1
|
Rosenstein R, Torres Salazar BO, Sauer C, Heilbronner S, Krismer B, Peschel A. The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy. MICROBIOME 2024; 12:213. [PMID: 39438987 PMCID: PMC11495082 DOI: 10.1186/s40168-024-01913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity. RESULTS We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.
Collapse
Affiliation(s)
- Ralf Rosenstein
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Benjamin O Torres Salazar
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Claudia Sauer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, Munich, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
- Present Address: Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Bernhard Krismer
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany.
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| | - Andreas Peschel
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
3
|
Zhao Y, Bitzer A, Power JJ, Belikova D, Torres Salazar BO, Adolf LA, Gerlach D, Krismer B, Heilbronner S. Nasal commensals reduce Staphylococcus aureus proliferation by restricting siderophore availability. THE ISME JOURNAL 2024; 18:wrae123. [PMID: 38987933 PMCID: PMC11296517 DOI: 10.1093/ismejo/wrae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The human microbiome is critically associated with human health and disease. One aspect of this is that antibiotic-resistant opportunistic bacterial pathogens, such as methicillin-resistant Staphylococcus aureus, can reside within the nasal microbiota, which increases the risk of infection. Epidemiological studies of the nasal microbiome have revealed positive and negative correlations between non-pathogenic species and S. aureus, but the underlying molecular mechanisms remain poorly understood. The nasal cavity is iron-limited, and bacteria are known to produce iron-scavenging siderophores to proliferate in such environments. Siderophores are public goods that can be consumed by all members of a bacterial community. Accordingly, siderophores are known to mediate bacterial competition and collaboration, but their role in the nasal microbiome is unknown. Here, we show that siderophore acquisition is crucial for S. aureus nasal colonization in vivo. We screened 94 nasal bacterial strains from seven genera for their capacity to produce siderophores as well as to consume the siderophores produced by S. aureus. We found that 80% of the strains engaged in siderophore-mediated interactions with S. aureus. Non-pathogenic corynebacterial species were found to be prominent consumers of S. aureus siderophores. In co-culture experiments, consumption of siderophores by competitors reduced S. aureus growth in an iron-dependent fashion. Our data show a wide network of siderophore-mediated interactions between the species of the human nasal microbiome and provide mechanistic evidence for inter-species competition and collaboration impacting pathogen proliferation. This opens avenues for designing nasal probiotics to displace S. aureus from the nasal cavity of humans.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, 210011 Nanjing, P. R. China
| | - Alina Bitzer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Jeffrey John Power
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Darya Belikova
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - Benjamin Orlando Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Lea Antje Adolf
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - David Gerlach
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
- German Center for Infection Research “DZIF” partnersite Tübingen, Germany
| |
Collapse
|
4
|
Kuiack RC, Tuffs SW, Dufresne K, Flick R, McCormick JK, McGavin MJ. The fadXDEBA locus of Staphylococcus aureus is required for metabolism of exogenous palmitic acid and in vivo growth. Mol Microbiol 2023; 120:425-438. [PMID: 37501506 DOI: 10.1111/mmi.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
In Staphylococcus aureus, genes that should confer the capacity to metabolize fatty acids by β-oxidation occur in the fadXDEBA locus, but their function has not been elucidated. Previously, incorporation into phospholipid through the fatty acid kinase FakA pathway was thought to be the only option available for S. aureus to metabolize exogenous saturated fatty acids. We now find that in S. aureus USA300, a fadX::lux reporter was repressed by glucose and induced by palmitic acid but not stearic acid, while in USA300ΔfakA basal expression was significantly elevated, and enhanced in response to both fatty acids. When cultures were supplemented with palmitic acid, palmitoyl-CoA representing the first metabolite in the β-oxidation pathway was detected in USA300, but not in a fadXDEBA deletion mutant USA300Δfad, which relative to USA300 exhibited increased incorporation of palmitic acid into phospholipid accompanied by a rapid loss of viability. USA300Δfad also exhibited significantly reduced viability in a murine tissue abscess infection model. Our data are consistent with FakA-mediated incorporation of fatty acids into phospholipid as a preferred pathway for metabolism of exogenous fatty acids, while the fad locus is critical for metabolism of palmitic acid, which is the most abundant free fatty acid in human plasma.
Collapse
Affiliation(s)
- Robert C Kuiack
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Robert Flick
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McGavin
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
6
|
Cao MH, Tang BH, Ruan Y, Liang XL, Chu XY, Liang ZM, Zhang QY, Zhang HY. Development of specific and selective bactericide by introducing exogenous metabolite of pathogenic bacteria. Eur J Med Chem 2021; 225:113808. [PMID: 34461506 DOI: 10.1016/j.ejmech.2021.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
The widespread and repeated use of broad-spectrum bactericides has led to an increase in resistance. Developing novel broad-spectrum bactericides cannot solve the resistance problem, and may even aggravate it. The design of specific and selective bactericides has become urgent. A specific bactericidal design strategy was proposed by introducing exogenous metabolites in this study. This strategy was used to optimize two known antibacterial agents, luteolin (M) and Isoprothiolane (D), against Xoo. Based on the prodrug principles, target compound MB and DB were synthesized by combing M or D with exogenous metabolites, respectively. Bactericidal activity test results demonstrated that while the antibacterial ability of target compounds was significantly improved, their selectivity was also well enhanced by the introducing of exogenous metabolites. Comparing with the original compound, the antibacterial activity of target compound was significantly increased 92.0% and 74.5%, respectively. The optimized target compounds were more easily absorbed, and the drug application concentrations were much lower than those of the original agents, which would greatly reduce environmental pollution and relieve resistance risk. Our proposed strategy is of great significance for exploring the specific and selective bactericides against other pathogens.
Collapse
Affiliation(s)
- Min-Hui Cao
- College of Science, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Bao-He Tang
- College of Science, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Yao Ruan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiao-Long Liang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhan-Min Liang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
7
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Vehreschild MJGT, Tacconelli E, Giske CG, Peschel A. Beyond COVID-19-a paradigm shift in infection management? THE LANCET. INFECTIOUS DISEASES 2021; 21:e117. [PMID: 33045187 PMCID: PMC7546645 DOI: 10.1016/s1473-3099(20)30789-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Maria J G T Vehreschild
- German Centre for Infection Research, Partner Site Bonn-Cologne, Germany; University of Cologne, Department I of Internal Medicine, Cologne, Germany; Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt, Germany
| | - Evelina Tacconelli
- Infectious Diseases Unit, Department of Diagnostics and Public Health, Verona University Hospital, Verona, Italy; Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany; German Centre for Infection Research, Partner Site Tübingen, Germany
| | - Christian G Giske
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany; Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany; German Centre for Infection Research, Partner Site Tübingen, Germany.
| |
Collapse
|
9
|
Gening ML, Pier GB, Nifantiev NE. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:13-21. [PMID: 33388124 DOI: 10.1016/j.ddtec.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Poly-β-(1→6)-N-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by Staphylococcus aureus and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-N-acetylated derivative (dPNAG, containing around 15% of residual N-acetates) and their conjugates with Tetanus Toxoid (TT) revealed the crucial role of de-N-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH2) and nona-β-(1→6)-d-glucosamines (9GlcNH2) were tested in vitro and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH2-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.
Collapse
Affiliation(s)
- Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
10
|
Weinberg SE, Villedieu A, Bagdasarian N, Karah N, Teare L, Elamin WF. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infect Prev Pract 2020; 2:100077. [PMID: 34368717 PMCID: PMC8336160 DOI: 10.1016/j.infpip.2020.100077] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Hospital-acquired infections are on the rise and are a substantial cause of clinical and financial burden for healthcare systems. While infection control plays a major role in curtailing the spread of outbreak organisms, it is not always successful. One organism of particular concern is Acinetobacter baumannii, due to both its persistence in the hospital setting and its ability to acquire antibiotic resistance. A. baumannii has emerged as a nosocomial pathogen that exhibits high levels of resistance to antibiotics, and remains resilient against traditional cleaning measures with resistance to Colistin increasingly reported. Given the magnitude and costs associated with hospital acquired infections, and the increase in multidrug-resistant organisms, it is worth re-evaluating our current approaches and looking for alternatives or adjuncts to traditional antibiotics therapies. The aims of this review are to look at how this organism is spread within the hospital setting, discuss current treatment modalities, and propose alternative methods of outbreak management.
Collapse
Key Words
- ABC, A.baumannii complex
- AMP, Antimicrobial peptides
- Acinetobacter baumannii
- Antimicrobial peptide
- Bacteriophage
- CRAB, carbapenem-resistant A.baumannii
- Colistin
- EPIC, Extended Prevalence of Infection in Intensive Care study
- EU/EEA, European Union (EU) and European Economic Area (EEA) countries
- FMT, faecal microbiota transplantation
- HPV, Hydrogen peroxide vapour
- MDR-AB, Multidrug-resistant Acinetobacter baumannii
- MDR-GNB, Multidrug-resistant Gram-negative bacteria
- MIC, minimal inhibitory concentrations
- Microbiome restoration
- Multidrug-resistance
- SOAP, Sepsis in European ICUs study
- UVC, UV-C light
- XDR, Extensively-drug resistant
Collapse
Affiliation(s)
- S E Weinberg
- Department of Microbiology, Mid Essex Hospital Services NHS Trust, United Kingdom
| | - A Villedieu
- Department of Microbiology, Mid Essex Hospital Services NHS Trust, United Kingdom
| | | | - N Karah
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Sweden
| | - L Teare
- Department of Microbiology, Mid Essex Hospital Services NHS Trust, United Kingdom
| | - W F Elamin
- Department of Microbiology, Mid Essex Hospital Services NHS Trust, United Kingdom.,King's College Hospital, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Tacconelli E, Mazzaferri F, de Smet AM, Bragantini D, Eggimann P, Huttner BD, Kuijper EJ, Lucet JC, Mutters NT, Sanguinetti M, Schwaber MJ, Souli M, Torre-Cisneros J, Price JR, Rodríguez-Baño J. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin Microbiol Infect 2019; 25:807-817. [PMID: 30708122 DOI: 10.1016/j.cmi.2019.01.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
SCOPE The aim of these guidelines is to provide recommendations for decolonizing regimens targeting multidrug-resistant Gram-negative bacteria (MDR-GNB) carriers in all settings. METHODS These evidence-based guidelines were produced after a systematic review of published studies on decolonization interventions targeting the following MDR-GNB: third-generation cephalosporin-resistant Enterobacteriaceae (3GCephRE), carbapenem-resistant Enterobacteriaceae (CRE), aminoglycoside-resistant Enterobacteriaceae (AGRE), fluoroquinolone-resistant Enterobacteriaceae (FQRE), extremely drug-resistant Pseudomonas aeruginosa (XDRPA), carbapenem-resistant Acinetobacter baumannii (CRAB), cotrimoxazole-resistant Stenotrophomonas maltophilia (CRSM), colistin-resistant Gram-negative organisms (CoRGNB), and pan-drug-resistant Gram-negative organisms (PDRGNB). The recommendations are grouped by MDR-GNB species. Faecal microbiota transplantation has been discussed separately. Four types of outcomes were evaluated for each target MDR-GNB:(a) microbiological outcomes (carriage and eradication rates) at treatment end and at specific post-treatment time-points; (b) clinical outcomes (attributable and all-cause mortality and infection incidence) at the same time-points and length of hospital stay; (c) epidemiological outcomes (acquisition incidence, transmission and outbreaks); and (d) adverse events of decolonization (including resistance development). The level of evidence for and strength of each recommendation were defined according to the GRADE approach. Consensus of a multidisciplinary expert panel was reached through a nominal-group technique for the final list of recommendations. RECOMMENDATIONS The panel does not recommend routine decolonization of 3GCephRE and CRE carriers. Evidence is currently insufficient to provide recommendations for or against any intervention in patients colonized with AGRE, CoRGNB, CRAB, CRSM, FQRE, PDRGNB and XDRPA. On the basis of the limited evidence of increased risk of CRE infections in immunocompromised carriers, the panel suggests designing high-quality prospective clinical studies to assess the risk of CRE infections in immunocompromised patients. These trials should include monitoring of development of resistance to decolonizing agents during treatment using stool cultures and antimicrobial susceptibility results according to the EUCAST clinical breakpoints.
Collapse
Affiliation(s)
- E Tacconelli
- Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University Hospital, Germany; Infectious Diseases Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy.
| | - F Mazzaferri
- Infectious Diseases Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - A M de Smet
- University of Groningen, University Medical Centre Groningen, Department of Critical Care, Groningen, the Netherlands
| | - D Bragantini
- Infectious Diseases Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - P Eggimann
- Adult Critical Care Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - B D Huttner
- Division of Infectious Diseases and Infection Control Programme, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - E J Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - J-C Lucet
- Infection Control Unit, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; IAME, UMR 1137, DeSCID team, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - N T Mutters
- European Committee on Infection Control (EUCIC), Basel, Switzerland; Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - M Sanguinetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Istituto di Microbiologia, Rome, Italy
| | - M J Schwaber
- National Centre for Infection Control, Israel Ministry of Health, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - M Souli
- Duke Clinical Research Institute, Duke University, Durham, NC, USA; Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - J Torre-Cisneros
- Infectious Diseases Service, Reina Sofía University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), Department of Medicine, University of Córdoba, Córdoba, Spain
| | - J R Price
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - J Rodríguez-Baño
- Division of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena / Department of Medicine, University of Seville / Biomedicine Institute of Seville (IBiS), Seville, Spain
| |
Collapse
|
12
|
Fang T, Wang H, Cui Q, Rogers M, Dong P. Diversity of potential antibiotic-resistant bacterial pathogens and the effect of suspended particles on the spread of antibiotic resistance in urban recreational water. WATER RESEARCH 2018; 145:541-551. [PMID: 30199799 DOI: 10.1016/j.watres.2018.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Evidence of the increasing incidence of antibiotic resistance in watersheds has attracted worldwide attention. Limited in formation is available on the occurrences of health-related antibiotic-resistant bacterial pathogens (ARBPs) in recreational waters. The effects of certain environmental factors (e.g., suspended particles) on the spread of resistance also has not been characterized to date. In this study, a combination of culture and molecular methods was employed to comprehensively investigate the patterns of microbial resistance to representative antibiotics in samples from three recreational lakes in Beijing. The antibiotic resistance index (ARI) based on the gradient concentration assay revealed that samples showed high resistance to penicillin-G, moderate resistance to ampicillin, vancomycin and erythromycin and low resistance to ceftriaxone, gentamycin, tetracycline and chloramphenicol. Antibiotic-resistant bacteria (ARB) were cultured and collected, and the diversity of potential ARBP species was further explored using next-generation sequencing (NGS). The results showed that most of the identified ARBPs were environmental opportunistic pathogens with emerging clinical concerns, e.g., the multidrug-resistant Acinetobacter junii. Furthermore, particle-attached (PA) fractions presented higher ARI values than free-floating (FL) fractions did, indicating that the PA fractions were more resistant to selected antibiotics. And the NGS results revealed that the PA fractions showed higher similarity in the screened ARB community compositions in comparison with the FL fractions, primarily due to a protective effect provided by the particles. Accordingly, ARBPs could persist for a longer time in protective particle matrices. However, quantification of antibiotic-resistant genes (ARGs) by qPCR showed no significant abundance differences between the two fractions. Overall, these findings suggest a potential health risk from the prevalence of ARBPs in recreational waters and provides a better understanding of the contribution of particles in the spread of antibiotic resistance in aquatic systems, with implications for the control of excessive suspended particles by water management.
Collapse
Affiliation(s)
- Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Matt Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 3, 117576, Singapore
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 2017; 15:675-687. [PMID: 29021598 DOI: 10.1038/nrmicro.2017.104] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although human colonization by facultative bacterial pathogens, such as Staphylococcus aureus, represents a major risk factor for invasive infections, the commensal lifestyle of such pathogens has remained a neglected area of research. S. aureus colonizes the nares of approximately 30% of the human population and recent studies suggest that the composition of highly variable nasal microbiota has a major role in promoting or inhibiting S. aureus colonization. Competition for epithelial attachment sites or limited nutrients, different susceptibilities to host defence molecules and the production of antimicrobial molecules may determine whether nasal bacteria outcompete each other. In this Review, we discuss recent insights into mechanisms that are used by S. aureus to prevail in the human nose and the counter-strategies that are used by other nasal bacteria to interfere with its colonization. Understanding such mechanisms will be crucial for the development of new strategies for the eradication of endogenous facultative pathogens.
Collapse
Affiliation(s)
- Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Christopher Weidenmaier
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Zipperer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Thistlethwaite IRG, Bull FM, Cui C, Walker PD, Gao SS, Wang L, Song Z, Masschelein J, Lavigne R, Crump MP, Race PR, Simpson TJ, Willis CL. Elucidation of the relative and absolute stereochemistry of the kalimantacin/batumin antibiotics. Chem Sci 2017; 8:6196-6201. [PMID: 28989652 PMCID: PMC5628338 DOI: 10.1039/c7sc01670k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/02/2017] [Indexed: 12/18/2022] Open
Abstract
A multidisciplinary approach combining natural product degradation, fragment synthesis, bioinformatics and NMR spectroscopy was used.
Kalimantacin A and batumin exhibit potent and selective antibiotic activity against Staphylococcus species including MRSA. Both compounds are formed via a hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS-NRPS) biosynthetic pathway and from comparison of the gene clusters it is apparent that batumin from Pseudomonas batumici and kalimantacin from P. fluorescens are the same compound. The linear structure of this unsaturated acid was assigned by spectroscopic methods, but the relative and absolute stereochemistry of the five stereocentres remained unknown. Herein we describe isolation of kalimantacin A and two further metabolites 17,19-diol 2 and 27-descarbomyl hydroxyketone 3 from cultures of P. fluorescens. Their absolute and relative stereochemistries are rigorously determined using a multidisciplinary approach combining natural product degradation and fragment synthesis with bioinformatics and NMR spectroscopy. Diol 2 has the 5R, 15S, 17S, 19R, 26R, 27R configuration and is the immediate biosynthetic precursor of the bioactive kalimantacin A formed by oxidation of the 17-alcohol to the ketone.
Collapse
Affiliation(s)
| | - Freya M Bull
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Chengsen Cui
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Paul D Walker
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Shu-Shan Gao
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Luoyi Wang
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Zhongshu Song
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | | | - Rob Lavigne
- Laboratory of Gene Technology , KULeuven , Leuven B-3001 , Belgium
| | - Matthew P Crump
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Paul R Race
- School of Biochemistry , University of Bristol , Bristol BS8 1TD , UK
| | - Thomas J Simpson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Christine L Willis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| |
Collapse
|