1
|
Rashid F, Berger JM. How bacteria initiate DNA replication comes into focus. Bioessays 2024:e2400151. [PMID: 39390825 DOI: 10.1002/bies.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
The ability to initiate DNA replication is a critical step in the proliferation of all organisms. In bacteria, this process is mediated by an ATP-dependent replication initiator protein, DnaA, which recognizes and melts replication origin (oriC) elements. Despite decades of biochemical and structural work, a mechanistic understanding of how DnaA recognizes and unwinds oriC has remained enigmatic. A recent study by Pelliciari et al. provides important new structural insights into how DnaA from Bacillus subtilis recognizes and processes its cognate oriC, showing how DnaA uses sequence features encoded in the origin to engage melted DNA. Comparison of the DnaA-oriC structure with archaeal/eukaryl replication origin complexes based on Orc-family proteins reveals a high degree of similarity in origin engagement by initiators from di domains of life, despite fundamental differences in origin melting mechanisms. These findings provide valuable insights into bacterial replication initiation and highlight the intriguing evolutionary history of this fundamental biological process.
Collapse
Affiliation(s)
- Fahad Rashid
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Genome integrity sensing by the broad-spectrum Hachiman antiphage defense complex. Cell 2024:S0092-8674(24)01068-7. [PMID: 39395413 DOI: 10.1016/j.cell.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.
Collapse
Affiliation(s)
- Owen T Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason J Hu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Zhang Q, Lam WH, Zhai Y. Assembly and activation of replicative helicases at origin DNA for replication initiation. Curr Opin Struct Biol 2024; 88:102876. [PMID: 38986167 DOI: 10.1016/j.sbi.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
To initiate DNA replication, it is essential to properly assemble a pair of replicative helicases at each replication origin. While the general principle of this process applies universally from prokaryotes to eukaryotes, the specific mechanisms governing origin selection, helicase loading, and subsequent helicase activation vary significantly across different species. Recent advancements in cryo-electron microscopy (cryo-EM) have revolutionized our ability to visualize large protein or protein-DNA complexes involved in the initiation of DNA replication. Complemented by real-time single-molecule analysis, the available high-resolution cryo-EM structures have greatly enhanced our understanding of the dynamic regulation of this process at origin DNA. This review primarily focuses on the latest structural discoveries that shed light on the key molecular machineries responsible for driving replication initiation, with a particular emphasis on the assembly of pre-replication complex (pre-RC) in eukaryotes.
Collapse
Affiliation(s)
- Qiongdan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Gao R, Li C, Zhou A, Wang X, Lu K, Zuo W, Hu H, Han M, Tong X, Dai F. QTL analysis to identify genes involved in the trade-off between silk protein synthesis and larva-pupa transition in silkworms. Genet Sel Evol 2024; 56:68. [PMID: 39350051 PMCID: PMC11440889 DOI: 10.1186/s12711-024-00937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Insect-based food and feed are increasingly attracting attention. As a domesticated insect, the silkworm (Bombyx mori) has a highly nutritious pupa that can be easily raised in large quantities through large-scale farming, making it a highly promising source of food. The ratio of pupa to cocoon (RPC) refers to the proportion of the weight of the cocoon that is attributed to pupae, and is of significant value for edible utilization, as a higher RPC means a higher ratio of conversion of mulberry leaves to pupa. In silkworm production, there is a trade-off between RPC and cocoon shell ratiao(CSR), which refers the ratio of silk protein to the entire cocoon, during metamorphosis process. Understanding the genetic basis of this balance is crucial for breeding edible strains with a high RPC and further advancing its use as feed. RESULTS Using QTL-seq, we identified a quantitative trait locus (QTL) for the balance between RPC and CSR that is located on chromosome 11 and covers a 9,773,115-bp region. This locus is an artificial selection hot spot that contains ten non-overlapping genomic regions under selection that were involved in the domestication and genetic breeding processes. These regions include 17 genes, nine of which are highly expressed in the silk gland, which is a vital component in the trade-off between RPC and CSR. These genes are annotate with function related with epigenetic modifications and the regulation of DNA replication et al. We identified one and two single nucleotide polymorphisms (SNPs) in the exons of teh KWMTBOMO06541 and KWMTBOMO06485 genes that result in amino acid changes in the protein domains. These SNPs have been strongly selected for during the domestication process. The KWMTBOMO06485 gene encodes the Bombyx mori (Bm) tRNA methyltransferase (BmDnmt2) and its knockout results in a significant change in the trade-off between CSR and RPC in both sexes. CONCLUSIONS Taken together, our results contribute to a better understanding of the genetic basis of RPC and CSR. The identified QTL and genes that affect RPC can be used for marker-assisted and genomic selection of silkworm strains with a high RPC. This will further enhance the production efficiency of silkworms and of closely-related insects for edible and feed purposes.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Ang Zhou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Xiachao Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Kupeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Weidong Zuo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Yibin Academy of Southwest University, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Liman GLS, Lennon CW, Mandley JL, Galyon AM, Zatopek KM, Gardner AF, Santangelo TJ. Intein splicing efficiency and RadA levels can control the mode of archaeal DNA replication. SCIENCE ADVANCES 2024; 10:eadp4995. [PMID: 39292776 PMCID: PMC11409957 DOI: 10.1126/sciadv.adp4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon Thermococcus kodakarensis encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo. We report that a decrease in intein splicing efficiency of the recombinase RadA, a Rad51/RecA homolog, has widespread physiological consequences, including a general growth defect, increased sensitivity to DNA damage, and a switch in the mode of DNA replication from recombination-dependent replication toward origin-dependent replication.
Collapse
Affiliation(s)
- Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jaylin L. Mandley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Alina M. Galyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Wu Y, Zhang Q, Lin Y, Lam WH, Zhai Y. Replication licensing regulated by a short linear motif within an intrinsically disordered region of origin recognition complex. Nat Commun 2024; 15:8039. [PMID: 39271725 PMCID: PMC11399261 DOI: 10.1038/s41467-024-52408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) faciliates the assembly of pre-replicative complex (pre-RC) at origin DNA for replication licensing. Here we show that the N-terminal intrinsically disordered region (IDR) of the yeast Orc2 subunit is crucial for this process. Removing a segment (residues 176-200) from Orc2-IDR or mutating a key isoleucine (194) significantly inhibits replication initiation across the genome. These Orc2-IDR mutants are capable of assembling the ORC-Cdc6-Cdt1-Mcm2-7 intermediate, which exhibits impaired ATP hydrolysis and fails to be convered into the subsequent Mcm2-7-ORC complex and pre-RC. These defects can be partially rescued by the Orc2-IDR peptide. Moreover, the phosphorylation of this Orc2-IDR region by S cyclin-dependent kinase blocks its binding to Mcm2-7 complex, causing a defective pre-RC assembly. Our findings provide important insights into the multifaceted roles of ORC in supporting origin licensing during the G1 phase and its regulation to restrict origin firing within the S phase.
Collapse
Affiliation(s)
- Yue Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Qiongdan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuhan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Bolhuis DL, Fleifel D, Bonacci T, Wang X, Mouery BL, Cook JG, Brown NG, Emanuele MJ. USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610997. [PMID: 39282338 PMCID: PMC11398414 DOI: 10.1101/2024.09.03.610997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described. Since disassembly is catalyzed by ubiquitination, deubiquitinases (DUBs) represent attractive candidates for safeguarding against untimely and deleterious CMG unloading. We combined a targeted loss-of-function screen with quantitative, single-cell analysis to identify human USP37 as a key DUB preventing replisome disassembly. We demonstrate that USP37 maintains active replisomes on S-phase chromatin and promotes normal cell cycle progression. Proteomics and enzyme assays revealed USP37 interacts with the CMG complex to deubiquitinate MCM7, thus antagonizing replisome disassembly. Significantly, USP37 protects normal epithelial cells from oncoprotein-induced replication stress. Our findings reveal USP37 to be critical to the maintenance of replisomes in S-phase and suggest USP37-targeting as a potential strategy for treating malignancies with defective DNA replication control.
Collapse
Affiliation(s)
- Derek L. Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Thomas Bonacci
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brandon L. Mouery
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas G. Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Zhu X, Kanemaki MT. Replication initiation sites and zones in the mammalian genome: Where are they located and how are they defined? DNA Repair (Amst) 2024; 141:103713. [PMID: 38959715 DOI: 10.1016/j.dnarep.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan.
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Shizuoka, Mishima 411-8540, Japan; Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Zhong L, Dong Y, Liu S. KNTC1 knockdown inhibits the proliferation and migration of osteosarcoma cells by MCM2. Mol Carcinog 2024; 63:1599-1610. [PMID: 38818892 DOI: 10.1002/mc.23748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor, and it is necessary to further investigate the molecular mechanism of OS progression. The expression of kinetochore associated protein 1 (KNTC1) and minichromosome maintenance 2 (MCM2) was detected by immunohistochemistry, quantitative PCR (qPCR) and Western blot. Gene knockdown or overexpression cell models were constructed and the proliferation, apoptosis, cell cycle and migration were detected in vitro, besides, xenograft models were established to explore the effects of KNTC1 downregulation in vivo. Public databased and bioinformatics analysis were performed to screen the downstream molecules and determine the expression of MCM2 in cancers. KNTC1 was overexpressed in OS tissues and positively correlated with overall survival of OS patients. KNTC1 knockdown inhibited the proliferation and migration, and arrested G2 phase, and induced apoptosis. Besides, KNTC1 downregulation restricted the xenograft tumor formation. MCM2, one of the coexpressed genes, was highly expressed in sarcoma and downregulated after KNTC1 knockdown. MCM2 overexpression heightened the proliferation and migration ability of OS cells, which was reversed the inhibiting effects of KNTC1 knockdown. KNTC1 was overexpressed in OS and promoted the progression of OS by upregulating MCM2.
Collapse
Affiliation(s)
- Lei Zhong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yuanwei Dong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Shuqin Liu
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
10
|
Henrikus SS, Gross MH, Willhoft O, Pühringer T, Lewis JS, McClure AW, Greiwe JF, Palm G, Nans A, Diffley JFX, Costa A. Unwinding of a eukaryotic origin of replication visualized by cryo-EM. Nat Struct Mol Biol 2024; 31:1265-1276. [PMID: 38760633 PMCID: PMC11327109 DOI: 10.1038/s41594-024-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 05/19/2024]
Abstract
To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Marta H Gross
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Oliver Willhoft
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Thomas Pühringer
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Jacob S Lewis
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Allison W McClure
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Giacomo Palm
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Dey-Rao R, Shen S, Qu J, Melendy T. Proteomics Analysis of the Polyomavirus DNA Replication Initiation Complex Reveals Novel Functional Phosphorylated Residues and Associated Proteins. Int J Mol Sci 2024; 25:4540. [PMID: 38674125 PMCID: PMC11049971 DOI: 10.3390/ijms25084540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Microbiology & Immunology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Thomas Melendy
- Department of Microbiology & Immunology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
12
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
13
|
Geng Y, Liu C, Xu N, Shi X, Suen MC, Zhou B, Yan B, Wu C, Li H, Song Y, Chen X, Wang Z, Cai Q, Zhu G. The N-terminal region of Cdc6 specifically recognizes human DNA G-quadruplex. Int J Biol Macromol 2024; 260:129487. [PMID: 38237821 DOI: 10.1016/j.ijbiomac.2024.129487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20. The binding region assumes a hook-type conformation, as elucidated by the NMR solution structure in complex with htel21T18. Significantly, mutagenesis and in vivo investigations confirm the highly specific nature of Cdc6's recognition of G-quadruplex. This research enhances our understanding of the fundamental mechanism governing the interaction between G-quadruplex and the N-terminal IDR region of Cdc6, shedding light on the intricate regulation of DNA replication processes.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiao Shi
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bo Zhou
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bing Yan
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Hachiman is a genome integrity sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582594. [PMID: 38464307 PMCID: PMC10925250 DOI: 10.1101/2024.02.29.582594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman comprises a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact dsDNA. When the HamAB complex detects DNA damage, HamB helicase activity liberates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating 'phantom' cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and eukaryotic enzymes suggest this bacterial immune system has been repurposed for diverse functions across all domains of life.
Collapse
Affiliation(s)
- Owen T. Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
| | - Benjamin A. Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
| | - Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Jason J. Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Jennifer A. Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
15
|
Dey-Rao R, Shen S, Qu J, Melendy T. Proteomics analysis reveals novel phosphorylated residues and associated proteins of the polyomavirus DNA replication initiation complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579500. [PMID: 38370620 PMCID: PMC10871363 DOI: 10.1101/2024.02.08.579500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyomavirus ( PyV ) Large T-antigen ( LT ) is the major viral regulatory protein that targets numerous cellular factors/pathways: tumor suppressors, cell cycle regulators, transcription and chromatin regulators, as well as other factors for viral replication. LT directly recruits the cellular replication factors involved in LT's recognition of the viral origin, origin unwinding, and primer synthesis which is carried out by mutual interactions between LT, DNA polymerase alpha-primase ( Polprim ), and single strand (ss) DNA binding replication protein A ( RPA ). The activities as well as interactions of these three with each other as well as other factors, are known to be modulated by post-translational modifications (PTMs); however, modern high-sensitivity proteomic analyses of the PTMs as well as proteins associated with the three have been lacking. Elution from immunoprecipitation (IP) of the three factors were subjected to high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). We identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors: 82 PAARs on SV40 LT, 305 on the Polprim heterotetrametric complex and 92 on the RPA heterotrimeric complex. LC-MS/MS analysis also identified proteins that co-immunoprecipitated (coIP-ed) with the three factors that were not previously reported: 374 with LT, 453 with Polprim and 183 with RPA. We used a bioinformatic-based approach to analyze the proteomics data and demonstrate a highly significant "enrichment" of transcription-related process associated uniquely with LT, consistent with its role as a transcriptional regulator, as opposed to Polprim and RPA associated proteins which showed no such enrichment. The most significant cell cycle related network was regulated by ETS proto-oncogene 1 (ETS1), indicating its involvement in regulatory control of DNA replication, repair, and metabolism. The interaction between LT and ETS1 is validated and shown to be independent of nucleic acids. One of the novel phosphorylated aa residues detected on LT from this study, has been demonstrated by us to affect DNA replication activities of SV40 Large T-antigen. Our data provide substantial additional novel information on PAARs, and proteins associated with PyV LT, and the cellular Polprim-, RPA- complexes which will benefit research in DNA replication, transformation, transcription, and other viral and host cellular processes.
Collapse
|
16
|
Brunk CF, Marshall CR. Opinion: The Key Steps in the Origin of Life to the Formation of the Eukaryotic Cell. Life (Basel) 2024; 14:226. [PMID: 38398735 PMCID: PMC10890422 DOI: 10.3390/life14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The path from life's origin to the emergence of the eukaryotic cell was long and complex, and as such it is rarely treated in one publication. Here, we offer a sketch of this path, recognizing that there are points of disagreement and that many transitions are still shrouded in mystery. We assume life developed within microchambers of an alkaline hydrothermal vent system. Initial simple reactions were built into more sophisticated reflexively autocatalytic food-generated networks (RAFs), laying the foundation for life's anastomosing metabolism, and eventually for the origin of RNA, which functioned as a genetic repository and as a catalyst (ribozymes). Eventually, protein synthesis developed, leading to life's biology becoming dominated by enzymes and not ribozymes. Subsequent enzymatic innovation included ATP synthase, which generates ATP, fueled by the proton gradient between the alkaline vent flux and the acidic sea. This gradient was later internalized via the evolution of the electron transport chain, a preadaptation for the subsequent emergence of the vent creatures from their microchamber cradles. Differences between bacteria and archaea suggests cellularization evolved at least twice. Later, the bacterial development of oxidative phosphorylation and the archaeal development of proteins to stabilize its DNA laid the foundation for the merger that led to the formation of eukaryotic cells.
Collapse
Affiliation(s)
- Clifford F. Brunk
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Charles R. Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720-4780, USA
| |
Collapse
|
17
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
18
|
Pelliciari S, Bodet-Lefèvre S, Fenyk S, Stevens D, Winterhalter C, Schramm FD, Pintar S, Burnham DR, Merces G, Richardson TT, Tashiro Y, Hubbard J, Yardimci H, Ilangovan A, Murray H. The bacterial replication origin BUS promotes nucleobase capture. Nat Commun 2023; 14:8339. [PMID: 38097584 PMCID: PMC10721633 DOI: 10.1038/s41467-023-43823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Genome duplication is essential for the proliferation of cellular life and this process is generally initiated by dedicated replication proteins at chromosome origins. In bacteria, DNA replication is initiated by the ubiquitous DnaA protein, which assembles into an oligomeric complex at the chromosome origin (oriC) that engages both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) to promote DNA duplex opening. However, the mechanism of DnaA specifically opening a replication origin was unknown. Here we show that Bacillus subtilis DnaAATP assembles into a continuous oligomer at the site of DNA melting, extending from a dsDNA anchor to engage a single DNA strand. Within this complex, two nucleobases of each ssDNA binding motif (DnaA-trio) are captured within a dinucleotide binding pocket created by adjacent DnaA proteins. These results provide a molecular basis for DnaA specifically engaging the conserved sequence elements within the bacterial chromosome origin basal unwinding system (BUS).
Collapse
Affiliation(s)
- Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Salomé Bodet-Lefèvre
- Centre for Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark Street, London, E1 2AT, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Frederic D Schramm
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Sara Pintar
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Daniel R Burnham
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Merces
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Tomas T Richardson
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Yumiko Tashiro
- Centre for Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark Street, London, E1 2AT, UK
| | - Julia Hubbard
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Hasan Yardimci
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Aravindan Ilangovan
- Centre for Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark Street, London, E1 2AT, UK.
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK.
| |
Collapse
|
19
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
20
|
Eladl A, Yamaoki Y, Kamba K, Hoshina S, Horinouchi H, Kondo K, Waga S, Nagata T, Katahira M. NMR characterization of the structure of the intrinsically disordered region of human origin recognition complex subunit 1, hORC1, and of its interaction with G-quadruplex DNAs. Biochem Biophys Res Commun 2023; 683:149112. [PMID: 37857165 DOI: 10.1016/j.bbrc.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Human origin recognition complex (hORC) binds to the DNA replication origin and then initiates DNA replication. However, hORC does not exhibit DNA sequence-specificity and how hORC recognizes the replication origin on genomic DNA remains elusive. Previously, we found that hORC recognizes G-quadruplex structures potentially formed near the replication origin. Then, we showed that hORC subunit 1 (hORC1) preferentially binds to G-quadruplex DNAs using a hORC1 construct comprising residues 413 to 511 (hORC1413-511). Here, we investigate the structural characteristics of hORC1413-511 in its free and complex forms with G-quadruplex DNAs. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopic studies indicated that hORC1413-511 is disordered except for a short α-helical region in both the free and complex forms. NMR chemical shift perturbation (CSP) analysis suggested that basic residues, arginines and lysines, and polar residues, serines and threonines, are involved in the G-quadruplex DNA binding. Then, this was confirmed by mutation analysis. Interestingly, CSP analysis indicated that hORC1413-511 binds to both parallel- and (3 + 1)-type G-quadruplex DNAs using the same residues, and thereby in the same manner. Our study suggests that hORC1 uses its intrinsically disordered G-quadruplex binding region to recognize parallel-type and (3 + 1)-type G-quadruplex structures at replication origin.
Collapse
Affiliation(s)
- Afaf Eladl
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shoko Hoshina
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Haruka Horinouchi
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shou Waga
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
21
|
Yin ZN, Lai FL, Gao F. Unveiling human origins of replication using deep learning: accurate prediction and comprehensive analysis. Brief Bioinform 2023; 25:bbad432. [PMID: 38008420 PMCID: PMC10676776 DOI: 10.1093/bib/bbad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
Accurate identification of replication origins (ORIs) is crucial for a comprehensive investigation into the progression of human cell growth and cancer therapy. Here, we proposed a computational approach Ori-FinderH, which can efficiently and precisely predict the human ORIs of various lengths by combining the Z-curve method with deep learning approach. Compared with existing methods, Ori-FinderH exhibits superior performance, achieving an area under the receiver operating characteristic curve (AUC) of 0.9616 for K562 cell line in 10-fold cross-validation. In addition, we also established a cross-cell-line predictive model, which yielded a further improved AUC of 0.9706. The model was subsequently employed as a fitness function to support genetic algorithm for generating artificial ORIs. Sequence analysis through iORI-Euk revealed that a vast majority of the created sequences, specifically 98% or more, incorporate at least one ORI for three cell lines (Hela, MCF7 and K562). This innovative approach could provide more efficient, accurate and comprehensive information for experimental investigation, thereby further advancing the development of this field.
Collapse
Affiliation(s)
- Zhen-Ning Yin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
22
|
Abbas Z, Rehman MU, Tayara H, Chong KT. ORI-Explorer: a unified cell-specific tool for origin of replication sites prediction by feature fusion. Bioinformatics 2023; 39:btad664. [PMID: 37929975 PMCID: PMC10639035 DOI: 10.1093/bioinformatics/btad664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
MOTIVATION The origins of replication sites (ORIs) are precise regions inside the DNA sequence where the replication process begins. These locations are critical for preserving the genome's integrity during cell division and guaranteeing the faithful transfer of genetic data from generation to generation. The advent of experimental techniques has aided in the discovery of ORIs in many species. Experimentation, on the other hand, is often more time-consuming and pricey than computational approaches, and it necessitates specific equipment and knowledge. Recently, ORI sites have been predicted using computational techniques like motif-based searches and artificial intelligence algorithms based on sequence characteristics and chromatin states. RESULTS In this article, we developed ORI-Explorer, a unique artificial intelligence-based technique that combines multiple feature engineering techniques to train CatBoost Classifier for recognizing ORIs from four distinct eukaryotic species. ORI-Explorer was created by utilizing a unique combination of three traditional feature-encoding techniques and a feature set obtained from a deep-learning neural network model. The ORI-Explorer has significantly outperformed current predictors on the testing dataset. Furthermore, by employing the sophisticated SHapley Additive exPlanation method, we give crucial insights that aid in comprehending model success, highlighting the most relevant features vital for forecasting cell-specific ORIs. ORI-Explorer is also intended to aid community-wide attempts in discovering potential ORIs and developing innovative verifiable biological hypotheses. AVAILABILITY AND IMPLEMENTATION The used datasets along with the source code are made available through https://github.com/Z-Abbas/ORI-Explorer and https://zenodo.org/record/8358679.
Collapse
Affiliation(s)
- Zeeshan Abbas
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Mobeen Ur Rehman
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
23
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
24
|
Xu Z, Feng J, Yu D, Huo Y, Ma X, Lam WH, Liu Z, Li XD, Ishibashi T, Dang S, Zhai Y. Synergism between CMG helicase and leading strand DNA polymerase at replication fork. Nat Commun 2023; 14:5849. [PMID: 37730685 PMCID: PMC10511561 DOI: 10.1038/s41467-023-41506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The replisome that replicates the eukaryotic genome consists of at least three engines: the Cdc45-MCM-GINS (CMG) helicase that separates duplex DNA at the replication fork and two DNA polymerases, one on each strand, that replicate the unwound DNA. Here, we determined a series of cryo-electron microscopy structures of a yeast replisome comprising CMG, leading-strand polymerase Polε and three accessory factors on a forked DNA. In these structures, Polε engages or disengages with the motor domains of the CMG by occupying two alternative positions, which closely correlate with the rotational movement of the single-stranded DNA around the MCM pore. During this process, the polymerase remains stably coupled to the helicase using Psf1 as a hinge. This synergism is modulated by a concerted rearrangement of ATPase sites to drive DNA translocation. The Polε-MCM coupling is not only required for CMG formation to initiate DNA replication but also facilitates the leading-strand DNA synthesis mediated by Polε. Our study elucidates a mechanism intrinsic to the replisome that coordinates the activities of CMG and Polε to negotiate any roadblocks, DNA damage, and epigenetic marks encountered during translocation along replication forks.
Collapse
Affiliation(s)
- Zhichun Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Yunjing Huo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiaohui Ma
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- HKUST-Shenzhen Research Institute, 518057, Nanshan, Shenzhen, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
26
|
Duan Y, Tan Y, Chen X, Pei X, Li M. Modular and Flexible Molecular Device for Simultaneous Cytosine and Adenine Base Editing at Random Genomic Loci in Filamentous Fungi. ACS Synth Biol 2023. [PMID: 37428865 DOI: 10.1021/acssynbio.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Random base editing is regarded as a fundamental method for accelerating the genomic evolution in both scientific research and industrial applications. In this study, we designed a modular interaction-based dual base editor (MIDBE) that assembled a DNA helicase and various base editors through dockerin/cohesin-mediated protein-protein interactions, resulting in a self-assembled MIDBE complex capable of editing bases at any locus in the genome. The base editing type of MIDBE can be readily controlled by the induction of cytidine or/and adenine deaminase gene expression. MIDBE exhibited the highest editing efficiency 2.3 × 103 times greater than the native genomic mutation rate. To evaluate the potential of MIDBE in genomic evolution, we developed a removable plasmid-based MIDBE tool, which led to a remarkable 977.1% increase of lovastatin production in Monascus purpureus HJ11. MIDBE represents the first biological tool for generating and accumulating base mutations in Monascus chromosome and also offers a bottom-up strategy for designing the base editor.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xizhu Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
27
|
Winterhalter C, Pelliciari S, Stevens D, Fenyk S, Marchand E, Cronin N, Soultanas P, Costa TD, Ilangovan A, Murray H. The DNA replication initiation protein DnaD recognises a specific strand of the Bacillus subtilis chromosome origin. Nucleic Acids Res 2023; 51:4322-4340. [PMID: 37093985 PMCID: PMC10201434 DOI: 10.1093/nar/gkad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Nora B Cronin
- LonCEM, London Consortium for Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Aravindan Ilangovan
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
28
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
29
|
High levels of Myc expression are required for the robust proliferation of hepatocytes, but not for the sustained weak proliferation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166644. [PMID: 36681356 DOI: 10.1016/j.bbadis.2023.166644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
In contrast to the robust proliferation exhibited following acute liver injury, hepatocytes exhibit long-lasting proliferative activity in chronic liver injury. The mechanistic differences between these distinct modes of proliferation are unclear. Hepatocytes exhibited robust proliferation that peaked at 2 days following partial hepatectomy in mice, but this proliferation was completely inhibited by hepatocyte-specific expression of MadMyc, a Myc-suppressing chimeric protein. However, Myc suppression induced weak but continuous hepatocyte proliferation, thereby resulting in full restoration of liver mass despite an initial delay. Late-occurring proliferation was accompanied by prolonged suppression of proline dehydrogenase (PRODH) expression, and forced PRODH overexpression inhibited hepatocyte proliferation. In hepatocytes in chronic liver injury, Myc was not activated but PRODH expression was suppressed in regenerating hepatocytes. In liver tumors, PRODH expression was often suppressed, especially in the highly proliferative tumors with distinct Myc expression. Our results indicate that the robust proliferation of hepatocytes following acute liver injury requires high levels Myc expression and that there is a compensatory Myc-independent mode of hepatocyte proliferation with the regulation of proline metabolism, which might be relevant to liver regeneration in chronic injury.
Collapse
|
30
|
Bai H, Kawahara M, Takahashi M. Identification of menaquinone-4 (vitamin K2) target genes in bovine endometrial epithelial cells in vitro. Theriogenology 2023; 198:183-193. [PMID: 36592516 DOI: 10.1016/j.theriogenology.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
The effect of vitamin K on bovine endometrial epithelial cells has not been thoroughly investigated. The objective of this study was to examine the effect of the biologically active form of vitamin K, menaquinone-4, on gene expression in bovine endometrial epithelial cells. First, we examined the mRNA and protein expression levels of UBIAD1, a menaquinone-4 biosynthetic enzyme. Second, we screened for potential target genes of menaquinone-4 in bovine endometrial epithelial cells using RNA-sequencing. We found 50 differentially expressed genes; 42 were upregulated, and 8 were downregulated. Among them, a dose-dependent response to menaquinone-4 was observed for the top three upregulated (TRIB3, IL6, and TNFAIP3) and downregulated (CDC6, ORC1, and RRM2) genes. It has been suggested that these genes play important roles in reproductive events. In addition, GDF15 and VEGFA, which are important for cellular functions as they are commonly involved in pathways, such as positive regulation of cell communication, cell differentiation, and positive regulation of MAPK cascade, were upregulated in endometrial epithelial cells by menaquinone-4 treatment. To the best of our knowledge, this is the first study showing the expression of UBIAD1 in the bovine uterus. Moreover, the study determined menaquinone-4 target genes in bovine endometrial epithelial cells, which may positively affect pregnancy with alteration of gene expression in cattle uterus.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan; Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-0815, Japan.
| |
Collapse
|
31
|
Campos LV, Van Ravenstein SX, Vontalge EJ, Greer BH, Heintzman DR, Kavlashvili T, McDonald WH, Rose KL, Eichman BF, Dewar JM. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination. Cell Rep 2023; 42:112109. [PMID: 36807139 PMCID: PMC10432576 DOI: 10.1016/j.celrep.2023.112109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.
Collapse
Affiliation(s)
- Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Emma J Vontalge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
The human pre-replication complex is an open complex. Cell 2023; 186:98-111.e21. [PMID: 36608662 DOI: 10.1016/j.cell.2022.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In eukaryotes, DNA replication initiation requires assembly and activation of the minichromosome maintenance (MCM) 2-7 double hexamer (DH) to melt origin DNA strands. However, the mechanism for this initial melting is unknown. Here, we report a 2.59-Å cryo-electron microscopy structure of the human MCM-DH (hMCM-DH), also known as the pre-replication complex. In this structure, the hMCM-DH with a constricted central channel untwists and stretches the DNA strands such that almost a half turn of the bound duplex DNA is distorted with 1 base pair completely separated, generating an initial open structure (IOS) at the hexamer junction. Disturbing the IOS inhibits DH formation and replication initiation. Mapping of hMCM-DH footprints indicates that IOSs are distributed across the genome in large clusters aligning well with initiation zones designed for stochastic origin firing. This work unravels an intrinsic mechanism that couples DH formation with initial DNA melting to license replication initiation in human cells.
Collapse
|
33
|
Winterhalter C, Stevens D, Fenyk S, Pelliciari S, Marchand E, Soultanas P, Ilangovan A, Murray H. SirA inhibits the essential DnaA:DnaD interaction to block helicase recruitment during Bacillus subtilis sporulation. Nucleic Acids Res 2022; 51:4302-4321. [PMID: 36416272 DOI: 10.1093/nar/gkac1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Research Unit in Biology of Microorganisms, Department of Biology, Université de Namur, Namur, Belgium
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aravindan Ilangovan
- Blizard Institute, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark street, London E1 2AT, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
34
|
Li Z, Kaur P, Lo CY, Chopra N, Smith J, Wang H, Gao Y. Structural and dynamic basis of DNA capture and translocation by mitochondrial Twinkle helicase. Nucleic Acids Res 2022; 50:11965-11978. [PMID: 36400570 PMCID: PMC9723800 DOI: 10.1093/nar/gkac1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
Twinkle is a mitochondrial replicative helicase which can self-load onto and unwind mitochondrial DNA. Nearly 60 mutations on Twinkle have been linked to human mitochondrial diseases. Using cryo-electron microscopy (cryo-EM) and high-speed atomic force microscopy (HS-AFM), we obtained the atomic-resolution structure of a vertebrate Twinkle homolog with DNA and captured in real-time how Twinkle is self-loaded onto DNA. Our data highlight the important role of the non-catalytic N-terminal domain of Twinkle. The N-terminal domain directly contacts the C-terminal helicase domain, and the contact interface is a hotspot for disease-related mutations. Mutations at the interface destabilize Twinkle hexamer and reduce helicase activity. With HS-AFM, we observed that a highly dynamic Twinkle domain, which is likely to be the N-terminal domain, can protrude ∼5 nm to transiently capture nearby DNA and initialize Twinkle loading onto DNA. Moreover, structural analysis and subunit doping experiments suggest that Twinkle hydrolyzes ATP stochastically, which is distinct from related helicases from bacteriophages.
Collapse
Affiliation(s)
- Zhuo Li
- BioSciences Department, Rice University, Houston, TX 77005, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Chen-Yu Lo
- BioSciences Department, Rice University, Houston, TX 77005, USA
| | - Neil Chopra
- BioSciences Department, Rice University, Houston, TX 77005, USA
| | - Jamie Smith
- BioSciences Department, Rice University, Houston, TX 77005, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Gao
- BioSciences Department, Rice University, Houston, TX 77005, USA
| |
Collapse
|
35
|
Dao FY, Lv H, Fullwood MJ, Lin H. Accurate Identification of DNA Replication Origin by Fusing Epigenomics and Chromatin Interaction Information. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9780293. [PMID: 36405252 PMCID: PMC9667886 DOI: 10.34133/2022/9780293] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 07/29/2023]
Abstract
DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melissa J. Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
36
|
Origin recognition complex harbors an intrinsic nucleosome remodeling activity. Proc Natl Acad Sci U S A 2022; 119:e2211568119. [PMID: 36215487 PMCID: PMC9586268 DOI: 10.1073/pnas.2211568119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosomes package the entire eukaryotic genome, yet enzymes need access to the DNA for numerous metabolic activities, such as replication and transcription. Eukaryotic origins of replication in Saccharomyces cerevisiae are AT rich and are generally nucleosome free for the binding of ORC (origin recognition complex). However, the nucleosome-free region often undergoes expansion during G1/S phase, presumably to make room for MCM double-hexamer formation that nucleates the 11-subunit helicase, CMG (Cdc45, Mcm2–7, Cdc45). While nucleosome remodelers could perform this function, in vitro studies indicate that nucleosome remodeling may be intrinsic to the replication machinery. Indeed, we find here that ORC contains an intrinsic nucleosome remodeling activity that is capable of ATP-stimulated removal of H2A-H2B from nucleosomes. Eukaryotic DNA replication is initiated at multiple chromosomal sites known as origins of replication that are specifically recognized by the origin recognition complex (ORC) containing multiple ATPase sites. In budding yeast, ORC binds to specific DNA sequences known as autonomously replicating sequences (ARSs) that are mostly nucleosome depleted. However, nucleosomes may still inhibit the licensing of some origins by occluding ORC binding and subsequent MCM helicase loading. Using purified proteins and single-molecule visualization, we find here that the ORC can eject histones from a nucleosome in an ATP-dependent manner. The ORC selectively evicts H2A-H2B dimers but leaves the (H3-H4)2 tetramer on DNA. It also discriminates canonical H2A from the H2A.Z variant, evicting the former while retaining the latter. Finally, the bromo-adjacent homology (BAH) domain of the Orc1 subunit is essential for ORC-mediated histone eviction. These findings suggest that the ORC is a bona fide nucleosome remodeler that functions to create a local chromatin environment optimal for origin activity.
Collapse
|
37
|
Matsukawa T, Yin M, Baslan T, Chung YJ, Cao D, Bertoli R, Zhu YJ, Walker RL, Freeland A, Knudsen E, Lowe SW, Meltzer PS, Aplan PD. Mcm2 hypomorph leads to acute leukemia or hematopoietic stem cell failure, dependent on genetic context. FASEB J 2022; 36:e22430. [PMID: 35920299 PMCID: PMC9377154 DOI: 10.1096/fj.202200061rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Mianmian Yin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY, USA
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dengchao Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Bertoli
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Erik Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat Commun 2022; 13:4947. [PMID: 35999198 PMCID: PMC9399094 DOI: 10.1038/s41467-022-32657-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
The numerous enzymes and cofactors involved in eukaryotic DNA replication are conserved from yeast to human, and the budding yeast Saccharomyces cerevisiae (S.c.) has been a useful model organism for these studies. However, there is a gap in our knowledge of why replication origins in higher eukaryotes do not use a consensus DNA sequence as found in S.c. Using in vitro reconstitution and single-molecule visualization, we show here that S.c. origin recognition complex (ORC) stably binds nucleosomes and that ORC-nucleosome complexes have the intrinsic ability to load the replicative helicase MCM double hexamers onto adjacent nucleosome-free DNA regardless of sequence. Furthermore, we find that Xenopus laevis nucleosomes can substitute for yeast ones in engaging with ORC. Combined with re-analyses of genome-wide ORC binding data, our results lead us to propose that the yeast origin recognition machinery contains the cryptic capacity to bind nucleosomes near a nucleosome-free region and license origins, and that this nucleosome-directed origin licensing paradigm generalizes to all eukaryotes. Most eukaryotes do not use a consensus DNA sequence as binding sites for the origin recognition complex (ORC) to initiate DNA replication, however budding yeast do. Here the authors show S. cerevisiae ORC can bind nucleosomes near nucleosome-free regions and recruit replicative helicases to form a pre-replication complex independent of the DNA sequence.
Collapse
|
39
|
Sun F, Zhu G, He P, Wei E, Wang R, Wang Q, Tang X, Zhang Y, Shen Z. Identification, expression and subcellular localization of Orc1 in the microsporidian Nosema bombycis. Gene X 2022; 834:146607. [PMID: 35609797 DOI: 10.1016/j.gene.2022.146607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
As a typical species of microsporidium, Nosema bombycis is the pathogen causing the pébrine disease of silkworm. Rapid proliferation of N. bombycis in host cells requires replication of genetic material. As eukaryotic origin recognition protein, origin recognition complex (ORC) plays an important role in regulating DNA replication, and Orc1 is a key subunit of the origin recognition complex. In this study, we identified the Orc1 in the microsporidian N. bombycis (NbOrc1) for the first time. The NbOrc1 gene contains a complete ORF of 987 bp in length that encodes a 328 amino acid polypeptide. Indirect immunofluorescence results showed that NbOrc1 were colocalized with Nbactin and NbSAS-6 in the nuclei of N. bombycis. Subsequently, we further identified the interaction between the NbOrc1 and Nbactin by CO-IP and Western blot. These results imply that Orc1 may be involved in the proliferation of the microsporidian N. bombycis through interacting with actin.
Collapse
Affiliation(s)
- Fuzhen Sun
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Guanyu Zhu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China.
| |
Collapse
|
40
|
Yuan J, Lan H, Huang D, Guo X, Liu C, Liu S, Zhang P, Cheng Y, Xiao S. Multi-Omics Analysis of MCM2 as a Promising Biomarker in Pan-Cancer. Front Cell Dev Biol 2022; 10:852135. [PMID: 35693940 PMCID: PMC9174984 DOI: 10.3389/fcell.2022.852135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Minichromosome maintenance 2 (MCM2) is a member of the minichromosomal maintenance family of proteins that mainly regulates DNA replication and the cell cycle and is involved in regulating cancer cell proliferation in various cancers. Previous studies have reported that MCM2 plays a pivotal role in cell proliferation and cancer development. However, few articles have systematically reported the pathogenic roles of MCM2 across cancers. Therefore, the present pan-cancer study was conducted. Various computational tools were used to investigate the MCM2 expression level, genetic mutation rate, and regulating mechanism, immune infiltration, tumor diagnosis and prognosis, therapeutic response and drug sensitivity of various cancers. The expression and function of MCM2 were examined by Western blotting and CCK-8 assays. MCM2 was significantly upregulated in almost all cancers and cancer subtypes in The Cancer Genome Atlas and was closely associated with tumor mutation burden, tumor stage, and immune therapy response. Upregulation of MCM2 expression may be correlated with a high level of alterations rate. MCM2 expression was associated with the infiltration of various immune cells and molecules and markedly associated with a poor prognosis. Western blotting and CCK-8 assays revealed that MCM2 expression was significantly upregulated in melanoma cell lines. Our results also suggested that MCM2 promotes cell proliferation in vitro by activating cell proliferation pathways such as the Akt signaling pathways. This study explored the oncogenic role of MCM2 across cancers, provided data on the underlying mechanisms of these cancers for further research and demonstrated that MCM2 may be a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongqing Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gynecology, The Second Hospital of Zhuzhou, Zhuzhou, China
| | - Xiaohui Guo
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chu Liu
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuping Liu
- Department of Rehabilitation, Changsha Central Hospital of University of South China, Changsha, China
| | - Peng Zhang
- Graduate Collaborative Training Base of the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Songshu Xiao,
| |
Collapse
|
41
|
Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S, Mouton T, Chen X. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev Cell 2022; 57:1102-1118.e7. [PMID: 35483360 PMCID: PMC9134767 DOI: 10.1016/j.devcel.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
During Drosophila melanogaster male germline stem cell (GSC) asymmetric division, preexisting old versus newly synthesized histones H3 and H4 are asymmetrically inherited. However, the biological outcomes of this phenomenon have remained unclear. Here, we tracked old and new histones throughout the GSC cell cycle through the use of high spatial and temporal resolution microscopy. We found unique features that differ between old and new histone-enriched sister chromatids, including differences in nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, a pre-replication complex component, and subsequent asynchronous DNA replication initiation in the resulting daughter cells. Disruption of asymmetric histone inheritance abolishes differential Cdc6 association and asynchronous S-phase entry, demonstrating that histone asymmetry acts upstream of these critical cell-cycle progression events. Furthermore, disruption of these GSC-specific chromatin features leads to GSC defects, indicating a connection between histone inheritance, cell-cycle progression, and cell fate determination.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carolina Chu
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sabrina Bracero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylar Mouton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
42
|
Kanemaki MT. A rethink about enzymes that drive DNA replication. Nature 2022; 605:228-229. [PMID: 35508723 DOI: 10.1038/d41586-022-01128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Saito Y, Santosa V, Ishiguro KI, Kanemaki MT. MCMBP promotes the assembly of the MCM2-7 hetero-hexamer to ensure robust DNA replication in human cells. eLife 2022; 11:77393. [PMID: 35438632 PMCID: PMC9018068 DOI: 10.7554/elife.77393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
The MCM2–7 hetero-hexamer is the replicative DNA helicase that plays a central role in eukaryotic DNA replication. In proliferating cells, the expression level of the MCM2–7 hexamer is kept high, which safeguards the integrity of the genome. However, how the MCM2–7 hexamer is assembled in living cells remains unknown. Here, we revealed that the MCM-binding protein (MCMBP) plays a critical role in the assembly of this hexamer in human cells. MCMBP associates with MCM3 which is essential for maintaining the level of the MCM2–7 hexamer. Acute depletion of MCMBP demonstrated that it contributes to MCM2–7 assembly using nascent MCM3. Cells depleted of MCMBP gradually ceased to proliferate because of reduced replication licensing. Under this condition, p53-positive cells exhibited arrest in the G1 phase, whereas p53-null cells entered the S phase and lost their viability because of the accumulation of DNA damage, suggesting that MCMBP is a potential target for killing p53-deficient cancers.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Venny Santosa
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
44
|
Scherr MJ, Wahab SA, Remus D, Duderstadt KE. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Cell Rep 2022; 38:110531. [PMID: 35320708 PMCID: PMC8961423 DOI: 10.1016/j.celrep.2022.110531] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Fundamental to our understanding of chromosome duplication is the idea that replication origins function both as sites where MCM helicases are loaded during the G1 phase and where synthesis begins in S phase. However, the temporal delay between phases exposes the replisome assembly pathway to potential disruption prior to replication. Using multicolor, single-molecule imaging, we systematically study the consequences of encounters between actively transcribing RNA polymerases (RNAPs) and replication initiation intermediates in the context of chromatin. We demonstrate that RNAP can push multiple licensed MCM helicases over long distances with nucleosomes ejected or displaced. Unexpectedly, we observe that MCM helicase loading intermediates also can be repositioned by RNAP and continue origin licensing after encounters with RNAP, providing a web of alternative origin specification pathways. Taken together, our observations reveal a surprising mobility in origin-licensing factors that confers resistance to the complex challenges posed by diverse obstacles encountered on chromosomes.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Syafiq Abd Wahab
- Memorial Sloan Kettering Cancer Center, Molecular Biology Program, 1275 York Avenue, New York, NY 10065, USA
| | - Dirk Remus
- Memorial Sloan Kettering Cancer Center, Molecular Biology Program, 1275 York Avenue, New York, NY 10065, USA
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
45
|
Cheng J, Li N, Huo Y, Dang S, Tye BK, Gao N, Zhai Y. Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase. Nat Commun 2022; 13:1396. [PMID: 35296675 PMCID: PMC8927117 DOI: 10.1038/s41467-022-29070-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
The Dbf4-dependent kinase Cdc7 (DDK) regulates DNA replication initiation by phosphorylation of the MCM double hexamer (MCM-DH) to promote helicase activation. Here, we determine a series of cryo electron microscopy (cryo-EM) structures of yeast DDK bound to the MCM-DH. These structures, occupied by one or two DDKs, differ primarily in the conformations of the kinase core. The interactions of DDK with the MCM-DH are mediated exclusively by subunit Dbf4 straddling across the hexamer interface on the three N-terminal domains (NTDs) of subunits Mcm2, Mcm6, and Mcm4. This arrangement brings Cdc7 close to its only essential substrate, the N-terminal serine/threonine-rich domain (NSD) of Mcm4. Dbf4 further displaces the NSD from its binding site on Mcm4-NTD, facilitating an immediate targeting of this motif by Cdc7. Moreover, the active center of Cdc7 is occupied by a unique Dbf4 inhibitory loop, which is disengaged when the kinase core assumes wobbling conformations. This study elucidates the versatility of Dbf4 in regulating the ordered multisite phosphorylation of the MCM-DH by Cdc7 kinase during helicase activation.
Collapse
Affiliation(s)
- Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yunjing Huo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Bik-Kwoon Tye
- Institute for Advanced Study, The Hong Kong University of Science & Technology, Hong Kong, China. .,Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China. .,National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Convergent evolution in two bacterial replicative helicase loaders. Trends Biochem Sci 2022; 47:620-630. [DOI: 10.1016/j.tibs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
|
47
|
Kelly RL, Huehls AM, Venkatachalam A, Huntoon CJ, Machida YJ, Karnitz LM. Intra-S phase checkpoint kinase Chk1 dissociates replication proteins Treslin and TopBP1 through multiple mechanisms during replication stress. J Biol Chem 2022; 298:101777. [PMID: 35231445 PMCID: PMC8965152 DOI: 10.1016/j.jbc.2022.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Replication stress impedes DNA polymerase progression causing activation of the ataxia telangiectasia and Rad3-related signaling pathway, which promotes the intra-S phase checkpoint activity through phosphorylation of checkpoint kinase 1 (Chk1). Chk1 suppresses replication origin firing, in part, by disrupting the interaction between the preinitiation complex components Treslin and TopBP1, an interaction that is mediated by TopBP1 BRCT domain-binding to two cyclin-dependent kinase (CDK) phosphorylation sites, T968 and S1000, in Treslin. Two nonexclusive models for how Chk1 regulates the Treslin–TopBP1 interaction have been proposed in the literature: in one model, these proteins dissociate due to a Chk1-induced decrease in CDK activity that reduces phosphorylation of the Treslin sites that bind TopBP1 and in the second model, Chk1 directly phosphorylates Treslin, resulting in dissociation of TopBP1. However, these models have not been formally examined. We show here that Treslin T968 phosphorylation was decreased in a Chk1-dependent manner, while Treslin S1000 phosphorylation was unchanged, demonstrating that T968 and S1000 are differentially regulated. However, CDK2-mediated phosphorylation alone did not fully account for Chk1 regulation of the Treslin–TopBP1 interaction. We also identified additional Chk1 phosphorylation sites on Treslin that contributed to disruption of the Treslin–TopBP1 interaction, including S1114. Finally, we showed that both of the proposed mechanisms regulate origin firing in cancer cell line models undergoing replication stress, with the relative roles of each mechanism varying among cell lines. This study demonstrates that Chk1 regulates Treslin through multiple mechanisms to promote efficient dissociation of Treslin and TopBP1 and furthers our understanding of Treslin regulation during the intra-S phase checkpoint.
Collapse
Affiliation(s)
- Rebecca L Kelly
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Amelia M Huehls
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yuichi J Machida
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
48
|
Schmidt JM, Yang R, Kumar A, Hunker O, Seebacher J, Bleichert F. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nat Commun 2022; 13:1059. [PMID: 35217664 PMCID: PMC8881611 DOI: 10.1038/s41467-022-28695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
The coordinated action of multiple replicative helicase loading factors is needed for the licensing of replication origins prior to DNA replication. Binding of the Origin Recognition Complex (ORC) to DNA initiates the ATP-dependent recruitment of Cdc6, Cdt1 and Mcm2-7 loading, but the structural details for timely ATPase site regulation and for how loading can be impeded by inhibitory signals, such as cyclin-dependent kinase phosphorylation, are unknown. Using cryo-electron microscopy, we have determined several structures of S. cerevisiae ORC·DNA·Cdc6 intermediates at 2.5-2.7 Å resolution. These structures reveal distinct ring conformations of the initiator·co-loader assembly and inactive ATPase site configurations for ORC and Cdc6. The Orc6 N-terminal domain laterally engages the ORC·Cdc6 ring in a manner that is incompatible with productive Mcm2-7 docking, while deletion of this Orc6 region alleviates the CDK-mediated inhibition of Mcm7 recruitment. Our findings support a model in which Orc6 promotes the assembly of an autoinhibited ORC·DNA·Cdc6 intermediate to block origin licensing in response to CDK phosphorylation and to avert DNA re-replication.
Collapse
Affiliation(s)
- Jan Marten Schmidt
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
- University of Basel, Basel, 4051, Switzerland
- Novartis Institutes for Biomedical Research, Basel, 4033, Switzerland
| | - Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ashish Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
49
|
Multiple roles of Pol epsilon in eukaryotic chromosome replication. Biochem Soc Trans 2022; 50:309-320. [PMID: 35129614 PMCID: PMC9022971 DOI: 10.1042/bst20210082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Pol epsilon is a tetrameric assembly that plays distinct roles during eukaryotic chromosome replication. It catalyses leading strand DNA synthesis; yet this function is dispensable for viability. Its non-catalytic domains instead play an essential role in the assembly of the active replicative helicase and origin activation, while non-essential histone-fold subunits serve a critical function in parental histone redeposition onto newly synthesised DNA. Furthermore, Pol epsilon plays a structural role in linking the RFC–Ctf18 clamp loader to the replisome, supporting processive DNA synthesis, DNA damage response signalling as well as sister chromatid cohesion. In this minireview, we discuss recent biochemical and structural work that begins to explain various aspects of eukaryotic chromosome replication, with a focus on the multiple roles of Pol epsilon in this process.
Collapse
|
50
|
Onwubiko NO, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen helicase domain regions responsible for oligomerisation regulate Okazaki fragment synthesis initiation. FEBS Open Bio 2022; 12:649-663. [PMID: 35073603 PMCID: PMC8886539 DOI: 10.1002/2211-5463.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Heinz Peter Nasheuer
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| |
Collapse
|