1
|
Zhao KY, Du YX, Cao HM, Su LY, Su XL, Li X. The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering. Colloids Surf B Biointerfaces 2025; 247:114435. [PMID: 39647422 DOI: 10.1016/j.colsurfb.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
Collapse
Affiliation(s)
- Ke-Yu Zhao
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Yi-Xiang Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Hui-Min Cao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Li-Ya Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xiu-Lan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
2
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Ingar Romero A, Raicevic T, Al Boustani G, Gupta M, Heiler AC, Bichlmaier L, Barbone M, Becherer M, Kiriya D, Inoue S, Alexander J, Müller K, Bausch AR, Wolfrum B, Teshima TF. Self-Foldable Three-Dimensional Biointerfaces by Strain Engineering of Two-Dimensional Layered Materials on Polymers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10305-10315. [PMID: 39879108 PMCID: PMC11843539 DOI: 10.1021/acsami.4c17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls. Three types of 2DLM microrolls─graphene, hexagonal boron nitride, and molybdenum disulfide─provide scaffolds to encapsulate and organize human-induced pluripotent stem cell-derived cardiomyocytes into tubular aggregates. Encapsulating cardiomyocytes in porous 2DLMs-laden microrolls allows for real-time microscopic observation and construction of precisely shaped cardiac tissues interacting with their surroundings. The ability to combine 2DLMs of diverse properties in the same structure further demonstrates the potential of this self-folding strategy for creating flexible, ultrathin bioelectronic devices that integrate seamlessly with complex biological environments, offering real-time, noninvasive monitoring of engineered tissues and organoids.
Collapse
Affiliation(s)
- Alonso Ingar Romero
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
| | - Teodora Raicevic
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| | - George Al Boustani
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
| | - Mrinalini Gupta
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| | - Ann-Caroline Heiler
- School of
Natural Sciences, Technical University of
Munich, Garching 85748, Germany
| | - Lukas Bichlmaier
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
- School of
Natural Sciences, Technical University of
Munich, Garching 85748, Germany
| | - Matteo Barbone
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| | - Markus Becherer
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| | - Daisuke Kiriya
- Graduate
School of Arts and Sciences, The University
of Tokyo, Tokyo 153-8902, Japan
| | - Shigeyoshi Inoue
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
- School of
Natural Sciences, Technical University of
Munich, Garching 85748, Germany
| | - Joe Alexander
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
| | - Kai Müller
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
| | - Andreas R. Bausch
- School of
Natural Sciences, Technical University of
Munich, Garching 85748, Germany
| | - Bernhard Wolfrum
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
| | - Tetsuhiko F. Teshima
- School of
Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany
- Medical &
Health Informatics Laboratories, NTT Research
Incorporated, Sunnyvale, California 94085, United States
- Faculty of
Science and Technology, Keio University, Yokohama, Kanagawa 223−8522, Japan
| |
Collapse
|
4
|
Inglebert M, Dettwiler M, He C, Markkanen E, Opitz L, Naguleswaran A, Rottenberg S. Individualized Pooled CRISPR/Cas9 Screenings Identify CDK2 as a Druggable Vulnerability in a Canine Mammary Carcinoma Patient. Vet Sci 2025; 12:183. [PMID: 40005944 PMCID: PMC11861728 DOI: 10.3390/vetsci12020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
High-throughput omics approaches have long been used to uncover potential vulnerabilities in human personalized oncology but are often limited by the lack of functional validation. Therefore, we placed our emphasis on functional drug testing using patient-derived organoids (PDOs). However, PDOs generated from tumors mostly lack comparison with matching normal tissue, and the number of testable drugs is limited. Here, we demonstrate how matching the neoplastic and non-neoplastic mammary PDOs derived from the same dog can utilize targeted CRISPR/Cas9 screens to unveil cancer cell specific vulnerabilities. We performed two independent CRISPR/Cas9 dropout screens using sub-libraries targeting the epigenome (n = 1269) or druggable genes (n = 834) in paired PDOs derived from both carcinoma and normal mammary tissues from the same dog. A comparison of essential genes for tumor cells survival identified CDK2 as a functional vulnerability in canine mammary tumors (CMTs) that can be targeted with the PF3600 inhibitor. Additional potential targets were also uncovered, providing insights for personalized cancer treatments in dogs.
Collapse
Affiliation(s)
- Marine Inglebert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.I.); (M.D.); (C.H.); (A.N.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.I.); (M.D.); (C.H.); (A.N.)
- Vetscope Pathologie Dettwiler, Lörracherstrasse 50, 4125 Riehen, Switzerland
| | - Chang He
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.I.); (M.D.); (C.H.); (A.N.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8056 Zürich, Switzerland;
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zürich and ETH, 8092 Zürich, Switzerland;
| | - Arunasalam Naguleswaran
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.I.); (M.D.); (C.H.); (A.N.)
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.I.); (M.D.); (C.H.); (A.N.)
- Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Puttonen M, Almusa H, Böhling T, Koljonen V, Sihto H. Whole-exome sequencing identifies distinct genomic aberrations in eccrine porocarcinomas and poromas. Orphanet J Rare Dis 2025; 20:70. [PMID: 39948683 PMCID: PMC11823087 DOI: 10.1186/s13023-025-03586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Eccrine porocarcinoma (EPC) is a rare malignant skin tumor arising from the eccrine gland. Investigations into the genomic landscape of EPC have uncovered potential drivers of its development and progression. However, there is limited information on the discrepancies between EPC and its benign counterpart, eccrine poroma (EP). METHODS Formalin-fixed paraffin-embedded (FFPE) samples from 15 EPCs and 5 EPs were retrieved from Helsinki Biobank and Finnish Clinical Biobank Tampere. One EPC was found to be digital papillary adenocarcinoma in review of diagnoses. Whole-exome sequencing was used to conduct a comprehensive analysis to elucidate the genomic features of EPCs and EPs. RESULTS There was general heterogeneity within EPCs and EPs, with discrepancies such as exclusive TP53, NCOR1, and CDKN2A mutations in EPCs and a higher mutational load in EPCs than in EPs. Furthermore, we identified alterations in pathways associated with cell adhesion and the extracellular matrix in EPCs, while pathways associated with ketone body and amino acid metabolism were altered in EPs. The MAPK and Ras signaling pathways were enriched in genes mutated only in EPCs. CONCLUSIONS EPCs and EPs are generally heterogeneous tumor entities with a few distinct discrepancies from each other. The findings from this study emphasize the need to further verify the roles of disrupted genes and pathways in the initiation and progression of EPCs and EPs.
Collapse
Affiliation(s)
- Maya Puttonen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O Box 63, 00014, Helsinki, Finland.
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tom Böhling
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O Box 63, 00014, Helsinki, Finland
| | - Virve Koljonen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O Box 63, 00014, Helsinki, Finland
| |
Collapse
|
6
|
Logun M, Wang X, Sun Y, Bagley SJ, Li N, Desai A, Zhang DY, Nasrallah MP, Pai ELL, Oner BS, Plesa G, Siegel D, Binder ZA, Ming GL, Song H, O'Rourke DM. Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy. Cell Stem Cell 2025; 32:181-190.e4. [PMID: 39657679 PMCID: PMC11808387 DOI: 10.1016/j.stem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Patient-derived tumor organoids have been leveraged for disease modeling and preclinical studies but rarely applied in real time to aid with interpretation of patient treatment responses in clinics. We recently demonstrated early efficacy signals in a first-in-human, phase 1 study of dual-targeting chimeric antigen receptor (CAR)-T cells (EGFR-IL13Rα2 CAR-T cells) in patients with recurrent glioblastoma. Here, we analyzed six sets of patient-derived glioblastoma organoids (GBOs) treated concurrently with the same autologous CAR-T cell products as patients in our phase 1 study. We found that CAR-T cell treatment led to target antigen reduction and cytolysis of tumor cells in GBOs, the degree of which correlated with CAR-T cell engraftment detected in patients' cerebrospinal fluid (CSF). Furthermore, cytokine release patterns in GBOs mirrored those in patient CSF samples over time. Our findings highlight a unique trial design and GBOs as a valuable platform for real-time assessment of CAR-T cell bioactivity and insights into immunotherapy efficacy.
Collapse
Affiliation(s)
- Meghan Logun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yusha Sun
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen J Bagley
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nannan Li
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arati Desai
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Ling-Lin Pai
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bike Su Oner
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald Siegel
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Hongjun Song
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Iliushchenko D, Efimenko B, Mikhailova AG, Shamanskiy V, Saparbaev MK, Matkarimov BT, Mazunin I, Voronka A, Knorre D, Kunz WS, Kapranov P, Denisov S, Fellay J, Khrapko K, Gunbin K, Popadin K. Deciphering the Foundations of Mitochondrial Mutational Spectra: Replication-Driven and Damage-Induced Signatures Across Chordate Classes. Mol Biol Evol 2025; 42:msae261. [PMID: 39903101 PMCID: PMC11792237 DOI: 10.1093/molbev/msae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial DNA (mtDNA) mutagenesis remains poorly understood despite its crucial role in disease, aging, and evolutionary tracing. In this study, we reconstructed a comprehensive 192-component mtDNA mutational spectrum for chordates by analyzing 118,397 synonymous mutations in the CytB gene across 1,697 species and five classes. This analysis revealed three primary forces shaping mtDNA mutagenesis: (i) symmetrical, replication-driven errors by mitochondrial polymerase (POLG), resulting in C > T and A > G mutations that are highly conserved across classes; (ii) asymmetrical, damage-driven C > T mutations on the single-stranded heavy strand with clock-like dynamics; and (iii) asymmetrical A > G mutations on the heavy strand, with dynamics suggesting sensitivity to oxidative damage. The third component, sensitive to oxidative damage, positions mtDNA mutagenesis as a promising marker for metabolic and physiological processes across various classes, species, organisms, tissues, and cells. The deconvolution of the mutational spectra into mutational signatures uncovered deficiencies in both base excision repair (BER) and mismatch repair (MMR) pathways. Further analysis of mutation hotspots, abasic sites, and mutational asymmetries underscores the critical role of single-stranded DNA damage (components ii and iii), which, uncorrected due to BER and MMR deficiencies, contributes roughly as many mutations as POLG-induced errors (component i).
Collapse
Affiliation(s)
- Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russian Federation
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexandr Voronka
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn Medical Center, Bonn, Germany
| | | | - Stepan Denisov
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Zheng M, Qu J, Xiang D, Xing L. Organoids in lung cancer brain metastasis: Foundational research, clinical translation, and prospective outlooks. Biochim Biophys Acta Rev Cancer 2025; 1880:189235. [PMID: 39647672 DOI: 10.1016/j.bbcan.2024.189235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Brain metastasis stands as a leading contributor to mortality in lung cancer patients, yet the intricate mechanism underlying this phenomenon remains elusive. This underscores the need for robust preclinical models and effective treatment strategies. Emerging as viable in vitro models that closely replicate actual tumors, three-dimensional culture systems, particularly organoids derived from non-malignant cells or cancer organoids, have emerged as promising avenues. This review delves into the forefronts of fundamental research and clinical applications focused on lung cancer brain metastasis-derived organoids, highlighting current challenges and delineating prospects. These studies offer tremendous potential for clinical application despite being in nascent status.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jialin Qu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
9
|
Li J, Li Y, Song G, Wang H, Zhang Q, Wang M, Zhao M, Wang B, Zhu H, Ranzhi L, Wang Q, Xiong Y. Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases. Mater Today Bio 2025; 30:101396. [PMID: 39802826 PMCID: PMC11719415 DOI: 10.1016/j.mtbio.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Organoids, exhibiting the capability to undergo differentiation in specific in vitro growth environments, have garnered significant attention in recent years due to their capacity to recapitulate human organs with resemblant in vivo structures and physiological functions. This groundbreaking technology offers a unique opportunity to study human diseases and address the limitations of traditional animal models. Cardiovascular diseases (CVDs), a leading cause of mortality worldwide, have spurred an increasing number of researchers to explore the great potential of human cardiovascular organoids for cardiovascular research. This review initiates by elaborating on the development and manufacture of human cardiovascular organoids, including cardiac organoids and blood vessel organoids. Next, we provide a comprehensive overview of their applications in modeling various cardiovascular disorders. Furthermore, we shed light on the prospects of cardiovascular organoids in CVDs therapy, and unfold an in-depth discussion of the current challenges of human cardiovascular organoids in the development and application for understanding and treating CVDs.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guangtao Song
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Haiying Wang
- Department of Science and Education, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Min Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Muxue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Bei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - HuiGuo Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Liu Ranzhi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Wang
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
10
|
Przanowska RK, Labban N, Przanowski P, Hawes RB, Atkins KA, Showalter SL, Janes KA. Patient-derived response estimates from zero-passage organoids of luminal breast cancer. Breast Cancer Res 2024; 26:192. [PMID: 39741344 DOI: 10.1186/s13058-024-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations. METHODS We freshly isolated patient-derived cells from luminal tumor scrapes, miniaturized the organoid format into 5 µl replicates for increased throughput, and set an endpoint of 14 days to minimize drift. Therapeutic hormone targeting was mimicked in these "zero-passage" organoids by withdrawing β-estradiol and adding 4-hydroxytamoxifen. We also examined sulforaphane as an electrophilic stress and commercial nutraceutical with reported anti-cancer properties. Downstream mechanisms were tested genetically by lentiviral transduction of two complementary sgRNAs and Cas9 stabilization for the first week of organoid culture. Transcriptional changes were measured by RT-qPCR or RNA sequencing (RNA-seq), and organoid phenotypes were quantified by serial brightfield imaging, digital image segmentation, and regression modeling of volumetric growth rates. RESULTS We achieved > 50% success in initiating luminal breast cancer organoids from tumor scrapes and maintaining them to the 14-day zero-passage endpoint. Success was mostly independent of clinical parameters, supporting general applicability of the approach. Abundance of ESR1 and PGR in zero-passage organoids consistently remained within the range of patient variability at the endpoint. However, responsiveness to hormone withdrawal and blockade was highly variable among luminal breast cancer cases tested. Combining sulforaphane with knockout of NQO1 (a phase II antioxidant response gene and downstream effector of sulforaphane) also yielded a breadth of organoid growth phenotypes, including growth inhibition with sulforaphane, growth promotion with NQO1 knockout, and growth antagonism when combined. CONCLUSIONS Zero-passage organoids are a rapid and scalable way to interrogate properties of luminal breast cancer cells from patient-derived material. This includes testing drug mechanisms of action in different clinical cohorts. A future goal is to relate inter-patient variability of zero-passage organoids to long-term outcomes.
Collapse
Affiliation(s)
- Róża K Przanowska
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Najwa Labban
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Russell B Hawes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shayna L Showalter
- Division of Surgical Oncology, Department of Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA.
- Comprehensive Cancer Center, University of Virginia, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Comprehensive Cancer Center, University of Virginia, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
11
|
Yu JZ, Kiss Z, Ma W, Liang R, Li T. Preclinical Models for Functional Precision Lung Cancer Research. Cancers (Basel) 2024; 17:22. [PMID: 39796653 PMCID: PMC11718887 DOI: 10.3390/cancers17010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor-stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor's histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody-drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer.
Collapse
Affiliation(s)
- Jie-Zeng Yu
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Zsofia Kiss
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Ruqiang Liang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Medical Service, Hematology/Oncology, Veterans Affairs Northern California Health Care System, Mather, CA 10535, USA
| |
Collapse
|
12
|
Avsievich E, Salimgereeva D, Maluchenko A, Antysheva Z, Voloshin M, Feidorov I, Glazova O, Abramov I, Maksimov D, Kaziakhmedova S, Bodunova N, Karnaukhov N, Volchkov P, Krupinova J. Pancreatic Neuroendocrine Tumor: The Case Report of a Patient with Germline FANCD2 Mutation and Tumor Analysis Using Single-Cell RNA Sequencing. J Clin Med 2024; 13:7621. [PMID: 39768544 PMCID: PMC11728285 DOI: 10.3390/jcm13247621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Neuroendocrine neoplasms are a rare and heterogeneous group of neoplasms. Small-sized (≤2 cm) pancreatic neuroendocrine tumors (PanNETs) are of particular interest as they are often associated with aggressive behavior, with no specific prognostic or progression markers. METHODS This article describes a clinical case characterized by a progressive growth of nonfunctional PanNET requiring surgical treatment in a patient with a germline FANCD2 mutation, previously not reported in PanNETs. The patient underwent whole exome sequencing and single-cell RNA sequencing. RESULTS The patient underwent surgical treatment. We confirmed the presence of the germline mutation FANCD2 and also detected the germline mutation WNT10A. The cellular composition of the PanNET was analyzed using single-cell sequencing, and the main cell clusters were identified. We analyzed the tumor genomics, and used the data to define the effect the germline FANCD2 mutation had. CONCLUSIONS Analysis of the mutational status of patients with PanNET may provide additional data that may influence treatment tactics, refine the plan for monitoring such patients, and provide more information about the pathogenesis of PanNET. PanNET research using scRNA-seq data may help in predicting the effect of therapy on neuroendocrine cells with FANCD2 mutations.
Collapse
Affiliation(s)
- Ekaterina Avsievich
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Olga Glazova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Ivan Abramov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Samira Kaziakhmedova
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Pavel Volchkov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Julia Krupinova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| |
Collapse
|
13
|
Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 2024; 14:1506606. [PMID: 39697234 PMCID: PMC11653019 DOI: 10.3389/fonc.2024.1506606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent gastrointestinal tumors globally and poses a significant threat to human health. In recent years, tumor organoids have emerged as ideal models for clinical disease research owing to their ability to closely mimic the original tumor tissue and maintain a stable phenotypic structure. Organoid technology has found widespread application in basic tumor research, precision therapy, and new drug development, establishing itself as a reliable preclinical model in CRC research. This has significantly advanced individualized and precise tumor therapies. Additionally, the integration of single-cell technology has enhanced the precision of organoid studies, offering deeper insights into tumor heterogeneity and treatment response, thereby contributing to the development of personalized treatment approaches. This review outlines the evolution of colorectal cancer organoid technology and highlights its strengths in modeling colorectal malignancies. This review also summarizes the progress made in precision tumor medicine and addresses the challenges in organoid research, particularly when organoid research is combined with single-cell technology. Furthermore, this review explores the future potential of organoid technology in the standardization of culture techniques, high-throughput screening applications, and single-cell multi-omics integration, offering novel directions for future colorectal cancer research.
Collapse
Affiliation(s)
- Yanan Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Ruoyu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiquan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengxi Wang
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Zhou
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoshan Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fuxia Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Modeling adenoma-carcinoma progression from a single MLH1-knockout cell via colon organoids. NATURE CANCER 2024; 5:1798-1799. [PMID: 39516700 DOI: 10.1038/s43018-024-00842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
|
15
|
Mizutani T, Boretto M, Lim S, Drost J, González DM, Oka R, Geurts MH, Begthel H, Korving J, van Es JH, van Boxtel R, Clevers H. Recapitulating the adenoma-carcinoma sequence by selection of four spontaneous oncogenic mutations in mismatch-repair-deficient human colon organoids. NATURE CANCER 2024; 5:1852-1867. [PMID: 39487295 PMCID: PMC11663794 DOI: 10.1038/s43018-024-00841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
Carcinogenesis results from the sequential acquisition of oncogenic mutations that convert normal cells into invasive, metastasizing cancer cells. Colorectal cancer exemplifies this process through its well-described adenoma-carcinoma sequence, modeled previously using clustered regularly interspaced short palindromic repeats (CRISPR) to induce four consecutive mutations in wild-type human gut organoids. Here, we demonstrate that long-term culture of mismatch-repair-deficient organoids allows the selection of spontaneous oncogenic mutations through the sequential withdrawal of Wnt agonists, epidermal growth factor (EGF) agonists and the bone morphogenetic protein (BMP) antagonist Noggin, while TP53 mutations were selected through the addition of Nutlin-3. Thus, organoids sequentially acquired mutations in AXIN1 and AXIN2 (Wnt pathway), TP53, ACVR2A and BMPR2 (BMP pathway) and NRAS (EGF pathway), gaining complete independence from stem cell niche factors. Quadruple-pathway (Wnt, EGF receptor, p53 and BMP) mutant organoids formed solid tumors upon xenotransplantation. This demonstrates that carcinogenesis can be recapitulated in a DNA repair-mutant background through in vitro selection that targets four consecutive cancer pathways.
Collapse
Affiliation(s)
- Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Matteo Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Diego Montiel González
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rurika Oka
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland.
| |
Collapse
|
16
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
18
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
19
|
Crisafulli G. Mutational Signatures in Colorectal Cancer: Translational Insights, Clinical Applications, and Limitations. Cancers (Basel) 2024; 16:2956. [PMID: 39272814 PMCID: PMC11393898 DOI: 10.3390/cancers16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.
Collapse
|
20
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Liang S, Ge H, Zhou S, Tang J, Gu Y, Wu X, Li J. Prognostic factors of 87 ovarian yolk sac tumor (OYST) patients and molecular characteristics of persistent and recurrent OYST. Gynecol Oncol 2024; 187:64-73. [PMID: 38733954 DOI: 10.1016/j.ygyno.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE We aimed to explore the characteristics of OYST, particularly for persistent and recurrent OYST, in order to explore potential treatment options and thereby improve patient outcomes. METHODS We retrospectively reviewed the clinical records of all patients with OYST at Fudan university Shanghai Cancer Center from December 3, 2005 to November 27, 2020. Furthermore, and performed whole-exome sequencing on 17 paired OYST (including 8 paired persistent and recurrent OYST) tumor and blood samples to elucidate the aberrant molecular features. RESULTS Totally, 87 OYST patients were included between 2007/03/13 and 2020/11/17. With a median follow-up of 73 [3-189] months, 22 patients relapsed or disease persisted. Overall, 17 patients died with a median overall survival of 21 [3-54] months. Univariate and multivariate analysis revealed tumor histology and residual lesions were independently associated with event free survival and overall survival, cycles to AFP normalization were another independent risk factor for overall survival. For the 8 persistent and recurrent OYST: cancer driver genes including ANKRD36, ANKRD62, DNAH8, MUC5B, NUP205, RYR2, STARD9, MUC16, TTN, ARID1A and PIK3CA were frequently mutated; cell cycle, ABC transporters, HR, NHEJ and AMPK signal pathway demonstrated as the most significantly enriched pathways; TMB, DNA MMR gene mutation and MSI were significantly higher. Mutation signature 11, 19 and 30 were the dominant contributors in persistent and recurrent OYST mutation. CONCLUSION Persistent and recurrent OYST associated with poor prognosis, and probably susceptible to immune checkpoint blockade therapy. Molecular characteristics contributed to predict the persistence and recurrence of OYST.
Collapse
Affiliation(s)
- Shanhui Liang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huijuan Ge
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Shuling Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Jie Tang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanzi Gu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jin Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
24
|
Chavanel B, Virard F, Cahais V, Renard C, Sirand C, Smits KM, Schouten LJ, Fervers B, Charbotel B, Abedi-Ardekani B, Korenjak M, Zavadil J. Genome-scale mutational signature analysis in archived fixed tissues. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108512. [PMID: 39216514 DOI: 10.1016/j.mrrev.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Mutation spectra and mutational signatures in cancerous and non-cancerous tissues can be identified by various established techniques of massively parallel sequencing (or next-generation sequencing) including whole-exome or whole-genome sequencing, and more recently by error-corrected/duplex sequencing. One rather underexplored area has been the genome-scale analysis of mutational signatures as markers of mutagenic exposures, and their impact on cancer driver events applied to formalin-fixed or alcohol-fixed paraffin embedded archived biospecimens. This review showcases successful applications of the next-generation sequencing methodologies in archived fixed tissues, including the delineation of the specific tissue fixation-related DNA damage manifesting as artifactual signatures, distinguishable from the true signatures that arise from biological mutagenic processes. Overall, we discuss and demonstrate how next-generation sequencing techniques applied to archived fixed biospecimens can enhance our understanding of cancer causes including mutagenic effects of extrinsic cancer risk agents, and the implications for prevention efforts aimed at reducing avoidable cancer-causing exposures.
Collapse
Affiliation(s)
- Bérénice Chavanel
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - François Virard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France; University Claude Bernard Lyon 1 INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Vincent Cahais
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Claire Renard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Kim M Smits
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Pathology, Maastricht, the Netherlands
| | - Leo J Schouten
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Epidemiology, Maastricht, the Netherlands
| | - Béatrice Fervers
- Centre Léon Bérard, Department Cancer and Environment, Lyon, France
| | - Barbara Charbotel
- University Claude Bernard Lyon 1, UMRESTTE, Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment, Lyon, France
| | | | - Michael Korenjak
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France.
| |
Collapse
|
25
|
Kayhanian H, Cross W, van der Horst SEM, Barmpoutis P, Lakatos E, Caravagna G, Zapata L, Van Hoeck A, Middelkamp S, Litchfield K, Steele C, Waddingham W, Patel D, Milite S, Jin C, Baker AM, Alexander DC, Khan K, Hochhauser D, Novelli M, Werner B, van Boxtel R, Hageman JH, Buissant des Amorie JR, Linares J, Ligtenberg MJL, Nagtegaal ID, Laclé MM, Moons LMG, Brosens LAA, Pillay N, Sottoriva A, Graham TA, Rodriguez-Justo M, Shiu KK, Snippert HJG, Jansen M. Homopolymer switches mediate adaptive mutability in mismatch repair-deficient colorectal cancer. Nat Genet 2024; 56:1420-1433. [PMID: 38956208 PMCID: PMC11250277 DOI: 10.1038/s41588-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.
Collapse
Affiliation(s)
| | - William Cross
- UCL Cancer Institute, University College London, London, UK
- Cancer Mechanisms and Biomarker Discovery Group, School of Life Sciences, University of Westminster, London, UK
| | - Suzanne E M van der Horst
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Panagiotis Barmpoutis
- UCL Cancer Institute, University College London, London, UK
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Eszter Lakatos
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Trieste, Italy
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Arne Van Hoeck
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | | | - Dominic Patel
- UCL Cancer Institute, University College London, London, UK
| | - Salvatore Milite
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Trieste, Italy
| | - Chen Jin
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Khurum Khan
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Daniel Hochhauser
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Marco Novelli
- UCL Cancer Institute, University College London, London, UK
- Department of Pathology, University College London Hospital, London, UK
| | - Benjamin Werner
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ruben van Boxtel
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Joris H Hageman
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miangela M Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leon M G Moons
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Manuel Rodriguez-Justo
- UCL Cancer Institute, University College London, London, UK
- Department of Pathology, University College London Hospital, London, UK
| | - Kai-Keen Shiu
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Hugo J G Snippert
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Marnix Jansen
- UCL Cancer Institute, University College London, London, UK.
- Department of Pathology, University College London Hospital, London, UK.
| |
Collapse
|
26
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Kuo YP, Nombela-Arrieta C, Carja O. A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection. Nat Commun 2024; 15:4666. [PMID: 38821923 PMCID: PMC11143212 DOI: 10.1038/s41467-024-48617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
How the spatial arrangement of a population shapes its evolutionary dynamics has been of long-standing interest in population genetics. Most previous studies assume a small number of demes or symmetrical structures that, most often, act as well-mixed populations. Other studies use network theory to study more heterogeneous spatial structures, however they usually assume small, regular networks, or strong constraints on the strength of selection considered. Here we build network generation algorithms, conduct evolutionary simulations and derive general analytic approximations for probabilities of fixation in populations with complex spatial structure. We build a unifying evolutionary theory across network families and derive the relevant selective parameter, which is a combination of network statistics, predictive of evolutionary dynamics. We also illustrate how to link this theory with novel datasets of spatial organization and use recent imaging data to build the cellular spatial networks of the stem cell niches of the bone marrow. Across a wide variety of parameters, we find these networks to be strong suppressors of selection, delaying mutation accumulation in this tissue. We also find that decreases in stem cell population size also decrease the suppression strength of the tissue spatial structure.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
29
|
Cong J, Wu J, Fang Y, Wang J, Kong X, Wang L, Duan Z. Application of organoid technology in the human health risk assessment of microplastics: A review of progresses and challenges. ENVIRONMENT INTERNATIONAL 2024; 188:108744. [PMID: 38761429 DOI: 10.1016/j.envint.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Microplastic (MP) pollution has become a global environmental issue, and increasing concern has been raised about its impact on human health. Current studies on the toxic effects and mechanisms of MPs have mostly been conducted in animal models or in vitro cell cultures, which have limitations regarding inter-species differences or stimulation of cellular functions. Organoid technology derived from human pluripotent or adult stem cells has broader prospects for predicting the potential health risks of MPs to humans. Herein, we reviewed the current application advancements and opportunities for different organoids, including brain, retinal, intestinal, liver, and lung organoids, to assess the human health risks of MPs. Organoid techniques accurately simulate the complex processes of MPs and reflect phenotypes related to diseases caused by MPs such as liver fibrosis, neurodegeneration, impaired intestinal barrier and cardiac hypertrophy. Future perspectives were also proposed for technological innovation in human risk assessment of MPs using organoids, including extending the lifespan of organoids to assess the chronic toxicity of MPs, and reconstructing multi-organ interactions to explore their potential in studying the microbiome-gut-brainaxis effect of MPs.
Collapse
Affiliation(s)
- Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jin Wu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyan Kong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
30
|
Senkin S, Moody S, Díaz-Gay M, Abedi-Ardekani B, Cattiaux T, Ferreiro-Iglesias A, Wang J, Fitzgerald S, Kazachkova M, Vangara R, Le AP, Bergstrom EN, Khandekar A, Otlu B, Cheema S, Latimer C, Thomas E, Atkins JR, Smith-Byrne K, Cortez Cardoso Penha R, Carreira C, Chopard P, Gaborieau V, Keski-Rahkonen P, Jones D, Teague JW, Ferlicot S, Asgari M, Sangkhathat S, Attawettayanon W, Świątkowska B, Jarmalaite S, Sabaliauskaite R, Shibata T, Fukagawa A, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Bartlett JMS, Albert M, Phouthavongsy L, Ashton-Prolla P, Botton MR, Silva Neto B, Bezerra SM, Curado MP, Zequi SDC, Reis RM, Faria EF, de Menezes NS, Ferrari RS, Banks RE, Vasudev NS, Zaridze D, Mukeriya A, Shangina O, Matveev V, Foretova L, Navratilova M, Holcatova I, Hornakova A, Janout V, Purdue MP, Rothman N, Chanock SJ, Ueland PM, Johansson M, McKay J, Scelo G, Chanudet E, Humphreys L, de Carvalho AC, Perdomo S, Alexandrov LB, Stratton MR, Brennan P. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 2024; 629:910-918. [PMID: 38693263 PMCID: PMC11111402 DOI: 10.1038/s41586-024-07368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.
Collapse
Affiliation(s)
- Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Aida Ferreiro-Iglesias
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Anh Phuong Le
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Emily Thomas
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Joshua Ronald Atkins
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sophie Ferlicot
- Service d'Anatomie Pathologique, Assistance Publique-Hôpitaux de Paris, Univeristé Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Worapat Attawettayanon
- Division of Urology, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Sonata Jarmalaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania
- Department of Botany and Genetics, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Rasa Sabaliauskaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Dana Mates
- Occupational Health and Toxicology Department, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Viorel Jinga
- Urology Department, Carol Davila University of Medicine and Pharmacy, Prof. Dr. Th. Burghele Clinical Hospital, Bucharest, Romania
| | - Stefan Rascu
- Urology Department, Carol Davila University of Medicine and Pharmacy, Prof. Dr. Th. Burghele Clinical Hospital, Bucharest, Romania
| | - Mirjana Mijuskovic
- Clinic of Nephrology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Slavisa Savic
- Department of Urology, University Hospital Dr D. Misovic Clinical Center, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research, Belgrade, Serbia
| | - John M S Bartlett
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Monique Albert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Patricia Ashton-Prolla
- Experimental Research Center, Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana R Botton
- Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Brasil Silva Neto
- Service of Urology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medicine: Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Paula Curado
- Department of Epidemiology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Stênio de Cássio Zequi
- Department of Urology, A. C. Camargo Cancer Center, São Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, A.C. Camargo Cancer Center, São Paulo, Brazil
- Latin American Renal Cancer Group (LARCG), São Paulo, Brazil
- Department of Surgery, Division of Urology, Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal
| | - Eliney Ferreira Faria
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
- Department of Urology, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naveen S Vasudev
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - David Zaridze
- Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Anush Mukeriya
- Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Oxana Shangina
- Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Vsevolod Matveev
- Department of Urology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Anna Hornakova
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ghislaine Scelo
- Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore
| | - Estelle Chanudet
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
31
|
Débare H, Blanc F, Piton G, Leplat JJ, Vincent-Naulleau S, Rivière J, Vilotte M, Marthey S, Lecardonnel J, Coville JL, Estellé J, Rau A, Bourneuf E, Egidy G. Malignant features of minipig melanomas prior to spontaneous regression. Sci Rep 2024; 14:9240. [PMID: 38649394 PMCID: PMC11035550 DOI: 10.1038/s41598-024-59741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
In MeLiM minipigs, melanomas develop around birth, can metastasize, and have histopathologic characteristics similar to humans. Interestingly, MeLiM melanomas eventually regress. This favorable outcome raises the question of their malignancy, which we investigated. We clinically followed tens of tumors from onset to first signs of regression. Transcriptome analysis revealed an enrichment of all cancer hallmarks in melanomas, although no activating or suppressing somatic mutation were found in common driver genes. Analysis of tumor cell genomes revealed high mutation rates without UV signature. Canonical proliferative, survival and angiogenic pathways were detected in MeLiM tumor cells all along progression stages. Functionally, we show that MeLiM melanoma cells are capable to grow in immunocompromised mice, with serial passages and for a longer time than in MeLiM pigs. Pigs set in place an immune response during progression with dense infiltration by myeloid cells while melanoma cells are deficient in B2M expression. To conclude, our data on MeLiM melanomas reveal several malignancy characteristics. The combination of these features with the successful spontaneous regression of these tumors make it an outstanding model to study an efficient anti-tumor immune response.
Collapse
Affiliation(s)
- Héloïse Débare
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Guillaume Piton
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
- Université de Paris Cité, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
| | - Jean-Jacques Leplat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
| | - Silvia Vincent-Naulleau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
- Université de Paris Cité, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
| | - Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Micalis, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sylvain Marthey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jean-Luc Coville
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
- Université de Paris Cité, CEA, Stabilité Génétique Cellules Souches Et Radiations, 92260, Fontenay-Aux-Roses, France
| | - Giorgia Egidy
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
32
|
Wang S, Gong X, Xiao F, Yang Y. Recent advances in host-focused molecular tools for investigating host-gut microbiome interactions. Front Microbiol 2024; 15:1335036. [PMID: 38605718 PMCID: PMC11007152 DOI: 10.3389/fmicb.2024.1335036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Microbial communities in the human gut play a significant role in regulating host gene expression, influencing a variety of biological processes. To understand the molecular mechanisms underlying host-microbe interactions, tools that can dissect signaling networks are required. In this review, we discuss recent advances in molecular tools used to study this interplay, with a focus on those that explore how the microbiome regulates host gene expression. These tools include CRISPR-based whole-body genetic tools for deciphering host-specific genes involved in the interaction process, Cre-loxP based tissue/cell-specific gene editing approaches, and in vitro models of host-derived organoids. Overall, the application of these molecular tools is revolutionizing our understanding of how host-microbiome interactions contribute to health and disease, paving the way for improved therapies and interventions that target microbial influences on the host.
Collapse
Affiliation(s)
- Siyao Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Xu Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yun Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| |
Collapse
|
33
|
Przanowska RK, Labban N, Przanowski P, Hawes RB, Atkins KA, Showalter SL, Janes KA. Patient-derived response estimates from zero-passage organoids of luminal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586432. [PMID: 38585922 PMCID: PMC10996455 DOI: 10.1101/2024.03.24.586432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations. Methods We freshly isolated patient-derived cells from luminal tumor scrapes, miniaturized the organoid format into 5 μl replicates for increased throughput, and set an endpoint of 14 days to minimize drift. Therapeutic hormone targeting was mimicked in these "zero-passage" organoids by withdrawing β-estradiol and adding 4-hydroxytamoxifen. We also examined sulforaphane as an electrophilic stress and commercial neutraceutical with reported anti-cancer properties. Downstream mechanisms were tested genetically by lentiviral transduction of two complementary sgRNAs and Cas9 stabilization for the first week of organoid culture. Transcriptional changes were measured by RT-qPCR or RNA sequencing, and organoid phenotypes were quantified by serial brightfield imaging, digital image segmentation, and regression modeling of cellular doubling times. Results We achieved >50% success in initiating luminal breast cancer organoids from tumor scrapes and maintaining them to the 14-day zero-passage endpoint. Success was mostly independent of clinical parameters, supporting general applicability of the approach. Abundance of ESR1 and PGR in zero-passage organoids consistently remained within the range of patient variability at the endpoint. However, responsiveness to hormone withdrawal and blockade was highly variable among luminal breast cancer cases tested. Combining sulforaphane with knockout of NQO1 (a phase II antioxidant response gene and downstream effector of sulforaphane) also yielded a breadth of organoid growth phenotypes, including growth inhibition with sulforaphane, growth promotion with NQO1 knockout, and growth antagonism when combined. Conclusions Zero-passage organoids are a rapid and scalable way to interrogate properties of luminal breast cancer cells from patient-derived material. This includes testing drug mechanisms of action in different clinical cohorts. A future goal is to relate inter-patient variability of zero-passage organoids to long-term outcomes.
Collapse
Affiliation(s)
- Róża K Przanowska
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Najwa Labban
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Russell B Hawes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Shayna L Showalter
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
34
|
Neurauter CG, Pannone M, Sousa MMLD, Wang W, Kuśnierczyk A, Luna L, Sætrom P, Scheffler K, Bjørås M. Enhanced glutathione levels confer resistance to apoptotic and ferroptotic programmed cell death in NEIL DNA glycosylase deficient HAP1 cells. Free Radic Biol Med 2024; 213:470-487. [PMID: 38301978 DOI: 10.1016/j.freeradbiomed.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.
Collapse
Affiliation(s)
- Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Mirta Mittelstedt Leal de Sousa
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Katja Scheffler
- Department of Neurology, St.Olavs University Hospital, Trondheim, 7006, Norway; Department of Neuromedicine and Movement Science (INB), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
35
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
36
|
Krasnova M, Efremova A, Mokrousova D, Bukharova T, Kashirskaya N, Kutsev S, Kondratyeva E, Goldshtein D. Advances in the Study of Common and Rare CFTR Complex Alleles Using Intestinal Organoids. J Pers Med 2024; 14:129. [PMID: 38392563 PMCID: PMC10890655 DOI: 10.3390/jpm14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Complex alleles (CAs) arise when two or more nucleotide variants are present on a single allele. CAs of the CFTR gene complicate the cystic fibrosis diagnosis process, classification of pathogenic variants, and determination of the clinical picture of the disease and increase the need for additional studies to determine their pathogenicity and modulatory effect in response to targeted therapy. For several different populations around the world, characteristic CAs of the CFTR gene have been discovered, although in general the prevalence and pathogenicity of CAs have not been sufficiently studied. This review presents examples of using intestinal organoid models for assessments of the two most common and two rare CFTR CAs in individuals with cystic fibrosis in Russia.
Collapse
Affiliation(s)
- Maria Krasnova
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Anna Efremova
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | | | - Nataliya Kashirskaya
- Research Centre for Medical Genetics, Moscow 115522, Russia
- Moscow Regional Research and Clinical Institute ("MONIKI"), Schepkina Street, 61/2, 1, Moscow 129110, Russia
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | | |
Collapse
|
37
|
Huang C, Jin H. Progress and perspective of organoid technology in breast cancer research. Chin Med J (Engl) 2024:00029330-990000000-00903. [PMID: 38185826 PMCID: PMC11407818 DOI: 10.1097/cm9.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 01/09/2024] Open
Abstract
ABSTRACT Breast cancer, a malignant tumor with a high incidence in women, lacks in vitro research models that can represent the biological functions of breast tumors in vivo. As a new biological tool, the organoid model has unique advantages over traditional methods, such as cell culture and patient-derived xenografts. Combining organoids with other emerging technologies, such as gene engineering and microfluidic chip technology, provides an effective method to compensate for the deficiencies in organoid models of breast cancer in vivo. The emergence of breast cancer organoids has provided new tools and research directions in precision medicine, personality therapy, and drug research. In this review, we summarized the merits and demerits of organoids compared to traditional biological models, explored the latest developments in the combination of new technologies and organoid models, and discussed the construction methods and application prospects of different breast organoid models.
Collapse
Affiliation(s)
- Changsheng Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
38
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
39
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Nurmi AK, Pelttari LM, Kiiski JI, Khan S, Nurmikolu M, Suvanto M, Aho N, Tasmuth T, Kalso E, Schleutker J, Kallioniemi A, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. NTHL1 is a recessive cancer susceptibility gene. Sci Rep 2023; 13:21127. [PMID: 38036545 PMCID: PMC10689455 DOI: 10.1038/s41598-023-47441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
In search of novel breast cancer (BC) risk variants, we performed a whole-exome sequencing and variant analysis of 69 Finnish BC patients as well as analysed loss-of-function variants identified in DNA repair genes in the Finns from the Genome Aggregation Database. Additionally, we carried out a validation study of SERPINA3 c.918-1G>C, recently suggested for BC predisposition. We estimated the frequencies of 41 rare candidate variants in 38 genes by genotyping them in 2482-4101 BC patients and in 1273-3985 controls. We further evaluated all coding variants in the candidate genes in a dataset of 18,786 BC patients and 182,927 controls from FinnGen. None of the variants associated significantly with cancer risk in the primary BC series; however, in the FinnGen data, NTHL1 c.244C>T p.(Gln82Ter) associated with BC with a high risk for homozygous (OR = 44.7 [95% CI 6.90-290], P = 6.7 × 10-5) and a low risk for heterozygous women (OR = 1.39 [1.18-1.64], P = 7.8 × 10-5). Furthermore, the results suggested a high risk of colorectal, urinary tract, and basal-cell skin cancer for homozygous individuals, supporting NTHL1 as a recessive multi-tumour susceptibility gene. No significant association with BC risk was detected for SERPINA3 or any other evaluated gene.
Collapse
Affiliation(s)
- Anna K Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Mika Nurmikolu
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Niina Aho
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and FICAN West Cancer Centre, and Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- Tays Cancer Center, Tampere University Hospital, and BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland.
| |
Collapse
|
41
|
Yu Y, Zhou T, Cao L. Use and application of organ-on-a-chip platforms in cancer research. J Cell Commun Signal 2023:10.1007/s12079-023-00790-7. [PMID: 38032444 DOI: 10.1007/s12079-023-00790-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Tumors are a major cause of death worldwide, and much effort has been made to develop appropriate anti-tumor therapies. Existing in vitro and in vivo tumor models cannot reflect the critical features of cancer. The development of organ-on-a-chip models has enabled the integration of organoids, microfluidics, tissue engineering, biomaterials research, and microfabrication, offering conditions that mimic tumor physiology. Three-dimensional in vitro human tumor models that have been established as organ-on-a-chip models contain multiple cell types and a structure that is similar to the primary tumor. These models can be applied to various foci of oncology research. Moreover, the high-throughput features of microfluidic organ-on-a-chip models offer new opportunities for achieving large-scale drug screening and developing more personalized treatments. In this review of the literature, we explore the development of organ-on-a-chip technology and discuss its use as an innovative tool in basic and clinical applications and summarize its advancement of cancer research.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Hepatobiliary and Transplant Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - TingTing Zhou
- The College of Basic Medical Science, Health Sciences Institute, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
42
|
Lózsa R, Németh E, Gervai JZ, Márkus BG, Kollarics S, Gyüre Z, Tóth J, Simon F, Szüts D. DNA mismatch repair protects the genome from oxygen-induced replicative mutagenesis. Nucleic Acids Res 2023; 51:11040-11055. [PMID: 37791890 PMCID: PMC10639081 DOI: 10.1093/nar/gkad775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.
Collapse
Affiliation(s)
- Rita Lózsa
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Bence G Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Sándor Kollarics
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
- Turbine Simulated Cell Technologies, H-1027 Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ferenc Simon
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
43
|
Sangiorgi E, Giannuzzi F, Molinario C, Rapari G, Riccio M, Cuffaro G, Castri F, Benvenuto R, Genuardi M, Massi D, Savino G. Base-Excision Repair Mutational Signature in Two Sebaceous Carcinomas of the Eyelid. Genes (Basel) 2023; 14:2055. [PMID: 38002998 PMCID: PMC10671510 DOI: 10.3390/genes14112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Personalized medicine aims to develop tailored treatments for individual patients based on specific mutations present in the affected organ. This approach has proven paramount in cancer treatment, as each tumor carries distinct driver mutations that respond to targeted drugs and, in some cases, may confer resistance to other therapies. Particularly for rare conditions, personalized medicine has the potential to revolutionize treatment strategies. Rare cancers often lack extensive datasets of molecular and pathological information, large-scale trials for novel therapies, and established treatment guidelines. Consequently, surgery is frequently the only viable option for many rare tumors, when feasible, as traditional multimodal approaches employed for more common cancers often play a limited role. Sebaceous carcinoma of the eyelid is an exceptionally rare cancer affecting the eye's adnexal tissues, most frequently reported in Asia, but whose prevalence is significantly increasing even in Europe and the US. The sole established curative treatment is surgical excision, which can lead to significant disfigurement. In cases of metastatic sebaceous carcinoma, validated drug options are currently lacking. In this project, we set out to characterize the mutational landscape of two sebaceous carcinomas of the eyelid following surgical excision. Utilizing available bioinformatics tools, we demonstrated our ability to identify common features promptly and accurately in both tumors. These features included a Base-Excision Repair mutational signature, a notably high tumor mutational burden, and key driver mutations in somatic tissues. These findings had not been previously reported in similar studies. This report underscores how, in the case of rare tumors, it is possible to comprehensively characterize the mutational landscape of each individual case, potentially opening doors to targeted therapeutic options.
Collapse
Affiliation(s)
- Eugenio Sangiorgi
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.R.); (M.R.); (M.G.)
| | - Federico Giannuzzi
- Ocular Oncology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (F.G.); (G.C.); (G.S.)
| | - Clelia Molinario
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (C.M.); (F.C.); (R.B.)
| | - Giulia Rapari
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.R.); (M.R.); (M.G.)
| | - Melania Riccio
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.R.); (M.R.); (M.G.)
| | - Giovanni Cuffaro
- Ocular Oncology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (F.G.); (G.C.); (G.S.)
| | - Federica Castri
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (C.M.); (F.C.); (R.B.)
| | - Roberta Benvenuto
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (C.M.); (F.C.); (R.B.)
| | - Maurizio Genuardi
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.R.); (M.R.); (M.G.)
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Roma, Italy
| | - Daniela Massi
- Section of Pathology, Department of Health Sciences, University of Florence, 50121 Florence, Italy;
| | - Gustavo Savino
- Ocular Oncology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (F.G.); (G.C.); (G.S.)
| |
Collapse
|
44
|
Jeffries AM, Yu T, Ziegenfuss JS, Tolles AK, Kim Y, Weng Z, Lodato MA. Single-cell transcriptomic and genomic changes in the aging human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566050. [PMID: 37986960 PMCID: PMC10659272 DOI: 10.1101/2023.11.07.566050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aging brings dysregulation of various processes across organs and tissues, often stemming from stochastic damage to individual cells over time. Here, we used a combination of single-nucleus RNA-sequencing and single-cell whole-genome sequencing to identify transcriptomic and genomic changes in the prefrontal cortex of the human brain across life span, from infancy to centenarian. We identified infant-specific cell clusters enriched for the expression of neurodevelopmental genes, and a common down-regulation of cell-essential homeostatic genes that function in ribosomes, transport, and metabolism during aging across cell types. Conversely, expression of neuron-specific genes generally remains stable throughout life. We observed a decrease in specific DNA repair genes in aging, including genes implicated in generating brain somatic mutations as indicated by mutation signature analysis. Furthermore, we detected gene-length-specific somatic mutation rates that shape the transcriptomic landscape of the aged human brain. These findings elucidate critical aspects of human brain aging, shedding light on transcriptomic and genomics dynamics.
Collapse
Affiliation(s)
- Ailsa M. Jeffries
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer S. Ziegenfuss
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allie K. Tolles
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yerin Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael A. Lodato
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
45
|
Ruis C, Weimann A, Tonkin-Hill G, Pandurangan AP, Matuszewska M, Murray GGR, Lévesque RC, Blundell TL, Floto RA, Parkhill J. Mutational spectra are associated with bacterial niche. Nat Commun 2023; 14:7091. [PMID: 37925514 PMCID: PMC10625568 DOI: 10.1038/s41467-023-42916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
As observed in cancers, individual mutagens and defects in DNA repair create distinctive mutational signatures that combine to form context-specific spectra within cells. We reasoned that similar processes must occur in bacterial lineages, potentially allowing decomposition analysis to detect both disruption of DNA repair processes and exposure to niche-specific mutagens. Here we reconstruct mutational spectra for 84 clades from 31 diverse bacterial species and find distinct mutational patterns. We extract signatures driven by specific DNA repair defects using hypermutator lineages, and further deconvolute the spectra into multiple signatures operating within different clades. We show that these signatures are explained by both bacterial phylogeny and replication niche. By comparing mutational spectra of clades from different environmental and biological locations, we identify niche-associated mutational signatures, and then employ these signatures to infer the predominant replication niches for several clades where this was previously obscure. Our results show that mutational spectra may be associated with sites of bacterial replication when mutagen exposures differ, and can be used in these cases to infer transmission routes for established and emergent human bacterial pathogens.
Collapse
Affiliation(s)
- Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gemma G R Murray
- Parasites and Microbes Programme, Wellcome Sanger Institute; Wellcome Genome Campus, Cambridge, UK
| | - Roger C Lévesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK.
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Poplaski V, Bomidi C, Kambal A, Nguyen-Phuc H, Di Rienzi SC, Danhof HA, Zeng XL, Feagins LA, Deng N, Vilar E, McAllister F, Coarfa C, Min S, Kim HJ, Shukla R, Britton R, Estes MK, Blutt SE. Human intestinal organoids from Cronkhite-Canada syndrome patients reveal link between serotonin and proliferation. J Clin Invest 2023; 133:e166884. [PMID: 37909332 PMCID: PMC10617781 DOI: 10.1172/jci166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Cronkhite-Canada Syndrome (CCS) is a rare, noninherited polyposis syndrome affecting 1 in every million individuals. Despite over 50 years of CCS cases, the etiopathogenesis and optimal treatment for CCS remains unknown due to the rarity of the disease and lack of model systems. To better understand the etiology of CCS, we generated human intestinal organoids (HIOs) from intestinal stem cells isolated from 2 patients. We discovered that CCS HIOs are highly proliferative and have increased numbers of enteroendocrine cells producing serotonin (also known as 5-hydroxytryptamine or 5HT). These features were also confirmed in patient tissue biopsies. Recombinant 5HT increased proliferation of non-CCS donor HIOs and inhibition of 5HT production in the CCS HIOs resulted in decreased proliferation, suggesting a link between local epithelial 5HT production and control of epithelial stem cell proliferation. This link was confirmed in genetically engineered HIOs with an increased number of enteroendocrine cells. This work provides a new mechanism to explain the pathogenesis of CCS and illustrates the important contribution of HIO cultures to understanding disease etiology and in the identification of novel therapies. Our work demonstrates the principle of using organoids for personalized medicine and sheds light on how intestinal hormones can play a role in intestinal epithelial proliferation.
Collapse
Affiliation(s)
- Victoria Poplaski
- Program in Translational Biology and Molecular Medicine
- Department of Molecular Virology and Microbiology, and
| | | | - Amal Kambal
- Department of Molecular Virology and Microbiology, and
| | | | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, and
| | - Linda A. Feagins
- Department of Internal Medicine, Center for Inflammatory Bowl Diseases, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Soyoun Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richa Shukla
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Britton
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, and
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston Texas, USA
| | | |
Collapse
|
47
|
Ravichandran M, Maddalo D. Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling. Front Genet 2023; 14:1273994. [PMID: 37908590 PMCID: PMC10613999 DOI: 10.3389/fgene.2023.1273994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system is a powerful tool that enables precise and efficient gene manipulation. In a relatively short time, CRISPR has risen to become the preferred gene-editing system due to its high efficiency, simplicity, and programmability at low costs. Furthermore, in the recent years, the CRISPR toolkit has been rapidly expanding, and the emerging advancements have shown tremendous potential in uncovering molecular mechanisms and new therapeutic strategies for human diseases. In this review, we provide our perspectives on the recent advancements in CRISPR technology and its impact on precision medicine, ranging from target identification, disease modeling, and diagnostics. We also discuss the impact of novel approaches such as epigenome, base, and prime editing on preclinical cancer drug discovery.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
48
|
Rodriguez-Fos E, Planas-Fèlix M, Burkert M, Puiggròs M, Toedling J, Thiessen N, Blanc E, Szymansky A, Hertwig F, Ishaque N, Beule D, Torrents D, Eggert A, Koche RP, Schwarz RF, Haase K, Schulte JH, Henssen AG. Mutational topography reflects clinical neuroblastoma heterogeneity. CELL GENOMICS 2023; 3:100402. [PMID: 37868040 PMCID: PMC10589636 DOI: 10.1016/j.xgen.2023.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Neuroblastoma is a pediatric solid tumor characterized by strong clinical heterogeneity. Although clinical risk-defining genomic alterations exist in neuroblastomas, the mutational processes involved in their generation remain largely unclear. By examining the topography and mutational signatures derived from all variant classes, we identified co-occurring mutational footprints, which we termed mutational scenarios. We demonstrate that clinical neuroblastoma heterogeneity is associated with differences in the mutational processes driving these scenarios, linking risk-defining pathognomonic variants to distinct molecular processes. Whereas high-risk MYCN-amplified neuroblastomas were characterized by signs of replication slippage and stress, homologous recombination-associated signatures defined high-risk non-MYCN-amplified patients. Non-high-risk neuroblastomas were marked by footprints of chromosome mis-segregation and TOP1 mutational activity. Furthermore, analysis of subclonal mutations uncovered differential activity of these processes through neuroblastoma evolution. Thus, clinical heterogeneity of neuroblastoma patients can be linked to differences in the mutational processes that are active in their tumors.
Collapse
Affiliation(s)
- Elias Rodriguez-Fos
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mercè Planas-Fèlix
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Burkert
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Montserrat Puiggròs
- Barcelona Supercomputing Center, Joint Barcelona Supercomputing Center – Center for Genomic Regulation – Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona, Spain
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina Thiessen
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Eric Blanc
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - David Torrents
- Barcelona Supercomputing Center, Joint Barcelona Supercomputing Center – Center for Genomic Regulation – Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Angelika Eggert
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Kerstin Haase
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
49
|
Thomas EM, Wright JA, Blake SJ, Page AJ, Worthley DL, Woods SL. Advancing translational research for colorectal immuno-oncology. Br J Cancer 2023; 129:1442-1450. [PMID: 37563222 PMCID: PMC10628092 DOI: 10.1038/s41416-023-02392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Colorectal cancer (CRC) is a common and deadly disease. Unfortunately, immune checkpoint inhibitors (ICIs) fail to elicit effective anti-tumour responses in the vast majority of CRC patients. Patients that are most likely to respond are those with DNA mismatch repair deficient (dMMR) and microsatellite instability (MSI) disease. However, reliable predictors of ICI response are lacking, even within the dMMR/MSI subtype. This, together with identification of novel mechanisms to increase response rates and prevent resistance, are ongoing and vitally important unmet needs. To address the current challenges with translation of early research findings into effective therapeutic strategies, this review summarises the present state of preclinical testing used to inform the development of immuno-regulatory treatment strategies for CRC. The shortfalls and advantages of commonly utilised mouse models of CRC, including chemically induced, transplant and transgenic approaches are highlighted. Appropriate use of existing models, incorporation of patient-derived data and development of cutting-edge models that recapitulate important features of human disease will be key to accelerating clinically relevant research in this area.
Collapse
Affiliation(s)
- Elaine M Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Josephine A Wright
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
50
|
Middelkamp S, Manders F, Peci F, van Roosmalen MJ, González DM, Bertrums EJ, van der Werf I, Derks LL, Groenen NM, Verheul M, Trabut L, Pleguezuelos-Manzano C, Brandsma AM, Antoniou E, Reinhardt D, Bierings M, Belderbos ME, van Boxtel R. Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox. CELL GENOMICS 2023; 3:100389. [PMID: 37719152 PMCID: PMC10504672 DOI: 10.1016/j.xgen.2023.100389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023]
Abstract
Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Flavia Peci
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Diego Montiel González
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Eline J.M. Bertrums
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology, Erasmus Medical Center – Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Inge van der Werf
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L.M. Derks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Niels M. Groenen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Arianne M. Brandsma
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Evangelia Antoniou
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|