1
|
Bardot MI, Weyhrich CW, Shi Z, Traxler M, Stern CL, Cui J, Muller DA, Becker ML, Dichtel WR. Mechanically interlocked two-dimensional polymers. Science 2025; 387:264-269. [PMID: 39818896 DOI: 10.1126/science.ads4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer. This mechanically interlocked 2D polymer is formed as a layered solid that is readily exfoliated in common organic solvents, enabling spectroscopic characterization and atomic-resolution imaging using advanced electron microscopy techniques. The 2D mechanically interlocked polymer is easily prepared on multigram scales, which, along with its solution processibility, enables the facile fabrication of composite fibers with Ultem that exhibit enhanced stiffness and strength.
Collapse
Affiliation(s)
- Madison I Bardot
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Zixiao Shi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Michael Traxler
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Jinlei Cui
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - David A Muller
- School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Department of Biomedical Engineering, and Department of Orthopedic Surgery, Duke University, Durham, NC, USA
| | | |
Collapse
|
2
|
Pramatha SR, Srideep D, Pattnaik U, Sahu R, Suresh DI, Yadav AC, Muduli C, Reddy SK, Senanayak SP, Venkata Rao K. Secondary nucleation guided noncovalent synthesis of dendritic homochiral superstructures via growth on and from surface. Nat Commun 2024; 15:10808. [PMID: 39737948 DOI: 10.1038/s41467-024-55107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process. Detailed analysis of kinetics and temporal evolution of morphology indicates that the formation of dendritic homochiral superstructures proceeds via growth on the surface and growth from the surface of the seeds. The combination of these two processes leads to the formation of elegant homochiral superstructures with a size of ~0.4 mm2, having a superhelix at the center and helical fibres as branches. Moreover, these dendritic homochiral superstructures exhibit significantly high chiro-optical photoresponse with the magnitude of gfactor reaching a value as high as 0.55 - 0.6. Thus, our results provide insights into the growth process of homochiral superstructures with dendritic topology, which can be critically important for the design and optimization of chiral-selective optoelectronic devices leveraging controlled self-assembly.
Collapse
Affiliation(s)
- Sai Rachana Pramatha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Dasari Srideep
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Udaijit Pattnaik
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, OCC of HBNI, Jatni, Khurdha, Odisha, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Devamrutha Ilayidathu Suresh
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, OCC of HBNI, Jatni, Khurdha, Odisha, India
| | - Aditya Chandrakant Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Chinmayee Muduli
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, OCC of HBNI, Jatni, Khurdha, Odisha, India.
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
| |
Collapse
|
3
|
Ghosh P, Ratha R, Shekhar Purohit C. Functionalization of a [2]Catenane with Donor-Acceptor Chromophores Using a Metal Template and Click Reactions. Chem Asian J 2024; 19:e202400668. [PMID: 39082610 DOI: 10.1002/asia.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Indexed: 10/18/2024]
Abstract
Synthesizing molecules with significant topological features, such as catenanes, tailored with specific groups to confer desired functionality, is essential for investigating various properties arising from the entanglement due to mechanical bonds. This investigation can pave the way for uncovering novel functional materials employing mechanically interlocked molecules (MIMs). In this direction, we have synthesized a π-donor (D) and π-acceptor (A) functionalized [2]catenane using a non-labile Co(III) metal ion as a template with pyridine-diamide templating center and utilizing click reaction for ring-closing. The donor group is a fluorene derivative, and the acceptor is a benzophenazine derivative, commonly employed in synthesizing conjugated polymers for various optoelectronic devices. Synthetically, the acceptor group was introduced into a macrocycle with a pyridine diamide unit. It was then threaded with a ligand having alkyne terminals to obtain the desired [2]pseudorotaxane utilizing cobalt ion as a template. Ring-closing was then performed with a di-azide functionalized molecule with the donor chromophore. The desired D-A functionalized [2]catenane was obtained after demetalation. All the starting materials, macrocycle, and entangled structures have been characterized by 1H-NMR, 13C-NMR, and mass spectroscopy. Some of these materials were also characterized by single-crystal X-ray analysis. The photophysical properties are studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Priyanka Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai, 400 04
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai, 400 04
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai, 400 04
| |
Collapse
|
4
|
Fujii N, Hisano N, Hirao T, Kihara SI, Tanabe K, Yoshida M, Tate SI, Haino T. Controlled Helical Organization in Supramolecular Polymers of Pseudo-Macrocyclic Tetrakisporphyrins. Angew Chem Int Ed Engl 2024:e202416770. [PMID: 39445656 DOI: 10.1002/anie.202416770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Tetrakisporphyrin monomers with amino acid side chains at each end form intramolecular antiparallel hydrogen-bonds to adopt chirally twisted pseudo-macrocyclic structures that result in right-handed and left-handed (P)- and (M)-conformations. The pseudo-macrocyclic tetrakisporphyrin monomers self-assembled to form supramolecular helical pseudo-polycatenane polymers via head-to-head complementary dimerization of the bisporphyrin cleft units in an isodesmic manner. The formation of one-handed supramolecular helical pseudo-polycatenane polymers was confirmed by circular dichroism (CD) spectroscopy. The methyl and iso-propyl groups at the stereogenic center greatly enhanced the induced circular dichroism in the Soret bands of the supramolecular helical pseudo-polycatenane polymers. The induced CDs were reduced upon the introduction of large iso-butyl and tert-butyl groups. Atomic force microscopy revealed well-grown and long supramolecular helical pseudo-polycatenane polymer chains with chain lengths in the range of 361 to 13.6 nm. The right-handed helical chains were established by the self-assembly of the right-handed (P)-conformation of the pseudo-macrocyclic monomer.
Collapse
Affiliation(s)
- Naoka Fujii
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Kihara
- Department of Chemical Engineering Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Kouta Tanabe
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Masaya Yoshida
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Tate
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
5
|
Oh J, Liu G, Kim H, Hertzog JE, Nitta N, Rowan SJ. Exploring the Impact of Ring Mobility on the Macroscopic Properties of Doubly Threaded Slide-Ring Gel Networks. Angew Chem Int Ed Engl 2024; 63:e202411172. [PMID: 39158508 DOI: 10.1002/anie.202411172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention in recent years are slide-ring gels (SRGs), which are generally accessed by crosslinking rings on a main-chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide-ring gel networks (dt-SRGs). In this study, a photo-curable ligand-containing thread was used to assemble a series of metal-templated pseudo[3]rotaxane crosslinkers that allow access to polymer networks that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt-SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo-curable ligand-containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt-SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt-SRGs could be altered by "locking" ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks.
Collapse
Affiliation(s)
- Jongwon Oh
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
| | - Guancen Liu
- Department of Chemistry, University of Chicago, IL 60637, Chicago, USA
| | - Hojin Kim
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
- James Franck Institute, University of Chicago, IL 60637, Chicago, USA
| | - Jerald E Hertzog
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
- Department of Chemistry, University of Chicago, IL 60637, Chicago, USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, IL 60434, Lemont, USA
| |
Collapse
|
6
|
Elli S, Famulari A, Martí-Rujas J. Paracetamol Inclusion in Mechanically Interlocked Nanocages. Chempluschem 2024; 89:e202400332. [PMID: 38855862 DOI: 10.1002/cplu.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
The solid-state synthesis and fast crystallization under kinetic control of poly-[n]-catenanes self-assembled of mechanically interlocked metal organic cages (MOCs) is virtually unexplored. This is in part, due to the lack of suitable crystals for single crystal X-ray diffraction (SC-XRD) analysis which limits their progress as advanced functional materials. Here we report the unprecedented inclusion of paracetamol in the cavities of amorphous materials constituted of M12L8, interlocked MOCs synthesized by mechanochemistry under kinetic control. Full structure determination of a low-crystallinity and low-resolution powders of the M12L8 poly-[n]-catenane including paracetamol has been carried out combining XRD data and Density Functional Theory (DFT) calculations using a multi-step approach. Each M12L8 cage contains six paracetamol guests which is confirmed by thermal analysis and NMR spectroscopy. The paracetamol loading has been also carried out by the instant synthesis method using a saturated paracetamol solution in which TPB and ZnI2 self-assemble immediately (i. e., 1-5 seconds) encapsulating ~7 paracetamol molecules in the M12L8 nanocages under kinetic control also giving a good selectivity. Benzaldehyde has been included in the M12L8 cages using amorphous M12L8 polycatenanes showing that the icosahedral cages can serve as potential nanoreactors for instance to study Henry reactions in the solid-state.
Collapse
Affiliation(s)
- Stefano Elli
- Dipartimento di Chimica Materiali e Ingegneria Chimica. ''Giulio Natta'', Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
| | - Antonino Famulari
- Dipartimento di Chimica Materiali e Ingegneria Chimica. ''Giulio Natta'', Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
| | - Javier Martí-Rujas
- Dipartimento di Chimica Materiali e Ingegneria Chimica. ''Giulio Natta'', Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
7
|
Klotz AR, Anderson CJ, Dimitriyev MS. Chirality effects in molecular chainmail. SOFT MATTER 2024; 20:7044-7058. [PMID: 39188213 DOI: 10.1039/d4sm00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Motivated by the observation of positive Gaussian curvature in kinetoplast DNA networks, we consider the effect of linking chirality in square lattice molecular chainmail networks using Langevin dynamics simulations and constrained gradient optimization. Linking chirality here refers to ordering of over-under versus under-over linkages between a loop and its neighbors. We consider fully alternating linking, maximally non-alternating, and partially non-alternating linking chiralities. We find that in simulations of polymer chainmail networks, the linking chirality dictates the sign of the Gaussian curvature of the final state of the chainmail membranes. Alternating networks have positive Gaussian curvature, similar to what is observed in kinetoplast DNA networks. Maximally non-alternating networks form isotropic membranes with negative Gaussian curvature. Partially non-alternating networks form flat diamond-shaped sheets which undergo a thermal folding transition when sufficiently large, similar to the crumpling transition in tethered membranes. We further investigate this topology-curvature relationship on geometric grounds by considering the tightest possible configurations and the constraints that must be satisfied to achieve them.
Collapse
Affiliation(s)
- Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, USA.
| | - Caleb J Anderson
- Department of Physics and Astronomy, California State University, Long Beach, USA.
| | | |
Collapse
|
8
|
Hong T, Zhou Q, Liu Y, Guan J, Zhou W, Tan S, Cai Z. From individuals to families: design and application of self-similar chiral nanomaterials. MATERIALS HORIZONS 2024; 11:3975-3995. [PMID: 38957038 DOI: 10.1039/d4mh00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Establishing an intimate relationship between similar individuals is the beginning of self-extension. Various self-similar chiral nanomaterials can be designed using an individual-to-family approach, accomplishing self-extension. This self-similarity facilitates chiral communication, transmission, and amplification of synthons. We focus on describing the marriage of discrete cages to develop self-similar extended frameworks. The advantages of utilizing cage-based frameworks for chiral recognition, enantioseparation, chiral catalysis and sensing are highlighted. To further promote self-extension, fractal chiral nanomaterials with self-similar and iterated architectures have attracted tremendous attention. The beauty of a fractal family tree lies in its ability to capture the complexity and interconnectedness of a family's lineage. As a type of fractal material, nanoflowers possess an overarching importance in chiral amplification due to their large surface-to-volume ratio. This review summarizes the design and application of state-of-the-art self-similar chiral nanomaterials including cage-based extended frameworks, fractal nanomaterials, and nanoflowers. We hope this formation process from individuals to families will inherit and broaden this great chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiaqi Guan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 215000, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
9
|
Luengo-Márquez J, Assenza S, Micheletti C. Shape and size tunability of sheets of interlocked ring copolymers. SOFT MATTER 2024; 20:6595-6607. [PMID: 39105348 DOI: 10.1039/d4sm00694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Mechanically bonded membranes of interlocked ring polymers are a significant generalization of conventional elastic sheets, where connectivity is provided by covalent bonding, and represent a promising class of topological meta-materials. In this context, two open questions regard the large-scale reverberations of the heterogeneous composition of the rings and the inequivalent modes of interlocking neighboring rings. We address these questions with Langevin dynamics simulations of chainmails with honeycomb-lattice connectivity, where the rings are block copolymers with two segments of different rigidity. We considered various combinations of the relative lengths of the two segments and the patterns of the over- and under-passes linking neighboring rings. We find that varying ring composition and linking patterns have independent and complementary effects. While the former sets the overall size of the chainmail, the latter defines the shape, enabling the selection of starkly different conformation types. Notably, one of the considered linking patterns favors saddle-shaped membranes, providing a first example of spontaneous negative Gaussian curvature in mechanically bonded sheets. The results help establish the extent to which mechanically bonded membranes can differ from conventional elastic ones, particularly for the achievable shape and size tunability.
Collapse
Affiliation(s)
- Juan Luengo-Márquez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Salvatore Assenza
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
10
|
Martí-Rujas J, Famulari A. Polycatenanes Formed of Self-Assembled Metal-Organic Cages. Angew Chem Int Ed Engl 2024; 63:e202407626. [PMID: 38837637 DOI: 10.1002/anie.202407626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Poly-[n]-catenanes (PCs) self-assembled of three-dimensional (3D) metal organic cages (MOCs) (hereafter referred to as PCs-MOCs) are a relatively new class of mechanically interlocked molecules (MIMs) that combine the properties of MOCs and polymers. The synthesis of PCs-MOCs is challenging because of the difficulties associated with interlocking MOCs, the occurrence of multiple weak supramolecular electrostatic interactions between cages, and the importance of solvent templating effects. The high density of mechanical bonds interlocking the MOCs endows the MOCs with mechanical and physical properties such as enhanced stability, responsive dynamic behavior and low solubility, which can unlock new functional properties. In this Minireview, we highlight the benefit of interlocking MOCs in the formation of PCs-MOCs structures as well as the synthetic approaches exploited in their preparation, from thermodynamic to kinetic methods, both in the solution and solid-states. Examples of PCs-MOCs self-assembled from various types of nanosized cages (i.e., tetrahedral, trigonal prismatic, octahedral and icosahedral) are described in this article, providing an overview of the research carried out in this area. The focus is on the structure-property relationship with examples of functional applications such as electron conductivity, X-ray attenuation, gas adsorption and molecular sensing. We believe that the structural and functional aspects of the reviewed PCs-MOCs will attract chemists in this research field with great potential as new functional materials in nanotechnological disciplines such as gas adsorption, sensing and photophysical properties such as X-ray attenuation or electron conductivity.
Collapse
Affiliation(s)
- Javier Martí-Rujas
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy)
| | - Antonino Famulari
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy)
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, 50121, Florence, Italy
| |
Collapse
|
11
|
Podh MB, Ratha R, Purohit CS. Template Assisted Synthesis of Linear [5]Catenane by Post-Functionalization of Templated [2]Catenane and Using Click Reaction. Chem Asian J 2024; 19:e202400351. [PMID: 38700467 DOI: 10.1002/asia.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Polymers with all mechanically interlocked rings, such as linear [n]catenanes, have great potential as functional materials due to possible higher degrees of freedom that may contribute to their flexibility but remain elusive. All the synthetic methods used to prepare such a polymer yield mixtures of products. In the absence of higher molecular weight linear [n]catenanes, emphasis on synthesizing low molecular weight oligomers is being pursued. Here, we have described the synthesis of a linear [5]catenane by post-functionalizing a Co(III) templated [2]catenane having a pyridine-diamide unit free for further metal ion coordination. Two molecules were synthesized with suitable threading groups: one, two terminal azide groups, and two, with two terminal alkyne groups to form two [3]pseudorotaxane utilizing Co(III) coordination. These units were then joined, forming a macrocycle, using click reaction, giving the desired metalated linear [5]catenane in 40 % yield. Removal of metal ions leads to linear [5]catenane. In addition, the formation of linear [3] and [2]catenane are also observed. All synthesized structures have been isolated by column chromatographic technique and characterized by 1H-NMR, 13C-NMR, and mass spectroscopy.
Collapse
Affiliation(s)
- Mana Bhanjan Podh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| |
Collapse
|
12
|
Tagliabue A, Micheletti C, Mella M. Effect of Counterion Size on Knotted Polyelectrolyte Conformations. J Phys Chem B 2024; 128:4183-4194. [PMID: 38648610 DOI: 10.1021/acs.jpcb.3c07446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Using Langevin dynamics simulations and a coarse-grained primitive model of electrolytes, we show that the behavior of knotted circular strong polyelectrolytes (PEs) in diluted aqueous solution is largely affected by the diameter of the counterions (CIs), σCI. Indeed, we observe that both gyration radius and knot length vary nonmonotonically with σCI, with both small and bulky CIs favoring knot localization, while medium-sized ones promote delocalized knots. We also show that the conformational change from delocalized to tight knots occurs via the progressive coalescence of the knot's essential crossings. The emerging conformers correspond to the minima of the free energy landscape profiled as a function of the knot length or PE size. We demonstrate that different conformational states can coexist, the transition between them appearing first-order-like and controlled by the enthalpic and entropic trade-off of the amount of CIs condensed on the PE. Such balance can be further altered by varying CI concentrations, thus providing an additional and more convenient tuning parameter for the system properties. Our results lay the foundation for achieving broader and more precise external adjustability of knotted PE size and shape by choosing the nature of its CIs. Thus, they offer new intriguing possibilities for designing novel PE-based materials that are capable of responding to changes in ionic solution properties.
Collapse
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, Como 22100, Italy
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, Trieste 34136, Italy
| | - Cristian Micheletti
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, Trieste 34136, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, Como 22100, Italy
| |
Collapse
|
13
|
Wang S, Zhang J, Chu L, Xiao H, Miao C, Pan Z, Qiao Y, Wang Z, Zhou B. Crown-ether threaded covalent organic polyrotaxane framework (COPF) towards synergistic crown/Zn 2+/photothermal/photodynamic antibacterial and infected wound healing therapy. BIOMATERIALS ADVANCES 2024; 159:213814. [PMID: 38417206 DOI: 10.1016/j.bioadv.2024.213814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Controllable preparation of materials with new structure has always been the top priority of polymer materials science research. Here, the supramolecular binding strategy is adopted to develop covalent organic frameworks (COFs) with novel structures and functions. Based on this, a two-dimensional crown-ether ring threaded covalent organic framework (COF), denoted as Crown-COPF with intrinsic photothermal (PTT) and photodynamic (PDT) therapeutic capacity, was facilely developed using crown-ether threaded rotaxane and porphyrin as building blocks. Crown-COPF with discrete mechanically interlocked blocks in the open pore could be used as a molecular machine, in which crown-ether served as the wheel sliding along the axle under the laser stimulation. As a result, Crown-COPF combining with the bactericidal power of crown ether displayed a significant photothermal and photodynamic antibacterial activity towards both the Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus), far exceeding the traditional Crown-free COF. Noteworthily, the bactericidal performance could be further enhanced via impregnation of Zn2+ ions (Crown-COPF-Zn) flexible coordinated with the multiple coordination sites (crown-ether, bipyridine, and porphyrin), which not only endow the positive charge with the skeleton, enhancing its ability to bind to the bacterial membrane, but also introduce the bactericidal ability of zinc ions. Notably, in vivo experiments on mice with back infections indicates Crown-COPF-Zn with self-adaptive multinuclear zinc center, could effectively promote the repairing of wounds. This study paves a new avenue for the effectively preparation of porous polymers with brand new structure, which provides opportunities for COF and mechanically interlocked polymers (MIPs) research and applications.
Collapse
Affiliation(s)
- Shaoyu Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Jing Zhang
- The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Shandong Second Medical University, Weifang, 261044, Shandong, PR China
| | - Lichao Chu
- The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Shandong Second Medical University, Weifang, 261044, Shandong, PR China
| | - Hongquan Xiao
- The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Shandong Second Medical University, Weifang, 261044, Shandong, PR China
| | - Changqing Miao
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Zhengxuan Pan
- The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Shandong Second Medical University, Weifang, 261044, Shandong, PR China
| | - Yanan Qiao
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Zengyao Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Baolong Zhou
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
14
|
Caraglio M, Micheletti C, Orlandini E. Unraveling the Influence of Topology and Spatial Confinement on Equilibrium and Relaxation Properties of Interlocked Ring Polymers. Macromolecules 2024; 57:3223-3233. [PMID: 38616813 PMCID: PMC11008367 DOI: 10.1021/acs.macromol.3c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/16/2024]
Abstract
We use Langevin dynamics simulations to study linked ring polymers in channel confinement. We address the in- and out-of-equilibrium behavior of the systems for varying degrees of confinement and increasing topological and geometrical complexity of the interlocking. The main findings are three. First, metric observables of different link topologies collapse onto the same master curve when plotted against the crossing number, revealing a universal response to confinement. Second, the relaxation process from initially stretched states is faster for more complex links. We ascribe these properties to the interplay of several effects, including the dependence of topological friction on the link complexity. Finally, we show that transient forms of geometrical entanglement purposely added to the initial stressed state can leave distinctive signatures in force-spectroscopy curves. The insight provided by the findings could be leveraged in single-molecule nanochannel experiments to identify geometric entanglement within topologically linked rings.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut
für Theoretische Physik, Universität
Innsbruck, Technikerstraße 21A, Innsbruck A-6020, Austria
| | - Cristian Micheletti
- Scuola
Internazionale Superiore di Studi Avanzati—SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Enzo Orlandini
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova I-35100, Italy
| |
Collapse
|
15
|
Farimani RA, Ahmadian Dehaghani Z, Likos CN, Ejtehadi MR. Effects of Linking Topology on the Shear Response of Connected Ring Polymers: Catenanes and Bonded Rings Flow Differently. PHYSICAL REVIEW LETTERS 2024; 132:148101. [PMID: 38640389 DOI: 10.1103/physrevlett.132.148101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 04/21/2024]
Abstract
We perform computer simulations of mechanically linked (poly[2]catenanes, PC) and chemically bonded (bonded rings, BR) pairs of self-avoiding ring polymers in steady shear. We find that BRs develop a novel motif, termed gradient tumbling, rotating around the gradient axis. For the PCs the rings are stretched and display another new pattern, termed slip tumbling. The dynamics of BRs is continuous and oscillatory, whereas that of PCs is intermittent between slip-tumbling attempts. Our findings demonstrate the interplay between topology and hydrodynamics in dilute solutions of connected polymers.
Collapse
Affiliation(s)
- Reyhaneh A Farimani
- Department of Physics, Sharif University of Technology, Tehran, Iran
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
16
|
Podh MB, Ratha R, Purohit CS. Template Assisted One-Pot Synthesis of [2], Linear [3], and Radial [4]Catenane via Click Reaction. Chem Asian J 2024; 19:e202400031. [PMID: 38372572 DOI: 10.1002/asia.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Design and synthesis of higher order catenane are unexpectedly complex and involve precise cooperation among the precursors overcoming competing and opposing interactions. We achieved synthesis of [2], linear [3], radial [4] in a one-pot reaction by consecutive ring closing through click reactions. This synthesis gave three isolable products due to two, four, and six-click reactions between suitable coupling partners. Yields of the isolate templated-catenane decrease from lower to higher-ordered catenane (40 %, 12 %, and 4 %), probably due to the bite angle as well as the flexibility of the reacting partners. Removal of templating cobalt(III) ion leads to the formation of fully organic [2], linear [3], and radial [4]catenane. These synthesized catenanes were purified by column chromatography and characterized by 1H-NMR, 13C-NMR, and ESI-MS spectroscopy. The synthesized catenanes have free binding sites suitable for post-functionalization and may be used for the synthesis of higher-ordered catenane.
Collapse
Affiliation(s)
- Mana Bhanjan Podh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| |
Collapse
|
17
|
Shi C, Shen X. Spontaneous Multi-scale Supramolecular Assembly Driven by Noncovalent Interactions Coupled with the Continuous Marangoni Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6980-6989. [PMID: 38513349 DOI: 10.1021/acs.langmuir.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Reported herein is the multi-scale supramolecular assembly (MSSA) process along with redox reactions driven by supramolecular interactions coupled with the spontaneous Marangoni effect in ionic liquid (IL)-based extraction systems. The black powder, the single sphere with a black exterior, and the single colorless sphere were formed step by step at the interface when an aqueous solution of KMnO4 was mixed with the IL phase 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (C2OHmimNTf2) bearing octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO). The mechanism of the whole process was studied systematically. The phenomena were related closely to the change in the valence state of Mn. The MnO4- ion could be reduced quickly to δ-MnO2 and further to Mn2+ slowly by the hydroxyl-functionalized IL C2OHmimNTf2. Based on Mn2+, Mn(CMPO)32+, elementary building blocks (EBBs), and [EBB]n clusters were generated step by step. The [EBB]n clusters with the large enough size that were transferred to the interface, together with the remaining δ-MnO2, assembled into the single sphere with a black exterior, driven by supramolecular interactions coupled with the spontaneous Marangoni effect. When the remaining δ-MnO2 was used up, the mixed single sphere turned completely colorless. It was found that the reaction site of C2OHmim+ with Mn(VII) and Mn(IV) was distributed mainly at the side chain with a hydroxyl group. The MSSA process presents unique spontaneous phase changes. This work paves the way for the practical application of the MSSA-based separation method developed recently. The process also provides a convenient way to observe in situ and characterize directly the continuous Marangoni effect.
Collapse
Affiliation(s)
- Ce Shi
- Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinghai Shen
- Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
18
|
Becerra D, Klotz AR, Hall LM. Single-molecule analysis of solvent-responsive mechanically interlocked ring polymers and the effects of nanoconfinement from coarse-grained simulations. J Chem Phys 2024; 160:114906. [PMID: 38511659 DOI: 10.1063/5.0191295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/02/2024] [Indexed: 03/22/2024] Open
Abstract
In this study, we simulate mechanically interlocked semiflexible ring polymers inspired by the minicircles of kinetoplast DNA (kDNA) networks. Using coarse-grained molecular dynamics simulations, we investigate the impact of molecular topological linkage and nanoconfinement on the conformational properties of two- and three-ring polymer systems in varying solvent qualities. Under good-quality solvents, for two-ring systems, a higher number of crossing points lead to a more internally constrained structure, reducing their mean radius of gyration. In contrast, three-ring systems, which all had the same crossing number, exhibited more similar sizes. In unfavorable solvents, structures collapse, forming compact configurations with increased contacts. The morphological diversity of structures primarily arises from topological linkage rather than the number of rings. In three-ring systems with different topological conformations, structural uniformity varies based on link types. Extreme confinement induces isotropic and extended conformations for catenated polymers, aligning with experimental results for kDNA networks and influencing the crossing number and overall shape. Finally, the flat-to-collapse transition in extreme confinement occurs earlier (at relatively better solvent conditions) compared to non-confined systems. This study offers valuable insights into the conformational behavior of mechanically interlocked ring polymers, highlighting challenges in extrapolating single-molecule analyses to larger networks such as kDNA.
Collapse
Affiliation(s)
- Diego Becerra
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, California 90840, USA
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
19
|
Zhang Z, Zhao J, Yan X. Mechanically Interlocked Polymers with Dense Mechanical Bonds. Acc Chem Res 2024; 57:992-1006. [PMID: 38417011 DOI: 10.1021/acs.accounts.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
ConspectusMechanically interlocked polymers (MIPs) such as polyrotaxanes and polycatenanes are polymer architectures that incorporate mechanical bonds, which represent a compelling frontier in polymer science. MIPs with cross-linked structures are known as mechanically interlocked networks (MINs) and are widely utilized in materials science. Leveraging the motion of mechanical bonds, MINs hold the potential for achieving a combination of robustness and dynamicity. Currently, the reported MINs predominantly consist of networks with discrete mechanical bonds as cross-linking points, exemplified by well-known slide-ring materials and rotaxane/catenane cross-linked polymers. The motion of these mechanically interlocked cross-linking points facilitates the redistribution of tension throughout the network, effectively preventing stress concentration and thereby enhancing material toughness. In these instances, the impact of mechanical bonds can be likened to the adage "small things can make a big difference", whereby a limited number of mechanical bonds substantially elevate the mechanical performance of conventional polymers. In addition to MINs cross-linked by mechanical bonds, there is another type of MIN in which their principal parts are polymer chains composed of dense mechanical bonds. Within these MINs, mechanical bonds generally serve as repeating units, and their unique properties stem from integrating and amplifying the function of a large amount of mechanical bonds. Consequently, MINs with dense mechanical bonds tend to reflect the intrinsic properties of mechanical interlocked polymers, making their exploration critical for a comprehensive understanding of MIPs. Nevertheless, investigations into MINs featuring dense mechanical bonds remain relatively scarce.This Account presents a comprehensive overview of our investigation and insights into MINs featuring dense mechanical bonds. First, we delve into the synthetic strategies employed to effectively prepare MINs with dense mechanical bonds, while critically evaluating their advantages and limitations. Through meticulous control of the core interlocking step, three distinct strategies have emerged: mechanical interlocking followed by polymerization, supramolecular polymerization followed by mechanical interlocking, and dynamic interlocking. Furthermore, we underscore the structure-property relationships of MINs with dense mechanical bonds. The macroscopic properties of MINs originate from integrating and amplifying countless microscopic motions of mechanical bonds, a phenomenon we define as an integration and amplification mechanism. Our investigation has revealed detailed motion characteristics of mechanical bonds in bulk mechanically interlocked materials, encompassing the quantification of motion activation energy, discrimination of varying motion distances, and elucidation of the recovery process. Additionally, we have elucidated their influence on the mechanical performance of the respective materials. Moreover, we have explored potential applications of MINs, leveraging their exceptional mechanical properties and dynamicity. These applications include enhancing the toughness of conventional polymers, engineering mechanically adaptive and multifunctional aerogels, and mitigating Li protrusion as interfacial layers in lithium-ion batteries. Finally, we offer our personal perspectives on the promises, opportunities, and key challenges in the future development of MINs with dense mechanical bonds, underscoring the potential for transformative advancements in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Zhang Z, Zhao W, Cheng Z, Zhang G, Liu H. Olympic gels formed through catenation of dsDNA rings regulated by topoisomerase II: A coarse-grained model. J Chem Phys 2024; 160:054906. [PMID: 38341711 DOI: 10.1063/5.0190580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Topological regulation of DNA by topoisomerases in cells is very crucial for life. We propose a coarse-grained model to study the catenation process of double-stranded DNA (dsDNA) rings regulated by topoisomerase II (TOP2) and provide a computational method to characterize the topological structures of the Olympic gels obtained. The function of TOP2 in the catenation of dsDNA rings is implicitly fulfilled by operating the length of a stretchable catch bond in the dsDNA ring. After the catenation reaction of initially noncatenated dsDNA rings in the solution, the Olympic gel is obtained and the interlocked topology of the dsDNA rings can be characterized by a computational method derived from the HOMFLY polynomial, based on which the catenation degree and the complexity of catenation are quantified. Detailed dependence of the catenation degree and the complexity of the catenated topology on key parameters, including the size of the transient broken gap and the duration time of the break on the dsDNA ring during operation by TOP2, the initial molar ratio of TOP2 to the dsDNA rings, and the reaction temperature, has been investigated.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wenbo Zhao
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
| | - Zhiyuan Cheng
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
| | - Guojie Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
21
|
Takashima R, Aoki D, Takahashi A, Otsuka H. A thermally driven rotaxane-catenane interconversion with a dynamic bis(hindered amino) disulfide. Org Biomol Chem 2024; 22:927-931. [PMID: 37955576 DOI: 10.1039/d3ob01693e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We have developed a versatile and simple synthetic method to produce a [3]catenane. Heating a rotaxane with bis(hindered amino) disulfide groups at both ends spontaneously and selectively produces the [3]catenane. The successful polymerization of the obtained [3]catenane provides a platform for the synthesis of various interlocking polymers.
Collapse
Affiliation(s)
- Rikito Takashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Daisuke Aoki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.
| | - Akira Takahashi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
22
|
Staňo R, Smrek J, Likos CN. Cluster Formation in Solutions of Polyelectrolyte Rings. ACS NANO 2023; 17:21369-21382. [PMID: 37729077 PMCID: PMC10655244 DOI: 10.1021/acsnano.3c06083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
We use molecular dynamics simulations to explore concentrated solutions of semiflexible polyelectrolyte ring polymers, akin to the DNA mini-circles, with counterions of different valences. We find that the assembly of rings into nanoscopic cylindrical stacks is a generic feature of the systems, but the morphology and dynamics of such a cluster can be steered by the counterion conditions. In general, a small addition of trivalent ions can stabilize the emergence of clusters due to the counterion condensation, which mitigates the repulsion between the like-charged rings. Stoichiometric addition of trivalent ions can even lead to phase separation of the polyelectrolyte ring phase due to the ion-bridging effects promoting otherwise entropically driven clustering. On the other hand, monovalent counterions cause the formation of stacks to be re-entrant with density. The clusters are stable within a certain window of concentration, while above the window the polyelectrolytes undergo an osmotic collapse, disfavoring ordering. The cluster phase exhibits characteristic cluster glass dynamics with arrest of collective degrees of freedom but not the self-ones. On the other hand, the collapsed phase shows arrest on both the collective and single level, suggesting an incipient glass-to-glass transition, from a cluster glass of ring clusters to a simple glass of rings.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jan Smrek
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
23
|
Liu J, Wu M, Wu L, Liang Y, Tang ZB, Jiang L, Bian L, Liang K, Zheng X, Liu Z. Infinite Twisted Polycatenanes. Angew Chem Int Ed Engl 2023; 62:e202314481. [PMID: 37794215 DOI: 10.1002/anie.202314481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Poly[n]catenanes have exceptional mechanical bonding properties that give them tremendous potential for use in the development of molecular machines and soft materials. Synthesizing these compounds has, however, proven to be a formidable challenge. Herein, we describe a concise method for the construction of twisted polycatenanes. Our approach involves using preorganized double helicates as templates, linked crosswise in a linear fashion by either silver ions or triple bonds. By using this approach, we successfully synthesized twisted polycatenanes with both coordination and covalent bonding employing Ag(I) ions and ethynylene units, respectively, as the linkages and leveraging the same Ag(I)-templated double helicate in both cases. Synthesis with Ag(I) ions formed a single-crystalline one-dimensional (1D) coordination poly[n]catenane, and synthesis using ethynylene units generated 1D fibers which self-assembled with solvents to form a gel. Our results confirm the potential of multi-stranded metallohelicates for creating sophisticated mechanically interlocked molecules and polymers, which could pave the way for exploration in the realms of molecular nanotopology and materials design.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Chemistry, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Mengqi Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Lin Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Liang Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Lifang Bian
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| |
Collapse
|
24
|
Kozáková S, Alharzali N, Černušák I. Cyclo[ n]carbons and catenanes from different perspectives: disentangling the molecular thread. Phys Chem Chem Phys 2023; 25:29386-29403. [PMID: 37901943 DOI: 10.1039/d3cp03887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
All-carbon atomic rings, cyclo[n]carbons, have recently attracted vivid attention of experimentalists and theoreticians. Among them, cyclo[18]carbon is the most studied system. In this paper, we summarize and review various properties of cyclo[n]carbons, emphasising the aspects of their aromaticity/antiaromaticity. In the first part, the trends in bonding patterns and selected aromaticity indices with the increasing size of the rings are discussed. In the second part we explore the properties of catenane models based on interlocked cyclo[18]carbon rings from different perspectives and investigate their behaviour under the action of external force using computational experiments.
Collapse
Affiliation(s)
- Silvia Kozáková
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Nissrin Alharzali
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia.
| |
Collapse
|
25
|
Staňo R, Likos CN, Egorov SA. Mixing Linear Polymers with Rings and Catenanes: Bulk and Interfacial Behavior. Macromolecules 2023; 56:8168-8182. [PMID: 37900098 PMCID: PMC10601540 DOI: 10.1021/acs.macromol.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Indexed: 10/31/2023]
Abstract
We derive and parameterize effective interaction potentials between a multitude of different types of ring polymers and linear chains, varying the bending rigidity and solvent quality for the former species. We further develop and apply a density functional treatment for mixtures of both disconnected (chain-ring) and connected (chain-polycatenane) mixtures of the same, drawing coexistence binodals and exploring the ensuing response functions as well as the interface and wetting behavior of the mixtures. We show that worsening of the solvent quality for the rings brings about a stronger propensity for macroscopic phase separation in the linear-polycatenane mixtures, which is predominantly of the demixing type between phases of similar overall particle density. We formulate a simple criterion based on the effective interactions, allowing us to determine whether any specific linear-ring mixture will undergo a demixing phase separation.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Sergei A. Egorov
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
- Erwin
Schrödinger International Institute for Mathematics and Physics, Boltzmanngasse 9, 1090 Vienna, Austria
| |
Collapse
|
26
|
Ubertini MA, Rosa A. Spatial Organization of Slit-Confined Melts of Ring Polymers with Nonconserved Topology: A Lattice Monte Carlo Study. Macromolecules 2023; 56:7860-7869. [PMID: 37841537 PMCID: PMC10569094 DOI: 10.1021/acs.macromol.3c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Indexed: 10/17/2023]
Abstract
We present Monte Carlo computer simulations for melts of semiflexible randomly knotted and randomly concatenated ring polymers on the fcc lattice and in slit confinement. Through systematic variation of the slit width at fixed melt density, we explore the influence of confinement on single-chain conformations and interchain interactions. We demonstrate that confinement makes chains globally larger and more elongated while enhancing both contacts and knottedness propensities. As for multichain properties, we show that ring-ring contacts decrease with the confinement, yet neighboring rings overlap more as confinement grows. These aspects are accompanied by a marked decrease in the links formed between pairs of neighboring rings. In connection with the quantitative relation between links and entanglements in polymer melts recently established by us [Ubertini M. A.; Rosa A.Macromolecules2023, 56, 3354-3362], we propose that confinement can be used to set polymer networks that act softer under mechanical stress and suggest a viable experimental setup to validate our results.
Collapse
Affiliation(s)
- Mattia Alberto Ubertini
- Scuola Internazionale Superiore
di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Angelo Rosa
- Scuola Internazionale Superiore
di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
27
|
Dehaghani Z, Chiarantoni P, Micheletti C. Topological Entanglement of Linear Catenanes: Knots and Threadings. ACS Macro Lett 2023; 12:1231-1236. [PMID: 37638542 PMCID: PMC10515615 DOI: 10.1021/acsmacrolett.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
We used molecular dynamics simulations to investigate the self-entanglements of the collapsed linear catenanes. We found two different types of topologically complex states. First, we observed numerous long-lived knotting events of the catenane backbone. However, comparison with conventional polymers reveals that knots are suppressed in catenanes. Next, we observed topologically complex states with no analogue in polymers, where a concatenated ring was threaded by other near or distal rings sliding through it. Differently from knots, these threaded states can disentangle by becoming fully tightened. A detailed thermodynamic and microscopic analysis is employed to rationalize the persistence of threaded states, which can survive significant internal reorganizations of the entire catenane. We finally discuss the broader implications of these previously unreported types of entanglements for other systems, such as noncollapsed and interacting catenanes.
Collapse
Affiliation(s)
| | | | - Cristian Micheletti
- International School for
Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
28
|
Hertzog JE, Liu G, Rawe BW, Maddi VJ, Hart LF, Oh J, Dolinski ND, Rowan SJ. Balancing ring and stopper group size to control the stability of doubly threaded [3]rotaxanes. Org Biomol Chem 2023; 21:6969-6978. [PMID: 37581904 DOI: 10.1039/d3ob01123b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Synthesizing doubly threaded [3]rotaxanes requires the use of larger rings than more traditional singly threaded [2]rotaxanes. A key challenge in accessing stable doubly threaded [3]rotaxanes with large rings is finding the right combination of ring to stopper size. In this study, a series of doubly threaded [3]rotaxanes derived from five different sized macrocycles in the size range of 40-48 atoms and two different stopper groups, which contain 1 or 2 tris(p-t-butylbiphenyl)methyl moieties, were prepared and their kinetic stability examined. These interlocked compounds were synthesized using a metal-templated approach and fully characterized utilizing a combination of mass spectrometry, NMR spectroscopy, and size-exclusion chromatography techniques. The effect of ring size on the stability of the doubly threaded [3]rotaxane was investigated via kinetic stability tests monitored using 1H-NMR spectroscopy. By tightening the macrocycle systematically every 2 atoms from 48 to 40 atoms, a wide range of doubly threaded interlocked molecules could be accessed in which the rate of room temperature slippage of the macrocycle from the dumbbells could be tuned. Using the larger stopper group with a 48-atom ring results in no observable rotaxane, 46-44 atom macrocycles result in metastable rotaxane species with a slippage half-life of ∼5 weeks and ∼9 weeks, respectively, while macrocycles of 42 atoms or smaller yield a stable rotaxane. The smaller sized stopper is not able to fully stabilize any of the [3]rotaxane structures but metastable [3]rotaxanes are obtained with slippage half-lives of 25 ± 2 hours and 13 ± 1 days using macrocycles with 42 or 40 atoms, respectively. These results highlight the dramatic effect that relatively small ring size changes can have on the structure of doubly threaded [3]rotaxanes and lay the synthetic groundwork for a range of higher order doubly threaded interlocked architectures.
Collapse
Affiliation(s)
- Jerald E Hertzog
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Guancen Liu
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
| | - Benjamin W Rawe
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Vincent J Maddi
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
| | - Laura F Hart
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jongwon Oh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60434, USA
| |
Collapse
|
29
|
Tu M, Davydovich O, Mei B, Singh PK, Grest GS, Schweizer KS, O’Connor TC, Schroeder CM. Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions. ACS POLYMERS AU 2023; 3:307-317. [PMID: 37576713 PMCID: PMC10416323 DOI: 10.1021/acspolymersau.2c00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.
Collapse
Affiliation(s)
- Michael
Q. Tu
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Oleg Davydovich
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Baicheng Mei
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Piyush K. Singh
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gary S. Grest
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kenneth S. Schweizer
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. O’Connor
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Charles M. Schroeder
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Xiao X, Xiao D, Sheng G, Shan T, Wang J, Miao X, Liu Y, Li G, Zhu Y, Sessler JL, Huang F. Formation of polyrotaxane crystals driven by dative boron-nitrogen bonds. SCIENCE ADVANCES 2023; 9:eadi1169. [PMID: 37406124 DOI: 10.1126/sciadv.adi1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
The integration of mechanically interlocked molecules (MIMs) into purely organic crystalline materials is expected to produce materials with properties that are not accessible using more classic approaches. To date, this integration has proved elusive. We present a dative boron-nitrogen bond-driven self-assembly strategy that allows for the preparation of polyrotaxane crystals. The polyrotaxane nature of the crystalline material was confirmed by both single-crystal x-ray diffraction analysis and cryogenic high-resolution low-dose transmission electron microscopy. Enhanced softness and greater elasticity are seen for the polyrotaxane crystals than for nonrotaxane polymer controls. This finding is rationalized in terms of the synergetic microscopic motion of the rotaxane subunits. The present work thus highlights the benefits of integrating MIMs into crystalline materials.
Collapse
Affiliation(s)
- Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, P. R. China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
31
|
Li N, Sun M, Cao S. OPA, TPA and ECD spectra of π-conjugated interlocked chiral nanocarbons. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122949. [PMID: 37270974 DOI: 10.1016/j.saa.2023.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
This paper presents a theoretical investigation of the optical absorption and molecular chirality of π-conjugated mechanically interlocked nanocarbons, using one photon absorption (OPA) and two photon absorption (TPA) as well as electronic circular dichroism (ECD) spectra. Our findings reveal the optical excitation properties of mechanically interlocked molecules (MIMs) and chirality resulting from interlocked mechanical bonds. While OPA spectra are unable to distinguish interlocked molecules from non-interlocked molecules, we demonstrate that TPA and ECD can effectively discriminate between them, and can also differentiate [2]catenanes from [3]catenanes. Thus, we propose new methods to identify interlocked mechanical bonds. Our results provide physical insight into the optical properties and absolute configuration of π-conjugated interlocked chiral nanocarbons.
Collapse
Affiliation(s)
- Ning Li
- School of Physics, Liaoning University, Shenyang 110036, PR China; School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Shuo Cao
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
32
|
Guo Y, Liu Y, Zhao X, Zhao J, Wang Y, Zhang X, Guo Z, Yan X. Synergistic Covalent-and-Supramolecular Polymers with an Interwoven Topology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25161-25172. [PMID: 35894294 DOI: 10.1021/acsami.2c10404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Network topologies, especially some high-order topologies, are able to furnish cross-linked polymer materials with enhanced properties without altering their chemical composition. However, the fabrication of such topologically intriguing architectures at the macromolecular level and in-depth insights into their structure-property relationship remain a significant challenge. Herein, we relied on synergistic covalent-and-supramolecular polymers (CSPs) as a platform to prepare a range of polymer networks with an interwoven topology. Specifically, through the sequential supramolecular self-assemblies, the covalent polymers (CPs) and metallosupramolecular polymers (MSPs) could be interwoven in our CSPs by [2]pseudorotaxane cross-links. As a result, the obtained CSPs possessed a topological network that could not only promote the synergistic effect between CPs and MSPs to afford mechanically robust yet dynamic materials but also vest polymers with some functions, as manifested by force-induced hierarchical dissociations of supramolecular interactions and superior thermomechanical stability compared to our previously reported CSP systems. Furthermore, our CSPs exhibited tunable mechanical performance toward multiple stimuli including K+ and PPh3, demonstrating abundant stimuli-responsive properties. We hope that these findings could provide novel opportunities toward achieving topological structures at the macromolecular level and also motivate further explorations of polymeric materials via the way of controlling their topological structures.
Collapse
Affiliation(s)
- Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
33
|
Zhong W, Wang Z, Yu WD, Wang N, Fu F, Wang J, Zhao H, Liu D, Jiang Z, Wang P, Chen M. Bi-directional geometric constraints in the construction of giant dual-rim nanorings. Dalton Trans 2023; 52:7071-7078. [PMID: 37161840 DOI: 10.1039/d3dt00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the field of metallo-supramolecular assemblies, supramolecular macrocycles have attracted considerable attention due to their guest recognition and catalytic properties. Herein, we report a novel strategy for the construction of giant hollow macrocyclic structures using a bi-directional geometric constraint strategy. We investigated the structural design of two terpyridine-based tetratopic organic ligands, whose inner and outer rims have different angles. Compared to conventional strategies of self-assembly using single angular orientation building blocks that typically generate small macrocyclic objects or polymers, the mutual interaction between the different angles of the ligands could promote the formation of giant hollow macrocyclic supramolecular architectures. The self-assembly mechanism and hierarchical self-assembly of giant supramolecular macrocycles have been characterized by NMR, ESI-MS and TEM experiments. The strategy used in this study not only advances the design of giant 2D macrocycles with large inner diameters but also gives insights into the mechanism of formation of large structures.
Collapse
Affiliation(s)
- Wanying Zhong
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Zhantao Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Wei-Dong Yu
- College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Ning Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Fan Fu
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - He Zhao
- College of Chemistry and Chemical Engineering; Central South University, Changsha, 410083, Hunan, China
| | - Die Liu
- College of Chemistry and Chemical Engineering; Central South University, Changsha, 410083, Hunan, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
- College of Chemistry and Chemical Engineering; Central South University, Changsha, 410083, Hunan, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
34
|
Shandiz SA, Leuty GM, Guo H, Mokarizadeh AH, Maia JM, Tsige M. Structure and Thermodynamics of Linear, Ring, and Catenane Polymers in Solutions and at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7154-7166. [PMID: 37155243 DOI: 10.1021/acs.langmuir.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent decades, advances in the syntheses of mechanically interlocked macromolecules, such as catenanes, have led to much greater interest in the applications of these complexes, from molecular motors and actuators to nanoscale computational memory and nanoswitches. Much remains to be understood, however, regarding how catenated ring compounds behave as a result of the effects of different solvents as well as the effects of solvent/solvent interfaces. In this work, we have investigated, using molecular dynamics simulations, the effects of solvation of poly(ethylene oxide) chains of different topologies─linear, ring, and [2]catenane─in two solvents both considered favorable toward PEO (water, toluene) and at the water/toluene interface. Compared to ring and [2]catenane molecules, the linear PEO chain showed the largest increase in size at the water/toluene interface compared to bulk water or bulk toluene. Perhaps surprisingly, observations indicate that the tendency of all three topologies to extend at the water/toluene interface may have more to do with screening the interaction between the two solvents than with optimizing specific solvent-polymer contacts.
Collapse
Affiliation(s)
- Saeed Akbari Shandiz
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Gary M Leuty
- LinQuest Corporation, Beavercreek, Ohio 45431, United States
| | - Hao Guo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joao M Maia
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
35
|
Yato H, Oto K, Takasu A, Higuchi M. Catenane formation of a cyclic poly(alkyl sorbate) via chain-growth polymerization induced by an N-heterocyclic carbene and ring-closing without extreme dilution. RSC Adv 2023; 13:13616-13623. [PMID: 37152560 PMCID: PMC10155494 DOI: 10.1039/d3ra01614e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
1,3-Di-tert-butylimidazol-2-ylidene (NHCtBu), a typical N-heterocyclic carbene (NHC), was previously found to induce the anionic chain-growth polymerization of ethyl sorbate (ES) in the presence of an aluminum Lewis acid, i.e., methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD), in which the neighboring of α-terminal dienolate with a propagating anion induced cyclization without highly diluted conditions, after monomer depletion, to give the cyclic poly(ES). In this paper, we report that catenane formation occurs by two-step polymerization of ethyl sorbate (ES), in which, after complete monomer (ES) consumption ([ES]0/[NHCtBu]0 = 100/1) in toluene followed by purification by reprecipitation, a second addition of ES monomer ([ES]0/[ NHCtBu]0 = 20/1) in another pot (in toluene or tetrahydrofuran (THF)) resulted in catenane formation, namely a polycatenane. TEM images of a sample from the second step polymerization in THF revealed particles of polycatenane structure consisting of cyclic poly(ES) with sizes ranging from 200 to 1000 nm, showing that this NHCtBu triggered chain polymerization and successive cyclization without highly diluted conditions enabled us to fabricate the intended polycatenane in the successive two-step polymerization.
Collapse
Affiliation(s)
- Hirotake Yato
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Kota Oto
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Akinori Takasu
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masahiro Higuchi
- Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
36
|
Bai R, Zhang Z, Di W, Yang X, Zhao J, Ouyang H, Liu G, Zhang X, Cheng L, Cao Y, Yu W, Yan X. Oligo[2]catenane That Is Robust at Both the Microscopic and Macroscopic Scales. J Am Chem Soc 2023; 145:9011-9020. [PMID: 37052468 DOI: 10.1021/jacs.3c00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Polycatenanes are extremely attractive topological architectures on account of their high degrees of conformational freedom and multiple motion patterns of the mechanically interlocked macrocycles. However, exploitation of these peculiar structural and dynamic characteristics to develop robust catenane materials is still a challenging goal. Herein, we synthesize an oligo[2]catenane that showcases mechanically robust properties at both the microscopic and macroscopic scales. The key feature of the structural design is controlling the force-bearing points on the metal-coordinated core of the [2]catenane moiety that is able to maximize the energy dissipation of the oligo[2]catenane via dissociation of metal-coordination bonds and then activation of sequential intramolecular motions of circumrotation, translation, and elongation under an external force. As such, at the microscopic level, the single-molecule force spectroscopy measurement exhibits that the force to rupture dynamic bonds in the oligo[2]catenane reaches a record high of 588 ± 233 pN. At the macroscopic level, our oligo[2]catenane manifests itself as the toughest catenane material ever reported (15.2 vs 2.43 MJ/m3). These fundamental findings not only deepen the understanding of the structure-property relationship of poly[2]catenanes with a full set of dynamic features but also provide a guiding principle to fabricate high-performance mechanically interlocked catenane materials.
Collapse
Affiliation(s)
- Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
37
|
Martí-Rujas J, Elli S, Famulari A. Kinetic trapping of 2,4,6-tris(4-pyridyl)benzene and ZnI 2 into M 12L 8 poly-[n]-catenanes using solution and solid-state processes. Sci Rep 2023; 13:5605. [PMID: 37019947 PMCID: PMC10076325 DOI: 10.1038/s41598-023-32661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Here, we show that in a supramolecular system with more than 20 building blocks forming large icosahedral M12L8 metal-organic cages (MOCs), using the instant synthesis method, it is possible to kinetically trap and control the formation of interlocking M12L8 nanocages, giving rare M12L8 TPB-ZnI2 poly-[n]-catenane. The catenanes are obtained in a one-pot reaction, selectively as amorphous (a1) or crystalline states, as demonstrated by powder X-ray diffraction (powder XRD), thermogravimetric (TG) analysis and 1H NMR. The 300 K M12L8 poly-[n]-catenane single crystal X-ray diffraction (SC-XRD) structure including nitrobenzene (1) indicates strong guest binding with the large M12L8 cage (i.e., internal volume ca. 2600 Å3), allowing its structural resolution. Conversely, slow self-assembly (5 days) leads to a mixture of the M12L8 poly-[n]-catenane and a new TPB-ZnI2 (2) coordination polymer (i.e., thermodynamic product), as revealed by SC-XRD. The neat grinding solid-state synthesis also yields amorphous M12L8 poly-[n]-catenane (a1'), but not coordination polymers, selectively in 15 min. The dynamic behavior of the M12L8 poly-[n]-catenanes demonstrated by the amorphous-to-crystalline transformation upon the uptake of ortho-, meta- and para-xylenes shows the potential of M12L8 poly-[n]-catenanes as functional materials in molecular separation. Finally, combining SC-XRD of 1 and DFT calculations specific for the solid-state, the role of the guests in the stability of the 1D chains of M12L8 nanocages is reported. Energy interactions such as interaction energies (E), lattice energies (E*), host-guest energies (Ehost-guest) and guest-guest energies (Eguest-guest) were analysed considering the X-ray structure with and without the nitrobenzene guest. Not only the synthetic control achieved in the synthesis of the M12L8 MOCs but also their dynamic behavior either in the crystalline or amorphous phase are sufficient to raise scientific interest in areas ranging from fundamental to applied sides of chemistry and material sciences.
Collapse
Affiliation(s)
- Javier Martí-Rujas
- Dipartimento di Chimica Materiali e Ingegneria Chimica, ''Giulio Natta'', Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy.
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy.
| | - Stefano Elli
- Dipartimento di Chimica Materiali e Ingegneria Chimica, ''Giulio Natta'', Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
| | - Antonino Famulari
- Dipartimento di Chimica Materiali e Ingegneria Chimica, ''Giulio Natta'', Politecnico di Milano, Via L. Mancinelli 7, 20131, Milan, Italy
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
| |
Collapse
|
38
|
Chiarantoni P, Micheletti C. Linear Catenanes in Channel Confinement. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
39
|
Tranquilli MM, Rawe BW, Liu G, Rowan SJ. The effect of thread-like monomer structure on the synthesis of poly[ n]catenanes from metallosupramolecular polymers. Chem Sci 2023; 14:2596-2605. [PMID: 36908946 PMCID: PMC9993857 DOI: 10.1039/d2sc05542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The main-chain poly[n]catenane consists of a series of interlocked rings that resemble a macroscopic chain-link structure. Recently, the synthesis of such intriguing polymers was reported via a metallosupramolecular polymer (MSP) template that consists of alternating units of macrocyclic and linear thread-like monomers. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[n]catenanes. Reported herein are studies aimed at accessing new poly[n]catenanes via this approach and exploring the effect the thread-like monomer structure has on the poly[n]catenane synthesis. Specifically, the effect of the size of the aromatic linker and alkenyl chains of the thread-like monomer is investigated. Three new poly[n]catenanes (with different ring sizes) were prepared using the MSP approach and the results show that tailoring the structure of the thread-like monomer can allow the selective synthesis of branched poly[n]catenanes.
Collapse
Affiliation(s)
| | - Benjamin W Rawe
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
| | - Guancen Liu
- Department of Chemistry, University of Chicago Chicago IL USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago Chicago IL USA
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
- Chemical and Engineering Sciences, Argonne National Laboratory Lemont IL USA
| |
Collapse
|
40
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|
41
|
Zeng K, Yang Y, Xu J, Wang N, Tang W, Xu J, Zhang Y, Wu Y, Xu Y, Wang G, Chen P, Wang B, Sun X, Jin G, Peng H. Metal-Backboned Polymers with Well-Defined Lengths. Angew Chem Int Ed Engl 2023; 62:e202216060. [PMID: 36640110 DOI: 10.1002/anie.202216060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Constructing the backbones of polymers with metal atoms is an attractive strategy to develop new functional polymeric materials, but it has yet to be studied due to synthetic challenges. Here, metal atoms are interconnected as the backbones of polymers to yield metal-backboned polymers (MBPs). Rational design of multidentate ligands synthesized via an efficient iterative approach leads to the successful construction of a series of nickel-backboned polymers (NBPs) with well-defined lengths and up to 21 nickel atoms, whose structures are systematically confirmed. These NBPs exhibit strong and length-depended absorption with narrow band gaps, offering promising applications in optoelectronic devices and semiconductors. We also demonstrate the high thermal stability and solution processsability of such nickel-backboned polymers. Our results represent a new opportunity to design and synthesize a variety of new metal-backboned polymers for promising applications in the future.
Collapse
Affiliation(s)
- Kaiwen Zeng
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yibei Yang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jianing Xu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ning Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Weiqiang Tang
- School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianchen Xu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yifeng Zhang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yanruzhen Wu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yifei Xu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Guowei Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Peining Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bingjie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xuemei Sun
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Guoxin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Huisheng Peng
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
42
|
Benke BP, Kirschbaum T, Graf J, Gross JH, Mastalerz M. Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions. Nat Chem 2023; 15:413-423. [PMID: 36456691 PMCID: PMC9986109 DOI: 10.1038/s41557-022-01094-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/18/2022] [Indexed: 12/05/2022]
Abstract
Mechanically interlocked structures, such as catenanes and rotaxanes, are fascinating synthetic targets and some are used for molecular switches and machines. Today, the vast majority of catenated structures are built upon macrocycles and only a very few examples of three-dimensional shape-persistent organic cages forming such structures have been reported. However, the catenation in all these cases was based on a thermodynamically favoured π-π-stacking under certain reaction conditions. Here, we show that catenane formation can be induced by adding methoxy or thiomethyl groups to one of the precursors during the synthesis of chiral [8 + 12] imine cubes, giving dimeric and trimeric catenated organic cages. To elucidate the underlying driving forces, we reacted 11 differently 1,4-disubstituted terephthaldehydes with a chiral triamino tribenzotriquinacene under various conditions to study whether monomeric cages or catenated cage dimers are the preferred products. We find that catenation is mainly directed by weak interactions derived from the substituents rather than by π-stacking.
Collapse
Affiliation(s)
- Bahiru Punja Benke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Graf
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
43
|
David AHG, Goodwin RJ, White NG. Supramolecular chemistry of two new bis(1,2,3-triazolyl)pyridine macrocycles: metal complexation, self-assembly and anion binding. Dalton Trans 2023; 52:1902-1912. [PMID: 36722436 DOI: 10.1039/d2dt03985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two new macrocycles containing the bis(1,2,3-triazolyl)pyridine (btp) motif were prepared in high yields from a btp diazide precursor (1). Solution 1H NMR studies show that this diazide undergoes self-assembly with divalent transition metal ions to form ML2 complexes with pendant azide groups, apparently suitable for conversion into metal-templated catenanes; however attempts to form these catenanes were unsuccessful. Instead a new macrocycle containing two btp motifs was prepared, which forms a nanotube structure in the solid state. Reduction of the azide groups to amines followed by amide bond formation was used to convert 1 into macrocycle 8 containing btp and isophthalamide functionalities. This macrocycle binds halide and oxalate anions in acetonitrile solely through the isophthalamide motif, and binds aromatic dicarboxylates very strongly through both the isophthalamide amide donors and the btp triazole donors. The macrocycle was complexed with Pd(II) and the resulting complexes were shown to bind strongly to halide anions. The solid state structures of [Pd·8·X]BF4 (X = Cl-, Br-, I-) were investigated by X-ray crystallography, which showed that [Pd·8·Br] forms an unusual "chain of dimers" structure assembled by metal complexation, N-H⋯Br- hydrogen bonding and short Pd⋯Pd contacts.
Collapse
Affiliation(s)
- Arthur H G David
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia. .,Institut des Sciences Chimiques de Rennes, Université de Rennes 1, 35042, Rennes, France
| | - Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
44
|
Rheaume SN, Klotz AR. Nanopore translocation of topologically linked DNA catenanes. Phys Rev E 2023; 107:024504. [PMID: 36932513 DOI: 10.1103/physreve.107.024504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The electrical signal associated with a biopolymer translocating through a nanoscale pore depends on the size, topology, and configuration of each molecule. Building upon recent interest in using solid-state nanopores for studying the topology of knotted and supercoiled DNA, we present experimental observations of topologically linked catenanes translocating through a solid-state nanopore. Using restriction enzymes, linked circular molecules were isolated from the mitochondrial DNA of Crithidia fasciculata, a structure known as a kinetoplast that comprises thousands of topologically interlocked minicircles. Digested kinetoplasts produce a spectrum of catenane topologies, which are identified from their nanopore translocation signals by spikes in the blockade current associated with the topological linkages. We attribute the different patterns of the measured electrical signals to 2-catenanes, linear and triangular 3-catenanes, and several types of 4- and 5-catenanes as well as more complex structures. Measurements of the translocation time of signals consistent with 2- and 3-catenanes suggest that topological friction between the linkages and the pore slows the translocation time of these structures, as predicted in recent simulations.
Collapse
Affiliation(s)
- Sierra N Rheaume
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, Long Beach, California 90815, USA
| |
Collapse
|
45
|
Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
47
|
Itabashi H, Datta S, Tsukuda R, Hollamby MJ, Yagai S. Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chem Sci 2023; 14:3270-3276. [PMID: 36970099 PMCID: PMC10034040 DOI: 10.1039/d2sc07063d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The reduction in the inner diameter of the nanotoroids of a π-conjugated barbiturate monomer results in nano-[2]catenanes in a high yield due to enhanced secondary nucleation and subsequent steric suppression of further catenation.
Collapse
Affiliation(s)
- Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryohei Tsukuda
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Martin J. Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordsgire, ST55BG, UK
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
48
|
Colley N, Nosiglia MA, Tran SL, Harlan GH, Chang C, Li R, Delawder AO, Zhang Y, Barnes JC. Topologically Controlled Syntheses of Unimolecular Oligo[ n]catenanes. ACS CENTRAL SCIENCE 2022; 8:1672-1682. [PMID: 36589894 PMCID: PMC9801505 DOI: 10.1021/acscentsci.2c00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 06/17/2023]
Abstract
Catenanes are a well-known class of mechanically interlocked molecules that possess chain-like architectures and have been investigated for decades as molecular machines and switches. However, the synthesis of higher-order catenanes with multiple, linearly interlocked molecular rings has been greatly impeded by the generation of unwanted oligomeric byproducts and figure-of-eight topologies that compete with productive ring closings. Here, we report two general strategies for the synthesis of oligo[n]catenanes that rely on a molecular "zip-tie" strategy, where the "zip-tie" is a central core macrocycle precursor bearing two phenanthroline (phen) ligands to make odd-numbered oligo[n]catenanes, or a preformed asymmetric iron(II) complex consisting of two macrocycle precursors bearing phen and terpyridine ligands to make even-numbered oligo[n]catenanes. In either case, preformed macrocycles or [2]catenanes are threaded onto the central "zip-tie" core using metal templation prior to ring-closing metathesis (RCM) reactions that generate several mechanical bonds in one pot. Using these synthetic strategies, a family of well-defined linear oligo[n]catenanes were synthesized, where n = 2, 3, 4, 5, or 6 interlocked molecular rings, and n = 6 represents the highest number of linearly interlocked rings reported to date for any isolated unimolecular oligo[n]catenane.
Collapse
|
49
|
Staňo R, Likos CN, Smrek J. To thread or not to thread? Effective potentials and threading interactions between asymmetric ring polymers. SOFT MATTER 2022; 19:17-30. [PMID: 36477247 PMCID: PMC9768673 DOI: 10.1039/d2sm01177h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We use computer simulations to study a system of two unlinked ring polymers, whose length and bending stiffness are systematically varied. We derive the effective potentials between the rings, calculate the areas of minimal surfaces of the same, and characterize the threading between them. When the two rings are of the same kind, threading of a one ring through the surface of the other is immanent for small ring-ring separations. Flexible rings pierce the surface of the other ring several times but only shallowly, as compared to the stiff rings which pierce less frequently but deeply. Typically, the ring that is being threaded swells and flattens up into an oblate-like conformation, while the ring that is threading the other takes a shape of an elongated prolate. The roles of the threader and the threaded ring are being dynamically exchanged. If, on the other hand, the rings are of different kinds, the symmetry is broken and the rings tend to take up roles of the threader and the threaded ring with unequal probabilities. We propose a method how to predict these probabilities based on the parameters of the individual rings. Ultimately, our work captures the interactions between ring polymers in a coarse-grained fashion, opening the way to large-scale modelling of materials such as kinetoplasts, catenanes or topological brushes.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
50
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|