos I Institute for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
19
|
Upadhyay R, Golubev DS, Chang YC, Thomas G, Guthrie A, Peltonen JT, Pekola JP. Microwave quantum diode. Nat Commun 2024; 15:630. [PMID: 38245544 PMCID: PMC10799849 DOI: 10.1038/s41467-024-44908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quantum circuits. As a proof-of-concept, here we report a compact microwave diode architecture, which exploits the non-linearity of a superconducting flux qubit. At the qubit degeneracy point we experimentally demonstrate a significant difference between the power levels transmitted in opposite directions. The observations align with the proposed theoretical model. At - 99 dBm input power, and near the qubit-resonator avoided crossing region, we report the transmission rectification ratio exceeding 90% for a 50 MHz wide frequency range from 6.81 GHz to 6.86 GHz, and over 60% for the 250 MHz range from 6.67 GHz to 6.91 GHz. The presented architecture is compact, and easily scalable towards multiple readout channels, potentially opening up diverse opportunities in quantum information, microwave read-out and optomechanics.
Collapse
Affiliation(s)
- Rishabh Upadhyay
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland.
| | - Dmitry S Golubev
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland
| | - Yu-Cheng Chang
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland
| | - George Thomas
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland
- VTT Technical Research Centre of Finland Ltd, Tietotie 3, 02150, Espoo, Finland
| | - Andrew Guthrie
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland
| | - Joonas T Peltonen
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland
| | - Jukka P Pekola
- Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland
| |
Collapse
|
20
|
Lahiri S, Gupta S. Efficiency of a microscopic heat engine subjected to stochastic resetting. Phys Rev E 2024; 109:014129. [PMID: 38366425 DOI: 10.1103/physreve.109.014129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
We explore the thermodynamics of stochastic heat engines in the presence of stochastic resetting. The setup comprises an engine whose working substance is a Brownian particle undergoing overdamped Langevin dynamics in a harmonic potential with a time-dependent stiffness, with the dynamics interrupted at random times with a resetting to a fixed location. The effect of resetting to the potential minimum is shown to enhance the efficiency of the engine, while the output work is shown to have a nonmonotonic dependence on the rate of resetting. The resetting events are found to drive the system out of the linear response regime, even for small differences in the bath temperatures. Shifting the reset point from the potential minimum is observed to reduce the engine efficiency. The experimental setup for the realization of such an engine is briefly discussed.
Collapse
Affiliation(s)
- Sourabh Lahiri
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Shamik Gupta
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
21
|
Xu HG, Jin J, Neto GDM, de Almeida NG. Universal quantum Otto heat machine based on the Dicke model. Phys Rev E 2024; 109:014122. [PMID: 38366433 DOI: 10.1103/physreve.109.014122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
In this paper we study a quantum Otto thermal machine where the working substance is composed of N identical qubits coupled to a single mode of a bosonic field, where the atoms and the field interact with a reservoir, as described by the so-called open Dicke model. By controlling the relevant and experimentally accessible parameters of the model we show that it is possible to build a universal quantum heat machine (UQHM) that can function as an engine, refrigerator, heater, or accelerator. The heat and work exchanges are computed taking into account the growth of the number N of atoms as well as the coupling regimes characteristic of the Dicke model for several ratios of temperatures of the two thermal reservoirs. The analysis of quantum features such as entanglement and second-order correlation shows that these quantum resources do not affect either the efficiency or the performance of the UQHM based on the open Dicke model. In addition, we show that the improvement in both efficiency and coefficient of performance of our UQHM occurs for regions around the critical value of the phase transition parameter of the model.
Collapse
Affiliation(s)
- He-Guang Xu
- School of Physics, Dalian University of Technology, 116024 Dalian, China
| | - Jiasen Jin
- School of Physics, Dalian University of Technology, 116024 Dalian, China
| | - G D M Neto
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil
| |
Collapse
|
22
|
Polo-Gómez J. Thermodynamic bound on quantum state discrimination. Phys Rev E 2024; 109:014119. [PMID: 38366527 DOI: 10.1103/physreve.109.014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 02/18/2024]
Abstract
We show that the second law of thermodynamics poses a restriction on how well we can discriminate between quantum states. By examining an ideal gas with a quantum internal degree of freedom undergoing a cycle based on a proposal by Peres, we establish a nontrivial upper bound on the attainable accuracy of quantum state discrimination. This thermodynamic bound, which relies solely on the linearity of quantum mechanics and the constraint of no work extraction, matches Holevo's bound on accessible information, but is looser than the Holevo-Helstrom bound. The result gives more evidence on the disagreement between thermodynamic entropy and von Neumann entropy and places potential limitations on proposals beyond quantum mechanics.
Collapse
Affiliation(s)
- José Polo-Gómez
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; and Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
| |
Collapse
|
23
|
Roy N, Sood AK, Ganapathy R. Harnessing Viscoelasticity to Suppress Irreversibility Buildup in a Colloidal Stirling Engine. PHYSICAL REVIEW LETTERS 2023; 131:238201. [PMID: 38134791 DOI: 10.1103/physrevlett.131.238201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
Typically, the rate at which a heat engine can produce useful work is constrained by the buildup of irreversibility with increasing operating speed. Here, using a recently developed reservoir engineering technique, we designed and quantified the performance of a colloidal Stirling engine operating in a viscoelastic bath. While the bath acts like a viscous fluid in the quasistatic limit, and the engine's performance agrees with equilibrium predictions, on reducing the cycle time to the bath's structural relaxation time, the increasingly elastic response of the bath aids suppress the buildup of irreversibility. We show that the elastic energy stored during the isothermal compression step of the Stirling cycle facilitates quick equilibration in the isothermal expansion step. This results in equilibriumlike efficiencies even for cycle times shorter than the equilibration time of the colloidal particle.
Collapse
Affiliation(s)
- Niloyendu Roy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore-560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
24
|
Mohanta S, Agarwalla BK. Full statistics of nonequilibrium heat and work for many-body quantum Otto engines and universal bounds: A nonequilibrium Green's function approach. Phys Rev E 2023; 108:064127. [PMID: 38243491 DOI: 10.1103/physreve.108.064127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
We consider a generic four-stroke quantum Otto engine consisting of two unitary and two thermalization strokes with an arbitrary many-body working medium. Using the Schwinger-Keldysh nonequilibrium Green's function formalism, we provide an analytical expression for the cumulant generating function corresponding to the joint probability distribution of nonequilibrium work and heat. The obtained result is valid up to the second order of the external driving amplitude. We then focus on the linear response limit and obtained Onsager's transport coefficients for the generic Otto cycle and show that the traditional fluctuation-dissipation relation for the total work is violated in the quantum domain, whereas for heat it is preserved. This leads to remarkable consequences in obtaining universal constraints on heat and work fluctuations for engine and refrigerator regimes of the Otto cycle and further allows us to make connections to the thermodynamic uncertainty relations. These findings are illustrated using a paradigmatic model that can be feasibly implemented in experiments.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
25
|
Mallweger M, de Oliveira MH, Thomm R, Parke H, Kuk N, Higgins G, Bachelard R, Villas-Boas CJ, Hennrich M. Single-Shot Measurements of Phonon Number States Using the Autler-Townes Effect. PHYSICAL REVIEW LETTERS 2023; 131:223603. [PMID: 38101344 DOI: 10.1103/physrevlett.131.223603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
We present a single-shot method to measure motional states in the number basis. The technique can be applied to systems with at least three nondegenerate energy levels which can be coupled to a linear quantum harmonic oscillator. The method relies on probing an Autler-Townes splitting that arises when a phonon-number changing transition is strongly coupled. We demonstrate the method using a single trapped ion and show that it may be used in a nondemolition fashion to prepare phonon number states. We also show how the Autler-Townes splitting can be used to measure phonon number distributions.
Collapse
Affiliation(s)
- Marion Mallweger
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Robin Thomm
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Harry Parke
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Natalia Kuk
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gerard Higgins
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Romain Bachelard
- Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - Celso Jorge Villas-Boas
- Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Markus Hennrich
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Hohm U, Schiller C. Testing the Minimum System Entropy and the Quantum of Entropy. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1511. [PMID: 37998203 PMCID: PMC10670145 DOI: 10.3390/e25111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Experimental and theoretical results about entropy limits for macroscopic and single-particle systems are reviewed. All experiments confirm the minimum system entropy S⩾kln2. We clarify in which cases it is possible to speak about a minimum system entropykln2 and in which cases about a quantum of entropy. Conceptual tensions with the third law of thermodynamics, with the additivity of entropy, with statistical calculations, and with entropy production are resolved. Black hole entropy is surveyed. Claims for smaller system entropy values are shown to contradict the requirement of observability, which, as possibly argued for the first time here, also implies the minimum system entropy kln2. The uncertainty relations involving the Boltzmann constant and the possibility of deriving thermodynamics from the existence of minimum system entropy enable one to speak about a general principle that is valid across nature.
Collapse
Affiliation(s)
- Uwe Hohm
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | | |
Collapse
|
27
|
Machado F, Zhuang Q, Yao NY, Zaletel MP. Absolutely Stable Time Crystals at Finite Temperature. PHYSICAL REVIEW LETTERS 2023; 131:180402. [PMID: 37977624 DOI: 10.1103/physrevlett.131.180402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
We show that locally interacting, periodically driven (Floquet) Hamiltonian dynamics coupled to a Langevin bath support finite-temperature discrete time crystals (DTCs) with an infinite autocorrelation time. By contrast to both prethermal and many-body localized DTCs, the time crystalline order we uncover is stable to arbitrary perturbations, including those that break the time translation symmetry of the underlying drive. Our approach utilizes a general mapping from probabilistic cellular automata to open classical Floquet systems undergoing continuous-time Langevin dynamics. Applying this mapping to a variant of the Toom cellular automaton, which we dub the "π-Toom time crystal," leads to a 2D Floquet Hamiltonian with a finite-temperature DTC phase transition. We provide numerical evidence for the existence of this transition, and analyze the statistics of the finite temperature fluctuations. Finally, we discuss how general results from the field of probabilistic cellular automata imply the existence of discrete time crystals (with an infinite autocorrelation time) in all dimensions, d≥1.
Collapse
Affiliation(s)
- Francisco Machado
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Quntao Zhuang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
- Ming Hsieh Department of Electrical and Computer Engineering and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Norman Y Yao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Ray KJ, Boyd AB, Guarnieri G, Crutchfield JP. Thermodynamic uncertainty theorem. Phys Rev E 2023; 108:054126. [PMID: 38115447 DOI: 10.1103/physreve.108.054126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023]
Abstract
Thermodynamic uncertainty relations (TURs) express a fundamental lower bound on the precision (inverse scaled variance) of any thermodynamic charge-e.g., work or heat-by functionals of the average entropy production. Relying on purely variational arguments, we significantly extend TUR inequalities by incorporating and analyzing the impact of higher statistical cumulants of the entropy production itself within the general framework of time-symmetrically-controlled computation. We derive an exact expression for the charge that achieves the minimum scaled variance, for which the TUR bound tightens to an equality that we name the thermodynamic uncertainty theorem (TUT). Importantly, both the minimum scaled variance charge and the TUT are functionals of the stochastic entropy production, thus retaining the impact of its higher moments. In particular, our results show that, beyond the average, the entropy production distribution's higher moments have a significant effect on any charge's precision. This is made explicit via a thorough numerical analysis of "swap" and "reset" computations that quantitatively compares the TUT against previous generalized TURs.
Collapse
Affiliation(s)
- Kyle J Ray
- Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Alexander B Boyd
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - Giacomo Guarnieri
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
29
|
Ozaydin F, Müstecaplıoğlu ÖE, Hakioğlu T. Powering quantum Otto engines only with q-deformation of the working substance. Phys Rev E 2023; 108:054103. [PMID: 38115457 DOI: 10.1103/physreve.108.054103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
We consider a quantum Otto cycle with a q-deformed quantum oscillator working substance and classical thermal baths. We investigate the influence of the quantum statistical deformation parameter q on the work and efficiency of the cycle. In usual quantum Otto cycle, a Hamiltonian parameter is varied during the quantum adiabatic stages while the quantum statistical character of the working substance remains fixed. We point out that even if the Hamiltonian parameters are not changing, work can be harvested by quantum statistical changes of the working substance. Work extraction from thermal resources using quantum statistical mutations of the working substance makes a quantum Otto cycle without any classical analog.
Collapse
Affiliation(s)
- Fatih Ozaydin
- Institute for International Strategy, Tokyo International University, 4-42-31 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013, Japan
- Department of Information Technologies, Isik University, Sile, Istanbul 34980, Turkey
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, Sarıyer, İstanbul 34450, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Türkiye
| | - Tuğrul Hakioğlu
- Energy Institute, İstanbul Technical University, Sarıyer, İstanbul 34467, Türkiye
- Department of Physics Engineering, İstanbul Technical University, Sarıyer, İstanbul 34467, Türkiye
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Krishnamurthy S, Ganapathy R, Sood AK. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions. Nat Commun 2023; 14:6842. [PMID: 37891165 PMCID: PMC10611737 DOI: 10.1038/s41467-023-42350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
All real heat engines, be it conventional macro engines or colloidal and atomic micro engines, inevitably tradeoff efficiency in their pursuit to maximize power. This basic postulate of finite-time thermodynamics has been the bane of all engine design for over two centuries and all optimal protocols implemented hitherto could at best minimize only the loss in the efficiency. The absence of a protocol that allows engines to overcome this limitation has prompted theoretical studies to suggest universality of the postulate in both passive and active engines. Here, we experimentally overcome the power-efficiency tradeoff in a colloidal Stirling engine by selectively reducing relaxation times over only the isochoric processes using system bath interactions generated by electrophoretic noise. Our approach opens a window of cycle times where the tradeoff is reversed and enables the engine to surpass even their quasistatic efficiency. Our strategies finally cut loose engine design from fundamental restrictions and pave way for the development of more efficient and powerful engines and devices.
Collapse
Affiliation(s)
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
31
|
Deng B, Göb M, Stickler BA, Masuhr M, Singer K, Wang D. Amplifying a Zeptonewton Force with a Single-Ion Nonlinear Oscillator. PHYSICAL REVIEW LETTERS 2023; 131:153601. [PMID: 37897755 DOI: 10.1103/physrevlett.131.153601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 10/30/2023]
Abstract
Nonlinear mechanical resonators display rich and complex dynamics and are important in many areas of fundamental and applied sciences. Here, we present a general strategy to generate mechanical nonlinearities for trapped particles by transverse driving in a funnel-shaped potential. Employing a trapped ion platform, we study the nonlinear oscillation, bifurcation, and hysteresis of a single calcium ion and demonstrate a 20-fold enhancement of the signal from a zeptonewton-magnitude harmonic force through the effect of vibrational resonance. Our results represent a first step in combining the rich nonlinear dynamics with the precision control over mechanical motions offered by atomic physics and open up possibilities for exploiting nonlinear mechanical phenomena in the quantum regime.
Collapse
Affiliation(s)
- Bo Deng
- Institute of Physics, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Moritz Göb
- Institute of Physics, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Benjamin A Stickler
- Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
- Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Max Masuhr
- Institute of Physics, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Kilian Singer
- Institute of Physics, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Daqing Wang
- Institute of Physics, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
32
|
El Makouri A, Slaoui A, Ahl Laamara R. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. Phys Rev E 2023; 108:044114. [PMID: 37978648 DOI: 10.1103/physreve.108.044114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Recently, measurement-based quantum thermal machines have drawn more attention in the field of quantum thermodynamics. However, the previous results on quantum Otto heat engines were either limited to special unital and nonunital channels in the bath stages, or a specific driving protocol at the work strokes and assuming the cycle being time-reversal symmetric, i.e., V^{†}=U (or V=U). In this paper, we consider a single spin-1/2 quantum Otto heat engine, by first replacing one of the heat baths by an arbitrary unital channel, and then we give the exact analytical expression of the characteristic function from which all the cumulants of heat and work emerge. We prove that under the effect of monitoring, ν_{2}>ν_{1} is a necessary condition for positive work, either for a symmetric or asymmetric-driven Otto cycle. Furthermore, going beyond the average we show that the ratio of the fluctuations of work and heat is lower and upper-bounded when the system is working as a heat engine. However, differently from the previous results in the literature, we consider the third and fourth cumulants as well. It is shown that the ratio of the third (fourth) cumulants of work and heat is not upper-bounded by unity nor lower-bounded by the third (fourth) power of the efficiency, as is the case for the ratio of fluctuations. Finally, we consider applying a specific unital map that plays the role of a heat bath in a coherently superposed manner, and we show the role of the initial coherence of the control qubit on efficiency, on the average work and its relative fluctuations.
Collapse
Affiliation(s)
- Abdelkader El Makouri
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdallah Slaoui
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Ahl Laamara
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
33
|
Chen R, Gibson T, Craven GT. Energy transport between heat baths with oscillating temperatures. Phys Rev E 2023; 108:024148. [PMID: 37723696 DOI: 10.1103/physreve.108.024148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Energy transport is a fundamental physical process that plays a prominent role in the function and performance of myriad systems and technologies. Recent experimental measurements have shown that subjecting a macroscale system to a time-periodic temperature gradient can increase thermal conductivity in comparison to a static temperature gradient. Here, we theoretically examine this mechanism in a nanoscale model by applying a stochastic Langevin framework to describe the energy transport properties of a particle connecting two heat baths with different temperatures, where the temperature difference between baths is oscillating in time. Analytical expressions for the energy flux of each heat bath and for the system itself are derived for the case of a free particle and a particle in a harmonic potential. We find that dynamical effects in the energy flux induced by temperature oscillations give rise to complex energy transport hysteresis effects. The presented results suggest that applying time-periodic temperature modulations is a potential route to control energy storage and release in molecular devices and nanosystems.
Collapse
Affiliation(s)
- Renai Chen
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Tammie Gibson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Galen T Craven
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
34
|
Erdman PA, Noé F. Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning. PNAS NEXUS 2023; 2:pgad248. [PMID: 37593201 PMCID: PMC10427747 DOI: 10.1093/pnasnexus/pgad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale. Optimally controlling such out-of-equilibrium systems is a crucial yet challenging task with applications to quantum technologies and devices. We introduce a general model-free framework based on reinforcement learning to identify out-of-equilibrium thermodynamic cycles that are Pareto optimal tradeoffs between power and efficiency for quantum heat engines and refrigerators. The method does not require any knowledge of the quantum thermal machine, nor of the system model, nor of the quantum state. Instead, it only observes the heat fluxes, so it is both applicable to simulations and experimental devices. We test our method on a model of an experimentally realistic refrigerator based on a superconducting qubit, and on a heat engine based on a quantum harmonic oscillator. In both cases, we identify the Pareto-front representing optimal power-efficiency tradeoffs, and the corresponding cycles. Such solutions outperform previous proposals made in the literature, such as optimized Otto cycles, reducing quantum friction.
Collapse
Affiliation(s)
- Paolo A Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Microsoft Research AI4Science, Karl-Liebknecht Str. 32, 10178 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
35
|
Abasabadi SH, Mirafzali SY, Baghshahi HR. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath. Sci Rep 2023; 13:10522. [PMID: 37386051 PMCID: PMC10310849 DOI: 10.1038/s41598-023-37681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
Work and efficiency of quantum Otto heat engines (QOHEs) can increase by using non-thermal baths or by inhomogeneous scaling of energy levels of the working substance. Given these points, at first, we construct the coherent thermal state for a trigonometric Pöschl-Teller (PT) potential. Then using a particle in this potential, which has unequally spaced energy levels, as a working substance, we investigate the work extraction and the efficiency of QOHEs that operates between cold and hot coherent thermal baths. The results show that changing the PT potential parameters in the adiabatic processes of QOHE, which causes an inhomogeneous shift in energy levels or/and make use of the hot coherent thermal bath, improve work extraction and efficiency of QOHE relative to the classical counterpart.
Collapse
Affiliation(s)
| | - Sayyed Yahya Mirafzali
- Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Hamid Reza Baghshahi
- Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
36
|
Zhai RX, Cui FM, Ma YH, Sun CP, Dong H. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle. Phys Rev E 2023; 107:L042101. [PMID: 37198805 DOI: 10.1103/physreve.107.l042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/15/2023] [Indexed: 05/19/2023]
Abstract
The Carnot cycle is a prototype of an ideal heat engine cycle to draw mechanical energy from the heat flux between two thermal baths with the maximum efficiency, dubbed as the Carnot efficiency η_{C}. Such efficiency is reached by thermodynamical equilibrium processes with infinite time, accompanied unavoidably with vanishing power-energy output per unit time. The quest to acquire high power leads to an open question of whether a fundamental maximum efficiency exists for finite-time heat engines with given power. We experimentally implement a finite-time Carnot cycle with sealed dry air as a working substance and verify the existence of a trade-off relation between power and efficiency. Efficiency up to (0.524±0.034)η_{C} is reached for the engine to generate the maximum power, consistent with the theoretical prediction η_{C}/2. Our experimental setup shall provide a platform for studying finite-time thermodynamics consisting of nonequilibrium processes.
Collapse
Affiliation(s)
- Ruo-Xun Zhai
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Fang-Ming Cui
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Normal University, Beijing 100875, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
37
|
Izadyari M, Naseem MT, Müstecaplıoğlu ÖE. Enantiomer detection via quantum Otto cycle. Phys Rev E 2023; 107:L042103. [PMID: 37198840 DOI: 10.1103/physreve.107.l042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Enantiomers are chiral molecules that exist in right-handed and left-handed conformations. Optical techniques of enantiomers' detection are widely employed to discriminate between left- and right-handed molecules. However, identical spectra of enantiomers make enantiomer detection a very challenging task. Here, we investigate the possibility of exploiting thermodynamic processes for enantiomer detection. In particular, we employ a quantum Otto cycle in which a chiral molecule described by a three-level system with cyclic optical transitions is considered a working medium. Each energy transition of the three-level system is coupled with an external laser drive. We find that the left- and right-handed enantiomers operate as a quantum heat engine and a thermal accelerator, respectively, when the overall phase is the control parameter. In addition, both enantiomers act as heat engines by keeping the overall phase constant and using the laser drives' detuning as the control parameter during the cycle. However, the molecules can still be distinguished because both cases' extracted work and efficiency are quantitatively very different. Accordingly, the left- and right-handed molecules can be distinguished by evaluating the work distribution in the Otto cycle.
Collapse
Affiliation(s)
- Mohsen Izadyari
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
| | - M Tahir Naseem
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Türkiye
| |
Collapse
|
38
|
Kaneyasu M, Hasegawa Y. Quantum Otto cycle under strong coupling. Phys Rev E 2023; 107:044127. [PMID: 37198760 DOI: 10.1103/physreve.107.044127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Quantum heat engines are often discussed under the weak-coupling assumption that the interaction between the system and the reservoirs is negligible. Although this setup is easier to analyze, this assumption cannot be justified on the quantum scale. In this study, a quantum Otto cycle model that can be generally applied without the weak-coupling assumption is proposed. We replace the thermalization process in the weak-coupling model with a process comprising thermalization and decoupling. The efficiency of the proposed model is analytically calculated and indicates that, when the contribution of the interaction terms is neglected in the weak-interaction limit, it reduces to that of the earlier model. The sufficient condition for the efficiency of the proposed model not to surpass that of the weak-coupling model is that the decoupling processes of our model have a positive cost. Moreover, the relation between the interaction strength and the efficiency of the proposed model is numerically examined by using a simple two-level system. Furthermore, we show that our model's efficiency can surpass that of the weak-coupling model under particular cases. From analyzing the majorization relation, we also find a design method of the optimal interaction Hamiltonians, which are expected to provide the maximum efficiency of the proposed model. Under these interaction Hamiltonians, the numerical experiment shows that the proposed model achieves higher efficiency than that of its weak-coupling counterpart.
Collapse
Affiliation(s)
- Mao Kaneyasu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Peña FJ, Myers NM, Órdenes D, Albarrán-Arriagada F, Vargas P. Enhanced Efficiency at Maximum Power in a Fock-Darwin Model Quantum Dot Engine. ENTROPY (BASEL, SWITZERLAND) 2023; 25:518. [PMID: 36981406 PMCID: PMC10047958 DOI: 10.3390/e25030518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
We study the performance of an endoreversible magnetic Otto cycle with a working substance composed of a single quantum dot described using the well-known Fock-Darwin model. We find that tuning the intensity of the parabolic trap (geometrical confinement) impacts the proposed cycle's performance, quantified by the power, work, efficiency, and parameter region where the cycle operates as an engine. We demonstrate that a parameter region exists where the efficiency at maximum output power exceeds the Curzon-Ahlborn efficiency, the efficiency at maximum power achieved by a classical working substance.
Collapse
Affiliation(s)
- Francisco J. Peña
- Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 11520, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Av. España 1680, Valparaíso 11520, Chile
| | - Nathan M. Myers
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel Órdenes
- Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 11520, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Av. España 1680, Valparaíso 11520, Chile
| | - Francisco Albarrán-Arriagada
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile (USACH), Avenida Víctor Jara 3493, Estación Central 9170124, Chile
| | - Patricio Vargas
- Departamento de Física, CEDENNA, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 11520, Chile
| |
Collapse
|
40
|
Bu JT, Zhang JQ, Ding GY, Li JC, Zhang JW, Wang B, Ding WQ, Yuan WF, Chen L, Özdemir ŞK, Zhou F, Jing H, Feng M. Enhancement of Quantum Heat Engine by Encircling a Liouvillian Exceptional Point. PHYSICAL REVIEW LETTERS 2023; 130:110402. [PMID: 37001093 DOI: 10.1103/physrevlett.130.110402] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Quantum heat engines are expected to outperform the classical counterparts due to quantum coherences involved. Here we experimentally execute a single-ion quantum heat engine and demonstrate, for the first time, the dynamics and the enhanced performance of the heat engine originating from the Liouvillian exceptional points (LEPs). In addition to the topological effects related to LEPs, we focus on thermodynamic effects, which can be understood by the Landau-Zener-Stückelberg process under decoherence. We witness a positive net work from the quantum heat engine if the heat engine cycle dynamically encircles a LEP. Further investigation reveals that a larger net work is done when the system is operated closer to the LEP. We attribute the enhanced performance of the quantum heat engine to the Landau-Zener-Stückelberg process, enabled by the eigenenergy landscape in the vicinity of the LEP, and the exceptional point-induced topological transition. Therefore, our results open new possibilities toward LEP-enabled control of quantum heat engines and of thermodynamic processes in open quantum systems.
Collapse
Affiliation(s)
- J-T Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-Q Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - G-Y Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-C Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-W Zhang
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou, 511458, China
| | - B Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - W-Q Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - W-F Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - L Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou, 511458, China
| | - Ş K Özdemir
- Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State College, Pennsylvania 16802, USA
| | - F Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou, 511458, China
| | - H Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - M Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou, 511458, China
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
41
|
Damas GG, de Assis RJ, de Almeida NG. Cooling with fermionic thermal reservoirs. Phys Rev E 2023; 107:034128. [PMID: 37073057 DOI: 10.1103/physreve.107.034128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
The quantum reservoirs commonly considered in open-quantum systems theory are those modeled by quantum harmonic oscillators, which are called bosonic reservoirs. Recently, quantum reservoirs modeled by two-level systems, the so-called fermionic reservoirs, have received attention due to their features. Given that the components of these reservoirs have a finite number of energy levels, unlike bosonic reservoirs, some studies are being carried out to explore the advantages of using this type of reservoir, especially in the operation of heat machines. In this paper, we carry out a case study of a quantum refrigerator operating in the presence of bosonic or fermionic thermal reservoirs, and we show that fermionic baths have advantages over bosonic ones.
Collapse
Affiliation(s)
- Gabriella G Damas
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
| | - Rogério J de Assis
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
- Departamento de Física, Universidade Federal de São Carlos, 13.565-905 São Carlos-São Paulo, Brazil
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
| |
Collapse
|
42
|
Sur S, Ghosh A. Quantum Advantage of Thermal Machines with Bose and Fermi Gases. ENTROPY (BASEL, SWITZERLAND) 2023; 25:372. [PMID: 36832738 PMCID: PMC9955716 DOI: 10.3390/e25020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In this article, we show that a quantum gas, a collection of massive, non-interacting, indistinguishable quantum particles, can be realized as a thermodynamic machine as an artifact of energy quantization and, hence, bears no classical analog. Such a thermodynamic machine depends on the statistics of the particles, the chemical potential, and the spatial dimension of the system. Our detailed analysis demonstrates the fundamental features of quantum Stirling cycles, from the viewpoint of particle statistics and system dimensions, that helps us to realize desired quantum heat engines and refrigerators by exploiting the role of quantum statistical mechanics. In particular, a clear distinction between the behavior of a Fermi gas and a Bose gas is observed in one dimension, rather than in higher dimensions, solely due to the innate differences in their particle statistics indicating the conspicuous role of a quantum thermodynamic signature in lower dimensions.
Collapse
Affiliation(s)
- Saikat Sur
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Ghosh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
43
|
Reyes-Ayala I, Miotti M, Hemmerling M, Dubessy R, Perrin H, Romero-Rochin V, Bagnato VS. Carnot Cycles in a Harmonically Confined Ultracold Gas across Bose-Einstein Condensation. ENTROPY (BASEL, SWITZERLAND) 2023; 25:311. [PMID: 36832677 PMCID: PMC9955479 DOI: 10.3390/e25020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Carnot cycles of samples of harmonically confined ultracold 87Rb fluids, near and across Bose-Einstein condensation (BEC), are analyzed. This is achieved through the experimental determination of the corresponding equation of state in terms of the appropriate global thermodynamics for non-uniform confined fluids. We focus our attention on the efficiency of the Carnot engine when the cycle occurs for temperatures either above or below the critical temperature and when BEC is crossed during the cycle. The measurement of the cycle efficiency reveals a perfect agreement with the theoretical prediction (1-TL/TH), with TH and TL serving as the temperatures of the hot and cold heat exchange reservoirs. Other cycles are also considered for comparison.
Collapse
Affiliation(s)
- Ignacio Reyes-Ayala
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Marcos Miotti
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Michal Hemmerling
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Romain Dubessy
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS UMR 7538, F-93430 Villetaneuse, France
| | - Hélène Perrin
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS UMR 7538, F-93430 Villetaneuse, France
| | - Victor Romero-Rochin
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico
| | - Vanderlei Salvador Bagnato
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
- Biomedical Engineering Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
44
|
Arrachea L. Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:036501. [PMID: 36603220 DOI: 10.1088/1361-6633/acb06b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
We present an overview of recent advances in the study of energy dynamics and mechanisms for energy conversion in qubit systems with special focus on realizations in superconducting quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat generation, energy transport and energy conversion in these systems with and without time-dependent driving considering the effect of equilibrium and non-equilibrium environments. We analyze specific problems and mechanisms under current investigation in the context of qubit systems. These include the problem of energy dissipation and possible routes for its control, energy pumping between driving sources and heat pumping between reservoirs, implementation of thermal machines and mechanisms for energy storage. We highlight the underlying fundamental phenomena related to geometrical and topological properties, as well as many-body correlations. We also present an overview of recent experimental activity in this field.
Collapse
Affiliation(s)
- Liliana Arrachea
- Escuela de Ciencia y Tecnología and ICIFI, Universidad de San Martín, Av. 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
45
|
Bhandari B, Czupryniak R, Erdman PA, Jordan AN. Measurement-Based Quantum Thermal Machines with Feedback Control. ENTROPY (BASEL, SWITZERLAND) 2023; 25:204. [PMID: 36832571 PMCID: PMC9955564 DOI: 10.3390/e25020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We investigated coupled-qubit-based thermal machines powered by quantum measurements and feedback. We considered two different versions of the machine: (1) a quantum Maxwell's demon, where the coupled-qubit system is connected to a detachable single shared bath, and (2) a measurement-assisted refrigerator, where the coupled-qubit system is in contact with a hot and cold bath. In the quantum Maxwell's demon case, we discuss both discrete and continuous measurements. We found that the power output from a single qubit-based device can be improved by coupling it to the second qubit. We further found that the simultaneous measurement of both qubits can produce higher net heat extraction compared to two setups operated in parallel where only single-qubit measurements are performed. In the refrigerator case, we used continuous measurement and unitary operations to power the coupled-qubit-based refrigerator. We found that the cooling power of a refrigerator operated with swap operations can be enhanced by performing suitable measurements.
Collapse
Affiliation(s)
- Bibek Bhandari
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
| | - Robert Czupryniak
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
| | - Paolo Andrea Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Andrew N. Jordan
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
46
|
Opatrný T, Bräuer Š, Kofman AG, Misra A, Meher N, Firstenberg O, Poem E, Kurizki G. Nonlinear coherent heat machines. SCIENCE ADVANCES 2023; 9:eadf1070. [PMID: 36608121 PMCID: PMC9821940 DOI: 10.1126/sciadv.adf1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
We propose heat machines that are nonlinear, coherent, and closed systems composed of few field (oscillator) modes. Their thermal-state input is transformed by nonlinear Kerr interactions into nonthermal (non-Gaussian) output with controlled quantum fluctuations and the capacity to deliver work in a chosen mode. These machines can provide an output with strongly reduced phase and amplitude uncertainty that may be useful for sensing or communications in the quantum domain. They are experimentally realizable in optomechanical cavities where photonic and phononic modes are coupled by a Josephson qubit or in cold gases where interactions between photons are transformed into dipole-dipole interacting Rydberg atom polaritons. This proposed approach is a step toward the bridging of quantum and classical coherent and thermodynamic descriptions.
Collapse
Affiliation(s)
- Tomáš Opatrný
- Department of Optics, Faculty of Science, Palacký University, 17, Listopadu 50, 77146 Olomouc, Czech Republic
| | - Šimon Bräuer
- Department of Optics, Faculty of Science, Palacký University, 17, Listopadu 50, 77146 Olomouc, Czech Republic
| | - Abraham G. Kofman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avijit Misra
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nilakantha Meher
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofer Firstenberg
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eilon Poem
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gershon Kurizki
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Sheng J, Yang C, Wu H. Nonequilibrium thermodynamics in cavity optomechanics. FUNDAMENTAL RESEARCH 2023; 3:75-86. [PMID: 38933566 PMCID: PMC11197698 DOI: 10.1016/j.fmre.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Classical thermodynamics has been a great achievement in dealing with systems that are in equilibrium or near equilibrium. As an emerging field, nonequilibrium thermodynamics provides a general framework for understanding the nonequilibrium processes, particularly in small systems that are typically far-from-equilibrium and are dominated by thermal or quantum fluctuations. Cavity optomechanical systems hold great promise among the various experimental platforms for studying nonequilibrium thermodynamics owing to their high controllability, excellent mechanical performance, and ability to operate deep in the quantum regime. Here, we present an overview of the recent advances in nonequilibrium thermodynamics with cavity optomechanical systems. The experimental results in entropy production assessment, fluctuation theorems, heat transfer, and heat engines are highlighted.
Collapse
Affiliation(s)
- Jiteng Sheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Cheng Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
48
|
Ornigotti L, Filip R. Stroboscopic thermally-driven mechanical motion. Sci Rep 2022; 12:20091. [PMID: 36418396 PMCID: PMC9684504 DOI: 10.1038/s41598-022-24074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Unstable nonlinear systems can produce a large displacement driven by a small thermal initial noise. Such inherently nonlinear phenomena are stimulating in stochastic physics, thermodynamics, and in the future even in quantum physics. In one-dimensional mechanical instabilities, recently made available in optical levitation, the rapidly increasing noise accompanying the unstable motion reduces a displacement signal already in its detection. It limits the signal-to-noise ratio for upcoming experiments, thus constraining the observation of such essential nonlinear phenomena and their further exploitation. An extension to a two-dimensional unstable dynamics helps to separate the desired displacement from the noisy nonlinear driver to two independent variables. It overcomes the limitation upon observability, thus enabling further exploitation. However, the nonlinear driver remains unstable and rapidly gets noisy. It calls for a challenging high-order potential to confine the driver dynamics and rectify the noise. Instead, we propose and analyse a feasible stroboscopically-cooled driver that provides the desired detectable motion with sufficiently high signal-to-noise ratio. Fast and deep cooling, together with a rapid change of the driver stiffness, are required to reach it. However, they have recently become available in levitating optomechanics. Therefore, our analysis finally opens the road to experimental investigation of thermally-driven motion in nonlinear systems, its thermodynamical analysis, and future quantum extensions.
Collapse
Affiliation(s)
- Luca Ornigotti
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic.
- Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Wien, Austria.
| | - Radim Filip
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
49
|
Malavazi AHA, Brito F. A Schmidt Decomposition Approach to Quantum Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1645. [PMID: 36421500 PMCID: PMC9689058 DOI: 10.3390/e24111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The development of a self-consistent thermodynamic theory of quantum systems is of fundamental importance for modern physics. Still, despite its essential role in quantum science and technology, there is no unifying formalism for characterizing the thermodynamics within general autonomous quantum systems, and many fundamental open questions remain unanswered. Along these lines, most current efforts and approaches restrict the analysis to particular scenarios of approximative descriptions and semi-classical regimes. Here, we propose a novel approach to describe the thermodynamics of arbitrary bipartite autonomous quantum systems based on the well-known Schmidt decomposition. This formalism provides a simple, exact, and symmetrical framework for expressing the energetics between interacting systems, including scenarios beyond the standard description regimes, such as strong coupling. We show that this procedure allows straightforward identification of local effective operators suitable for characterizing the physical local internal energies. We also demonstrate that these quantities naturally satisfy the usual thermodynamic notion of energy additivity.
Collapse
Affiliation(s)
| | - Frederico Brito
- Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos 13560-970, SP, Brazil
| |
Collapse
|
50
|
Tong K, Dou W. Numerical study of non-adiabatic quantum thermodynamics of the driven resonant level model: non-equilibrium entropy production and higher order corrections. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:495703. [PMID: 36223783 DOI: 10.1088/1361-648x/ac99c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present our numerical study on quantum thermodynamics of the resonant level model subjected to non-equilibrium condition as well as external driving. Following our previous work on non-equilibrium quantum thermodynamics (Douet al2020Phys. Rev.B101184304), we expand the density operator into a series of power in the driving speed, where we can determine the non-adiabatic thermodynamic quantities. Particularly, we calculate the non-equilibrium entropy production rate as well as higher order non-adiabatic corrections to the energy and/or population, which is not determined previously in Douet al(2020Phys. Rev.B101184304). In the limit of weak system-bath coupling, our results reduce to the one from the quantum master equation.
Collapse
Affiliation(s)
- Kaiyi Tong
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Wenjie Dou
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|