1
|
Uzoigwe CE. Christopher Columbus' flu was different to ours. Proc Natl Acad Sci U S A 2024; 121:e2414921121. [PMID: 39480844 DOI: 10.1073/pnas.2414921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
|
2
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Rodríguez-Varela R, Yaka R, Pochon Z, Sanchez-Pinto I, Solaun JL, Naidoo T, Guinet B, Pérez-Ramallo P, Lagerholm VK, de Anca Prado V, Valdiosera C, Krzewińska M, Herrasti L, Azkarate A, Götherström A. Five centuries of consanguinity, isolation, health, and conflict in Las Gobas: A Northern Medieval Iberian necropolis. SCIENCE ADVANCES 2024; 10:eadp8625. [PMID: 39196943 PMCID: PMC11352919 DOI: 10.1126/sciadv.adp8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/30/2024]
Abstract
Between the 8th and 11th centuries CE, the Iberian Peninsula underwent profound upheaval due to the Umayyad invasion against the Visigoths, resulting in population shifts and lasting demographic impacts. Our understanding of this period is hindered by limited written sources and few archaeogenetic studies. We analyzed 33 individuals from Las Gobas, a necropolis in northern Spain, spanning the 7th to 11th centuries. By combining archaeological and osteological data with kinship, metagenomics, and ancestry analyses, we investigate conflicts, health, and demography of these individuals. We reveal intricate family relationships and genetic continuity within a consanguineous population while also identifying several zoonoses indicative of close interactions with animals. Notably, one individual was infected with a variola virus phylogenetically clustering with the northern European variola complex between ~885 and 1000 CE. Last, we did not detect a significant increase of North African or Middle East ancestries over time since the Islamic conquest of Iberia, possibly because this community remained relatively isolated.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Reyhan Yaka
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Iban Sanchez-Pinto
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - José Luis Solaun
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Stockholm, Sweden
| | - Benjamin Guinet
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Patxi Pérez-Ramallo
- Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
- isoTROPIC Research Group, Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | | | - Cristina Valdiosera
- Universidad de Burgos, Departamento de Historia, Geografía y Comunicaciones, Burgos, Spain
| | - Maja Krzewińska
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Lourdes Herrasti
- Departamento de Antropología, Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
| | - Agustín Azkarate
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
5
|
Chi H, Zhao SQ, Chen RY, Suo XX, Zhang RR, Yang WH, Zhou DS, Fang M, Ying B, Deng YQ, Qin CF. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther 2024; 9:69. [PMID: 38531869 DOI: 10.1038/s41392-024-01766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Ru-Yi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Xing-Xing Suo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Min Fang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd, Suzhou, 215123, Jiangsu, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
6
|
Crawford RR, Hodson CM, Errickson D. Guidance for the identification of bony lesions related to smallpox. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2024; 44:65-77. [PMID: 38159426 DOI: 10.1016/j.ijpp.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This research aimed to address the underrepresentation of smallpox (osteomyelitis variolosa) in palaeopathology, providing a synthesis of published literature and presenting guidance for the identification of osteomyelitis variolosa in non-adult and adult skeletal remains. MATERIALS AND METHODS Literature regarding smallpox and published reports of individuals with osteomyelitis variolosa were synthesised and critiqued to produce clear diagnostic criteria for the identification of smallpox osteologically. RESULTS Associated osteological changes begin in non-adults, where skeletal morphology is rapidly changing. Characteristic lesions associated with non-adult osteomyelitis variolosa include inflammation and destructive remodelling of long-bone joints and metaphyses. Where childhood infection was survived, residual osteomyelitis variolosa lesions should also be visible in adults in the osteoarchaeological record. CONCLUSIONS Despite long-term clinical recognition, only limited osteological and archaeological evidence of osteomyelitis variolosa has yet emerged. With improved diagnostic criteria, osteomyelitis variolosa may be more frequently identified. SIGNIFICANCE This is the first synthesis of osteomyelitis variolosa encompassing both clinical and palaeopathological literature, providing detailed guidance for the identification of osteomyelitis variolosa in skeletal remains. It will lead to the increased identification of smallpox osteologically. LIMITATIONS Differential diagnoses should always be considered. The archaeological longevity of smallpox, and the potential for archaeological VARV to cause clinically recognised smallpox, is currently unknown. Characteristic bone changes in the archaeological record may be other, extinct human-infecting-orthopoxviruses. SUGGESTIONS FOR FURTHER RESEARCH Further consideration of the implications of age of smallpox contraction on bony pathology: whether epiphyses are affected differently due to state of fusion. Reassessment of individuals previously identified with smallpox-consistent lesions, but otherwise diagnosed.
Collapse
Affiliation(s)
- Rosie R Crawford
- Cranfield Forensic Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK; McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK.
| | - Claire M Hodson
- Department of Archaeology, University of Reading, Whiteknights, Reading RG6 6AB, UK; Department of Archaeology, Durham University, Lower Mount Joy, South Rd, Durham DH1 3LE, UK
| | - David Errickson
- Cranfield Forensic Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK
| |
Collapse
|
7
|
Siddalingaiah N, Dhanya K, Lodha L, Pattanaik A, Mani RS, Ma A. Tracing the journey of poxviruses: insights from history. Arch Virol 2024; 169:37. [PMID: 38280957 DOI: 10.1007/s00705-024-05971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/29/2024]
Abstract
The historical significance of the poxviruses is profound, largely due to the enduring impact left by smallpox virus across many centuries. The elimination of smallpox is a remarkable accomplishment in the history of science and medicine, with centuries of devoted efforts resulting in the development and widespread administration of smallpox vaccines. This review provides insight into the pivotal historical events involving medically significant poxviruses. Understanding the remarkable saga of combatting smallpox is crucial, serving as a guidepost for potential future encounters with poxvirus infections. There is a continual need for vigilant observation of poxvirus evolution and spillover from animals to humans, considering the expansive range of susceptible hosts. The recent occurrence of monkeypox cases in non-endemic countries stands as a stark reminder of the ease with which infections can be disseminated through international travel and trade. This backdrop encourages introspection about our journey and the current status of poxvirus research.
Collapse
Affiliation(s)
- Nayana Siddalingaiah
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - K Dhanya
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Amrita Pattanaik
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Ashwini Ma
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| |
Collapse
|
8
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Molecular evolution of 2022 multi-country outbreak-causing monkeypox virus Clade IIb. iScience 2024; 27:108601. [PMID: 38188513 PMCID: PMC10770499 DOI: 10.1016/j.isci.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The monkeypox virus (Mpoxv) Clade IIb viruses that caused an outbreak in 2017-18 in Nigeria and its genetically related viruses have been detected in many countries and caused multi-country outbreak in 2022. Since the pandemic-causing Mpoxv Clade IIb viruses are closely related to Clade IIa viruses which mostly cause endemic, the Clade IIb Mpoxv might have certain specific genetic variations that are still largely unknown. Here, we have systematically analyzed genetic alterations in different clades of Mpox viruses. The results suggest that the Mpoxv Clade IIb have genetic variations in terms of genomic gaps, frameshift mutations, in-frame nonsense mutations, amino acid tandem repeats, and APOBEC3 mutations. Further, we observed specific genetic variations in the multiple genes specific for Clade I and Clade IIb, and exclusive genetic variations for Clade IIa and Clade IIb. Collectively, findings shed light on the evolution and genetic variations in the outbreak of 2022 causing Mpoxv Clade IIb.
Collapse
Affiliation(s)
- Perumal Arumugam Desingu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | | | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Vepery, Chennai 600007, Tamil Nadu
- Veterinary and Animal Sciences University (TANUVAS)
| | | |
Collapse
|
9
|
Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Molecular Virology of Orthopoxviruses with Special Reference to Monkeypox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:111-124. [PMID: 38801574 DOI: 10.1007/978-3-031-57165-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses are large (200-450 nm) and enveloped viruses carrying double-stranded DNA genome with an epidermal cell-specific adaptation. The genus Orthopoxvirus within Poxviridae family constitutes several medically and veterinary important viruses including variola (smallpox), vaccinia, monkeypox virus (MPXV), and cowpox. The monkeypox disease (mpox) has recently emerged as a public health emergency caused by MPXV. An increasing number of human cases of MPXV have been documented in non-endemic nations without any known history of contact with animals brought in from endemic and enzootic regions, nor have they involved travel to an area where the virus was typically prevalent. Here, we review the MPXV replication, virus pathobiology, mechanism of viral infection transmission, virus evasion the host innate immunity and antiviral therapies against Mpox. Moreover, preventive measures including vaccination were discussed and concluded that cross-protection against MPXV may be possible using antibodies that are directed against an Orthopoxvirus. Despite the lack of a specialised antiviral medication, several compounds such as Cidofovir and Ribavirin warrant consideration against mpox.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Rania F El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Mustafa O Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
10
|
Fiddaman SR, Dimopoulos EA, Lebrasseur O, du Plessis L, Vrancken B, Charlton S, Haruda AF, Tabbada K, Flammer PG, Dascalu S, Marković N, Li H, Franklin G, Symmons R, Baron H, Daróczi-Szabó L, Shaymuratova DN, Askeyev IV, Putelat O, Sana M, Davoudi H, Fathi H, Mucheshi AS, Vahdati AA, Zhang L, Foster A, Sykes N, Baumberg GC, Bulatović J, Askeyev AO, Askeyev OV, Mashkour M, Pybus OG, Nair V, Larson G, Smith AL, Frantz LAF. Ancient chicken remains reveal the origins of virulence in Marek's disease virus. Science 2023; 382:1276-1281. [PMID: 38096384 DOI: 10.1126/science.adg2238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.
Collapse
Affiliation(s)
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS/Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Sophy Charlton
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Ashleigh F Haruda
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabbada
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | - Hannah Li
- Institute of Immunity and Transplantation, University College London, London, UK
| | | | | | | | | | - Dilyara N Shaymuratova
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Igor V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | | | - Maria Sana
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Homa Fathi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Amir Saed Mucheshi
- Department of Art and Architecture, Payame Noor University (PNU), Tehran, Iran
| | - Ali Akbar Vahdati
- Iranian Ministry of Cultural Heritage, Tourism, and Handicrafts, North Khorasan Office, Iran
| | - Liangren Zhang
- Department of Archaeology, School of History, Nanjing University, China
| | | | - Naomi Sykes
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Gabrielle Cass Baumberg
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jelena Bulatović
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Arthur O Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Oleg V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- CNRS, National Museum Natural History Paris, Paris, France
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Venugopal Nair
- Department of Biology, University of Oxford, Oxford, UK
- Viral Oncogenesis Group, Pirbright Institute, Woking, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Laurent A F Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universitat, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Houldcroft CJ, Underdown S. Infectious disease in the Pleistocene: Old friends or old foes? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:513-531. [PMID: 38006200 DOI: 10.1002/ajpa.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 11/26/2023]
Abstract
The impact of endemic and epidemic disease on humans has traditionally been seen as a comparatively recent historical phenomenon associated with the Neolithisation of human groups, an increase in population size led by sedentarism, and increasing contact with domesticated animals as well as species occupying opportunistic symbiotic and ectosymbiotic relationships with humans. The orthodox approach is that Neolithisation created the conditions for increasing population size able to support a reservoir of infectious disease sufficient to act as selective pressure. This orthodoxy is the result of an overly simplistic reliance on skeletal data assuming that no skeletal lesions equated to a healthy individual, underpinned by the assumption that hunter-gatherer groups were inherently healthy while agricultural groups acted as infectious disease reservoirs. The work of van Blerkom, Am. J. Phys. Anthropol., vol. suppl 37 (2003), Wolfe et al., Nature, vol. 447 (2007) and Houldcroft and Underdown, Am. J. Phys. Anthropol., vol. 160, (2016) has changed this landscape by arguing that humans and pathogens have long been fellow travelers. The package of infectious diseases experienced by our ancient ancestors may not be as dissimilar to modern infectious diseases as was once believed. The importance of DNA, from ancient and modern sources, to the study of the antiquity of infectious disease, and its role as a selective pressure cannot be overstated. Here we consider evidence of ancient epidemic and endemic infectious diseases with inferences from modern and ancient human and hominin DNA, and from circulating and extinct pathogen genomes. We argue that the pandemics of the past are a vital tool to unlock the weapons needed to fight pandemics of the future.
Collapse
Affiliation(s)
| | - Simon Underdown
- Human Origins and Palaeoenvironmental Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
O’Toole Á, Neher RA, Ndodo N, Borges V, Gannon B, Gomes JP, Groves N, King DJ, Maloney D, Lemey P, Lewandowski K, Loman N, Myers R, Omah IF, Suchard MA, Worobey M, Chand M, Ihekweazu C, Ulaeto D, Adetifa I, Rambaut A. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science 2023; 382:595-600. [PMID: 37917680 PMCID: PMC10880385 DOI: 10.1126/science.adg8116] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Historically, mpox has been characterized as an endemic zoonotic disease that transmits through contact with the reservoir rodent host in West and Central Africa. However, in May 2022, human cases of mpox were detected spreading internationally beyond countries with known endemic reservoirs. When the first cases from 2022 were sequenced, they shared 42 nucleotide differences from the closest mpox virus (MPXV) previously sampled. Nearly all these mutations are characteristic of the action of APOBEC3 deaminases, host enzymes with antiviral function. Assuming APOBEC3 editing is characteristic of human MPXV infection, we developed a dual-process phylogenetic molecular clock that-inferring a rate of ~6 APOBEC3 mutations per year-estimates that MPXV has been circulating in humans since 2016. These observations of sustained MPXV transmission present a fundamental shift to the perceived paradigm of MPXV epidemiology as a zoonosis and highlight the need for revising public health messaging around MPXV as well as outbreak management and control.
Collapse
Affiliation(s)
- Áine O’Toole
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
| | - Richard A. Neher
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics; Basel, Switzerland
| | - Nnaemeka Ndodo
- Nigeria Centers for Disease Control and Prevention; Abuja, Nigeria
| | - Vitor Borges
- National Institute of Health Doutor Ricardo Jorge (INSA); Lisbon, Portugal
| | - Ben Gannon
- UK Health Security Agency, Porton Down; Salisbury, United Kingdom
| | - João Paulo Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA); Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Natalie Groves
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - David J King
- CBR Division, Defence Science and Technology Laboratory; Salisbury SP4 0JQ, United Kingdom
| | - Daniel Maloney
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven; Leuven, Belgium
| | | | - Nicholas Loman
- UK Health Security Agency; London, E14 5EA, United Kingdom
- University of Birmingham; Birmingham, United Kingdom
| | - Richard Myers
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - Ifeanyi F. Omah
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
- Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California; Los Angeles, California, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona; Tucson, Arizona, USA
| | - Meera Chand
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - Chikwe Ihekweazu
- Nigeria Centers for Disease Control and Prevention; Abuja, Nigeria
| | - David Ulaeto
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - Ifedayo Adetifa
- Nigeria Centers for Disease Control and Prevention; Abuja, Nigeria
| | - Andrew Rambaut
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
13
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
14
|
Ndodo N, Ashcroft J, Lewandowski K, Yinka-Ogunleye A, Chukwu C, Ahmad A, King D, Akinpelu A, Maluquer de Motes C, Ribeca P, Sumner RP, Rambaut A, Chester M, Maishman T, Bamidele O, Mba N, Babatunde O, Aruna O, Pullan ST, Gannon B, Brown CS, Ihekweazu C, Adetifa I, Ulaeto DO. Distinct monkeypox virus lineages co-circulating in humans before 2022. Nat Med 2023; 29:2317-2324. [PMID: 37710003 PMCID: PMC10504077 DOI: 10.1038/s41591-023-02456-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
The 2022 global mpox outbreak raises questions about how this zoonotic disease established effective human-to-human transmission and its potential for further adaptation. The 2022 outbreak virus is related to an ongoing outbreak in Nigeria originally reported in 2017, but the evolutionary path linking the two remains unclear due to a lack of genomic data between 2018, when virus exportations from Nigeria were first recorded, and 2022, when the global mpox outbreak began. Here, 18 viral genomes obtained from patients across southern Nigeria in 2019-2020 reveal multiple lineages of monkeypox virus (MPXV) co-circulated in humans for several years before 2022, with progressive accumulation of mutations consistent with APOBEC3 activity over time. We identify Nigerian A.2 lineage isolates, confirming the lineage that has been multiply exported to North America independently of the 2022 outbreak originated in Nigeria, and that it has persisted by human-to-human transmission in Nigeria for more than 2 years before its latest exportation. Finally, we identify a lineage-defining APOBEC3-style mutation in all A.2 isolates that disrupts gene A46R, encoding a viral innate immune modulator. Collectively, our data demonstrate MPXV capacity for sustained diversification within humans, including mutations that may be consistent with established mechanisms of poxvirus adaptation.
Collapse
Affiliation(s)
| | - Jonathan Ashcroft
- UK Public Health Rapid Support Team, UK Health Security Agency/London School of Hygiene & Tropical Medicine, London, UK
| | - Kuiama Lewandowski
- UK Health Security Agency, Research & Evaluation Services, Porton Down, UK
| | | | | | - Adama Ahmad
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | - David King
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | | | - Carlos Maluquer de Motes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Paolo Ribeca
- UK Health Security Agency, London, UK
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Michael Chester
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Tom Maishman
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | | | - Nwando Mba
- Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Olusola Aruna
- UK Health Security Agency, International Health Regulations (IHR) Strengthening Project, British High Commission, Abuja, Nigeria
| | - Steven T Pullan
- UK Health Security Agency, Research & Evaluation Services, Porton Down, UK
| | - Benedict Gannon
- UK Public Health Rapid Support Team, UK Health Security Agency/London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | - David O Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK.
| |
Collapse
|
15
|
Miner KR, Hollis JR, Miller CE, Uckert K, Douglas TA, Cardarelli E, Mackelprang R. Earth to Mars: A Protocol for Characterizing Permafrost in the Context of Climate Change as an Analog for Extraplanetary Exploration. ASTROBIOLOGY 2023; 23:1006-1018. [PMID: 37566539 PMCID: PMC10510695 DOI: 10.1089/ast.2022.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/02/2023] [Indexed: 08/13/2023]
Abstract
Abstract Permafrost is important from an exobiology and climate change perspective. It serves as an analog for extraplanetary exploration, and it threatens to emit globally significant amounts of greenhouse gases as it thaws due to climate change. Viable microbes survive in Earth's permafrost, slowly metabolizing and transforming organic matter through geologic time. Ancient permafrost microbial communities represent a crucial resource for gaining novel insights into survival strategies adopted by extremotolerant organisms in extraplanetary analogs. We present a proof-of-concept study on ∼22 Kya permafrost to determine the potential for coupling Raman and fluorescence biosignature detection technology from the NASA Mars Perseverance rover with microbial community characterization in frozen soils, which could be expanded to other Earth and off-Earth locations. Besides the well-known utility for biosignature detection and identification, our results indicate that spectral mapping of permafrost could be used to rapidly characterize organic carbon characteristics. Coupled with microbial community analyses, this method has the potential to enhance our understanding of carbon degradation and emissions in thawing permafrost. Further, spectroscopy can be accomplished in situ to mitigate sample transport challenges and in assessing and prioritizing frozen soils for further investigation. This method has broad-range applicability to understanding microbial communities and their associations with biosignatures and soil carbon and mineralogic characteristics relevant to climate science and astrobiology.
Collapse
Affiliation(s)
- Kimberley R. Miner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles E. Miller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Emily Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
16
|
Brüssow H. Pandemic potential of poxviruses: From an ancient killer causing smallpox to the surge of monkeypox. Microb Biotechnol 2023; 16:1723-1735. [PMID: 37335284 PMCID: PMC10443337 DOI: 10.1111/1751-7915.14294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023] Open
Abstract
Smallpox caused by the variola virus (VARV) was one of the greatest infectious killers of mankind. Historical records trace back smallpox for at least a millennium while phylogenetic analysis dated the ancestor of VARV circulating in the 20th century into the 19th century. The discrepancy was solved by the detection of distinct VARV sequences first in 17th-century mummies and then in human skeletons dated to the 7th century. The historical records noted marked variability in VARV virulence which scientists tentatively associated with gene losses occurring when broad-host poxviruses narrow their host range to a single host. VARV split from camel and gerbil poxviruses and had no animal reservoir, a prerequisite for its eradication led by WHO. The search for residual pockets of VARV led to the discovery of the monkeypox virus (MPXV); followed by the detection of endemic smallpox-like monkeypox (mpox) disease in Africa. Mpox is caused by less virulent clade 2 MPXV in West Africa and more virulent clade 1 MPXV in Central Africa. Exported clade 2 mpox cases associated with the pet animal trade were observed in 2003 in the USA. In 2022 a world-wide mpox epidemic infecting more than 80,000 people was noted, peaking in August 2022 although waning rapidly. The cases displayed particular epidemiological characteristics affecting nearly exclusively young men having sex with men (MSM). In contrast, mpox in Africa mostly affects children by non-sexual transmission routes possibly from uncharacterized animal reservoirs. While African children show a classical smallpox picture, MSM mpox cases show few mostly anogenital lesions, low-hospitalization rates and 140 fatal cases worldwide. MPXV strains from North America and Europe are closely related, derived from clade 2 African MPXV. Distinct transmission mechanisms are more likely causes for the epidemiological and clinical differences between endemic African cases and the 2022 epidemic cases than viral traits.
Collapse
Affiliation(s)
- Harald Brüssow
- Laboratory of Gene Technology, Department of BiosystemsKU LeuvenLeuvenBelgium
| |
Collapse
|
17
|
Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. Evolutionary potential of the monkeypox genome arising from interactions with human APOBEC3 enzymes. Virus Evol 2023; 9:vead047. [PMID: 37577211 PMCID: PMC10422979 DOI: 10.1093/ve/vead047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational 'hotspots', can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at TC motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of TC hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more TC hotspots than expected by chance (over-representation) and fewer GC hotspots than expected (under-representation). These results suggest the MPXV genome: (1) may have evolved in a host with a particular APOBEC GC hotspot preference, (2) has inverted terminal repeat (ITR) regions-which may be exposed to APOBEC3 for longer during viral replication-and longer genes likely to evolve faster, and therefore (3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.
Collapse
Affiliation(s)
- Brenda Delamonica
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Liliana Davalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. Evolutionary potential of the monkeypox genome arising from interactions with human APOBEC3 enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546779. [PMID: 37425914 PMCID: PMC10326987 DOI: 10.1101/2023.06.27.546779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational "hotspots," can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at T C motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of T C hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more T C hotspots than expected by chance (over-representation) and fewer G C hotspots than expected (under-representation). These results suggest the MPXV genome: 1) may have evolved in a host with a particular APOBEC G C hotspot preference, 2) has inverted terminal repeat (ITR) regions -which may be exposed to APOBEC3 for longer during viral replication- and longer genes likely to evolve faster, and therefore 3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.
Collapse
Affiliation(s)
- Brenda Delamonica
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Liliana Davalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
19
|
Zhao X, Zhang X, Liu Y, Pang S, He C. Asymmetrical Methylene-Bridge Linked Fully Iodinated Azoles as Energetic Biocidal Materials with Improved Thermal Stability. Int J Mol Sci 2023; 24:10711. [PMID: 37445889 DOI: 10.3390/ijms241310711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The instability and volatility of iodine is high, however, effective iodine biocidal species can be readily stored in iodinated azoles and then be released upon decomposition or detonation. Iodine azoles with high iodine content and high thermal stability are highly desired. In this work, the strategy of methylene bridging with asymmetric structures of 3,4,5-triiodo-1-H-pyrazole (TIP), 2,4,5-triiodo-1H-imidazol (TIM), and tetraiodo-1H-pyrrole (TIPL) are proposed. Two highly stable fully iodinated methylene-bridged azole compounds 3,4,5-triiodo-1-((2,4,5-triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-1-yl)methyl)-1H-pyrazole (4) were obtained with high iodine content and excellent thermal stability (iodine content: 84.27% for compound 3 and 86.48% for compound 4; Td: 3: 285 °C, 4: 260 °C). Furthermore, their composites with high-energy oxidant ammonium perchlorate (AP) were designed. The combustion behavior and thermal decomposition properties of the formulations were tested and evaluated. This work may open a new avenue to develop advanced energetic biocidal materials with well-balanced energetic and biocidal properties and versatile functionality.
Collapse
Affiliation(s)
- Xinyuan Zhao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xun Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Yan Liu
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chunlin He
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| |
Collapse
|
20
|
Wang B, Cao B, Bei ZC, Xu L, Zhang D, Zhao L, Song Y, Wang H. Disulfide-incorporated lipid prodrugs of cidofovir: Synthesis, antiviral activity, and release mechanism. Eur J Med Chem 2023; 258:115601. [PMID: 37390509 DOI: 10.1016/j.ejmech.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The double-stranded DNA (dsDNA) viruses represented by adenovirus and monkeypox virus, have attracted widespread attention due to their high infectivity. In 2022, the global outbreak of mpox (or monkeypox) has led to the declaration of a Public Health Emergency of International Concern. However, to date therapeutics approved for dsDNA virus infections remain limited and there are still no available treatments for some of these diseases. The development of new therapies for treating dsDNA infection is in urgent need. In this study, we designed and synthesized a series of novel disulfide-incorporated lipid conjugates of cidofovir (CDV) as potential candidates against dsDNA viruses including vaccinia virus (VACV) and adenovirus (AdV) 5. The structure-activity relationship analyses revealed that the optimum linker moiety was C2H4 and the optimum aliphatic chain length was 18 or 20 atoms. Among the synthesized conjugates, 1c exhibited more potency against VACV (IC50 = 0.0960 μM in Vero cells; IC50 = 0.0790 μM in A549 cells) and AdV5 (IC50 = 0.1572 μM in A549 cells) than brincidofovir (BCV). The transmission electron microscopy (TEM) images revealed that the conjugates could form micelles in phosphate buffer. The stability studies in the GSH environment demonstrated that the formation of micelles in phosphate buffer might protect the disulfide bond from glutathione (GSH) reduction. The dominant means of the synthetic conjugates to liberate the parent drug CDV was by enzymatic hydrolysis. Furthermore, the synthetic conjugates remained sufficiently stable in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and pooled human plasma, which indicated the possibility for oral administration. These results indicated 1c may be a broad-spectrum antiviral candidate against dsDNA viruses with potential oral administration. Moreover, modification of the aliphatic chain attached to the nucleoside phosphonate group was involved as an efficient prodrug strategy for the development of potent antiviral candidates.
Collapse
Affiliation(s)
- Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Binwang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhu-Chun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yabin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hongquan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
21
|
Xue W, Li T, Gu Y, Li S, Xia N. Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions. Expert Rev Vaccines 2023. [PMID: 37339445 DOI: 10.1080/14760584.2023.2227699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The escalating global changes have fostered conditions for the expansion and transmission of diverse biological factors, leading to the rise of emerging and reemerging infectious diseases. Complex viral infections, such as COVID-19, influenza, HIV, and Ebola, continue to surface, necessitating the development of effective vaccine technologies. AREAS COVERED This review article highlights recent advancements in molecular biology, virology, and genomics that have propelled the design and development of innovative molecular tools. These tools have promoted new vaccine research platforms and directly improved vaccine efficacy. The review summarizes the cutting-edge molecular engineering tools used in creating novel vaccines and explores the rapidly expanding molecular tools landscape and potential directions for future vaccine development. EXPERT OPINION The strategic application of advanced molecular engineering tools can address conventional vaccine limitations, enhance the overall efficacy of vaccine products, promote diversification in vaccine platforms, and form the foundation for future vaccine development. Prioritizing safety considerations of these novel molecular tools during vaccine development is crucial.
Collapse
Affiliation(s)
- Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, China
| |
Collapse
|
22
|
Liang J, Wu Y, Lan K, Dong C, Wu S, Li S, Zhou HB. Antiviral PROTACs: Opportunity borne with challenge. CELL INSIGHT 2023; 2:100092. [PMID: 37398636 PMCID: PMC10308200 DOI: 10.1016/j.cellin.2023.100092] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 07/04/2023]
Abstract
Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.
Collapse
Affiliation(s)
- Jinsen Liang
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yihe Wu
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chune Dong
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shu Li
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
23
|
Brinkmann A, Kohl C, Pape K, Bourquain D, Thürmer A, Michel J, Schaade L, Nitsche A. Extensive ITR expansion of the 2022 Mpox virus genome through gene duplication and gene loss. Virus Genes 2023:10.1007/s11262-023-02002-1. [PMID: 37256469 DOI: 10.1007/s11262-023-02002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023]
Abstract
Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.
Collapse
Affiliation(s)
- Annika Brinkmann
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Katharina Pape
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Daniel Bourquain
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology, Methodology and Research Infrastructure, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Janine Michel
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
24
|
Kun Á, Hubai AG, Král A, Mokos J, Mikulecz BÁ, Radványi Á. Do pathogens always evolve to be less virulent? The virulence–transmission trade-off in light of the COVID-19 pandemic. Biol Futur 2023:10.1007/s42977-023-00159-2. [PMID: 37002448 PMCID: PMC10066022 DOI: 10.1007/s42977-023-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
AbstractThe direction the evolution of virulence takes in connection with any pathogen is a long-standing question. Formerly, it was theorized that pathogens should always evolve to be less virulent. As observations were not in line with this theoretical outcome, new theories emerged, chief among them the transmission–virulence trade-off hypotheses, which predicts an intermediate level of virulence as the endpoint of evolution. At the moment, we are very much interested in the future evolution of COVID-19’s virulence. Here, we show that the disease does not fulfill all the assumptions of the hypothesis. In the case of COVID-19, a higher viral load does not mean a higher risk of death; immunity is not long-lasting; other hosts can act as reservoirs for the virus; and death as a consequence of viral infection does not shorten the infectious period. Consequently, we cannot predict the short- or long-term evolution of the virulence of COVID-19.
Collapse
|
25
|
Forni D, Molteni C, Cagliani R, Sironi M. Geographic Structuring and Divergence Time Frame of Monkeypox Virus in the Endemic Region. J Infect Dis 2023; 227:742-751. [PMID: 35831941 PMCID: PMC10044091 DOI: 10.1093/infdis/jiac298] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Monkeypox is an emerging zoonosis endemic to Central and West Africa. Monkeypox virus (MPXV) is genetically structured in 2 major clades (clades 1 and 2/3), but its evolution is poorly explored. METHODS We retrieved MPXV genomes from public repositories and we analyzed geographic patterns using STRUCTURE. Molecular dating was performed using a using a Bayesian approach. RESULTS We show that the population transmitted in West Africa (clades 2/3) experienced limited drift. Conversely, clade 1 (transmitted in the Congo Basin) possibly underwent a bottleneck or founder effect. Depending on the model used, we estimated that the 2 clades separated ∼560-860 (highest posterior density: 450-960) years ago, a period characterized by expansions and contractions of rainforest areas, possibly creating the ecological conditions for the MPXV reservoir(s) to migrate. In the Congo Basin, MPXV diversity is characterized by 4 subpopulations that show no geographic structuring. Conversely, clades 2/3 are spatially structured with 2 populations located West and East of the Dahomey Gap. CONCLUSIONS The distinct histories of the 2 clades may derive from differences in MPXV ecology in West and Central Africa.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Cristian Molteni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
26
|
Brennan G, Stoian AMM, Yu H, Rahman MJ, Banerjee S, Stroup JN, Park C, Tazi L, Rothenburg S. Molecular Mechanisms of Poxvirus Evolution. mBio 2023; 14:e0152622. [PMID: 36515529 PMCID: PMC9973261 DOI: 10.1128/mbio.01526-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.
Collapse
Affiliation(s)
- Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ana M. M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Huibin Yu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - M. Julhasur Rahman
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Shefali Banerjee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
27
|
Forni D, Molteni C, Cagliani R, Clerici M, Sironi M. Analysis of variola virus molecular evolution suggests an old origin of the virus consistent with historical records. Microb Genom 2023; 9:mgen000932. [PMID: 36748699 PMCID: PMC9973844 DOI: 10.1099/mgen.0.000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Archaeovirology efforts provided a rich portrait of the evolutionary history of variola virus (VARV, the cause of smallpox), which was characterized by lineage extinctions and a relatively recent origin of the virus as a human pathogen (~1700 years ago, ya). This contrasts with historical records suggesting the presence of smallpox as early as 3500 ya. By performing an analysis of ancestry components in modern, historic, and ancient genomes, we unveil the progressive drifting of VARV lineages from a common ancestral population and we show that a small proportion of Viking Age ancestry persisted until the 18th century. After the split of the P-I and P-II lineages, the former experienced a severe bottleneck. With respect to the emergence of VARV as a human pathogen, we revise time estimates by accounting for the time-dependent rate phenomenon. We thus estimate that VARV emerged earlier than 3800 ya, supporting its presence in ancient societies, as pockmarked Egyptian mummies suggest.
Collapse
Affiliation(s)
- Diego Forni
- IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | | | | | - Mario Clerici
- University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | | |
Collapse
|
28
|
Desingu PA, Rubeni TP, Sundaresan NR. Evolution of monkeypox virus from 2017 to 2022: In the light of point mutations. Front Microbiol 2022; 13:1037598. [PMID: 36590408 PMCID: PMC9795006 DOI: 10.3389/fmicb.2022.1037598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Monkeypox virus (MPXV) causing multi-country outbreak-2022 is related to viruses caused outbreak-2017-2018 in West Africa. Still not fully understood which proteins of the MPXV discovered in Nigeria in 2017 have mutated through different lineages to the extent that it could cause a multi-country outbreak in 2022; similarly, codon usage bias, host adaptation indices, and the role of selection or mutation pressure in the mutated genes are also not fully studied. Here we report that according to the available sequence data this monkeypox virus acquires point mutations in multiple proteins in each period, and these point mutations accumulate and become a virus that can root outbreak-2022. Viruses exported from Nigeria to Singapore, Israel, and the United Kingdom in 2018-2019 were developed as evolutionary ancestors to B.1 viruses (MPXVs causing multi-country outbreak-2022) through MPXV/United States/2021/MD virus. Although these exported viruses have different amino acid mutations in different proteins, amino acid mutations in 10 proteins are common among them. The MPXV-United Kingdom-P2 virus evolved with only mutations in these 10 proteins and further evolved into MPXV/United States/2021/MD with amino acid mutations in 26 (including amino acid mutations in 10 proteins of the MPXV-United States-P2) proteins. It is noteworthy that specific amino acid mutations in these 22/26 (presence in MPXV/United States/2021/MD) proteins are present in B.1 viruses. Further, analysis of Relative Synonymous Codon Usage (RSCU), Synonymous Codon Usage Fraction (SCUF), and Effective Number of Codons (ENc) revealed codon usage bias in genes that exhibited nucleotide mutations in lineage B.1. Also, host adaptation indices analyzes such as Codon Adaptation Index (CAI), Expected-CAI (eCAI), Relative Codon Deoptimization Index (RCDI) and Expected value for the RCDI (eRCDI) analyzes reveal that the genes that demonstrated nucleotide mutations in lineage B.1 are favorable for human adaptation. Similarly, ENc-GC3s plot, Neutrality plot, and Parity Rule 2 (PR2)-bias plot analyzes suggest a major role of selection pressure than mutation pressure in the evolution of genes displaying nucleotide mutations in lineage B.1. Overall, from 2017 to 2022, MPXV's mutation and spread suggests that this virus continues to evolve through point mutation in the genes according to the available sequence data.
Collapse
|
29
|
Bonczarowska JH, Susat J, Mühlemann B, Jasch-Boley I, Brather S, Höke B, Brather-Walter S, Schoenenberg V, Scheschkewitz J, Graenert G, Krausse D, Francken M, Jones TC, Wahl J, Nebel A, Krause-Kyora B. Pathogen genomics study of an early medieval community in Germany reveals extensive co-infections. Genome Biol 2022; 23:250. [PMID: 36510283 PMCID: PMC9746117 DOI: 10.1186/s13059-022-02806-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The pathogen landscape in the Early European Middle Ages remains largely unexplored. Here, we perform a systematic pathogen screening of the rural community Lauchheim "Mittelhofen," in present-day Germany, dated to the Merovingian period, between fifth and eighth century CE. Skeletal remains of individuals were subjected to an ancient DNA metagenomic analysis. Genomes of the detected pathogens were reconstructed and analyzed phylogenetically. RESULTS Over 30% of the individuals exhibit molecular signs of infection with hepatitis B virus (HBV), parvovirus B19, variola virus (VARV), and Mycobacterium leprae. Seven double and one triple infection were detected. We reconstructed four HBV genomes and one genome each of B19, VARV, and M. leprae. All HBV genomes are of genotype D4 which is rare in Europe today. The VARV strain exhibits a unique pattern of gene loss indicating that viruses with different gene compositions were circulating in the Early Middle Ages. The M. leprae strain clustered in branch 3 together with the oldest to-date genome from the UK. CONCLUSIONS The high burden of infectious disease, together with osteological markers of physiological stress, reflect a poor health status of the community. This could have been an indirect result of the climate decline in Europe at the time, caused by the Late Antique Little Ice Age (LALIA). Our findings suggest that LALIA may have created an ecological context in which persistent outbreaks set the stage for major epidemics of severe diseases such as leprosy and smallpox hundreds of years later.
Collapse
Affiliation(s)
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Barbara Mühlemann
- Institute of Virology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabelle Jasch-Boley
- Institute for Archaeological Sciences, Palaeoanthropology Working Group, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Sebastian Brather
- Institute of Archaeology, Freiburg University, Belfortstraße 22, 79085 Freiburg, Germany
| | - Benjamin Höke
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Berliner Straße 12, 73728 Esslingen, Germany
| | - Susanne Brather-Walter
- Institute of Archaeology, Freiburg University, Belfortstraße 22, 79085 Freiburg, Germany
| | | | - Jonathan Scheschkewitz
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Berliner Straße 12, 73728 Esslingen, Germany
| | - Gabriele Graenert
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Berliner Straße 12, 73728 Esslingen, Germany
| | - Dirk Krausse
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Berliner Straße 12, 73728 Esslingen, Germany
| | - Michael Francken
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Konstanz, Germany
| | - Terry C. Jones
- Institute of Virology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ UK
| | - Joachim Wahl
- Institute for Archaeological Sciences, Palaeoanthropology Working Group, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| |
Collapse
|
30
|
Xiang Y, White A. Monkeypox virus emerges from the shadow of its more infamous cousin: family biology matters. Emerg Microbes Infect 2022; 11:1768-1777. [PMID: 35751396 PMCID: PMC9278444 DOI: 10.1080/22221751.2022.2095309] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Monkeypox virus (MPXV) is closely related to the infamous variola (smallpox) virus, causing a febrile rash illness in humans similar to but milder than smallpox. In the twentieth century, human monkeypox had been mostly a rare zoonotic disease confined to forested areas in West and Central Africa. However, the case number and geographic range have increased significantly in this century, coincided with the waning of the smallpox vaccine-induced immunity in the global population. The outbreak of human monkeypox in multiple countries since May 2022 has been unusual in its large case number and the absence of direct links to endemic countries, raising concerns for a possible change in monkeypox transmission pattern that could pose a greater global threat. Here, we review aspects of MPXV biology that are relevant for risk assessment and preparedness for a monkeypox epidemic, with an emphasis on recent progress in understanding of the virus host range, evolutionary potential, and neutralization targets.
Collapse
Affiliation(s)
- Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Addison White
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
31
|
Rahman MM, McFadden G. Role of cytokines in poxvirus host tropism and adaptation. Curr Opin Virol 2022; 57:101286. [PMID: 36427482 PMCID: PMC9704024 DOI: 10.1016/j.coviro.2022.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.
Collapse
|
32
|
Forni D, Cagliani R, Clerici M, Sironi M. Disease-causing human viruses: novelty and legacy. Trends Microbiol 2022; 30:1232-1242. [PMID: 35902319 DOI: 10.1016/j.tim.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023]
Abstract
About 270 viruses are known to infect humans. Some of these viruses have been known for centuries, whereas others have recently emerged. During their evolutionary history, humans have moved out of Africa to populate the world. In historical times, human migrations resulted in the displacement of large numbers of people. All these events determined the movement and dispersal of human-infecting viruses. Technological advances have resulted in the characterization of the genetic variability of human viruses, both in extant and in archaeological samples. Field studies investigated the diversity of viruses hosted by other animals. In turn, these advances provided insight into the evolutionary history of human viruses back in time and defined the key events through which they originated and spread.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| |
Collapse
|
33
|
Jäger HY, Maixner F, Pap I, Szikossy I, Pálfi G, Zink AR. Metagenomic analysis reveals mixed Mycobacterium tuberculosis infection in a 18th century Hungarian midwife. Tuberculosis (Edinb) 2022; 137:102181. [PMID: 35210171 DOI: 10.1016/j.tube.2022.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023]
Abstract
The Vác Mummy Collection comprises 265 well documented mummified individuals from the late 16th to the early 18th century that were discovered in 1994 inside a crypt in Vác, Hungary. This collection offers a unique opportunity to study the relationship between humans and pathogens in the pre-antibiotic era, as previous studies have shown a high proportion of tuberculosis (TB) infections among the individuals. In this study, we recovered ancient DNA with shotgun sequencing from a rib bone sample of a 18th century midwife. This individual is part of the collection and shows clear skeletal changes that are associated with tuberculosis and syphilis. To provide molecular proof, we applied a metagenomic approach to screen for ancient pathogen DNA. While we were unsuccessful to recover any ancient Treponema pallidum DNA, we retrieved high coverage ancient TB DNA and identified a mixed infection with two distinct TB strains by detailed single-nucleotide polymorphism and phylogenetic analysis. Thereby, we have obtained comprehensive results demonstrating the long-time prevalence of mixed infections with the sublineages L4.1.2.1/Haarlem and L4.10/PGG3 within the local community in preindustrial Hungary and put them in context of sociohistorical factors.
Collapse
Affiliation(s)
- Heidi Y Jäger
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Ildikó Pap
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary; Department of Biological Anthropology, Eötvös Loránd University, Faculty of Science, 1117, Budapest, Pázmány Péter sétány 1/c, Hungary.
| | - Ildikó Szikossy
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary.
| | - György Pálfi
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary.
| | - Albert R Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| |
Collapse
|
34
|
Forni D, Cagliani R, Molteni C, Clerici M, Sironi M. Monkeypox virus: The changing facets of a zoonotic pathogen. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105372. [PMID: 36202208 PMCID: PMC9534092 DOI: 10.1016/j.meegid.2022.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
In the last five years, the prevalence of monkeypox has been increasing both in the regions considered endemic for the disease (West and Central Africa) and worldwide. Indeed, in July 2022, the World Health Organization declared the ongoing global outbreak of monkeypox a public health emergency of international concern. The disease is caused by monkeypox virus (MPXV), a member of the Orthopoxvirus genus, which also includes variola virus (the causative agent of smallpox) and vaccinia virus (used in the smallpox eradication campaign). Here, we review aspects of MPXV genetic diversity and epidemiology, with an emphasis on its genome structure, host range, and relationship with other orthopoxviruses. We also summarize the most recent findings deriving from the sequencing of outbreak MPXV genomes, and we discuss the apparent changing of MPXV evolutionary trajectory, which is characterized by the accumulation of point mutations rather than by gene gains/losses. Whereas the availability of a vaccine, the relatively mild presentation of the disease, and its relatively low transmissibility speak in favor of an efficient control of the global outbreak, the wide host range of MPXV raises concerns about the possible establishment of novel reservoirs. We also call for the deployment of field surveys and genomic surveillance programs to identify and control the MPXV reservoirs in West and Central Africa.
Collapse
Affiliation(s)
- Diego Forni
- IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | | | | | - Mario Clerici
- University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | | |
Collapse
|
35
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
36
|
Sprygin A, Mazloum A, van Schalkwyk A, Babiuk S. Capripoxviruses, leporipoxviruses, and orthopoxviruses: Occurrences of recombination. Front Microbiol 2022; 13:978829. [PMID: 36274700 PMCID: PMC9584655 DOI: 10.3389/fmicb.2022.978829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Poxviruses are double-stranded DNA viruses with several members displaying restricted host ranges. They are genetically stable with low nucleotide mutation rates compared to other viruses, due to the poxviral high-fidelity DNA polymerase. Despite the low accumulation of mutations per replication cycle, poxvirus genomes can recombine with each other to generate genetically rearranged viruses through recombination, a process directly associated with replication and the aforementioned DNA polymerase. Orthopoxvirus replication is intimately tethered to high frequencies of homologous recombination between co-infecting viruses, duplicated sequences of the same virus, and plasmid DNA transfected into poxvirus-infected cells. Unfortunately, the effect of these genomic alterations on the cellular context for all poxviruses across the family Poxviridae remains elusive. However, emerging sequence data on currently circulating and archived poxviruses, such as the genera orthopoxviruses and capripoxviruses, display a wide degree of divergence. This genetic variability cannot be explained by clonality or genetic drift alone, but are probably a result of significant genomic alterations, such as homologous recombination, gene loss and gain, or gene duplications as the major selection forces acting on viral progeny. The objective of this review is to cross-sectionally overview the currently available findings on natural and laboratory observations of recombination in orthopoxviruses, capripoxviruses, and leporipoxviruses, as well as the possible mechanisms involved. Overall, the reviewed available evidence allows us to conclude that the current state of knowledge is limited in terms of the relevance of genetic variations across even a genus of poxviruses as well as fundamental features governing and precipitating intrinsic gene flow and recombination events.
Collapse
Affiliation(s)
- Alexander Sprygin
- Federal Center for Animal Health, Vladimir, Russia
- *Correspondence: Alexander Sprygin,
| | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | | | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| |
Collapse
|
37
|
HAYSTAC: A Bayesian framework for robust and rapid species identification in high-throughput sequencing data. PLoS Comput Biol 2022; 18:e1010493. [PMID: 36178955 PMCID: PMC9555677 DOI: 10.1371/journal.pcbi.1010493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Identification of specific species in metagenomic samples is critical for several key applications, yet many tools available require large computational power and are often prone to false positive identifications. Here we describe High-AccuracY and Scalable Taxonomic Assignment of MetagenomiC data (HAYSTAC), which can estimate the probability that a specific taxon is present in a metagenome. HAYSTAC provides a user-friendly tool to construct databases, based on publicly available genomes, that are used for competitive read mapping. It then uses a novel Bayesian framework to infer the abundance and statistical support for each species identification and provide per-read species classification. Unlike other methods, HAYSTAC is specifically designed to efficiently handle both ancient and modern DNA data, as well as incomplete reference databases, making it possible to run highly accurate hypothesis-driven analyses (i.e., assessing the presence of a specific species) on variably sized reference databases while dramatically improving processing speeds. We tested the performance and accuracy of HAYSTAC using simulated Illumina libraries, both with and without ancient DNA damage, and compared the results to other currently available methods (i.e., Kraken2/Bracken, KrakenUniq, MALT/HOPS, and Sigma). HAYSTAC identified fewer false positives than both Kraken2/Bracken, KrakenUniq and MALT in all simulations, and fewer than Sigma in simulations of ancient data. It uses less memory than Kraken2/Bracken, KrakenUniq as well as MALT both during database construction and sample analysis. Lastly, we used HAYSTAC to search for specific pathogens in two published ancient metagenomic datasets, demonstrating how it can be applied to empirical datasets. HAYSTAC is available from https://github.com/antonisdim/HAYSTAC. The emerging field of paleo-metagenomics (i.e., metagenomics from ancient DNA) holds great promise for novel discoveries in fields as diverse as pathogen evolution and paleoenvironmental reconstruction. However, there is presently a lack of computational methods for species identification from microbial communities in both degraded and nondegraded DNA material. Here, we present “HAYSTAC”, a user-friendly software package that implements a novel probabilistic model for species identification in metagenomic data obtained from both degraded and non-degraded DNA material. Through extensive benchmarking, we show that HAYSTAC can be used for accurately profiling the community composition, as well as for direct hypothesis testing for the presence of extremely low-abundance taxa, in complex metagenomic samples. After analysing simulated and publicly available datasets, HAYSTAC consistently produced the lowest number of false positive identifications during taxonomic profiling, produced robust results when databases of restricted size were used, and showed increased sensitivity for pathogen detection compared to other specialist methods. The newly proposed probabilistic model and software employed by HAYSTAC can have a substantial impact on the robust and rapid pathogen discovery in degraded/shallow sequenced metagenomic samples while optimising the use of computational resources.
Collapse
|
38
|
Abstract
Smallpox is an ancient scourge known since the Antiquity. It is caused by a highly contagious airborne poxvirus. This strictly human disease exists in two forms: variola major (Asian smallpox) with mortality of 20-45%, and an attenuated form called variola minor or alatrim with mortality of 1-2%, which only recently appeared in Europe and America towards the end of the 19th century. The first smallpox pandemic was the "Antonine plague", which swept through the Roman Empire in the 2nd century AD, after which smallpox became endemic in the Old World, causing seasonal and regional epidemics in Europe, affecting mostly young children until the 19th century. The discovery of the New World in 1492 and the opening of the African slave trade favored in 1518 the contamination by smallpox of the native Amerindian populations, who were massively decimated during the following centuries. In the absence of any effective treatment, preventive methods were developed from the 18th century. First, variolation was used, a dangerous procedure that consists in inoculating intradermally a small quantity of virus from convalescent patients. In the early 19th century, Edward Jenner popularized the practice of inoculating cowpox, a mild cow disease. This procedure proved to be very effective and relatively safe, leading to the decline of smallpox during the 19th century. In the 20th century, a ten-year WHO vaccination campaign led to the total eradication of smallpox in 1977. During that century, smallpox caused an estimated 300-500 million deaths worldwide. Using molecular approach, it has been discovered that the smallpox virus emerged 3000-4000 years ago in East Africa and is closely related to the taterapox virus from African gerbils and to the camelpox virus, which causes variola in camelids. Today, smallpox virus strains are stored in freezers at the CDC in Atlanta and at the Vector Center in Koltsovo, Siberia. That is why smallpox remains a potential threat to the highly susceptible human species, as a result of an accident or malicious use of the virus as a biological weapon.
Collapse
|
39
|
Le MK, Smith OS, Akbari A, Harpak A, Reich D, Narasimhan VM. 1,000 ancient genomes uncover 10,000 years of natural selection in Europe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.24.505188. [PMID: 36052370 PMCID: PMC9435429 DOI: 10.1101/2022.08.24.505188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ancient DNA has revolutionized our understanding of human population history. However, its potential to examine how rapid cultural evolution to new lifestyles may have driven biological adaptation has not been met, largely due to limited sample sizes. We assembled genome-wide data from 1,291 individuals from Europe over 10,000 years, providing a dataset that is large enough to resolve the timing of selection into the Neolithic, Bronze Age, and Historical periods. We identified 25 genetic loci with rapid changes in frequency during these periods, a majority of which were previously undetected. Signals specific to the Neolithic transition are associated with body weight, diet, and lipid metabolism-related phenotypes. They also include immune phenotypes, most notably a locus that confers immunity to Salmonella infection at a time when ancient Salmonella genomes have been shown to adapt to human hosts, thus providing a possible example of human-pathogen co-evolution. In the Bronze Age, selection signals are enriched near genes involved in pigmentation and immune-related traits, including at a key human protein interactor of SARS-CoV-2. Only in the Historical period do the selection candidates we detect largely mirror previously-reported signals, highlighting how the statistical power of previous studies was limited to the last few millennia. The Historical period also has multiple signals associated with vitamin D binding, providing evidence that lactase persistence may have been part of an oligogenic adaptation for efficient calcium uptake and challenging the theory that its adaptive value lies only in facilitating caloric supplementation during times of scarcity. Finally, we detect selection on complex traits in all three periods, including selection favoring variants that reduce body weight in the Neolithic. In the Historical period, we detect selection favoring variants that increase risk for cardiovascular disease plausibly reflecting selection for a more active inflammatory response that would have been adaptive in the face of increased infectious disease exposure. Our results provide an evolutionary rationale for the high prevalence of these deadly diseases in modern societies today and highlight the unique power of ancient DNA in elucidating biological change that accompanied the profound cultural transformations of recent human history.
Collapse
Affiliation(s)
- Megan K Le
- Department of Computer Science, The University of Texas at Austin
| | - Olivia S Smith
- Department of Integrative Biology, The University of Texas at Austin
| | - Ali Akbari
- Department of Genetics, Harvard Medical School
- Department of Human Evolutionary Biology, Harvard University
- Broad Institute of MIT and Harvard
| | - Arbel Harpak
- Department of Integrative Biology, The University of Texas at Austin
- Department of Population Health, Dell Medical School
| | - David Reich
- Department of Genetics, Harvard Medical School
- Department of Human Evolutionary Biology, Harvard University
- Howard Hughes Medical Institute, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin
- Department of Statistics and Data Science, The University of Texas at Austin
| |
Collapse
|
40
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
41
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
42
|
Buikstra JE, DeWitte SN, Agarwal SC, Baker BJ, Bartelink EJ, Berger E, Blevins KE, Bolhofner K, Boutin AT, Brickley MB, Buzon MR, de la Cova C, Goldstein L, Gowland R, Grauer AL, Gregoricka LA, Halcrow SE, Hall SA, Hillson S, Kakaliouras AM, Klaus HD, Knudson KJ, Knüsel CJ, Larsen CS, Martin DL, Milner GR, Novak M, Nystrom KC, Pacheco-Forés SI, Prowse TL, Robbins Schug G, Roberts CA, Rothwell JE, Santos AL, Stojanowski C, Stone AC, Stull KE, Temple DH, Torres CM, Toyne JM, Tung TA, Ullinger J, Wiltschke-Schrotta K, Zakrzewski SR. Twenty-first century bioarchaeology: Taking stock and moving forward. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:54-114. [PMID: 36790761 DOI: 10.1002/ajpa.24494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
This article presents outcomes from a Workshop entitled "Bioarchaeology: Taking Stock and Moving Forward," which was held at Arizona State University (ASU) on March 6-8, 2020. Funded by the National Science Foundation (NSF), the School of Human Evolution and Social Change (ASU), and the Center for Bioarchaeological Research (CBR, ASU), the Workshop's overall goal was to explore reasons why research proposals submitted by bioarchaeologists, both graduate students and established scholars, fared disproportionately poorly within recent NSF Anthropology Program competitions and to offer advice for increasing success. Therefore, this Workshop comprised 43 international scholars and four advanced graduate students with a history of successful grant acquisition, primarily from the United States. Ultimately, we focused on two related aims: (1) best practices for improving research designs and training and (2) evaluating topics of contemporary significance that reverberate through history and beyond as promising trajectories for bioarchaeological research. Among the former were contextual grounding, research question/hypothesis generation, statistical procedures appropriate for small samples and mixed qualitative/quantitative data, the salience of Bayesian methods, and training program content. Topical foci included ethics, social inequality, identity (including intersectionality), climate change, migration, violence, epidemic disease, adaptability/plasticity, the osteological paradox, and the developmental origins of health and disease. Given the profound changes required globally to address decolonization in the 21st century, this concern also entered many formal and informal discussions.
Collapse
Affiliation(s)
- Jane E Buikstra
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Sabrina C Agarwal
- Department of Anthropology, University of California Berkeley, Berkeley, California, USA
| | - Brenda J Baker
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Eric J Bartelink
- Department of Anthropology, California State University, Chico, California, USA
| | - Elizabeth Berger
- Department of Anthropology, University of California, Riverside, California, USA
| | | | - Katelyn Bolhofner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Alexis T Boutin
- Department of Anthropology, Sonoma State University, Rohnert Park, California, USA
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Michele R Buzon
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Carlina de la Cova
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Lynne Goldstein
- Department of Anthropology, Michigan State University, East Lansing, Michigan, USA
| | | | - Anne L Grauer
- Department of Anthropology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lesley A Gregoricka
- Department of Sociology, Anthropology, & Social Work, University of South Alabama, Mobile, Alabama, USA
| | - Siân E Halcrow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah A Hall
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Simon Hillson
- Institute of Archaeology, University College London, London, UK
| | - Ann M Kakaliouras
- Department of Anthropology, Whittier College, Whittier, California, USA
| | - Haagen D Klaus
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Kelly J Knudson
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Christopher J Knüsel
- Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, University of Bordeaux, CNRS, MC, PACEA, UMR5199, F-33615, Pessac, France
| | | | - Debra L Martin
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - George R Milner
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mario Novak
- Center for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kenneth C Nystrom
- Department of Anthropology, State University of New York at New Paltz, New Paltz, New York, USA
| | | | - Tracy L Prowse
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Gwen Robbins Schug
- Environmental Health Program, University of North Carolina, Greensboro, North Carolina, USA
| | | | - Jessica E Rothwell
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Ana Luisa Santos
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christopher Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Anne C Stone
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kyra E Stull
- Department of Anthropology, University of Nevada, Reno, Reno, Nevada, USA
| | - Daniel H Temple
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Christina M Torres
- Department of Anthropology and Heritage Studies, University of California, Merced, USA, and Instituto de Arqueología y Antropología, Universidad Católica del Norte, Antofagasta, Chile
| | - J Marla Toyne
- Department of Anthropology, University of Central Florida, Orlando, Florida, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jaime Ullinger
- Bioanthropology Research Institute, Quinnipiac University, Hamden, Connecticut, USA
| | | | | |
Collapse
|
43
|
Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, Mixão V, Ferreira R, Santos D, Duarte S, Vieira L, Borrego MJ, Núncio S, de Carvalho IL, Pelerito A, Cordeiro R, Gomes JP. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 2022; 28:1569-1572. [PMID: 35750157 PMCID: PMC9388373 DOI: 10.1038/s41591-022-01907-y] [Citation(s) in RCA: 395] [Impact Index Per Article: 197.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 12/17/2022]
Abstract
The largest monkeypox virus (MPXV) outbreak described so far in non-endemic countries was identified in May 2022 (refs. 1-6). In this study, shotgun metagenomics allowed the rapid reconstruction and phylogenomic characterization of the first MPXV outbreak genome sequences, showing that this MPXV belongs to clade 3 and that the outbreak most likely has a single origin. Although 2022 MPXV (lineage B.1) clustered with 2018-2019 cases linked to an endemic country, it segregates in a divergent phylogenetic branch, likely reflecting continuous accelerated evolution. An in-depth mutational analysis suggests the action of host APOBEC3 in viral evolution as well as signs of potential MPXV human adaptation in ongoing microevolution. Our findings also indicate that genome sequencing may provide resolution to track the spread and transmission of this presumably slow-evolving double-stranded DNA virus.
Collapse
Affiliation(s)
- Joana Isidro
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniel Sobral
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Dourado Santos
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Verónica Mixão
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rita Ferreira
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniela Santos
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Silvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Maria José Borrego
- National Reference Laboratory of Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Sofia Núncio
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Ana Pelerito
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rita Cordeiro
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal.
| |
Collapse
|
44
|
Wang Y. Ancient environmental DNA reveals Arctic ecosystem dynamics in last 50,000 years. Sci Bull (Beijing) 2022; 67:1304-1306. [PMID: 36546258 DOI: 10.1016/j.scib.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yucheng Wang
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen K1350, Denmark; BGI, BGI-Shenzhen, Shanghai 201321, China; Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
45
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
46
|
Spyrou MA, Musralina L, Gnecchi Ruscone GA, Kocher A, Borbone PG, Khartanovich VI, Buzhilova A, Djansugurova L, Bos KI, Kühnert D, Haak W, Slavin P, Krause J. The source of the Black Death in fourteenth-century central Eurasia. Nature 2022; 606:718-724. [PMID: 35705810 PMCID: PMC9217749 DOI: 10.1038/s41586-022-04800-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
The origin of the medieval Black Death pandemic (AD 1346-1353) has been a topic of continuous investigation because of the pandemic's extensive demographic impact and long-lasting consequences1,2. Until now, the most debated archaeological evidence potentially associated with the pandemic's initiation derives from cemeteries located near Lake Issyk-Kul of modern-day Kyrgyzstan1,3-9. These sites are thought to have housed victims of a fourteenth-century epidemic as tombstone inscriptions directly dated to 1338-1339 state 'pestilence' as the cause of death for the buried individuals9. Here we report ancient DNA data from seven individuals exhumed from two of these cemeteries, Kara-Djigach and Burana. Our synthesis of archaeological, historical and ancient genomic data shows a clear involvement of the plague bacterium Yersinia pestis in this epidemic event. Two reconstructed ancient Y. pestis genomes represent a single strain and are identified as the most recent common ancestor of a major diversification commonly associated with the pandemic's emergence, here dated to the first half of the fourteenth century. Comparisons with present-day diversity from Y. pestis reservoirs in the extended Tian Shan region support a local emergence of the recovered ancient strain. Through multiple lines of evidence, our data support an early fourteenth-century source of the second plague pandemic in central Eurasia.
Collapse
Affiliation(s)
- Maria A Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, Almaty, Kazakhstan
| | - Guido A Gnecchi Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Pier-Giorgio Borbone
- Department of Civilisations and Forms of Knowledge, University of Pisa, Pisa, Italy
| | - Valeri I Khartanovich
- Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Ethnography, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Leyla Djansugurova
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Denise Kühnert
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, UK.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
47
|
Bioarchaeological and palaeogenomic portrait of two Pompeians that died during the eruption of Vesuvius in 79 AD. Sci Rep 2022; 12:6468. [PMID: 35618734 PMCID: PMC9135728 DOI: 10.1038/s41598-022-10899-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The archaeological site of Pompeii is one of the 54 UNESCO World Heritage sites in Italy, thanks to its uniqueness: the town was completely destroyed and buried by a Vesuvius’ eruption in 79 AD. In this work, we present a multidisciplinary approach with bioarchaeological and palaeogenomic analyses of two Pompeian human remains from the Casa del Fabbro. We have been able to characterize the genetic profile of the first Pompeian’ genome, which has strong affinities with the surrounding central Italian population from the Roman Imperial Age. Our findings suggest that, despite the extensive connection between Rome and other Mediterranean populations, a noticeable degree of genetic homogeneity exists in the Italian peninsula at that time. Moreover, palaeopathological analyses identified the presence of spinal tuberculosis and we further investigated the presence of ancient DNA from Mycobacterium tuberculosis. In conclusion, our study demonstrates the power of a combined approach to investigate ancient humans and confirms the possibility to retrieve ancient DNA from Pompeii human remains. Our initial findings provide a foundation to promote an intensive and extensive paleogenetic analysis in order to reconstruct the genetic history of population from Pompeii, a unique archaeological site.
Collapse
|
48
|
Czech L, Stamatakis A, Dunthorn M, Barbera P. Metagenomic Analysis Using Phylogenetic Placement-A Review of the First Decade. FRONTIERS IN BIOINFORMATICS 2022; 2:871393. [PMID: 36304302 PMCID: PMC9580882 DOI: 10.3389/fbinf.2022.871393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Phylogenetic placement refers to a family of tools and methods to analyze, visualize, and interpret the tsunami of metagenomic sequencing data generated by high-throughput sequencing. Compared to alternative (e. g., similarity-based) methods, it puts metabarcoding sequences into a phylogenetic context using a set of known reference sequences and taking evolutionary history into account. Thereby, one can increase the accuracy of metagenomic surveys and eliminate the requirement for having exact or close matches with existing sequence databases. Phylogenetic placement constitutes a valuable analysis tool per se, but also entails a plethora of downstream tools to interpret its results. A common use case is to analyze species communities obtained from metagenomic sequencing, for example via taxonomic assignment, diversity quantification, sample comparison, and identification of correlations with environmental variables. In this review, we provide an overview over the methods developed during the first 10 years. In particular, the goals of this review are 1) to motivate the usage of phylogenetic placement and illustrate some of its use cases, 2) to outline the full workflow, from raw sequences to publishable figures, including best practices, 3) to introduce the most common tools and methods and their capabilities, 4) to point out common placement pitfalls and misconceptions, 5) to showcase typical placement-based analyses, and how they can help to analyze, visualize, and interpret phylogenetic placement data.
Collapse
Affiliation(s)
- Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
49
|
Preventive Measures against Pandemics from the Beginning of Civilization to Nowadays—How Everything Has Remained the Same over the Millennia. J Clin Med 2022; 11:jcm11071960. [PMID: 35407571 PMCID: PMC8999828 DOI: 10.3390/jcm11071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
As of 27 March 2022, the β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 487 million individuals worldwide, causing more than 6.14 million deaths. SARS-CoV-2 spreads through close contact, causing the coronavirus disease 2019 (COVID-19); thus, emergency lockdowns have been implemented worldwide to avoid its spread. COVID-19 is not the first infectious disease that humankind has had to face during its history. Indeed, humans have recurrently been threatened by several emerging pathogens that killed a substantial fraction of the population. Historical sources document that as early as between the 10th and the 6th centuries BCE, the authorities prescribed physical–social isolation, physical distancing, and quarantine of the infected subjects until the end of the disease, measures that strongly resemble containment measures taken nowadays. In this review, we show a historical and literary overview of different epidemic diseases and how the recommendations in the pre-vaccine era were, and still are, effective in containing the contagion.
Collapse
|
50
|
Arizmendi Cárdenas YO, Neuenschwander S, Malaspinas AS. Benchmarking metagenomics classifiers on ancient viral DNA: a simulation study. PeerJ 2022; 10:e12784. [PMID: 35356467 PMCID: PMC8958974 DOI: 10.7717/peerj.12784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Owing to technological advances in ancient DNA, it is now possible to sequence viruses from the past to track down their origin and evolution. However, ancient DNA data is considerably more degraded and contaminated than modern data making the identification of ancient viral genomes particularly challenging. Several methods to characterise the modern microbiome (and, within this, the virome) have been developed; in particular, tools that assign sequenced reads to specific taxa in order to characterise the organisms present in a sample of interest. While these existing tools are routinely used in modern data, their performance when applied to ancient microbiome data to screen for ancient viruses remains unknown. In this work, we conducted an extensive simulation study using public viral sequences to establish which tool is the most suitable to screen ancient samples for human DNA viruses. We compared the performance of four widely used classifiers, namely Centrifuge, Kraken2, DIAMOND and MetaPhlAn2, in correctly assigning sequencing reads to the corresponding viruses. To do so, we simulated reads by adding noise typical of ancient DNA to a set of publicly available human DNA viral sequences and to the human genome. We fragmented the DNA into different lengths, added sequencing error and C to T and G to A deamination substitutions at the read termini. Then we measured the resulting sensitivity and precision for all classifiers. Across most simulations, more than 228 out of the 233 simulated viruses were recovered by Centrifuge, Kraken2 and DIAMOND, in contrast to MetaPhlAn2 which recovered only around one third. Overall, Centrifuge and Kraken2 had the best performance with the highest values of sensitivity and precision. We found that deamination damage had little impact on the performance of the classifiers, less than the sequencing error and the length of the reads. Since Centrifuge can handle short reads (in contrast to DIAMOND and Kraken2 with default settings) and since it achieve the highest sensitivity and precision at the species level across all the simulations performed, it is our recommended tool. Regardless of the tool used, our simulations indicate that, for ancient human studies, users should use strict filters to remove all reads of potential human origin. Finally, we recommend that users verify which species are present in the database used, as it might happen that default databases lack sequences for viruses of interest.
Collapse
Affiliation(s)
- Yami Ommar Arizmendi Cárdenas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|