1
|
Zhong X, Li DY, Cao C, Luo TK, Hu ZB, Peng Y, Liu SJ, Zheng YZ, Wen HR. Effect of Substituents in Equatorial Hexaazamacrocyclic Schiff Base Ligands on the Construction and Magnetism of Pseudo D6h Single-Ion Magnets. Inorg Chem 2024. [PMID: 39482923 DOI: 10.1021/acs.inorgchem.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Three mononuclear DyIII compounds [DyL1(Ph3SiO)2][BPh4]·MeCN·2H2O (1), [DyL2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2), and [DyL3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3) and their corresponding YIII diluted analogues [Dy0.0967Y0.9033L1(Ph3SiO)2][BPh4]·MeCN·2H2O (1@Y), [Dy0.2668Y0.7332L2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2@Y), and [Dy0.1260Y0.8740L3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3@Y) were synthesized with hexaazamacrocyclic Schiff base ligands as an equatorial ligand. The substituents in the equatorial hexaazamacrocyclic Schiff base ligand show a significant effect on the replacement of the axial ligands. Compounds 1, 2, and 3 are typical zero dc field single-molecule magnets with effective energy barriers (Ueff) of 1092(6), 946.1(7), and 150.1(9) K, respectively. Although the effective energy barriers of 1 and 2 are close, the magnetic hysteresis remains open up to 20 K for 1, twice as large as that of 2 (10 K), which is different from the previously reported compounds, probably due to nonplanarity N6 in the equator. Ab initio calculations indicate that the ground states of compounds 1 and 2 exhibit high anisotropy and pure second and third excited states, while compound 3 exhibits pure ground-state anisotropy and highly mixed excited states, leading to the easy occurrence of quantum tunneling of magnetization between the ground and excited states in compound 3. This work indicates that the substituents in equatorial hexaazamacrocyclic Schiff base ligands have a significant effect on the construction and magnetic properties of DyIII SIMs with D6h symmetry.
Collapse
Affiliation(s)
- Xiang Zhong
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Dong-Yang Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Tong-Kai Luo
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Zhao-Bo Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| |
Collapse
|
2
|
Lu GL, Chiu ST, Lin PH, Long J. Modulating magnetic anisotropy in linear tetranuclear dysprosium(III) complexes via coordinated anions. Dalton Trans 2024. [PMID: 39470254 DOI: 10.1039/d4dt01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report the synthesis, structures, and magnetic properties of two novel linear tetranuclear complexes with the general formula [Dy4(Hheb)2(heb)4X2(MeOH)4] (X- = NO3-, OAc-; H2heb = (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazide, OAc- = acetate). The rigid ligands (Hheb-/heb2-) incorporate phenoxide groups and bridge the Dy3+ ions in an unusual tetranuclear linear assembly. Notably, we demonstrate through magnetic measurements and theoretical calculations how the anion (X) coordinated at the peripheral Dy3+ centers acts as a switch, significantly changing the magnetic anisotropy of the entire complex. This control over magnetic anisotropy through the selection of the coordinated anion offers a promising avenue for tailoring the functionality of single-molecule magnets.
Collapse
Affiliation(s)
- Guan-Lin Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Shih-Ting Chiu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Armenis AS, Mondal A, Giblin SR, Raptopoulou CP, Psycharis V, Alexandropoulos DI, Tang J, Layfield RA, Stamatatos TC. Unveiling new [1+1] Schiff-base macrocycles towards high energy-barrier hexagonal bipyramidal Dy(III) single-molecule magnets. Chem Commun (Camb) 2024; 60:12730-12733. [PMID: 39397697 DOI: 10.1039/d4cc04551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The employment of the [1+1] condensation approach for the preparation of new macrocyclic scaffolds (LN6 and LN3O3) towards high-performance Dy(III) single-molecule magnets (SMMs) with pseudo-D6h symmetry is described. Engineering of the macrocycles denticity from LN6 to LN3O3 leads to a mononuclear SMM with a large Ueff value of 1300 K. The experimental results are supported by ab initio calculations, which indicate relaxation of the magnetization via the second-excited state.
Collapse
Affiliation(s)
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QR, UK.
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi Attikis 15310, Greece
| | | | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QR, UK.
| | | |
Collapse
|
4
|
Churchill O, Dase A, Taylor LJ, Argent SP, Coles NT, Walker GS, Kays DL. Synthesis of the Bulky Phosphanide [P(Si iPr 3) 2] - and Its Stabilization of Low-Coordinate Group 12 Complexes. Inorg Chem 2024; 63:20286-20294. [PMID: 39388151 PMCID: PMC11523236 DOI: 10.1021/acs.inorgchem.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Here, we report an improved synthesis of the bulky phosphanide anion [P(SiiPr3)2]- in synthetically useful yields and its complexation to group 12 metals. The ligand is obtained as the sodium salt NaP(SiiPr3)2 1 in a 42% isolated yield and a single step from red phosphorus and sodium. This is a significantly higher-yielding and safer preparation compared to the previously reported synthesis of this ligand, and we have thus applied 1 to the synthesis of the two-coordinate complexes M[P(SiiPr3)2]2 (M = Zn, Cd, Hg). These group 12 complexes are all monomeric and with nonlinear P-M-P angles in the solid state, with DFT calculations suggesting that this bending is due to the steric demands of the ligand. Multinuclear NMR spectroscopy revealed complex second-order splitting patterns due to strong PP' coupling. This work demonstrates that the synthesis of 1 is viable and provides a springboard for the synthesis of low-coordinate complexes featuring this unusual bulky ligand.
Collapse
Affiliation(s)
- Olivia
P. Churchill
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Antonia Dase
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Laurence J. Taylor
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen P. Argent
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nathan T. Coles
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Gavin S. Walker
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2GA, U.K.
| | - Deborah L. Kays
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
5
|
Huang JQ, Chen QW, Ding YS, Zhu XF, Wang BW, Pan F, Zheng Z. Enhancement of Single-Molecule Magnet Properties by Manipulating Intramolecular Dipolar Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409730. [PMID: 39429229 DOI: 10.1002/advs.202409730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Indexed: 10/22/2024]
Abstract
A new single-molecule magnet (SMM) complex [K(18-crown-6)][(COT)Er(µ-Cl)3Er(COT)] (Er2Cl3, COT = cyclooctatetraenide dianion) is obtained by the reaction of [(COT)Er(µ-Cl)(THF)]2 (Er2Cl2, THF = tetrahydrofuran) with an equivalent of KCl in the presence of 18-crown-6. The two COT-Er units in the newly formed complex are triply bridged by µ-Cl ligands, leading to the "head-to-tail" alignment of the magnetic easy axes distinctly different from the "staggered" arrangement in the precursor complex. This structural transformation has led to significantly enhanced intramolecular dipolar interactions and a reduced transverse component of the crystal fields, increasing the energy barrier from 150(8) K for Er2Cl2 to 264(4) K for Er2Cl3 and extending its magnetic relaxation time at 2 K by 2500 times with respect to Er2Cl2. More importantly, the blocking temperature increased from lower than 2 K for Er2Cl2 to 8 K for Er2Cl3, and the magnetic hysteresis loops at 2 K changed from butterfly-shaped for Er2Cl2 to open hysteresis loop with coercive force of 7 kOe for Er2Cl3. These results suggest that the properties of SMMs can be effectively tuned and improved by rationally arranging magnetic spins via molecular engineering.
Collapse
Affiliation(s)
- Jia-Qi Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qi-Wei Chen
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiao-Fei Zhu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Feng Pan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
6
|
Vipanchi, Vignesh KR, Armenis AS, Alexandropoulos DI, Stamatatos TC. Elevating the Performance of Heterometallic 3d/4f SMMs: The Role of Diamagnetic Co III and Zn II Ions in Magnetization Dynamics. Chemphyschem 2024; 25:e202400385. [PMID: 38890803 DOI: 10.1002/cphc.202400385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Recent advances in the synthesis of 3d/4f Single-Molecule Magnets (SMMs) have revealed the effective role of incorporating diamagnetic CoIII or ZnII ions to enhance the magnetic properties of LnIII ions. This concept highlights notable examples of CoIII/LnIII and ZnII/LnIII SMMs documented in the recent literature, illustrating how the selection of various peripheral and/or bridging ligands can modulate the magnetic anisotropy of 4f metal ions, thereby increasing their energy barriers.
Collapse
Affiliation(s)
- Vipanchi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Kuduva R Vignesh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | | | | |
Collapse
|
7
|
Kumari K, Singh SK. Substituted fullerenes as a promising capping ligand towards stabilization of exohedral Dy(III) based single-ion magnets: a theoretical study. Dalton Trans 2024; 53:16495-16511. [PMID: 39228355 DOI: 10.1039/d4dt02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Organometallic dysprosocenium-based molecular magnets are the forefront runners in offering giant magnetic anisotropy and blocking temperatures close to the boiling point of liquid nitrogen. Attaining linearity in the organometallic dysprosocenium complexes is the key to generating giant magnetic anisotropy and blocking barriers. In the present study, we have unravelled the coordination ability of the substituted fullerene (C55X5)- (where X = CCH3, B, and N) generated by fencing around the five-membered ring of fullerene towards stabilizing a new family of exohedral dysprosium organometallic complexes showcasing giant magnetic anisotropy and blockade barriers. Eight exohedral mononuclear dysprosium organometallic complexes, namely [Dy(η5-C55X5)(η4-C4H4)] (1), [Dy(η5-C55X5)(η5-Cp)]+ (2), [Dy(η5-C55X5)(η5-Cp*)]+ (3), [Dy(η5-C55X5)(η6-C6H6)]2+ (4), [Dy(η5-C55X5)(η8-C8H8)] (5), [Dy(η5-C55X5)2]+ (6) (where X = CCH3), [Dy(η5-C55B5)2]+ (7) and [Dy(η5-C55N5)2]+ (8), were studied using scalar relativistic density functional theory (SR-DFT) and the complete active space self-consistent field (CASSCF) methodology to shed light on the structure, stability, bonding and single-ion magnetic properties. SR-DFT calculations predict complexes 1-8 to be highly stable, with a strictly linear geometry around the Dy(III) ion in complexes 6-8. Energy Decomposition Analysis (EDA) predicts the following order for interaction energy (ΔEint value): 5 > 1 > 2 ≈ 3 > 6 > 7 > 8 > 4, with sizable 4f-ligand covalency in all the complexes. CASSCF calculations on complexes 1-8 predict stabilization of mJ |±15/2〉 as the ground state for all the complexes except for 5, with the following trend in the Ucal values: 6 (1573 cm-1) ≈ 3 (1569 cm-1) > 1 (1538 cm-1) > 8 (1347 cm-1) > 2 (1305 cm-1) > 7 (1284 cm-1) > 4 (1125 cm-1) > 5 (108 cm-1). Ab initio ligand field theory (AILFT) analysis provides a rationale for Ucal ordering, where π-type 4f-ligand interactions in complexes 1-4 and 6-8 offer giant barrier height while the large (C8H8)2- rings generate δ-type interaction in 5, which diminishes the axiality in the ligand field. Our detailed finding suggests that the exohedral organometallic dysprosocenium complexes are more linear compared to bent [DyCp*2]+ cations and display a giant barrier height exceeding 1500 cm-1 with negligible quantum tunnelling of magnetization (QTM) - a new approach to design highly anisotropic dysprosium organometallic complexes.
Collapse
Affiliation(s)
- Kusum Kumari
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502284, India.
| | - Saurabh Kumar Singh
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana-502284, India.
| |
Collapse
|
8
|
Peng XH, Shang T, Zheng J, Liu M, Zheng Q, Guo FS. Enhancing the magnetic properties of Dy(III) single-molecule magnets in octahedral coordination symmetry by tuning the equatorial ligands. Dalton Trans 2024; 53:16709-16715. [PMID: 39344482 DOI: 10.1039/d4dt02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Conventionally, octahedral (Oh) coordination symmetry of lanthanide centers is not ideal for constructing high-performance single-molecule magnets (SMMs). However, introducing a strong ligand field in the axial direction to increase crystal field splitting can potentially overcome this limitation. Herein, we successfully obtained two dysprosium(III) single-molecule magnets, [Dy(OCtBu3)X2(py)3] (X = Cl (1), I (2), py = pyridine), in Oh coordination symmetry. The two complexes differ only in the coordinating anions on the equatorial plane, yet their magnetic performances are distinctly different. When chloride is replaced by a weaker donor iodide, the energy barrier is dramatically improved from 29 cm-1 (1) to 860 cm-1 (2), highlighting the importance of weakening the transverse ligand field and maximizing the axial ligand field for high-performance SMMs.
Collapse
Affiliation(s)
- Xiao-Han Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Tao Shang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Jieyu Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Qi Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Fu-Sheng Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| |
Collapse
|
9
|
Mezzadri M, Chiesa A, Lepori L, Carretta S. Fault-tolerant computing with single-qudit encoding in a molecular spin. MATERIALS HORIZONS 2024; 11:4961-4969. [PMID: 39051507 DOI: 10.1039/d4mh00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, i.e. a higher efficiency than the standard approach based on stabilizer codes and concatenation.
Collapse
Affiliation(s)
- Matteo Mezzadri
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
| | - Alessandro Chiesa
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Luca Lepori
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
| | - Stefano Carretta
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
10
|
Zychowicz M, Dzielak H, Rzepiela J, Chorazy S. Synergy of Experiment and Broadened Exploration of Ab Initio Calculations for Understanding of Lanthanide-Pentacyanidocobaltate Molecular Nanomagnets and Their Optical Properties. Inorg Chem 2024; 63:19213-19226. [PMID: 39219448 PMCID: PMC11483780 DOI: 10.1021/acs.inorgchem.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
We present a synergistic experimental-theoretical methodology for the investigation of lanthanide-based single-molecule magnets (SMMs), demonstrated using the example of novel heterometallic molecules incorporating Nd3+/Ce3+ ions combined with three different, rarely explored, pentacyanidocobaltate(III) metalloligands, [CoIII(CN)5(azido/nitrito-N/iodido)]3-. The theoretical part of our approach broadens the exploration of ab initio calculations for lanthanide(III) complexes toward the convenient simulations of such physical characteristics as directional dependences of Helmholtz energy, magnetization, susceptibility, and their thermal and field evolution, as well as light absorption and emission bands. This work was conducted using newly designed SlothPy software (https://slothpy.org). It is introduced as an open-source Python library for simulating various physical properties from first-principles based on results of electronic structure calculations obtained within popular quantum chemistry packages. The computational results were confronted with spectroscopic and ac/dc-magnetic data, the latter analyzed using previously designed relACs software. The combination of experimental and computational methods gave insight into phonon-assisted magnetic relaxation mechanisms, disentangling them from the temperature-independent quantum tunneling of magnetization and emphasizing the role of local-mode processes. This study provides an understanding of the changes in lanthanide(III) magnetic anisotropy introduced with pentacyanidocobaltates(III) modifications, theoretically exploring also potential applications of reported compounds as anisotropy switches or optical thermometers.
Collapse
Affiliation(s)
- Mikolaj Zychowicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Hubert Dzielak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jan Rzepiela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
11
|
Zhou X, Qin H, Zeng Z, Luo S, Yang T, Cen P, Liu X. Modulation of the magnetic properties of mononuclear Dy(III) complexes by tuning the coordination geometry and local symmetry. Dalton Trans 2024; 53:16219-16228. [PMID: 39298127 DOI: 10.1039/d4dt02135e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Precise control of the crystal field and local symmetry around the paramagnetic spin center is crucial for the design and synthesis of single-molecule magnets (SMMs). Herein, three mononuclear Dy(III)-based complexes, [Dy(LN6)(CH3COO)2](BPh4)(CH2Cl2) (1), [Dy(LN6)(2,6-Cl-4-NO2-PhO)(H2O)2]2(PF6)2(H2O)(2,6-Cl-4-NO2-PhO)2 (2) and [Dy(LN6)(2,6-Cl-4-NO2-PhO)2](BPh4)(CH2Cl2)2 (3) (LN6 = N6-hexagonal plane accomplished by a neutral Schiff base ligand formed from 2,6-diacetylpyridine and ethylenediamine), are successfully isolated. In these complexes, the Dy(III) centers are coordinated with six neutral N atoms from a nonrigid equatorial ligand, while different oxygen-bearing ligands are arranged at the axial positions of the central ions by gradual regularization of the axial ligands. As a result, Dy(III) ions in the three complexes exhibit various coordination geometries, forming a ten-coordinate tetradecahedron for 1, a nine-coordinate muffin configuration for 2 and a distorted eight-coordinate hexagonal bipyramid for 3. Magnetic studies reveal that all complexes exhibit no SIM behaviour under zero dc field, due to the predominant quantum tunneling of magnetization (QTM), which can be effectively suppressed by additional dc fields. Experiments, coupled with theoretical calculations, demonstrate that varying local symmetries and coordination geometries are synergistically responsible for the disparities of QTM and uniaxial anisotropy, resulting in notably different magnetic properties.
Collapse
Affiliation(s)
- Xuejuan Zhou
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Huiliang Qin
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Zhaopeng Zeng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tao Yang
- Ningxia People's Hospital, Yinchuan 753009, China
| | - Peipei Cen
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Tarannum I, Singh SK. Unravelling the electronic structure, bonding, and magnetic properties of inorganic dysprosocene analogues [Dy(E 4) 2] - (E = N, P, As, CH). Phys Chem Chem Phys 2024. [PMID: 39373561 DOI: 10.1039/d4cp03016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organometallic sandwich complexes of Dy(III) ion are ubiquitous for designing high-temperature single-ion magnets with blocking temperatures close to the liquid nitrogen boiling point. Magnetic bistability at the molecular level makes them potential candidates for nano-scale information storage materials. In the present contribution, we have thoroughly investigated the electronic structure, bonding, covalency, and magnetic anisotropy of inorganic dysprosocene complexes with a general formula of [Dy(E4)2]- (where E = N, P, As, CH) using state-of-the-art scalar relativistic density functional theory (SR-DFT), and a multiconfigurational complete active space self-consistent field (CASSCF) method with the N-electron valence perturbation theory (NEVPT2). Geometry optimization calculations predict stabilization of the [Dy(E4)2]- complexes with a linear geometry and D4h local symmetry Dy(III) ion in [Dy(N4)2]- (1) and [Dy(P4)2]- (2) complexes, while a bent geometry has been observed for the [Dy(As4)2]- (3), [Dy(P2(CH)2)2]- (4), and [Dy(As2(CH)2)2]- (5) complexes. Energy decomposition analysis (EDA) and natural bonding orbital (NBO) calculations reveal sizable 5d-ligand covalency followed by 6s/6p and weak 4f-ligand covalency in complexes 1-5. Both the natural localized molecular orbitals (NLMOs) at the DFT level and ab initio-based ligand field theory (AILFT) at the NEVPT2 level of theory predict an increase in the Dy-ligand covalency as we move from N to As. Spin-Hamiltonian parameter analysis of complexes 1-5 reveals stabilization of the mJ |±15/2〉 as the ground state with highly axial g values (gxx ∼ gyy ∼ 0 and gzz ∼ 20) and the barrier height of 2902, 1214, 1104, 1845, and 1509 K for 1-5, respectively. The Orbach effective demagnetization barrier (Ueff) for complexes 1-5 ranges between 2416-1175 K, with a record Ueff value of 2416 K observed for 1. In addition, we have explored the role of heavy element effects on the magnetic anisotropy by turning off the spin-orbit coupling of the pnictogens (N, P, and As), and our calculations clearly predict that heavy atoms in the first coordination sphere help in increasing the barrier height for magnetic relaxation. Heavy elements like P and As significantly enhance the SOC contributions, thereby providing a platform for designing and optimizing Dy(III) complexes with tailored magnetic behaviors.
Collapse
Affiliation(s)
- Ibtesham Tarannum
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Saurabh Kumar Singh
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
13
|
Liberka M, Chorazy S. Making soluble Dy 2 single-molecule magnets red emissive through their functionalization by ruthenium-cyanido luminophores. Chem Commun (Camb) 2024; 60:11351-11354. [PMID: 39301977 DOI: 10.1039/d4cc04001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We present an efficient strategy for obtaining red-emissive molecular nanomagnets by exploring a heterometallic approach. We report the {[DyIII(4-pyridone)5]2[RuII(CN)2(phen)2]2}·(CF3SO3)6·2MeOH (phen = 1,10-phenanthroline) compound composed of exchange-coupled {DyIII2} single-molecule magnets functionalized by Ru(II)-cyanido units. The latter makes the resulting {DyIII2RuII2}6+ cations a unique example of a soluble lanthanide SMM exhibiting red charge-transfer photoluminescence in the solution and solid state, well enhanced when compared with the cyanido precursor.
Collapse
Affiliation(s)
- Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
14
|
Benner F, Demir S. Isolation of Elusive Fluoflavine Radicals in Two Differing Oxidation States. J Am Chem Soc 2024; 146:26008-26023. [PMID: 39265051 PMCID: PMC11440492 DOI: 10.1021/jacs.4c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Facile access and switchability between multiple oxidation states are key properties of many catalytic applications and spintronic devices yet poorly understood due to inherent complications arising from isolating a redox system in multiple oxidation states without drastic structural changes. Here, we present the first isolable, free fluoflavine (flv) radical flv(1-•) as a bottleable potassium compound, [K(crypt-222)](flv•), 1, and a new series of organometallic rare earth complexes [(Cp*2Y)2(μ-flvz)]X, (where Cp* = pentamethylcyclopentadienyl, X = [Al(OC{CF3}3)4]- (z = -1), 2; X = 0 (z = -2), 3; [K(crypt-222)]+ (z = -3), 4) comprising the flv ligand in three different oxidation states, two of which are paramagnetic flv1-• and flv3-•. Excitingly, 1, 2, and 4 constitute the first isolable flv1-• and flv3-• radical complexes and, to date, the only isolated flv radicals of any oxidation state. All compounds are accessible in good crystalline yields and were unambiguously characterized via single-crystal X-ray diffraction analysis, cyclic voltammetry, IR-, UV-vis, and variable-temperature EPR spectroscopy. Remarkably, the EPR spectra for 1, 2, and 4 are distinct and a testament to stronger spin delocalization onto the metal centers as a function of higher charge on the flv radical. In-depth analysis of the electron- and spin density via density functional theory (DFT) calculations utilizing NLMO, QTAIM, and spin density topology analysis confirmed the fundamental interplay of metal coordination, ligand oxidation state, aromaticity, covalency, and spin density transfer, which may serve as blueprints for the development of future spintronic devices, single-molecule magnets, and quantum information science at large.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
16
|
Wang Y, Luo QC, Zheng YZ. Organolanthanide Single-Molecule Magnets with Heterocyclic Ligands. Angew Chem Int Ed Engl 2024; 63:e202407016. [PMID: 38953597 DOI: 10.1002/anie.202407016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Lanthanide (Ln) based mononuclear single-molecule magnets (SMMs) provide probably the finest ligand regulation model for magnetic property. Recently, the development of such SMMs has witnessed a fast transition from coordination to organometallic complexes because the latter provides a fertile, yet not fully excavated soil for the development of SMMs. Especially those SMMs with heterocyclic ligands have shown the potential to reach higher blocking temperature. In this minireview, we give an overview of the design principle of SMMs and highlight those "shining stars" of heterocyclic organolanthanide SMMs based on the ring sizes of ligands, analysing how the electronic structures of those ligands and the stiffness of subsequently formed molecules affect the dynamic magnetism of SMMs. Finally, we envisaged the future development of heterocyclic Ln-SMMs.
Collapse
Affiliation(s)
- Yidian Wang
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
17
|
Mondal S, Chauhan D, Guizouarn T, Pointillart F, Rajaraman G, Steiner A, Baskar V. Self-Assembled Lanthanide Phosphinate Square Grids (Ln = Er, Dy, and Tb): Dy 4 Shows SMM/SMT and Tb 4 SMT Behavior. Inorg Chem 2024. [PMID: 39264390 DOI: 10.1021/acs.inorgchem.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tetranuclear [2 × 2] square-grid-like LnIII clusters have been synthesized by reacting LnCl3·6H2O salts with bis[α-hydroxy(p-bromophenyl)methyl]phosphinic acid [R2PO2H, where R = CH(OH)PhBr] and pivalic acid. Single-crystal X-ray diffraction studies show the formation of [Me4N]2[Ln4(μ2-η1:η1-PO2R2)8(η2-CO2But)4(μ4-CO3)] [Ln = Er (1), Dy (2), and Tb (3)]. Direct-current studies reveal significant ferromagnetic interactions between DyIII in 2 and TbIII in 3 and an antiferromagnetic interaction between ErIII in 1. Dynamic magnetic susceptibility measurements confirm a single-molecule magnet (SMM) behavior in both 0 and 1200 Oe applied magnetic fields for 2. Complexes 2 and 3 show single molecular toroic (SMT) behavior with a mixed magnetic moment.
Collapse
Affiliation(s)
- Suman Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Deepanshu Chauhan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Thierry Guizouarn
- Sciences Chimiques de Rennes, Universite de Rennes 1, UMR 6226, CNRS 263, Avenue du Général Leclerc, Rennes 35042, France
| | - Fabrice Pointillart
- Sciences Chimiques de Rennes, Universite de Rennes 1, UMR 6226, CNRS 263, Avenue du Général Leclerc, Rennes 35042, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD U.K
| | | |
Collapse
|
18
|
Greber T. Quantum Tunneling of the Magnetization in Systems with Anisotropic 4f Ion Pairs: Rates from Low-Temperature Zero-Field Relaxation. ACS OMEGA 2024; 9:37183-37187. [PMID: 39246481 PMCID: PMC11375711 DOI: 10.1021/acsomega.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Anisotropic open shell 4f ions have magnetic moments that can be read and written as atomic bits. If it comes to quantum applications where the phase of the wave function has to be written, controlled, and read, it is advantageous to rely on more than one atom that carries the quantum information on the system because states with different susceptibilities may be addressed. Such systems are realized for pairs of lanthanides in single-molecule magnets, where four pseudospin states are found and mixed in quantum tunneling processes. For the case of endohedral fullerenes like Dy2S@C82 or Tb2ScN@C80, the quantum tunneling of the magnetization is imprinted in the magnetization lifetimes at sub-Kelvin temperatures. A (4 × 4) Hamiltonian that includes quantum tunneling of the magnetization and the dipole and exchange interaction between the two lanthanide magnetic moments predicts the lifting of the zero-field ground state degeneracy and nonlinear coupling to magnetic fields in such systems.
Collapse
Affiliation(s)
- Thomas Greber
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
19
|
Samuel C, Narsimhulu G, Bangar G, Kumar Dasari SH, Rajaraman G, Baskar V. Silver-π Interaction: A Diverse Approach to Hybrid Material and Its Efficacy in Electrocatalytic Reduction of Nitrate to Ammonia. Inorg Chem 2024. [PMID: 39225499 DOI: 10.1021/acs.inorgchem.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by the intriguing nature of the metal-π interaction in organometallic chemistry, a novel 1D hybrid material has been designed. Herein, a functionalized tellurium allyl macrocycle (TAM) acts as a molecular building block and is knit together via silver-π interaction to obtain Ag-TAM. Ag is coordinated to two allyl groups and a phenyl ring in η2 mode. Instead of the conventional polymerization strategy, a metal-π interaction is employed to interlink macrocycles. TAM and Ag-TAM showed electrocatalytic capability for the conversion of nitrate to ammonia. Ag-TAM showed an NH3 yield rate 2-fold greater than TAM with a high faradaic efficiency of 94.6% with good durability, proving that interlinking of macrocycles via metal-π interaction improves the catalytic activity. Detailed periodic density functional theory (DFT) calculations unveil novel mechanistic insights, suggesting cooperative catalysis between neighboring Ag sites and contributing to the enhanced efficiency.
Collapse
Affiliation(s)
- Calvin Samuel
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Gujju Narsimhulu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Garima Bangar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
20
|
Li X, Sun X, Wei C, Huang FP, Liu HT, Tian H. Single-Molecule Magnet Rods: Remarkably Elongated Lanthanide Phosphonate Cores with Quasilinear Hydrazones. Inorg Chem 2024; 63:16393-16403. [PMID: 39163558 DOI: 10.1021/acs.inorgchem.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(μ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(μ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(μ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(μ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.
Collapse
Affiliation(s)
- XiaoJuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Chaolun Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hou-Ting Liu
- Food and Biochemistry Engineering Department, Yantai Vocational College, Yantai 264006, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
21
|
Biswas S, Havlicek L, Nemec I, Salitros I, Mandal L, Neugebauer P, Kuppusamy SK, Ruben M. Levamisole Based Co(II) Single-Ion Magnet. Chem Asian J 2024; 19:e202400574. [PMID: 38870468 DOI: 10.1002/asia.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S⋅⋅⋅S and S⋅⋅⋅N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff=29.6 (7) K and relaxation time τo=1.4 (4)×10-9 s.
Collapse
Affiliation(s)
- Soumava Biswas
- Dr. Vishwanath Karad MIT World Peace University Survey No, 124, Paud Rd, Kothrud, Pune, 411038, Maharashtra, India
| | - Lubomir Havlicek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, 61662, Brno, Czech Republic
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77147, Olomouc, Czech Republic
| | - Ivan Salitros
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava., Bratislava, SK-81237, Slovakia
| | - Leena Mandal
- Department of Chemistry, Polba Mahavidyalaya, Polba Hooghly, PIN-712148, West Bengal, India
| | - Petr Neugebauer
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Pissas M, Ferentinos E, Kyritsis P, Sanakis Y. Field-Induced Slow Magnetization Relaxation of a Tetrahedral S=2 Fe IIS 4-Containing Complex. Chempluschem 2024; 89:e202400109. [PMID: 38727531 DOI: 10.1002/cplu.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Indexed: 06/09/2024]
Abstract
In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2-5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero-field splitting parameters of 1 which were previously determined by high- frequency and -field electron paramagnetic resonance and Mössbauer spectroscopies.
Collapse
Affiliation(s)
- Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| |
Collapse
|
23
|
Li B, Shi W, Du J, Zhang Y, Zhang H, Yang H, Sun L, Zhang Y, Li M. Structures and Single-Molecule Magnet Behavior of Dy 3 and Dy 4 Clusters Constructed by Different Dysprosium(III) Salts. Inorg Chem 2024; 63:15667-15678. [PMID: 39099326 DOI: 10.1021/acs.inorgchem.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Using the Schiff base ligand H2L-pyra (N'-(2-hydroxybenzoyl)pyrazine-2-carbohydrazonamide) with multiple dentate sites, the trinuclear DyIII-based complex [Dy3(HL-pyra)2(L-pyra)2(CH3COO)3]·2H2O (1) was synthesized. By analyzing the fragmented assembly process and fine-tuning the bridging anions, complex [Dy4(HL-pyra)2(L-pyra)4(NO3)2(H2O)2]·8H2O (2) with different nuclear numbers was successfully synthesized. Magnetic studies demonstrated that 1 did not exhibit magnetic relaxation behavior under the external field; however, 2 exhibited zero-field single-molecule magnetic relaxation behavior with an effective energy barrier (Ueff) of 197.44 K. This is attributed to the improved anisotropy of the single ion after the normalization of the crystal structure, thus realizing the molecular magnetic switching. Moreover, magnetic dilution analysis of 2 demonstrated that the weak magnetic interaction between metal ions inhibited the occurrence of quantum tunneling of magnetization (QTM), resulting in high-performance single-molecule magnet (SMM) behavior. The reasons for the magnetic difference between these two complexes were analyzed using ab initio calculation and magneto-structural correlations. This study provides a reasonable prediction of the ideal configuration of the approximately parallelogram DyIII-based SMMs, thus offering an effective approach for synthesizing Dy4 complexes with excellent properties.
Collapse
Affiliation(s)
- Botan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Wandi Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiyuan Du
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yiyi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Haibo Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hengyu Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| |
Collapse
|
24
|
Kong H, Ruan ZY, Chen YC, Deng W, Liao PY, Wu SG, Tong ML. Integrating Polyoxometalate into Dy(III)-based Single-molecule Magnets with Pentagonal Bipyramidal Symmetry. Inorg Chem 2024; 63:15964-15972. [PMID: 39148298 DOI: 10.1021/acs.inorgchem.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Polyoxometalates (POMs) with various coordination fashions are versatile ligands for constructing single-ion magnets (SIMs), but enforcing POM-SIMs with a specific geometry remains a synthetic challenge. Herein, we synthesized a POM-cocrystallized DyIII-SIM [Dy(OPPh3)4(H2O)3][PW12O40]·4EtOH (1Dy) and a POM-ligated DyIII-SIM [{Dy(OPPh3)3(H2O)3}{PW12O40}]·Ph3PO·H2O (2Dy) with pentagonal bipyramidal local coordination geometry. Magnetic measurements indicate that 1Dy displays field-induced single-molecule magnet (SMM) behavior and the relaxation is dominated by under-barrier processes. 2Dy exhibits spin-lattice relaxation at a broader temperature region with a reversal barrier over 300 K. Magneto-structural analysis reveals that the enhancement of SMM behavior originated from the equatorial replacement of Ph3PO by POM, which strengthens the axial anisotropy in 2Dy. Luminescent experiments indicate that the characteristic DyIII emissions of 1Dy are covered up by the strong π-π* emission of Ph3PO at low-temperature regions. As for 2Dy, partial DyIII emission persists thanks to the antenna effect between DyIII and POM.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Raju MS, Paillot K, Breslavetz I, Novitchi G, Rikken GLJA, Train C, Atzori M. Optical Readout of Single-Molecule Magnets Magnetic Memories with Unpolarized Light. J Am Chem Soc 2024; 146:23616-23624. [PMID: 39136144 DOI: 10.1021/jacs.4c08684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Magnetic materials are widely used for many technologies in energy, health, transportation, computation, and data storage. For the latter, the readout of the magnetic state of a medium is crucial. Optical readout based on the magneto-optical Faraday effect was commercialized but soon abandoned because of the need for a complex circular polarization-sensitive readout. Combining chirality with magnetism can remove this obstacle, as chiral magnetic materials exhibit magneto-chiral dichroism, a differential absorption of unpolarized light dependent on their magnetic state. Molecular chemistry allows the rational introduction of chirality into single-molecule magnets (SMMs), ultimate nanoobjects capable of retaining magnetization. Here, we report the first experimental demonstration of optical detection of the magnetic state of an SMM using unpolarized light on a novel air-stable Dy-based chiral SMM featuring a strong single-ion magnetic anisotropy. These findings might represent a paradigm shift in the field of optical data readout technologies.
Collapse
Affiliation(s)
- Maria Sara Raju
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| | - Kevin Paillot
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| | - Ivan Breslavetz
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| | - Geert L J A Rikken
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| | - Matteo Atzori
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France
| |
Collapse
|
26
|
Nandy R, Jagličić Z, Jana NC, Brandão P, Bustamante F, Aravena D, Panja A. The effect of co-ligands on the performance of single-molecule magnet behaviours in a family of linear trinuclear Zn-Dy-Zn complexes with a compartmental Schiff base. Dalton Trans 2024; 53:13968-13981. [PMID: 39101745 DOI: 10.1039/d4dt01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We present herein magneto-structural studies of three heterometallic Zn2Dy complexes: [Zn2Dy(L)2Cl2(H2O)](ClO4)·4H2O (1), [Zn2Dy(L)2Br2(H2O)](ClO4)·4H2O (2) and [Zn2Dy(L)2(OAc)I(H2O)]I3·4H2O (3), utilizing a new Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-diaminocyclohexane (H2L). Complexes 1 and 2 exhibit remarkable magnetic relaxation behaviour with relatively high energy barriers in zero field (Ueff: 244 K for 1 and 211 K for 2) and notable hysteresis temperatures, despite the low local geometric symmetry around the central DyIII ions. The SMM performance of these complexes is further enhanced under an applied magnetic field, with Ueff increasing to 309 K for 1 and 269 K for 2, positioning them as elite members within the Zn-Dy SMM family. These findings emphasize the substantial influence of remote modulation on ZnII beyond the first coordination sphere of DyIII ions on their dynamic magnetic relaxation properties. Ab initio studies demonstrate that the relative orientation of the phenoxo-oxygen donor atoms around the DyIII ion is critical for determining the magnetic anisotropy and relaxation dynamics in these systems. Additionally, experimental and theoretical investigations reveal that the coordination of the bridging acetate towards the hard plane, combined with significant distortion from the ideal ZnO2Dy diamond core arrangement caused by the acetate ion, results in low magnetic anisotropy in complex 3, thereby leading to field-induced SMM behaviour. Overall, this study unveils the effects of co-ligands on the SMM performance in a series of linear trinuclear Zn-Dy-Zn complexes, which exhibit low local geometric symmetry around the DyIII centres.
Collapse
Affiliation(s)
- Rakhi Nandy
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fabián Bustamante
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Daniel Aravena
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
27
|
Wisbeck S, Sorrentino AL, Santana FS, de Camargo LC, Ribeiro RR, Salvadori E, Chiesa M, Giaconi N, Caneschi A, Mannini M, Poggini L, Briganti M, Serrano G, Soares JF, Sessoli R. (η 8-Cyclooctatetraene)(η 5-fluorenyl)titanium: a processable molecular spin qubit with optimized control of the molecule-substrate interface. Chem Sci 2024:d4sc03290j. [PMID: 39156928 PMCID: PMC11325857 DOI: 10.1039/d4sc03290j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a d z 2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 μs despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.
Collapse
Affiliation(s)
- Sarita Wisbeck
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Andrea Luigi Sorrentino
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Francielli S Santana
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Luana C de Camargo
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Ronny R Ribeiro
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Enrico Salvadori
- Department of Chemistry, University of Turin Via Giuria 7 10125 Torino Italy
| | - Mario Chiesa
- Department of Chemistry, University of Turin Via Giuria 7 10125 Torino Italy
| | - Niccolò Giaconi
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Andrea Caneschi
- Department of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence Via di S. Marta 3 50139 Firenze Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Lorenzo Poggini
- Institute for Chemistry of OrganoMetallic Compounds (ICCOM-CNR) Via Madonna del Piano 50019 Sesto Fiorentino Italy
| | - Matteo Briganti
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Giulia Serrano
- Department of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence Via di S. Marta 3 50139 Firenze Italy
| | - Jaísa F Soares
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- Institute for Chemistry of OrganoMetallic Compounds (ICCOM-CNR) Via Madonna del Piano 50019 Sesto Fiorentino Italy
| |
Collapse
|
28
|
Sorrentino AL, Poggini L, Serrano G, Cucinotta G, Cortigiani B, Malavolti L, Parenti F, Otero E, Arrio MA, Sainctavit P, Caneschi A, Cornia A, Sessoli R, Mannini M. Assembling Fe 4 single-molecule magnets on a TiO 2 monolayer. NANOSCALE 2024; 16:14378-14386. [PMID: 38993100 DOI: 10.1039/d4nr02234c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.
Collapse
Affiliation(s)
- Andrea Luigi Sorrentino
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Poggini
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
- Institute for Chemistry of Organo-Metallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Serrano
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Giuseppe Cucinotta
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Brunetto Cortigiani
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Luigi Malavolti
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Francesca Parenti
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Edwige Otero
- Synchrotron-SOLEIL, L'Orme des Merisiers, 91192 Saint-Aubin, France
| | - Marie-Anne Arrio
- CNRS UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université/MNHN, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Philippe Sainctavit
- Synchrotron-SOLEIL, L'Orme des Merisiers, 91192 Saint-Aubin, France
- CNRS UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université/MNHN, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Andrea Caneschi
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
- Institute for Chemistry of Organo-Metallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, FI, Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
29
|
Lussier D, Ito E, McClain KR, Smith PW, Kwon H, Rutkauskaite R, Harvey BG, Shuh DK, Long JR. Metal-Halide Covalency, Exchange Coupling, and Slow Magnetic Relaxation in Triangular (Cp iPr5) 3U 3X 6 (X = Cl, Br, I) Clusters. J Am Chem Soc 2024; 146:21280-21295. [PMID: 39044394 PMCID: PMC11311243 DOI: 10.1021/jacs.3c11678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The actinide elements are attractive alternatives to transition metals or lanthanides for the design of exchange-coupled multinuclear single-molecule magnets. However, the synthesis of such compounds is challenging, as is unraveling any contributions from exchange coupling to the overall magnetism. To date, only a few actinide compounds have been shown to exhibit exchange coupling and single-molecule magnetism. Here, we report triangular uranium(III) clusters of the type (CpiPr5)3U3X (1-X; X = Cl, Br, I; CpiPr5 = pentaisopropylcyclopentadienyl), which are synthesized via reaction of the aryloxide-bridged precursor (CpiPr5)2U2(OPhtBu)4 with excess Me3SiX. Spectroscopic analysis suggests the presence of covalency in the uranium-halide interactions arising from 5f orbital participation in bonding. The dc magnetic susceptibility data reveal the presence of antiferromagnetic exchange coupling between the uranium(III) centers in these compounds, with the strength of the exchange decreasing down the halide series. Ac magnetic susceptibility data further reveal all compounds to exhibit slow magnetic relaxation under zero dc field. In 1-I, which exhibits particularly weak exchange, magnetic relaxation occurs via a Raman mechanism associated with the individual uranium(III) centers. In contrast, for 1-Br and 1-Cl, magnetic relaxation occurs via an Orbach mechanism, likely involving relaxation between ground and excited exchange-coupled states. Significantly, in the case of 1-Cl, magnetic relaxation is sufficiently slow such that open magnetic hysteresis is observed up to 2.75 K, and the compound exhibits a 100-s blocking temperature of 2.4 K. This compound provides the first example of magnetic blocking in a compound containing only actinide-based ions, as well as the first example involving the uranium(III) oxidation state.
Collapse
Affiliation(s)
- Daniel
J. Lussier
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Emi Ito
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - K. Randall McClain
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Patrick W. Smith
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hyunchul Kwon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryte Rutkauskaite
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin G. Harvey
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - David K. Shuh
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Landart A, Quesada-Moreno MM, Palacios MA, Li Y, Ozerov M, Krzystek J, Colacio E. Control of the geometry and anisotropy driven by the combination of steric and anion coordination effects in Co II complexes with N 6-tripodal ligands: the impact of the size of the ligand on the magnetization relaxation time. Dalton Trans 2024; 53:12876-12892. [PMID: 38716508 DOI: 10.1039/d4dt00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Four mononuclear CoII complexes of formula [Co(L)(SCN)2(CH3OH)0.5(H2O)0.5]·1.5H2O·0.75CH3OH (1), [Co(L1)Cl2]·H2O·2CH3CN (2), [Co(L1)(SCN)2]·1.5H2O·CH3OH (3) and [Co(L1)]ClO4·2CH3OH (4) were prepared from the N6-tripodal Schiff base ligands (S)P[N(Me)NC(H)2-Q]3 (L) and (S)P[N(Me)NC(H)1-ISOQ]3 (L1), where Q and ISOQ represent quinolyl and isoquinolyl moieties, respectively. In 1, the L ligand does not coordinate to the CoII ion in a tripodal manner but using a new N,N,S tridentate mode, which is due to the fact that the N6-tripodal coordination promotes a strong steric hindrance between the quinolyl moieties. However, L1 can coordinate to the CoII ions either in a tripodal manner using CoII salts with poorly coordinating anions to give 4 or in a bisbidentate fashion using CoII salt-containing medium to strongly coordinating anions to afford 2 and 3. In the case of L1, there is no steric hindrance between ISOQ moieties after coordination to the CoII ion. The CoII ion exhibits a distorted octahedral geometry for compounds 1-3, with the anions in cis positions for the former and in trans positions for the two latter compounds. Compound 4 shows an intermediate geometry between an octahedral and trigonal prism but closer to the latter one. DC magnetic properties, HFEPR and FIRMS measurements and ab initio calculations demonstrate that distorted octahedral complexes 1-3 exhibit easy-plane magnetic anisotropy (D > 0), whereas compound 4 shows large easy-axis magnetic anisotropy (D < 0). Comparative analysis of the magneto-structural data underlines the important role that is played not only by the coordination geometry but also the electronic effects in determining the anisotropy of the CoII ions. Compounds 2-3 show a field-induced slow relaxation of magnetization. Despite its large easy-axis magnetic anisotropy, compound 4 does not show significant slow relaxation (SMR) above 2 K under zero applied magnetic fields, but its magnetic dilution with ZnII triggers SMR at zero field. Finally, it is worth remarking that compounds 2-4 show smaller relaxation times than the analogous complexes with the tripodal ligand bearing in its arms pyridine instead of isoquinoline moieties, which is most likely due to the increase of the molecular size in the former one.
Collapse
Affiliation(s)
- Aritz Landart
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - María Mar Quesada-Moreno
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María A Palacios
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Yanling Li
- Sorbonne Université Institut Parisien de Chimie Moléculaire, CNRS UMR 8232 4 place Jussieu 75252, Paris cedex 5, France
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
31
|
Batista L, Paul S, Molina-Jirón C, Jaén JA, Fensker D, Fuhr O, Ruben M, Wernsdorfer W, Moreno-Pineda E. Magnetic behaviour of a spin-canted asymmetric lanthanide quinolate trimer. Dalton Trans 2024; 53:12927-12935. [PMID: 39041069 DOI: 10.1039/d4dt01588f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An asymmetrical dysprosium trimer with a molecular formula of [Dy3(hq)7(hqH)(NO3)2(H2O)] was obtained through a reflux reaction employing as starting material Dy(NO3)3·nH2O and 8-quinolinoline as ligand. Magnetic susceptibility investigations show the system to be an SMM, which was corroborated by sub-Kelvin μSQUID studies. Upon cooling, the magnetic susceptibility also exhibits a decrease in the χMT product, which was confirmed to be due to intramolecular antiferromagnetic interactions. μSQUID measurements, moreover, reveal a marked magnetic behaviour in the angular dependence of the hysteresis loops. The latter is a direct consequence of the non-colinear spin arrangement of the anisotropy axes of each Dy(III) ion in [Dy3(hq)7(hqH)(NO3)2(H2O)] and the interaction between the ions, as also evidenced by CASSCF calculations. Our results evidence the effect of spin canting along with the intramolecular interactions, which can induce non-trivial magnetic behaviour in SMMs.
Collapse
Affiliation(s)
- Lester Batista
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. Física, 0824, Panamá
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
| | - Concepción Molina-Jirón
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Bioquímica, 0824, Panamá.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Juan A Jaén
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| | - Dieter Fensker
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Eufemio Moreno-Pineda
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| |
Collapse
|
32
|
Braun J, Powell AK, Unterreiner AN. Gaining Insights into the Interplay between Optical and Magnetic Properties in Photoexcited Coordination Compounds. Chemistry 2024; 30:e202400977. [PMID: 38693865 DOI: 10.1002/chem.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.
Collapse
Affiliation(s)
- Jonas Braun
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
33
|
Kandrashkin YE. Impact of Zeeman and hyperfine interactions on the magnetic properties of paramagnetic metal Ions: I. Local interactions of the electron spin. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107728. [PMID: 39047539 DOI: 10.1016/j.jmr.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
The anisotropic Zeeman interaction of an ion, and the strong hyperfine interaction with its own nucleus, can significantly influence its interactions with the local environment. These effects, including the reduction of the effective magnetic moment of the electron spin and the phase memory decay rate, are studied theoretically. Analytical expressions describing the mean magnetic moment of the electron spin are obtained. The results of the theoretical analysis and accompanying numerical computations show that the strong hyperfine interaction of the ion reduces its effective magnetic moment. In particular, a 7% reduction is found for the scandium endofullerene Sc2@C80(CH2Ph) under conditions typical of an X-band EPR experiment.
Collapse
Affiliation(s)
- Yu E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 420029, Kazan, Russia.
| |
Collapse
|
34
|
Araujo Junior CR, Oliveira WXC, Pinheiro CB, Pedroso EF, Nunes WC, Almeida AAD, Knobel M, Julve M, Pereira CLM. Crystal structure and cryomagnetic study of a mononuclear erbium(III) oxamate inclusion complex. Acta Crystallogr C Struct Chem 2024; 80:349-356. [PMID: 38984908 DOI: 10.1107/s2053229624005977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)-dimethyl sulfoxide-water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K.
Collapse
Affiliation(s)
- Cleber R Araujo Junior
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Willian X C Oliveira
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Carlos B Pinheiro
- Departamento de Física, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Emerson F Pedroso
- Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, 24210-346, Brazil
| | - Wallace C Nunes
- Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, 24210-346, Brazil
| | - Adriele A de Almeida
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Marcelo Knobel
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Miguel Julve
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain
| | - Cynthia L M Pereira
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
35
|
Gharu A, Vignesh KR. Theoretical exploration of single-molecule magnetic and single-molecule toroic behaviors in peroxide-bridged double-triangular {MII3LnIII3} (M = Ni, Cu and Zn; Ln = Gd, Tb and Dy) complexes. Dalton Trans 2024. [PMID: 39087311 DOI: 10.1039/d4dt01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Detailed state-of-the-art ab initio and density functional theory (DFT) calculations have been undertaken to understand both Single-Molecule Magnetic (SMM) and Single-Molecule Toroic (SMT) behaviors of fascinating 3d-4f {M3Ln3} triangular complexes having the molecular formula [MII3LnIII3(O2)L3(PyCO2)3](OH)2(ClO4)2·8H2O (with M = Zn; Ln = Dy (1), Tb (2) & Gd (3) and M = Cu; Ln = Dy (4), Tb (5) & Gd (6)) and [Ni3Ln3(H2O)3(mpko)9(O2)(NO3)3](ClO4)·3CH3OH·3CH3CN (Ln = Dy (7), Tb (8), and Gd (9)) [mpkoH = 1-(pyrazin-2-yl)ethanone oxime]. All these complexes possess a peroxide ligand that bridges the {LnIII3} triangle in a μ3-η3:η3 fashion and the oxygen atoms/oxime of co-ligands that connect each MII ion to the {LnIII3} triangle. Through our computational studies, we tried to find the key role of the peroxide bridge and how it affects the SMM and SMT behavior of these complexes. Primarily, ab initio Complete Active Space Self-Consistent Field (CASSCF) SINGLE_ANISO + RASSI-SO + POLY_ANISO calculations were performed on 1, 2, 4, 5, 7, and 8 to study the anisotropic behavior of each Ln(III) ion, to derive the magnetic relaxation mechanism and to calculate the LnIII-LnIII and CuII/NiII-LnIII magnetic coupling constants. DFT calculations were also performed to validate these exchange interactions (J) by computing the GdIII-GdIII and CuII/NiII-GdIII interactions in 3, 6, and 9. Our calculations explained the experimental magnetic relaxation processes and the magnetic exchange interactions for all the complexes, which also strongly imply that the peroxide bridge plays a role in the SMM behavior observed in these systems. On the other hand, this peroxide bridge does not support the SMT behavior. To investigate the effect of bridging ions in {M3Ln3} systems, we modeled a {ZnII3DyIII3} complex (1a) with a hydroxide ion replacing the bridged peroxide ion in complex 1 and considered a hydroxide-bridged {CoIII3DyIII3} complex (10) having the formula [Co3Dy3(OH)4(OOCCMe3)6(teaH)3(H2O)3](NO3)2·H2O. We discovered that as compared to the LoProp charges of the peroxide ion, the greater negative charges on the bridging hydroxide ion reduce quantum tunneling of magnetization (QTM) effects, enabling more desirable SMM characteristics and also leading to good SMT behavior.
Collapse
Affiliation(s)
- Amit Gharu
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| | - Kuduva R Vignesh
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
36
|
Deng W, Wu SG, Ruan ZY, Gong YP, Du SN, Wang HL, Chen YC, Zhang WX, Liu JL, Tong ML. Spin-State Control in Dysprosium(III) Metallacrown Magnets via Thioacetal Modification. Angew Chem Int Ed Engl 2024; 63:e202404271. [PMID: 38700507 DOI: 10.1002/anie.202404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 06/19/2024]
Abstract
Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ya-Ping Gong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Shan-Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hai-Ling Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wei-Xiong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
37
|
Flakina AM, Nazarov DI, Faraonov MA, Yakushev IA, Kuzmin AV, Khasanov SS, Zverev VN, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Single-Ion Magnetism of the [Dy III(hfac) 4] - Anions in the Crystalline Semiconductor {TSeT 1.5} ●+[Dy III(hfac) 4] - Containing Weakly Dimerized Stacks of Tetraselenatetracene. Int J Mol Sci 2024; 25:8068. [PMID: 39125638 PMCID: PMC11311655 DOI: 10.3390/ijms25158068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of {TSeT1.5}●+[DyIII(hfac)4]- (1) salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior. A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac- anions in [DyIII(hfac)4]-, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT●+ paramagnetic species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1. It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.
Collapse
Affiliation(s)
- Alexandra M. Flakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Dmitry I. Nazarov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Maxim A. Faraonov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Ilya A. Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V. Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Vladimir N. Zverev
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V. Konarev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| |
Collapse
|
38
|
Moorthy S, Tarannum I, Kumari K, Singh SK. A highly anisotropic family of hexagonal bipyramidal Dy(III) unsaturated 18-crown-6 complexes exceeding the blockade barrier over 2700 K: a computational exploration. Dalton Trans 2024; 53:12073-12079. [PMID: 38787652 DOI: 10.1039/d4dt00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In the present work, we have explored a series of unsaturated hexa-18-crown-6 (U18C6) ligands towards designing highly anisotropic Dy(III) based single-ion magnets (SIMs) with the general formula [Dy(U18C6)X2]+ (where U18C6 = [C12H12O6] (1), [C12H12S6] (2), [C12H12Se6] (3), [C12H12O4S2] (4), [C12H12O4Se2] (5) and X = F, Cl, Br, I, OtBu and OSiPh3). By analysing the electronic structure, bonding and magnetic properties, we find that the U18C6 ligands prefer stabilising the highly symmetric eight-coordinated hexagonal bipyramidal geometry (HBPY-8), which is the source of the near-Ising type anisotropy in all the [Dy(U18C6)X2]+ complexes. Moreover, the ability of sulfur/selenium substituted U18C6 ligands to stabilize the highly anisotropic HBPY-8 geometry makes them more promising towards engineering the equatorial ligand field compared to substituted saturated 18C6 ligands where the exodentate arrangement of the S lone pairs results in low symmetry. Magnetic relaxation analysis predicts a record barrier height over 2700 K for [Dy(C12H12O6)F2]+ and [Dy(C12H12S6)X2]+ (where X = F, OtBu and OSiPh3) complexes, nearly 23% higher than those of the top performing Dy(III) based SIMs in the literature.
Collapse
Affiliation(s)
- Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
39
|
Liu CM, Hao X, Li XL. Assembly of Homochiral Magneto-Optical Dy 6 Triangular Clusters by Fixing Carbon Dioxide in the Air. Molecules 2024; 29:3402. [PMID: 39064980 PMCID: PMC11279596 DOI: 10.3390/molecules29143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
A new hydrazone Schiff base bridging ligand (H2LSchiff (E)-N'-((1-hydroxynaphthalen-2-yl)methylene)pyrazine-2-carbohydrazide) and L/D-proline were used to construct a pair of homochiral Dy6 cluster complexes, [Dy6(CO3)(L-Pro)6(LSchiff)4(HLSchiff)2]·5DMA·2H2O (L-1, L-HPro = L-proline; DMA = N,N-dimethylacetamide) and [Dy6(CO3)(D-Pro)6(LSchiff)4(HLSchiff)2]·5DMA·2H2O (D-1, D-HPro = D-proline), which show a novel triangular Dy6 topology. Notably, the fixation of CO2 in the air formed a carbonato central bridge, playing a key role in assembling L-1/D-1. Magnetic measurements revealed that L-1/D-1 displays intramolecular ferromagnetic coupling and magnetic relaxation behaviours. Furthermore, L-1/D-1 shows a distinct magneto-optical Faraday effect and has a second harmonic generation (SHG) response (1.0 × KDP) at room temperature. The results show that the immobilization of CO2 provides a novel pathway for homochiral multifunctional 4f cluster complexes.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| |
Collapse
|
40
|
Ji L, Wang J, Li Z, Zhu X, Hu P. Chiral Star-Shaped [Co III3Ln III] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism. Molecules 2024; 29:3304. [PMID: 39064883 PMCID: PMC11279290 DOI: 10.3390/molecules29143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Two enantiomeric pairs of new 3d-4f heterometallic clusters have been synthesized from two enantiomer Schiff base derivatives: (R/S)-2-[(2-hydroxy-1-phenylethylimino)methyl] phenol (R-/S-H2L). The formulae of the series clusters are Co3Ln(R-L)6 (Ln = Dy (1R), Gd (2R)), Co3Ln (S-L)6 (Ln = Dy (1S), Gd (2S)), whose crystal structures and magnetic properties have been characterized. Structural analysis indicated that the above clusters crystallize in the chiral P213 group space. The central lanthanide ion has a coordination geometry of D3 surrounded by three [CoIII(L)2]- anions using six aliphatic oxygen atoms of L2- featuring a star-shaped [CoIII3LnIII] configuration. Magnetic measurements showed the presence of slow magnetic relaxation with an effective energy barrier of 22.33 K in the DyIII derivatives under a zero-dc field. Furthermore, the circular dichroism (CD) spectra of 1R and 1S confirmed their enantiomeric nature.
Collapse
Affiliation(s)
- Liudi Ji
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Juntao Wang
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Zeyu Li
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaoming Zhu
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Peng Hu
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
41
|
Wang YF, Wang YX, Yang QQ, Yin B. Auxiliary Rather Than Dominant. The Role of Direct Dy-S Coordination in Single-Molecule Magnet Unveiled via ab initio Study. J Phys Chem A 2024; 128:5285-5297. [PMID: 38950340 DOI: 10.1021/acs.jpca.4c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The role of Dy-S coordination in a single-molecule magnet (SMM) is investigated via an ab initio study in a group of mononuclear structures. The SMM performance of this group is well interpreted via a concise criterion consisting of long quantum tunneling of magnetization (QTM) time τQTM and high effective barrier for magnetic reversal Ueff. The best SMMs in the selected group, i.e., 1Dy (CCDC refcode: PUKFAF) and 2Dy (CCDC refcode: NIKSEJ), are just those holding the longest τQTM and the highest Ueff simultaneously. Further analysis based on the crystal field model and ab initio magneto-structural exploration indicates that the influence of Dy-S coordination on the SMM performance of 1Dy is weaker than that of axial Dy-O coordination. Thus, Dy-S coordination is more likely to play an auxiliary role rather than a dominant one. However, if placed at the suitable equatorial position, Dy-S coordination could provide important support for good SMM performance. Consequently, starting from 1Dy, we built two new structures where Dy-S coordination only exists at the equatorial position and two axial positions are occupied by strong Dy-O/Dy-F coordination. Compared to 1Dy and 2Dy, these new ones are predicted to have significantly longer τQTM and higher Ueff, as well as a nearly doubled blocking temperature TB. Thus, they are probable candidates of SMM having clearly improved performance.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Yu-Xi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Qi-Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| |
Collapse
|
42
|
Kwon H, McClain KR, Kragskow JGC, Staab JK, Ozerov M, Meihaus KR, Harvey BG, Choi ES, Chilton NF, Long JR. Coercive Fields Exceeding 30 T in the Mixed-Valence Single-Molecule Magnet (Cp iPr5) 2Ho 2I 3. J Am Chem Soc 2024; 146:18714-18721. [PMID: 38924484 PMCID: PMC11240248 DOI: 10.1021/jacs.4c06250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Mixed-valence dilanthanide complexes of the type (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Gd, Tb, Dy) featuring a direct Ln-Ln σ-bonding interaction have been shown to exhibit well-isolated high-spin ground states and, in the case of the Tb and Dy variants, a strong axial magnetic anisotropy that gives rise to a large magnetic coercivity. Here, we report the synthesis and characterization of two new mixed-valence dilanthanide compounds in this series, (CpiPr5)2Ln2I3 (1-Ln; Ln = Ho, Er). Both compounds feature a Ln-Ln bonding interaction, the first such interaction in any molecular compounds of Ho or Er. Like the Tb and Dy congeners, both complexes exhibit high-spin ground states arising from strong spin-spin coupling between the lanthanide 4f electrons and a single σ-type lanthanide-lanthanide bonding electron. Beyond these similarities, however, the magnetic properties of the two compounds diverge. In particular, 1-Er does not exhibit observable magnetic blocking or slow magnetic relaxation, while 1-Ho exhibits magnetic blocking below 28 K, which is the highest temperature among Ho-based single-molecule magnets, and a spin reversal barrier of 556(4) cm-1. Additionally, variable-field magnetization data collected for 1-Ho reveal a coercive field of greater than 32 T below 8 K, more than 6-fold higher than observed for the bulk magnets SmCo5 and Nd2Fe14B, and the highest coercive field reported to date for any single-molecule magnet or molecule-based magnetic material. Multiconfigurational calculations, supported by far-infrared magnetospectroscopy data, reveal that the stark differences in magnetic properties of 1-Ho and 1-Er arise from differences in the local magnetic anisotropy of the lanthanide centers.
Collapse
Affiliation(s)
| | - K Randall McClain
- US Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Jon G C Kragskow
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Jakob K Staab
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | | | - Benjamin G Harvey
- US Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Eun Sang Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Gusev A, Nemec I, Herchel R, Baluda Y, Babeshkin K, Efimov N, Kiskin M, Linert W. Lanthanide(III) SMMs with cationic and anionic complex fragments formed by a Schiff base: structure, luminescence, magnetic properties and ab initio calculations. Dalton Trans 2024; 53:11531-11542. [PMID: 38916931 DOI: 10.1039/d4dt01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The syntheses, structures, luminescence and magnetic properties of a new series of Ln(III) complexes of the formula [Ln(L)(H2O)2(DMF)2][Ln(L)2] (in which H2L is N,N'-ethylaminebis[1-phenyl-3-methyl-4-formylimino-2-pyrazoline-5-one]; Ln(III) - Gd (1), Tb (2), or Dy (3) ions). The crystal structures were determined by single-crystal X-ray diffraction measurements for all the above-mentioned complexes. The crystals of these compounds consist of cationic [Ln(L)(H2O)2(DMF)2]+ and anionic [Ln(L)2] moieties which form a 3D supramolecular architecture by the H-bonds and electrostatic forces. Luminescence emission in the visible range was observed for Tb(III) and Dy(III) compounds upon ligand sensitization, with moderate quantum yields of 3.2% for the Dy complex and 24.2% for the Tb analogue. Moreover the Tb(III) complex demonstrates triboluminescence activity. The dynamic magnetization studies revealed that 1 and 2 demonstrate field-induced magnetic relaxation with effective energy barriers, ΔE|kB = 24 K (for 1) and 85 K (for 2), while the Dy complex 3 exhibits slow relaxation of magnetization in zero field with an activation energy of 256 K.
Collapse
Affiliation(s)
- Alexey Gusev
- General and Physical Chemistry Department, V.I. Vernadsky Crimean Federal University, Vernadsky av. 4 295007, Simferopol, Russia.
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 77147 Olomouc, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 77147 Olomouc, Czech Republic
| | - Yuriy Baluda
- General and Physical Chemistry Department, V.I. Vernadsky Crimean Federal University, Vernadsky av. 4 295007, Simferopol, Russia.
| | - Konstantin Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Nikolay Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Wolfgang Linert
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria
| |
Collapse
|
44
|
Ahmed N, Sahu PP, Chakraborty A, Flores Gonzalez J, Ali J, Kalita P, Pointillart F, Singh SK, Chandrasekhar V. In situ hydrolysis of a carbophosphazene ligand leads to one-dimensional lanthanide coordination polymers. Synthesis, structure and dynamic magnetic studies. Dalton Trans 2024; 53:11563-11577. [PMID: 38921544 DOI: 10.1039/d4dt00582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An in situ hydrolysis of the P-Cl bonds of the carbophosphazene [{NC(NMe2)}2{NPCl2}] (LPCl2) in the presence of hydrated lanthanide(III) nitrates in a dichloromethane and methanol (2 : 1) solvent mixture afforded a series of novel 1D coordination polymers: [{Ln(LHPO2)3(NO3)2(CH3OH)(H2O)} (Cl)]n {where Ln(III) = Gd (1), Tb (2), Dy (3), or Er (4) and LHPO2 is the hydrolyzed carbophosphazene (LPCl2) ligand}. X-ray crystallographic analysis revealed that complexes 1-4 are isostructural and crystallized in the monoclinic crystal system having P21/c space group. The coordination polymers are formed because of the involvement of the geminal P(O)(OH) moieties of the carbophosphazene ligand. Each lanthanide(III) ion is 9-coordinate (9O) in a distorted muffin geometry. Magnetic measurements revealed that both DyIII and ErIII analogues exhibit field-induced single-molecule magnet (SMM) behavior at 0.8 kOe and 2.2 k Oe, respectively. At such dc fields, the dynamic magnetic susceptibility displays complex behavior with a triple magnetic relaxation contribution for 3, while two contributions were identified for 4. The observed static and dynamic magnetic behavior for complexes 1-4 were further rationalized with the aid of BS-DFT and CASSCF/SO-RASSI/SINGLE_ANISO calculations.
Collapse
Affiliation(s)
- Naushad Ahmed
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana-502285, India
| | - Amit Chakraborty
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Pankaj Kalita
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana-502285, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|
45
|
Jia H, Chen L, Yang D, Zou Y, Wang H, Yin B, Bai S, Zhang C, Yao J. Magnetic Switching of Second-Harmonic Generation from Single Cerium-Based Coordination Polymer Microcrystals. J Phys Chem Lett 2024; 15:6728-6735. [PMID: 38905137 DOI: 10.1021/acs.jpclett.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Conventional access and modulation of second-harmonic generation (SHG) require precise control of crystal orientation, which faces great mechanical challenges in the case of micro/nanocrystals. Here, we demonstrate the magnetic-field-tunable SHG performance of lanthanide coordination polymer (Ce-BTC CP) microcrystals through field-aligned orientations. The coordination of Ce ions and organic ligands constructs a noncentrosymmetric structure, which not only contributes to a favorable powder SHG efficiency 3.2 times larger than that of the benchmark KH2PO4 (KDP) but also endows the microcrystals with strong magnetic anisotropy. The SHG efficiency (∼0 to 10 × KDP) depends on the orientation of the crystallographic c-axis, whereas magnetic anisotropy always aligns the c-axis with the magnetic field at a specific angle. Accordingly, the SHG can be magnetically switched by field-induced alignments. The adsorption of dyes by Ce-BTC CPs further facilitates the magnetic switching of multicolor fluorescence that can be excited by the SHG. Our work provides a new pathway for achieving SHG modulation at the microscopic level.
Collapse
Affiliation(s)
- Hao Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfang Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongchun Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
46
|
Xin J, Hu Z, Yao YR, Ullah A, Han X, Xiang W, Jin H, Jiang Z, Yang S. Short Didysprosium Covalent Bond Enables High Magnetization Blocking Temperature of a Direct 4f-4f Coupled Dinuclear Single-Molecule Magnet. J Am Chem Soc 2024; 146:17600-17605. [PMID: 38869355 DOI: 10.1021/jacs.4c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Coupling two magnetic anisotropic lanthanide ions via a direct covalent bond is an effective way to realize high magnetization blocking temperature of single-molecule magnets (SMMs) by suppressing quantum tunneling of magnetization (QTM), whereas so far only single-electron lanthanide-lanthanide bonds with relatively large bond distances are stabilized in which coupling between lanthanide and the single electron dominates over weak direct 4f-4f coupling. Herein, we report for the first time synthesis of short Dy(II)-Dy(II) single bond (3.61 Å) confined inside a carbon cage in the form of an endohedral metallofullerene Dy2@C82. Such a direct Dy(II)-Dy(II) covalent bond renders a strong Dy-Dy antiferromagnetic coupling that effectively quenches QTM at zero magnetic field, thus opening up magnetic hysteresis up to 25 K using a field sweep rate of 25 Oe/s, concomitant with a high 100 s magnetization blocking temperature (TB,100s) of 27.2 K.
Collapse
Affiliation(s)
- Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Aman Ullah
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
47
|
Wang JL, Chen JT, Yan H, Wang TT, Zhang YQ, Sun WB. Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy. Dalton Trans 2024; 53:10982-10990. [PMID: 38874222 DOI: 10.1039/d4dt00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.
Collapse
Affiliation(s)
- Jia-Ling Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Ji-Tun Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Tian-Tian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| |
Collapse
|
48
|
Kuppusamy SK, Mizuno A, Kämmerer L, Salamon S, Heinrich B, Bailly C, Šalitroš I, Wende H, Ruben M. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Dalton Trans 2024; 53:10851-10865. [PMID: 38826041 DOI: 10.1039/d4dt00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lea Kämmerer
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Soma Salamon
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel UAR2042 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Heiko Wende
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| |
Collapse
|
49
|
Staab JK, Rahman MK, Chilton NF. Intramolecular bridging strategies to suppress two-phonon Raman spin relaxation in dysprosocenium single-molecule magnets. Phys Chem Chem Phys 2024; 26:17539-17548. [PMID: 38885049 PMCID: PMC11202312 DOI: 10.1039/d4cp01716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Dy(III) bis-cyclopentadienyl (Cp) sandwich compounds exhibit extremely strong single-ion magnetic anisotropy which imbues them with magnetic memory effects such as magnetic hysteresis, and has put them at the forefront of high-performance single-molecule magnets (SMMs). Owing to the great success of design principles focused on maximising the anisotropy barrier, ever higher Ueff values have been reported leading to significant slow down of single-phonon Orbach spin relaxation. However, anisotropy-based SMM design has largely ignored two-phonon Raman spin relaxation, which is still limiting the temperatures at which a memory effect can be observed. In this work, we study the suppression of Raman relaxation through covalent bridging of the Cp ligands by alkyl chains, testing the hypothesis that increasing the rigidity of the ligand framework results in a blue shift of low frequency vibrations in the first coordination sphere of the Dy(III) ion. This reshaping of the vibrational low-energy density of states (DOS) results in lower occupation of pseudo-acoustic phonons available to drive Raman relaxation at low temperatures. We simulate Orbach and Raman spin relaxation in a series of zero-, mono-, di- and tri-bridged [Dy(Cpttt)2]+ analogues fully ab initio, using a quantum mechanics (QM)/molecular mechanics (MM) condensed phase embedding protocol in a periodic solvent matrix as a generic and experimentally testable environment model that can include (pseudo-)acoustic phononic degrees of freedom. We show that this approach can simulate magnetic relaxation dynamics in the condensed phase for the existing non-bridged [Dy(Cpttt)2]+ compound with quantitative experimental accuracy. Subsequently, we find a significant slowing down of Raman relaxation can be achieved for the singly-bridged SMM, while the introduction of further bridges leads to faster relaxation. A key result being that we find the two-phonon Raman rates correlate with the purity of the first-excited Kramers doublet in terms of its mJ = ±13/2 content. Even though the bridging design principle is successful at progressively reshaping the low-energy DOS, the introduction of linker atoms in the equatorial plane successively degrades magnetic anisotropy, suggesting the importance of refined design of the linker chemistry. The accuracy of our results emphasises the value of a generic periodic solvent embedding model, such that it permits the modelling of molecular spin dynamics in the condensed phase without knowledge of a crystal structure. This allows the study of hypothetical molecules or aggregates under real-world conditions, which we expect to have utility beyond the field of molecular magnetism.
Collapse
Affiliation(s)
- Jakob K Staab
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Md Kholilur Rahman
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Research School of Chemistry, The Australian National University, Canberra 2601, ACT, Australia.
| |
Collapse
|
50
|
Melnikov AR, Ivanov MY, Samsonenko AA, Getmanov YV, Nikovskiy IA, Matiukhina AK, Zorina-Tikhonova EN, Voronina JK, Goloveshkin AS, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL, Fedin MV, Veber SL. Inductive detection of temperature-induced magnetization dynamics of molecular spin systems. J Chem Phys 2024; 160:224201. [PMID: 38856059 DOI: 10.1063/5.0211936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation. Another possible source of perturbation is a laser pulse that rapidly heats the sample. This approach has proven to be one of the most useful techniques for studying the kinetics and mechanism of chemical and biochemical reactions. Inspired by these works, we propose an inductive detection of temperature-induced magnetization dynamics as applied to the study of molecular spin systems and describe the general design and construction of a particular induction probehead, taking into account the constraints imposed by the cryostat and electromagnet. To evaluate the performance, several coordination compounds of VO2+, Co2+, and Dy3+ were investigated using low-energy pulses of a terahertz free electron laser of the Novosibirsk free electron laser facility as a heat source. All measured magnetization dynamics were qualitatively or quantitatively described using a proposed basic theoretical model and compared with the data obtained by alternating current magnetometry. Based on the results of the research, the possible scope of applications of inductive detection and its advantages and disadvantages in comparison with standard methods are discussed.
Collapse
Affiliation(s)
- Anatoly R Melnikov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Mikhail Yu Ivanov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
| | - Arkady A Samsonenko
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Yaroslav V Getmanov
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Igor A Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russian Federation
| | - Anna K Matiukhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Ekaterina N Zorina-Tikhonova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Julia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Alexander S Goloveshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russian Federation
| | - Konstantin A Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Matvey V Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Sergey L Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| |
Collapse
|